"""Defines perturbations to properties of the medium / materials"""
from __future__ import annotations
import functools
from abc import ABC, abstractmethod
from typing import Callable, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
import numpy as np
import pydantic.v1 as pd
from ..components.data.validators import validate_no_nans
from ..components.types import TYPE_TAG_STR, ArrayLike, Ax, Complex, FieldVal, InterpMethod
from ..components.viz import add_ax_if_none
from ..constants import CMCUBE, EPSILON_0, HERTZ, KELVIN, PERCMCUBE, inf
from ..exceptions import DataError
from ..log import log
from .base import Tidy3dBaseModel, cached_property
from .data.data_array import ChargeDataArray, HeatDataArray, IndexedDataArray, SpatialDataArray
from .data.dataset import (
CustomSpatialDataType,
UnstructuredGridDataset,
_check_same_coordinates,
_get_numpy_array,
_zeros_like,
)
""" Generic perturbation classes """
class AbstractPerturbation(ABC, Tidy3dBaseModel):
"""Abstract class for a generic perturbation."""
@cached_property
@abstractmethod
def perturbation_range(self) -> Union[Tuple[float, float], Tuple[Complex, Complex]]:
"""Perturbation range."""
@cached_property
@abstractmethod
def is_complex(self) -> bool:
"""Whether perturbation is complex valued."""
@staticmethod
def _linear_range(interval: Tuple[float, float], ref: float, coeff: Union[float, Complex]):
"""Find value range for a linear perturbation."""
if coeff in (0, 0j): # to avoid 0*inf
return np.array([0, 0])
return tuple(np.sort(coeff * (np.array(interval) - ref)))
@staticmethod
def _get_val(
field: Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType], val: FieldVal
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""Get specified value from a field."""
if val == "real":
return np.real(field)
if val == "imag":
return np.imag(field)
if val == "abs":
return np.abs(field)
if val == "abs^2":
return np.abs(field) ** 2
if val == "phase":
return np.arctan2(np.real(field), np.imag(field))
raise ValueError(
"Unknown 'val' key. Argument 'val' can take values 'real', 'imag', 'abs', "
"'abs^2', or 'phase'."
)
""" Elementary heat perturbation classes """
def ensure_temp_in_range(
sample: Callable[
Union[ArrayLike[float], CustomSpatialDataType],
Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType],
],
) -> Callable[
Union[ArrayLike[float], CustomSpatialDataType],
Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType],
]:
"""Decorate ``sample`` to log warning if temperature supplied is out of bounds."""
@functools.wraps(sample)
def _sample(
self, temperature: Union[ArrayLike[float], CustomSpatialDataType]
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""New sample function."""
if np.iscomplexobj(temperature):
raise DataError("Cannot pass complex 'temperature' to 'sample()'")
temp_min, temp_max = self.temperature_range
temperature_numpy = _get_numpy_array(temperature)
if np.any(temperature_numpy < temp_min) or np.any(temperature_numpy > temp_max):
log.warning(
"Temperature passed to 'HeatPerturbation.sample()'"
f"is outside of 'HeatPerturbation.temperature_range' = {self.temperature_range}"
)
return sample(self, temperature)
return _sample
class HeatPerturbation(AbstractPerturbation):
"""Abstract class for heat perturbation."""
temperature_range: Tuple[pd.NonNegativeFloat, pd.NonNegativeFloat] = pd.Field(
(0, inf),
title="Temperature range",
description="Temperature range in which perturbation model is valid.",
units=KELVIN,
)
@abstractmethod
def sample(
self, temperature: Union[ArrayLike[float], CustomSpatialDataType]
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""Sample perturbation.
Parameters
----------
temperature : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Temperature sample point(s).
Returns
-------
Union[
ArrayLike[float],
ArrayLike[complex],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Sampled perturbation value(s).
"""
@add_ax_if_none
def plot(
self,
temperature: ArrayLike[float],
val: FieldVal = "real",
ax: Ax = None,
) -> Ax:
"""Plot perturbation using provided temperature sample points.
Parameters
----------
temperature : ArrayLike[float]
Array of temperature sample points.
val : Literal['real', 'imag', 'abs', 'abs^2', 'phase'] = 'real'
Which part of the field to plot.
ax : matplotlib.axes._subplots.Axes = None
Matplotlib axes to plot on, if not specified, one is created.
Returns
-------
matplotlib.axes._subplots.Axes
The supplied or created matplotlib axes.
"""
temperature_numpy = np.array(temperature)
values = self.sample(temperature_numpy)
values = self._get_val(values, val)
ax.plot(temperature_numpy, values)
ax.set_xlabel("temperature (K)")
ax.set_ylabel(f"{val}(perturbation value)")
ax.set_title("temperature dependence")
ax.set_aspect("auto")
return ax
[docs]
class LinearHeatPerturbation(HeatPerturbation):
"""Specifies parameter's perturbation due to thermal effects as a linear function of
temperature.
Notes
-----
.. math::
\\Delta X (T) = \\text{coeff} \\times (T - \\text{temperature\\_ref}),
where ``coeff`` is the parameter's sensitivity (thermo-optic coefficient) to temperature and
``temperature_ref`` is the reference temperature point. A temperature range in which such
a model is deemed accurate may be provided as a field ``temperature_range``
(default: ``[0, inf]``). Wherever is applied, Tidy3D will check that the parameter's value
does not go out of its physical bounds within ``temperature_range`` due to perturbations and
raise a warning if this check fails. A warning is also issued if the perturbation model is
evaluated outside of ``temperature_range``.
.. TODO link to relevant example new
Example
-------
>>> heat_perturb = LinearHeatPerturbation(
... temperature_ref=300,
... coeff=0.0001,
... temperature_range=[200, 500],
... )
"""
temperature_ref: pd.NonNegativeFloat = pd.Field(
...,
title="Reference temperature",
description="Temperature at which perturbation is zero.",
units=KELVIN,
)
coeff: Union[float, Complex] = pd.Field(
...,
title="Thermo-optic Coefficient",
description="Sensitivity (derivative) of perturbation with respect to temperature.",
units=f"1/{KELVIN}",
)
@cached_property
def perturbation_range(self) -> Union[Tuple[float, float], Tuple[Complex, Complex]]:
"""Range of possible perturbation values in the provided ``temperature_range``."""
return self._linear_range(self.temperature_range, self.temperature_ref, self.coeff)
[docs]
@ensure_temp_in_range
def sample(
self, temperature: Union[ArrayLike[float], CustomSpatialDataType]
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""Sample perturbation at temperature points.
Parameters
----------
temperature : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Temperature sample point(s).
Returns
-------
Union[
ArrayLike[float],
ArrayLike[complex],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Sampled perturbation value(s).
"""
temp_vals = temperature
if isinstance(temperature, (list, tuple)):
temp_vals = np.array(temperature)
return self.coeff * (temp_vals - self.temperature_ref)
@cached_property
def is_complex(self) -> bool:
"""Whether perturbation is complex valued."""
return np.iscomplex(self.coeff)
[docs]
class CustomHeatPerturbation(HeatPerturbation):
"""Specifies parameter's perturbation due to thermal effects as a custom function of
temperature defined as an array of perturbation values at sample temperature points.
Notes
-----
The linear
interpolation is used to calculate perturbation values between sample temperature points. For
temperature values outside of the provided sample region the perturbation value is extrapolated
as a constant.
The temperature range, ``temperature_range``, in which the perturbation model is assumed to be
accurate is calculated automatically as the minimal and maximal sample temperature points.
Wherever is applied, Tidy3D will check that the parameter's value
does not go out of its physical bounds within ``temperature_range`` due to perturbations and
raise a warning if this check fails. A warning is also issued if the perturbation model is
evaluated outside of ``temperature_range``.
.. TODO link to relevant example new
Example
-------
>>> from tidy3d import HeatDataArray
>>> perturbation_data = HeatDataArray([0.001, 0.002, 0.004], coords=dict(T=[250, 300, 350]))
>>> heat_perturb = CustomHeatPerturbation(
... perturbation_values=perturbation_data
... )
"""
perturbation_values: HeatDataArray = pd.Field(
...,
title="Perturbation Values",
description="Sampled perturbation values.",
)
temperature_range: Tuple[pd.NonNegativeFloat, pd.NonNegativeFloat] = pd.Field(
None,
title="Temperature range",
description="Temperature range in which perturbation model is valid. For "
":class:`.CustomHeatPerturbation` this field is computed automatically based on "
"temperature sample points provided in ``perturbation_values``.",
units=KELVIN,
)
interp_method: InterpMethod = pd.Field(
"linear",
title="Interpolation method",
description="Interpolation method to obtain perturbation values between sample points.",
)
_no_nans = validate_no_nans("perturbation_values")
@cached_property
def perturbation_range(self) -> Union[Tuple[float, float], Tuple[Complex, Complex]]:
"""Range of possible parameter perturbation values."""
return np.min(self.perturbation_values).item(), np.max(self.perturbation_values).item()
[docs]
@pd.root_validator(skip_on_failure=True)
def compute_temperature_range(cls, values):
"""Compute and set temperature range based on provided ``perturbation_values``."""
perturbation_values = values["perturbation_values"]
# .item() to convert to a scalar
temperature_range = (
np.min(perturbation_values.coords["T"]).item(),
np.max(perturbation_values.coords["T"]).item(),
)
if (
values["temperature_range"] is not None
and values["temperature_range"] != temperature_range
):
log.warning(
"Temperature range for 'CustomHeatPerturbation' is calculated automatically "
"based on provided 'perturbation_values'. Provided 'temperature_range' will be "
"overwritten."
)
values.update({"temperature_range": temperature_range})
return values
[docs]
@ensure_temp_in_range
def sample(
self, temperature: Union[ArrayLike[float], CustomSpatialDataType]
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""Sample perturbation at provided temperature points.
Parameters
----------
temperature : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Temperature sample point(s).
Returns
-------
Union[
ArrayLike[float],
ArrayLike[complex],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Sampled perturbation value(s).
"""
t_range = self.temperature_range
temp_clip = np.clip(_get_numpy_array(temperature), t_range[0], t_range[1])
sampled = self.perturbation_values.interp(
T=temp_clip.ravel(), method=self.interp_method
).values
sampled = np.reshape(sampled, np.shape(temp_clip))
# preserve input type
if isinstance(temperature, SpatialDataArray):
return SpatialDataArray(sampled, coords=temperature.coords)
if isinstance(temperature, UnstructuredGridDataset):
return temperature.updated_copy(
values=IndexedDataArray(sampled, coords=temperature.values.coords)
)
if np.ndim(temperature) == 0:
return sampled.item()
return sampled
@cached_property
def is_complex(self) -> bool:
"""Whether perturbation is complex valued."""
return np.iscomplexobj(self.perturbation_values)
HeatPerturbationType = Union[LinearHeatPerturbation, CustomHeatPerturbation]
""" Elementary charge perturbation classes """
def ensure_charge_in_range(
sample: Callable[
[
Union[ArrayLike[float], CustomSpatialDataType],
Union[ArrayLike[float], CustomSpatialDataType],
],
Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType],
],
) -> Callable[
[
Union[ArrayLike[float], CustomSpatialDataType],
Union[ArrayLike[float], CustomSpatialDataType],
],
Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType],
]:
"""Decorate ``sample`` to log warning if charge supplied is out of bounds."""
@functools.wraps(sample)
def _sample(
self,
electron_density: Union[ArrayLike[float], CustomSpatialDataType],
hole_density: Union[ArrayLike[float], CustomSpatialDataType],
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""New sample function."""
# disable complex input
if np.iscomplexobj(electron_density):
raise DataError("Cannot pass complex 'electron_density' to 'sample()'")
if np.iscomplexobj(hole_density):
raise DataError("Cannot pass complex 'hole_density' to 'sample()'")
# check ranges
e_min, e_max = self.electron_range
electron_numpy = _get_numpy_array(electron_density)
if np.any(electron_numpy < e_min) or np.any(electron_numpy > e_max):
log.warning(
"Electron density values passed to 'ChargePerturbation.sample()'"
f"is outside of 'ChargePerturbation.electron_range' = {self.electron_range}"
)
h_min, h_max = self.hole_range
hole_numpy = _get_numpy_array(hole_density)
if np.any(hole_numpy < h_min) or np.any(hole_numpy > h_max):
log.warning(
"Hole density values passed to 'ChargePerturbation.sample()'"
f"is outside of 'ChargePerturbation.hole_range' = {self.hole_range}"
)
return sample(self, electron_density, hole_density)
return _sample
class ChargePerturbation(AbstractPerturbation):
"""Abstract class for charge perturbation."""
electron_range: Tuple[pd.NonNegativeFloat, pd.NonNegativeFloat] = pd.Field(
(0, inf),
title="Electron Density Range",
description="Range of electrons densities in which perturbation model is valid.",
)
hole_range: Tuple[pd.NonNegativeFloat, pd.NonNegativeFloat] = pd.Field(
(0, inf),
title="Hole Density Range",
description="Range of holes densities in which perturbation model is valid.",
)
@abstractmethod
def sample(
self,
electron_density: Union[ArrayLike[float], CustomSpatialDataType],
hole_density: Union[ArrayLike[float], CustomSpatialDataType],
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""Sample perturbation.
Parameters
----------
electron_density : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Electron density sample point(s).
hole_density : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Hole density sample point(s).
Note
----
Provided ``electron_density`` and ``hole_density`` must be of the same type and match
shapes/coordinates, unless one of them is a scalar.
Returns
-------
Union[
ArrayLike[float],
ArrayLike[complex],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Sampled perturbation value(s).
"""
@add_ax_if_none
def plot(
self,
electron_density: ArrayLike[float],
hole_density: ArrayLike[float],
val: FieldVal = "real",
ax: Ax = None,
) -> Ax:
"""Plot perturbation using provided electron and hole density sample points.
Parameters
----------
electron_density : Union[ArrayLike[float], CustomSpatialDataType]
Array of electron density sample points.
hole_density : Union[ArrayLike[float], CustomSpatialDataType]
Array of hole density sample points.
val : Literal['real', 'imag', 'abs', 'abs^2', 'phase'] = 'real'
Which part of the field to plot.
ax : matplotlib.axes._subplots.Axes = None
Matplotlib axes to plot on, if not specified, one is created.
Returns
-------
matplotlib.axes._subplots.Axes
The supplied or created matplotlib axes.
"""
values = self.sample(electron_density, hole_density)
values = self._get_val(values, val)
if np.ndim(electron_density) == 0:
ax.plot(hole_density, values, label=f"electron density = {electron_density} 1/cm^3")
ax.set_ylabel(f"{val}(perturbation value)")
ax.set_xlabel("hole density (1/cm^3)")
ax.set_title(f"charge dependence of {val}(perturbation value)")
ax.set_aspect("auto")
ax.legend()
elif np.ndim(hole_density) == 0:
ax.plot(electron_density, values, label=f"hole density = {hole_density} 1/cm^3")
ax.set_ylabel(f"{val}(perturbation value)")
ax.set_xlabel("electron density (1/cm^3)")
ax.set_title(f"charge dependence of {val}(perturbation value)")
ax.set_aspect("auto")
ax.legend()
else:
e_mesh, h_mesh = np.meshgrid(electron_density, hole_density, indexing="ij")
pc = ax.pcolormesh(e_mesh, h_mesh, values, shading="gouraud")
plt.colorbar(pc, ax=ax)
ax.set_xlabel("electron density (1/cm^3)")
ax.set_ylabel("hole density (1/cm^3)")
ax.set_title(f"charge dependence of {val}(perturbation value)")
ax.set_aspect("auto")
return ax
[docs]
class LinearChargePerturbation(ChargePerturbation):
"""Specifies parameter's perturbation due to free carrier effects as a linear function of
electron and hole densities:
Notes
-----
.. math::
\\Delta X (T) = \\text{electron\\_coeff} \\times (N_e - \\text{electron\\_ref})
+ \\text{hole\\_coeff} \\times (N_h - \\text{hole\\_ref}),
where ``electron_coeff`` and ``hole_coeff`` are the parameter's sensitivities to electron and
hole densities, while ``electron_ref`` and ``hole_ref`` are reference electron and hole density
values. Ranges of electron and hole densities in which such
a model is deemed accurate may be provided as fields ``electron_range`` and ``hole_range``
(default: ``[0, inf]`` each). Wherever is applied, Tidy3D will check that the parameter's value
does not go out of its physical bounds within ``electron_range`` x ``hole_range`` due to
perturbations and raise a warning if this check fails. A warning is also issued if
the perturbation model is evaluated outside of ``electron_range`` x ``hole_range``.
.. TODO add example here and links
Example
-------
>>> charge_perturb = LinearChargePerturbation(
... electron_ref=0,
... electron_coeff=0.0001,
... electron_range=[0, 1e19],
... hole_ref=0,
... hole_coeff=0.0002,
... hole_range=[0, 2e19],
... )
"""
electron_ref: pd.NonNegativeFloat = pd.Field(
...,
title="Reference Electron Density",
description="Electron density value at which there is no perturbation due to electrons's "
"presence.",
units=PERCMCUBE,
)
hole_ref: pd.NonNegativeFloat = pd.Field(
...,
title="Reference Hole Density",
description="Hole density value at which there is no perturbation due to holes' presence.",
units=PERCMCUBE,
)
electron_coeff: float = pd.Field(
...,
title="Sensitivity to Electron Density",
description="Sensitivity (derivative) of perturbation with respect to electron density.",
units=CMCUBE,
)
hole_coeff: float = pd.Field(
...,
title="Sensitivity to Hole Density",
description="Sensitivity (derivative) of perturbation with respect to hole density.",
units=CMCUBE,
)
@cached_property
def perturbation_range(self) -> Union[Tuple[float, float], Tuple[Complex, Complex]]:
"""Range of possible perturbation values within provided ``electron_range`` and
``hole_range``.
"""
range_from_e = self._linear_range(
self.electron_range, self.electron_ref, self.electron_coeff
)
range_from_h = self._linear_range(self.hole_range, self.hole_ref, self.hole_coeff)
return tuple(np.array(range_from_e) + np.array(range_from_h))
[docs]
@ensure_charge_in_range
def sample(
self,
electron_density: Union[ArrayLike[float], CustomSpatialDataType],
hole_density: Union[ArrayLike[float], CustomSpatialDataType],
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""Sample perturbation at electron and hole density points.
Parameters
----------
electron_density : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Electron density sample point(s).
hole_density : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Hole density sample point(s).
Note
----
Provided ``electron_density`` and ``hole_density`` must be of the same type and match
shapes/coordinates, unless one of them is a scalar or both are 1d arrays, in which case
values are broadcasted.
Returns
-------
Union[
ArrayLike[float],
ArrayLike[complex],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Sampled perturbation value(s).
"""
inputs = [electron_density, hole_density]
no_scalars = all(np.ndim(_get_numpy_array(arr)) > 0 for arr in inputs)
both_1d = all(
isinstance(arr, (list, tuple, np.ndarray)) and np.ndim(arr) == 1 for arr in inputs
)
# we allow combining a scalar with any other type
# or 2 1d arrays (broadcasting)
# otherwise we require match in shape/coords
if (
no_scalars
and not both_1d
and not _check_same_coordinates(electron_density, hole_density)
):
raise DataError(
"Provided electron and hole density data must be of the same type and shape."
)
e_vals = electron_density
h_vals = hole_density
# convert python arrays into numpy
if isinstance(electron_density, (list, tuple)):
e_vals = np.array(electron_density)
if isinstance(hole_density, (list, tuple)):
h_vals = np.array(hole_density)
# broadcast if both are 1d arrays
if both_1d:
e_vals, h_vals = np.meshgrid(e_vals, h_vals, indexing="ij")
return self.electron_coeff * (e_vals - self.electron_ref) + self.hole_coeff * (
h_vals - self.hole_ref
)
@cached_property
def is_complex(self) -> bool:
"""Whether perturbation is complex valued."""
return np.iscomplex(self.electron_coeff) or np.iscomplex(self.hole_coeff)
[docs]
class CustomChargePerturbation(ChargePerturbation):
"""Specifies parameter's perturbation due to free carrier effects as a custom function of
electron and hole densities defined as a two-dimensional array of perturbation values at sample
electron and hole density points.
Notes
-----
The linear interpolation is used to calculate perturbation
values between sample points. For electron and hole density values outside of the provided
sample region the perturbation value is extrapolated as a constant.
The electron and hole density ranges, ``electron_range`` and ``hole_range``, in which
the perturbation model is assumed to be accurate is calculated automatically as the minimal and
maximal density values provided in ``perturbation_values``. Wherever is applied, Tidy3D will
check that the parameter's value does not go out of its physical bounds within
``electron_range`` x ``hole_range`` due to perturbations and raise a warning if this check
fails. A warning is also issued if the perturbation model is evaluated outside of
``electron_range`` x ``hole_range``.
.. TODO add example here and links
Example
-------
>>> from tidy3d import ChargeDataArray
>>> perturbation_data = ChargeDataArray(
... [[0.001, 0.002, 0.004], [0.003, 0.002, 0.001]],
... coords=dict(n=[2e15, 2e19], p=[1e16, 1e17, 1e18]),
... )
>>> charge_perturb = CustomChargePerturbation(
... perturbation_values=perturbation_data,
... )
"""
perturbation_values: ChargeDataArray = pd.Field(
...,
title="Petrubation Values",
description="2D array (vs electron and hole densities) of sampled perturbation values.",
)
electron_range: Tuple[pd.NonNegativeFloat, pd.NonNegativeFloat] = pd.Field(
None,
title="Electron Density Range",
description="Range of electrons densities in which perturbation model is valid. For "
":class:`.CustomChargePerturbation` this field is computed automatically based on "
"provided ``perturbation_values``",
)
hole_range: Tuple[pd.NonNegativeFloat, pd.NonNegativeFloat] = pd.Field(
None,
title="Hole Density Range",
description="Range of holes densities in which perturbation model is valid. For "
":class:`.CustomChargePerturbation` this field is computed automatically based on "
"provided ``perturbation_values``",
)
interp_method: InterpMethod = pd.Field(
"linear",
title="Interpolation method",
description="Interpolation method to obtain perturbation values between sample points.",
)
_no_nans = validate_no_nans("perturbation_values")
@cached_property
def perturbation_range(self) -> Union[Tuple[float, float], Tuple[complex, complex]]:
"""Range of possible parameter perturbation values."""
return np.min(self.perturbation_values).item(), np.max(self.perturbation_values).item()
[docs]
@pd.root_validator(skip_on_failure=True)
def compute_eh_ranges(cls, values):
"""Compute and set electron and hole density ranges based on provided
``perturbation_values``.
"""
perturbation_values = values["perturbation_values"]
electron_range = (
np.min(perturbation_values.coords["n"]).item(),
np.max(perturbation_values.coords["n"]).item(),
)
hole_range = (
np.min(perturbation_values.coords["p"]).item(),
np.max(perturbation_values.coords["p"]).item(),
)
if values["electron_range"] is not None and electron_range != values["electron_range"]:
log.warning(
"Electron density range for 'CustomChargePerturbation' is calculated automatically "
"based on provided 'perturbation_values'. Provided 'electron_range' will be "
"overwritten."
)
if values["hole_range"] is not None and hole_range != values["hole_range"]:
log.warning(
"Hole density range for 'CustomChargePerturbation' is calculated automatically "
"based on provided 'perturbation_values'. Provided 'hole_range' will be "
"overwritten."
)
values.update({"electron_range": electron_range, "hole_range": hole_range})
return values
[docs]
@ensure_charge_in_range
def sample(
self,
electron_density: Union[ArrayLike[float], CustomSpatialDataType],
hole_density: Union[ArrayLike[float], CustomSpatialDataType],
) -> Union[ArrayLike[float], ArrayLike[Complex], CustomSpatialDataType]:
"""Sample perturbation at electron and hole density points.
Parameters
----------
electron_density : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Electron density sample point(s).
hole_density : Union[
ArrayLike[float],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Hole density sample point(s).
Note
----
Provided ``electron_density`` and ``hole_density`` must be of the same type and match
shapes/coordinates, unless one of them is a scalar or both are 1d arrays, in which case
values are broadcasted.
Returns
-------
Union[
ArrayLike[float],
ArrayLike[complex],
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
]
Sampled perturbation value(s).
"""
inputs = [electron_density, hole_density]
no_scalars = all(np.ndim(_get_numpy_array(arr)) > 0 for arr in inputs)
both_1d = all(
isinstance(arr, (list, tuple, np.ndarray)) and np.ndim(_get_numpy_array(arr)) == 1
for arr in inputs
)
# we allow combining a scalar with any other type
# or 2 1d arrays (broadcasting)
# otherwise we require match in shape/coords
if (
no_scalars
and not both_1d
and not _check_same_coordinates(electron_density, hole_density)
):
raise DataError(
"Provided electron and hole density data must be of the same type and shape."
)
# clip to allowed values
# (this also implicitly convert python arrays into numpy
e_vals = np.core.umath.clip(
electron_density, self.electron_range[0], self.electron_range[1]
)
h_vals = np.core.umath.clip(hole_density, self.hole_range[0], self.hole_range[1])
# we cannot pass UnstructuredGridDataset directly into xarray interp
# thus we need to explicitly grad the underlying xarray
if isinstance(e_vals, UnstructuredGridDataset):
e_vals = e_vals.values
if isinstance(h_vals, UnstructuredGridDataset):
h_vals = h_vals.values
# note that the dimensionality of this operation differs depending on whether xarrays
# or simple unlabeled arrays are provided:
# - for unlabeled arrays, values are broadcasted
# - for xarrays, values are considered pairwise based on xarrays' coords
sampled = self.perturbation_values.interp(n=e_vals, p=h_vals, method=self.interp_method)
# grab the result without any labels
sampled = sampled.values
# preserve input type
for arr in inputs:
if isinstance(arr, SpatialDataArray):
return SpatialDataArray(sampled, coords=arr.coords)
if isinstance(arr, UnstructuredGridDataset):
return arr.updated_copy(values=IndexedDataArray(sampled, coords=arr.values.coords))
if all(np.ndim(_get_numpy_array(arr)) == 0 for arr in inputs):
return sampled.item()
return sampled
@cached_property
def is_complex(self) -> bool:
"""Whether perturbation is complex valued."""
return np.iscomplexobj(self.perturbation_values)
ChargePerturbationType = Union[LinearChargePerturbation, CustomChargePerturbation]
PerturbationType = Union[HeatPerturbationType, ChargePerturbationType]
class ParameterPerturbation(Tidy3dBaseModel):
"""Stores information about parameter perturbations due to different physical effect. If both
heat and charge perturbation models are included their effects are superimposed.
Example
-------
>>> from tidy3d import LinearChargePerturbation, CustomHeatPerturbation, HeatDataArray
>>>
>>> perturbation_data = HeatDataArray([0.001, 0.002, 0.004], coords=dict(T=[250, 300, 350]))
>>> heat_perturb = CustomHeatPerturbation(
... perturbation_values=perturbation_data
... )
>>> charge_perturb = LinearChargePerturbation(
... electron_ref=0,
... electron_coeff=0.0001,
... electron_range=[0, 1e19],
... hole_ref=0,
... hole_coeff=0.0002,
... hole_range=[0, 2e19],
... )
>>> param_perturb = ParameterPerturbation(heat=heat_perturb, charge=charge_perturb)
"""
heat: HeatPerturbationType = pd.Field(
None,
title="Heat Perturbation",
description="Heat perturbation to apply.",
discriminator=TYPE_TAG_STR,
)
charge: ChargePerturbationType = pd.Field(
None,
title="Charge Perturbation",
description="Charge perturbation to apply.",
discriminator=TYPE_TAG_STR,
)
@pd.root_validator(skip_on_failure=True)
def _check_not_empty(cls, values):
"""Check that perturbation model is not empty."""
heat = values.get("heat")
charge = values.get("charge")
if heat is None and charge is None:
raise DataError(
"Perturbation models 'heat' and 'charge' in 'ParameterPerturbation' cannot be "
"simultaneously 'None'."
)
return values
@cached_property
def perturbation_list(self) -> List[PerturbationType]:
"""Provided perturbations as a list."""
perturb_list = []
for p in [self.heat, self.charge]:
if p is not None:
perturb_list.append(p)
return perturb_list
@cached_property
def perturbation_range(self) -> Union[Tuple[float, float], Tuple[Complex, Complex]]:
"""Range of possible parameter perturbation values due to both heat and charge effects."""
prange = np.zeros(2)
for p in self.perturbation_list:
prange = prange + p.perturbation_range
return tuple(prange)
@staticmethod
def _zeros_like(
T: CustomSpatialDataType = None,
n: CustomSpatialDataType = None,
p: CustomSpatialDataType = None,
):
"""Check that fields have the same coordinates and return an array field with zeros."""
template = None
for field in [T, n, p]:
if field is not None:
if template is not None and not _check_same_coordinates(field, template):
raise DataError(
"'temperature', 'electron_density', and 'hole_density' must have the same "
"coordinates if provided."
)
template = field
if template is None:
raise DataError(
"At least one of 'temperature', 'electron_density', or 'hole_density' must be "
"provided."
)
return _zeros_like(template)
def apply_data(
self,
temperature: CustomSpatialDataType = None,
electron_density: CustomSpatialDataType = None,
hole_density: CustomSpatialDataType = None,
) -> CustomSpatialDataType:
"""Sample perturbations on provided heat and/or charge data. At least one of
``temperature``, ``electron_density``, and ``hole_density`` must be not ``None``.
All provided fields must have identical coords.
Parameters
----------
temperature : Union[
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
] = None
Temperature field data.
electron_density : Union[
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
] = None
Electron density field data.
hole_density : Union[
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
] = None
Hole density field data.
Returns
-------
Union[
:class:`.SpatialDataArray`,
:class:`.TriangularGridDataset`,
:class:`.TetrahedralGridDataset`,
] = None
Sampled perturbation field.
"""
result = self._zeros_like(temperature, electron_density, hole_density)
if temperature is not None and self.heat is not None:
result = result + self.heat.sample(temperature)
if (electron_density is not None or hole_density is not None) and self.charge is not None:
if electron_density is None:
electron_density = 0
if hole_density is None:
hole_density = 0
result = result + self.charge.sample(electron_density, hole_density)
return result
@cached_property
def is_complex(self) -> bool:
"""Whether perturbation is complex valued."""
return np.any([p.is_complex for p in self.perturbation_list])
class PermittivityPerturbation(Tidy3dBaseModel):
"""A general medium perturbation model which is defined through perturbation to
permittivity and conductivity.
Example
-------
>>> from tidy3d import LinearChargePerturbation, LinearHeatPerturbation, PermittivityPerturbation, C_0
>>>
>>> heat_perturb = LinearHeatPerturbation(
... temperature_ref=300,
... coeff=0.001,
... )
>>> charge_perturb = LinearChargePerturbation(
... electron_ref=0,
... electron_coeff=0.0001,
... hole_ref=0,
... hole_coeff=0.0002,
... )
>>> delta_eps = ParameterPerturbation(heat=heat_perturb)
>>> delta_sigma = ParameterPerturbation(charge=charge_perturb)
>>> permittivity_pb = PermittivityPerturbation(delta_eps=delta_eps, delta_sigma=delta_sigma)
"""
delta_eps: Optional[ParameterPerturbation] = pd.Field(
None,
title="Permittivity Perturbation",
description="Perturbation model for permittivity.",
)
delta_sigma: Optional[ParameterPerturbation] = pd.Field(
None,
title="Conductivity Perturbation",
description="Perturbation model for conductivity.",
)
@pd.root_validator(skip_on_failure=True)
def _check_not_complex(cls, values):
"""Check that perturbation values are not complex."""
delta_eps = values.get("delta_eps")
delta_sigma = values.get("delta_sigma")
delta_eps_complex = False if delta_eps is None else delta_eps.is_complex
delta_sigma_complex = False if delta_sigma is None else delta_sigma.is_complex
if delta_eps_complex or delta_sigma_complex:
raise DataError(
"Perturbation models 'delta_eps' and 'delta_sigma' in 'PermittivityPerturbation' cannot be "
"complex-valued."
)
return values
@pd.root_validator(skip_on_failure=True)
def _check_not_empty(cls, values):
"""Check that perturbation model is not empty."""
delta_eps = values.get("delta_eps")
delta_sigma = values.get("delta_sigma")
if delta_eps is None and delta_sigma is None:
raise DataError(
"Perturbation models 'delta_eps' and 'delta_sigma' in 'PermittivityPerturbation' cannot be "
"simultaneously 'None'."
)
return values
def _delta_eps_delta_sigma_ranges(self):
"""Perturbation range of permittivity."""
delta_eps_range = (0, 0) if self.delta_eps is None else self.delta_eps.perturbation_range
delta_sigma_range = (
(0, 0) if self.delta_sigma is None else self.delta_sigma.perturbation_range
)
return delta_eps_range, delta_sigma_range
def _sample_delta_eps_delta_sigma(
self,
temperature: CustomSpatialDataType = None,
electron_density: CustomSpatialDataType = None,
hole_density: CustomSpatialDataType = None,
) -> CustomSpatialDataType:
"""Compute effictive pertubation to eps and sigma."""
delta_eps_sampled = None
if self.delta_eps is not None:
delta_eps_sampled = self.delta_eps.apply_data(
temperature, electron_density, hole_density
)
delta_sigma_sampled = None
if self.delta_sigma is not None:
delta_sigma_sampled = self.delta_sigma.apply_data(
temperature, electron_density, hole_density
)
return delta_eps_sampled, delta_sigma_sampled
class IndexPerturbation(Tidy3dBaseModel):
"""A general medium perturbation model which is defined through perturbation to
refractive index, n and k.
Example
-------
>>> from tidy3d import LinearChargePerturbation, LinearHeatPerturbation, IndexPerturbation, C_0
>>>
>>> heat_perturb = LinearHeatPerturbation(
... temperature_ref=300,
... coeff=0.001,
... )
>>> charge_perturb = LinearChargePerturbation(
... electron_ref=0,
... electron_coeff=0.0001,
... hole_ref=0,
... hole_coeff=0.0002,
... )
>>> dn_pb = ParameterPerturbation(heat=heat_perturb)
>>> dk_pb = ParameterPerturbation(charge=charge_perturb)
>>> index_pb = IndexPerturbation(delta_n=dn_pb, delta_k=dk_pb, freq=C_0)
"""
delta_n: Optional[ParameterPerturbation] = pd.Field(
None,
title="Refractive Index Perturbation",
description="Perturbation of the real part of refractive index.",
)
delta_k: Optional[ParameterPerturbation] = pd.Field(
None,
title="Exctinction Coefficient Perturbation",
description="Perturbation of the imaginary part of refractive index.",
)
freq: pd.NonNegativeFloat = pd.Field(
...,
title="Frequency",
description="Frequency to evaluate permittivity at (Hz).",
units=HERTZ,
)
@pd.root_validator(skip_on_failure=True)
def _check_not_complex(cls, values):
"""Check that perturbation values are not complex."""
dn = values.get("delta_n")
dk = values.get("delta_k")
dn_complex = False if dn is None else dn.is_complex
dk_complex = False if dk is None else dk.is_complex
if dn_complex or dk_complex:
raise DataError(
"Perturbation models 'dn' and 'dk' in 'IndexPerturbation' cannot be "
"complex-valued."
)
return values
@pd.root_validator(skip_on_failure=True)
def _check_not_empty(cls, values):
"""Check that perturbation model is not empty."""
dn = values.get("delta_n")
dk = values.get("delta_k")
if dn is None and dk is None:
raise DataError(
"Perturbation models 'dn' and 'dk' in 'IndexPerturbation' cannot be "
"simultaneously 'None'."
)
return values
def _delta_eps_delta_sigma_ranges(self, n: float, k: float):
"""Perturbation range of permittivity."""
omega0 = 2 * np.pi * self.freq
dn_range = [0] if self.delta_n is None else self.delta_n.perturbation_range
dk_range = [0] if self.delta_k is None else self.delta_k.perturbation_range
dn_grid, dk_grid = np.meshgrid(dn_range, dk_range)
# deal with possible 0 * inf
dk_dn = np.zeros_like(dn_grid)
inds = np.logical_and(dn_grid != 0, dk_grid != 0)
dk_dn[inds] = dn_grid[inds] * dk_grid[inds]
k_dn = 0 if k == 0 else k * dn_grid
# ignore potential inf - inf
with np.errstate(invalid="ignore"):
delta_eps = (2 * n + dn_grid) * dn_grid - (2 * n + dk_grid) * dk_grid
delta_sigma = 2 * omega0 * (k_dn + n * dk_grid + dk_dn) * EPSILON_0
if np.any(np.isnan(delta_eps)):
delta_eps_range = (-inf, inf)
else:
delta_eps_range = (np.min(delta_eps), np.max(delta_eps))
if np.any(np.isnan(delta_sigma)):
delta_sigma_range = (-inf, inf)
else:
delta_sigma_range = (np.min(delta_sigma), np.max(delta_sigma))
return delta_eps_range, delta_sigma_range
def _sample_delta_eps_delta_sigma(
self,
n: float,
k: float,
temperature: CustomSpatialDataType = None,
electron_density: CustomSpatialDataType = None,
hole_density: CustomSpatialDataType = None,
) -> CustomSpatialDataType:
"""Compute effictive pertubation to eps and sigma."""
# delta_eps = 2 * n * dn + dn ** 2 - 2 * k * dk - dk ** 2
# delta_sigma = 2 * omega * (k * dn + n * dk + dk * dn)
dn_sampled = (
None
if self.delta_n is None
else self.delta_n.apply_data(temperature, electron_density, hole_density)
)
dk_sampled = (
None
if self.delta_k is None
else self.delta_k.apply_data(temperature, electron_density, hole_density)
)
omega0 = 2 * np.pi * self.freq
delta_eps = None
delta_sigma = None
if dn_sampled is not None:
delta_eps = 2 * n * dn_sampled + dn_sampled**2
if k != 0:
delta_sigma = 2 * omega0 * k * dn_sampled
if dk_sampled is not None:
delta_eps = 0 if delta_eps is None else delta_eps
delta_eps = delta_eps - 2 * k * dk_sampled - dk_sampled**2
delta_sigma = 0 if delta_sigma is None else delta_sigma
delta_sigma = delta_sigma + 2 * omega0 * n * dk_sampled
if dn_sampled is not None:
delta_sigma = delta_sigma + 2 * omega0 * dk_sampled * dn_sampled
if delta_sigma is not None:
delta_sigma = delta_sigma * EPSILON_0
return delta_eps, delta_sigma