Source code for tidy3d.components.medium

"""Defines properties of the medium / materials"""

from __future__ import annotations

import functools
import warnings
from abc import ABC, abstractmethod
from math import isclose
from typing import Callable, Dict, List, Optional, Tuple, Union

import autograd as ag
import autograd.numpy as np

# TODO: it's hard to figure out which functions need this, for now all get it
import numpy as npo
import pydantic.v1 as pd
import xarray as xr

from ..constants import (
    C_0,
    CONDUCTIVITY,
    EPSILON_0,
    HBAR,
    HERTZ,
    MICROMETER,
    PERMITTIVITY,
    RADPERSEC,
    SECOND,
    VOLT,
    WATT,
    fp_eps,
    pec_val,
)
from ..exceptions import SetupError, ValidationError
from ..log import log
from .autograd.derivative_utils import DerivativeInfo, integrate_within_bounds
from .autograd.types import AutogradFieldMap, TracedFloat, TracedPoleAndResidue, TracedPositiveFloat
from .base import Tidy3dBaseModel, cached_property, skip_if_fields_missing
from .data.data_array import DATA_ARRAY_MAP, ScalarFieldDataArray, SpatialDataArray
from .data.dataset import (
    CustomSpatialDataType,
    CustomSpatialDataTypeAnnotated,
    ElectromagneticFieldDataset,
    PermittivityDataset,
    UnstructuredGridDataset,
    _check_same_coordinates,
    _get_numpy_array,
    _ones_like,
    _zeros_like,
)
from .data.validators import validate_no_nans
from .geometry.base import Geometry
from .grid.grid import Coords, Grid
from .heat_spec import HeatSpecType
from .parameter_perturbation import (
    IndexPerturbation,
    ParameterPerturbation,
    PermittivityPerturbation,
)
from .time_modulation import ModulationSpec
from .transformation import RotationType
from .types import (
    TYPE_TAG_STR,
    ArrayComplex3D,
    ArrayFloat1D,
    Ax,
    Axis,
    Bound,
    Complex,
    FreqBound,
    InterpMethod,
    PoleAndResidue,
    TensorReal,
)
from .validators import _warn_potential_error, validate_name_str, validate_parameter_perturbation
from .viz import add_ax_if_none

# evaluate frequency as this number (Hz) if inf
FREQ_EVAL_INF = 1e50

# extrapolation option in custom medium
FILL_VALUE = "extrapolate"

# cap on number of nonlinear iterations
NONLINEAR_MAX_NUM_ITERS = 100
NONLINEAR_DEFAULT_NUM_ITERS = 5

# Range for checking upper bound of Im[eps], in addition to extrema method.
# The range is in unit of eV and it's in log scale.
LOSS_CHECK_MIN = -10
LOSS_CHECK_MAX = 4
LOSS_CHECK_NUM = 1000


def ensure_freq_in_range(eps_model: Callable[[float], complex]) -> Callable[[float], complex]:
    """Decorate ``eps_model`` to log warning if frequency supplied is out of bounds."""

    @functools.wraps(eps_model)
    def _eps_model(self, frequency: float) -> complex:
        """New eps_model function."""
        # evaluate infs and None as FREQ_EVAL_INF
        is_inf_scalar = isinstance(frequency, float) and np.isinf(frequency)
        if frequency is None or is_inf_scalar:
            frequency = FREQ_EVAL_INF

        if isinstance(frequency, np.ndarray):
            frequency = frequency.astype(float)
            frequency[np.where(np.isinf(frequency))] = FREQ_EVAL_INF

        # if frequency range not present just return original function
        if self.frequency_range is None:
            return eps_model(self, frequency)

        fmin, fmax = self.frequency_range
        # don't warn for evaluating infinite frequency
        if is_inf_scalar:
            return eps_model(self, frequency)
        if np.any(frequency < fmin * (1 - fp_eps)) or np.any(frequency > fmax * (1 + fp_eps)):
            log.warning(
                "frequency passed to 'Medium.eps_model()'"
                f"is outside of 'Medium.frequency_range' = {self.frequency_range}",
                capture=False,
            )
        return eps_model(self, frequency)

    return _eps_model


""" Medium Definitions """


class NonlinearModel(ABC, Tidy3dBaseModel):
    """Abstract model for a nonlinear material response.
    Used as part of a :class:`.NonlinearSpec`."""

    def _validate_medium_type(self, medium: AbstractMedium):
        """Check that the model is compatible with the medium."""
        if isinstance(medium, AbstractCustomMedium):
            raise ValidationError(
                f"'NonlinearModel' of class '{type(self).__name__}' is not currently supported "
                f"for medium class '{type(medium).__name__}'."
            )
        if medium.is_time_modulated:
            raise ValidationError(
                f"'NonlinearModel' of class '{type(self).__name__}' is not currently supported "
                f"for time-modulated medium class '{type(medium).__name__}'."
            )
        if not isinstance(medium, (Medium, DispersiveMedium)):
            raise ValidationError(
                f"'NonlinearModel' of class '{type(self).__name__}' is not currently supported "
                f"for medium class '{type(medium).__name__}'."
            )

    def _validate_medium(self, medium: AbstractMedium):
        """Any additional validation that depends on the medium"""
        pass

    def _validate_medium_freqs(self, medium: AbstractMedium, freqs: List[pd.PositiveFloat]) -> None:
        """Any additional validation that depends on the central frequencies of the sources."""
        pass

    def _hardcode_medium_freqs(
        self, medium: AbstractMedium, freqs: List[pd.PositiveFloat]
    ) -> NonlinearSpec:
        """Update the nonlinear model to hardcode information on medium and freqs."""
        return self

    def _get_freq0(self, freq0, freqs: List[pd.PositiveFloat]) -> float:
        """Get a single value for freq0."""

        # freq0 is not specified; need to calculate it
        if freq0 is None:
            if not len(freqs):
                raise SetupError(
                    f"Class '{type(self).__name__}' cannot determine 'freq0' in the absence of "
                    f"sources. Please either specify 'freq0' in '{type(self).__name__}' "
                    "or add sources to the simulation."
                )
            if not all(np.isclose(freq, freqs[0]) for freq in freqs):
                raise SetupError(
                    f"Class '{type(self).__name__}' cannot determine 'freq0' because the source "
                    f"frequencies '{freqs}' are not all equal. "
                    f"Please specify 'freq0' in '{type(self).__name__}' "
                    "to match the desired source central frequency."
                )
            return freqs[0]

        # now, freq0 is specified; we use it, but warn if it might be inconsistent
        if not all(np.isclose(freq, freq0) for freq in freqs):
            log.warning(
                f"Class '{type(self).__name__}' given 'freq0={freq0}' which is different from "
                f"the source central frequencies '{freqs}'. In order "
                "to obtain correct nonlinearity parameters, the provided frequency "
                "should agree with the source central frequencies. The provided value of 'freq0' "
                "is being used; the resulting nonlinearity parameters "
                "may be incorrect for those sources whose central frequency "
                "is different from this value."
            )
        return freq0

    def _get_n0(
        self,
        n0: complex,
        medium: AbstractMedium,
        freqs: List[pd.PositiveFloat],
    ) -> complex:
        """Get a single value for n0."""
        freqs = np.array(freqs, dtype=float)
        ns, ks = medium.nk_model(freqs)
        nks = ns + 1j * ks

        # n0 not specified; need to calculate it
        if n0 is None:
            if not len(nks):
                raise SetupError(
                    f"Class '{type(self).__name__}' cannot determine 'n0' in the absence of "
                    f"sources. Please either specify 'n0' in '{type(self).__name__}' "
                    "or add sources to the simulation."
                )
            if not all(np.isclose(nk, nks[0]) for nk in nks):
                raise SetupError(
                    f"Class '{type(self).__name__}' cannot determine 'n0' because at the source "
                    f"frequencies '{freqs}' the complex refractive indices '{nks}' of the medium "
                    f"are not all equal. Please specify 'n0' in '{type(self).__name__}' "
                    "to match the complex refractive index of the medium at the desired "
                    "source central frequency."
                )
            return nks[0]

        # now, n0 is specified; we use it, but warn if it might be inconsistent
        if not all(np.isclose(nk, n0) for nk in nks):
            log.warning(
                f"Class '{type(self).__name__}' given 'n0={n0}'. At the source frequencies "
                f"'{freqs}' the medium has complex refractive indices '{nks}'. In order "
                "to obtain correct nonlinearity parameters, the provided refractive index "
                "should agree with the complex refractive index at the source frequencies. "
                "The provided value of 'n0' is being used; the resulting nonlinearity parameters "
                "may be incorrect for those sources where the complex refractive index of the "
                "medium is different from this value."
            )
        return n0

    @property
    def complex_fields(self) -> bool:
        """Whether the model uses complex fields."""
        pass


[docs] class NonlinearSusceptibility(NonlinearModel): """Model for an instantaneous nonlinear chi3 susceptibility. The expression for the instantaneous nonlinear polarization is given below. Notes ----- This model uses real time-domain fields, so :math:`\\chi_3` must be real. .. math:: P_{NL} = \\varepsilon_0 \\chi_3 |E|^2 E The nonlinear constitutive relation is solved iteratively; it may not converge for strong nonlinearities. Increasing :attr:`tidy3d.NonlinearSpec.num_iters` can help with convergence. For complex fields (e.g. when using Bloch boundary conditions), the nonlinearity is applied separately to the real and imaginary parts, so that the above equation holds when both :math:`E` and :math:`P_{NL}` are replaced by their real or imaginary parts. The nonlinearity is only applied to the real-valued fields since they are the physical fields. Different field components do not interact nonlinearly. For example, when calculating :math:`P_{NL, x}`, we approximate :math:`|E|^2 \\approx |E_x|^2`. This approximation is valid when the :math:`E` field is predominantly polarized along one of the ``x``, ``y``, or ``z`` axes. .. TODO add links to notebooks here. Example ------- >>> nonlinear_susceptibility = NonlinearSusceptibility(chi3=1) """ chi3: float = pd.Field( 0, title="Chi3", description="Chi3 nonlinear susceptibility.", units=f"{MICROMETER}^2 / {VOLT}^2", ) numiters: pd.PositiveInt = pd.Field( None, title="Number of iterations", description="Deprecated. The old usage 'nonlinear_spec=model' with 'model.numiters' " "is deprecated and will be removed in a future release. The new usage is " r"'nonlinear_spec=NonlinearSpec(models=\[model], num_iters=num_iters)'. Under the new " "usage, this parameter is ignored, and 'NonlinearSpec.num_iters' is used instead.", ) @pd.validator("numiters", always=True) def _validate_numiters(cls, val): """Check that numiters is not too large.""" if val is None: return val if val > NONLINEAR_MAX_NUM_ITERS: raise ValidationError( "'NonlinearSusceptibility.numiters' must be less than " f"{NONLINEAR_MAX_NUM_ITERS}, currently {val}." ) return val @property def complex_fields(self) -> bool: """Whether the model uses complex fields.""" return False
[docs] class TwoPhotonAbsorption(NonlinearModel): """Model for two-photon absorption (TPA) nonlinearity which gives an intensity-dependent absorption of the form :math:`\\alpha = \\alpha_0 + \\beta I`. Also includes free-carrier absorption (FCA) and free-carrier plasma dispersion (FCPD) effects. The expression for the nonlinear polarization is given below. Note ---- .. math:: P_{NL} = P_{TPA} + P_{FCA} + P_{FCPD} \\\\ P_{TPA} = -\\frac{c_0^2 \\varepsilon_0^2 n_0 \\operatorname{Re}(n_0) \\beta}{2 i \\omega} |E|^2 E \\\\ P_{FCA} = -\\frac{c_0 \\varepsilon_0 n_0 \\sigma N_f}{i \\omega} E \\\\ \\frac{dN_f}{dt} = \\frac{c_0^2 \\varepsilon_0^2 n_0^2 \\beta}{8 q_e \\hbar \\omega} |E|^4 - \\frac{N_f}{\\tau} \\\\ N_e = N_h = N_f \\\\ P_{FCPD} = \\varepsilon_0 2 n_0 \\Delta n (N_f) E \\\\ \\Delta n (N_f) = (c_e N_e^{e_e} + c_h N_h^{e_h}) Note ---- This frequency-domain equation is implemented in the time domain using complex-valued fields. Note ---- Different field components do not interact nonlinearly. For example, when calculating :math:`P_{NL, x}`, we approximate :math:`|E|^2 \\approx |E_x|^2`. This approximation is valid when the E field is predominantly polarized along one of the x, y, or z axes. Note ---- The implementation is described in:: N. Suzuki, "FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides," J. Light. Technol. 25, 9 (2007). Example ------- >>> tpa_model = TwoPhotonAbsorption(beta=1) """ beta: Union[float, Complex] = pd.Field( 0, title="TPA coefficient", description="Coefficient for two-photon absorption (TPA).", units=f"{MICROMETER} / {WATT}", ) tau: pd.NonNegativeFloat = pd.Field( 0, title="Carrier lifetime", description="Lifetime for the free carriers created by two-photon absorption (TPA).", units=f"{SECOND}", ) sigma: pd.NonNegativeFloat = pd.Field( 0, title="FCA cross section", description="Total cross section for free-carrier absorption (FCA). " "Contains contributions from electrons and from holes.", units=f"{MICROMETER}^2", ) e_e: pd.NonNegativeFloat = pd.Field( 1, title="Electron exponent", description="Exponent for the free electron refractive index shift in the free-carrier plasma dispersion (FCPD).", ) e_h: pd.NonNegativeFloat = pd.Field( 1, title="Hole exponent", description="Exponent for the free hole refractive index shift in the free-carrier plasma dispersion (FCPD).", ) c_e: float = pd.Field( 0, title="Electron coefficient", description="Coefficient for the free electron refractive index shift in the free-carrier plasma dispersion (FCPD).", units=f"{MICROMETER}^(3 e_e)", ) c_h: float = pd.Field( 0, title="Hole coefficient", description="Coefficient for the free hole refractive index shift in the free-carrier plasma dispersion (FCPD).", units=f"{MICROMETER}^(3 e_h)", ) n0: Optional[Complex] = pd.Field( None, title="Complex linear refractive index", description="Complex linear refractive index of the medium, computed for instance using " "'medium.nk_model'. If not provided, it is calculated automatically using the central " "frequencies of the simulation sources (as long as these are all equal).", ) freq0: Optional[pd.PositiveFloat] = pd.Field( None, title="Central frequency", description="Central frequency, used to calculate the energy of the free-carriers " "excited by two-photon absorption. If not provided, it is obtained automatically " "from the simulation sources (as long as these are all equal).", ) def _validate_medium_freqs(self, medium: AbstractMedium, freqs: List[pd.PositiveFloat]) -> None: """Any validation that depends on knowing the central frequencies of the sources. This includes passivity checking, if necessary.""" n0 = self._get_n0(self.n0, medium, freqs) beta = self.beta if not medium.allow_gain: chi_imag = np.real(beta * n0 * np.real(n0)) if chi_imag < 0: raise ValidationError( "For passive medium, 'beta' in 'TwoPhotonAbsorption' must satisfy " f"'Re(beta * n0 * Re(n0)) >= 0'. Currently, this quantity equals '{chi_imag}', " f"and the linear index is 'n0={n0}'. To simulate gain medium, please set " "'allow_gain=True' in the medium class. Caution: simulations containing " "gain medium are unstable, and are likely to diverge." ) def _hardcode_medium_freqs( self, medium: AbstractMedium, freqs: List[pd.PositiveFloat] ) -> TwoPhotonAbsorption: """Update the nonlinear model to hardcode information on medium and freqs.""" n0 = self._get_n0(n0=self.n0, medium=medium, freqs=freqs) freq0 = self._get_freq0(freq0=self.freq0, freqs=freqs) return self.updated_copy(n0=n0, freq0=freq0) def _validate_medium(self, medium: AbstractMedium): """Check that the model is compatible with the medium.""" # if n0 is specified, we can go ahead and validate passivity if self.n0 is not None: self._validate_medium_freqs(medium, []) @property def complex_fields(self) -> bool: """Whether the model uses complex fields.""" return True @pd.validator("beta", always=True) def _warn_for_complex_beta(cls, val): if val is None: return val if np.iscomplex(val): log.warning( "Complex values of 'beta' in 'TwoPhotonAbsorption' are deprecated " "and may be removed in a future version. The implementation with " "complex 'beta' is as described in the 'TwoPhotonAbsorption' docstring, " "but the physical interpretation of 'beta' may not be correct if it is complex." ) return val
[docs] class KerrNonlinearity(NonlinearModel): """Model for Kerr nonlinearity which gives an intensity-dependent refractive index of the form :math:`n = n_0 + n_2 I`. The expression for the nonlinear polarization is given below. Note ---- .. math:: P_{NL} = \\varepsilon_0 c_0 n_0 \\operatorname{Re}(n_0) n_2 |E|^2 E Note ---- The fields in this equation are complex-valued, allowing a direct implementation of the Kerr nonlinearity. In contrast, the model :class:`.NonlinearSusceptibility` implements a chi3 nonlinear susceptibility using real-valued fields, giving rise to Kerr nonlinearity as well as third-harmonic generation. The relationship between the parameters is given by :math:`n_2 = \\frac{3}{4} \\frac{1}{\\varepsilon_0 c_0 n_0 \\operatorname{Re}(n_0)} \\chi_3`. The additional factor of :math:`\\frac{3}{4}` comes from the usage of complex-valued fields for the Kerr nonlinearity and real-valued fields for the nonlinear susceptibility. Note ---- Different field components do not interact nonlinearly. For example, when calculating :math:`P_{NL, x}`, we approximate :math:`|E|^2 \\approx |E_x|^2`. This approximation is valid when the E field is predominantly polarized along one of the x, y, or z axes. Example ------- >>> kerr_model = KerrNonlinearity(n2=1) """ n2: Complex = pd.Field( 0, title="Nonlinear refractive index", description="Nonlinear refractive index in the Kerr nonlinearity.", units=f"{MICROMETER}^2 / {WATT}", ) n0: Optional[Complex] = pd.Field( None, title="Complex linear refractive index", description="Complex linear refractive index of the medium, computed for instance using " "'medium.nk_model'. If not provided, it is calculated automatically using the central " "frequencies of the simulation sources (as long as these are all equal).", ) def _validate_medium_freqs(self, medium: AbstractMedium, freqs: List[pd.PositiveFloat]) -> None: """Any validation that depends on knowing the central frequencies of the sources. This includes passivity checking, if necessary.""" n0 = self._get_n0(self.n0, medium, freqs) n2 = self.n2 if not medium.allow_gain: chi_imag = np.imag(n2 * n0 * np.real(n0)) if chi_imag < 0: raise ValidationError( "For passive medium, 'n2' in 'KerrNonlinearity' must satisfy " f"'Im(n2 * n0 * Re(n0)) >= 0'. Currently, this quantity equals '{chi_imag}', " f"and the linear index is 'n0={n0}'. To simulate gain medium, please set " "'allow_gain=True' in the medium class. Caution: simulations containing " "gain medium are unstable, and are likely to diverge." ) def _hardcode_medium_freqs( self, medium: AbstractMedium, freqs: List[pd.PositiveFloat] ) -> KerrNonlinearity: """Update the nonlinear model to hardcode information on medium and freqs.""" n0 = self._get_n0(n0=self.n0, medium=medium, freqs=freqs) return self.updated_copy(n0=n0) def _validate_medium(self, medium: AbstractMedium): """Check that the model is compatible with the medium.""" # if n0 is specified, we can go ahead and validate passivity if self.n0 is not None: self._validate_medium_freqs(medium, []) @property def complex_fields(self) -> bool: """Whether the model uses complex fields.""" return True
NonlinearModelType = Union[NonlinearSusceptibility, TwoPhotonAbsorption, KerrNonlinearity]
[docs] class NonlinearSpec(ABC, Tidy3dBaseModel): """Abstract specification for adding nonlinearities to a medium. Note ---- The nonlinear constitutive relation is solved iteratively; it may not converge for strong nonlinearities. Increasing ``num_iters`` can help with convergence. Example ------- >>> nonlinear_susceptibility = NonlinearSusceptibility(chi3=1) >>> nonlinear_spec = NonlinearSpec(models=[nonlinear_susceptibility]) >>> medium = Medium(permittivity=2, nonlinear_spec=nonlinear_spec) """ models: Tuple[NonlinearModelType, ...] = pd.Field( (), title="Nonlinear models", description="The nonlinear models present in this nonlinear spec. " "Nonlinear models of different types are additive. " "Multiple nonlinear models of the same type are not allowed.", ) num_iters: pd.PositiveInt = pd.Field( NONLINEAR_DEFAULT_NUM_ITERS, title="Number of iterations", description="Number of iterations for solving nonlinear constitutive relation.", ) @pd.validator("models", always=True) def _no_duplicate_models(cls, val): """Ensure each type of model appears at most once.""" if val is None: return val models = [model.__class__ for model in val] models_unique = set(models) if len(models) != len(models_unique): raise ValidationError( "Multiple 'NonlinearModels' of the same type " "were found in a single 'NonlinearSpec'. Please ensure that " "each type of 'NonlinearModel' appears at most once in a single 'NonlinearSpec'." ) return val @pd.validator("num_iters", always=True) def _validate_num_iters(cls, val, values): """Check that num_iters is not too large.""" if val > NONLINEAR_MAX_NUM_ITERS: raise ValidationError( "'NonlinearSpec.num_iters' must be less than " f"{NONLINEAR_MAX_NUM_ITERS}, currently {val}." ) return val def _hardcode_medium_freqs( self, medium: AbstractMedium, freqs: List[pd.PositiveFloat] ) -> NonlinearSpec: """Update the nonlinear spec to hardcode information on medium and freqs.""" new_models = [] for model in self.models: new_model = model._hardcode_medium_freqs(medium=medium, freqs=freqs) new_models.append(new_model) return self.updated_copy(models=new_models)
[docs] class AbstractMedium(ABC, Tidy3dBaseModel): """A medium within which electromagnetic waves propagate.""" name: str = pd.Field(None, title="Name", description="Optional unique name for medium.") frequency_range: FreqBound = pd.Field( None, title="Frequency Range", description="Optional range of validity for the medium.", units=(HERTZ, HERTZ), ) allow_gain: bool = pd.Field( False, title="Allow gain medium", description="Allow the medium to be active. Caution: " "simulations with a gain medium are unstable, and are likely to diverge." "Simulations where 'allow_gain' is set to 'True' will still be charged even if " "diverged. Monitor data up to the divergence point will still be returned and can be " "useful in some cases.", ) nonlinear_spec: Union[NonlinearSpec, NonlinearSusceptibility] = pd.Field( None, title="Nonlinear Spec", description="Nonlinear spec applied on top of the base medium properties.", ) modulation_spec: ModulationSpec = pd.Field( None, title="Modulation Spec", description="Modulation spec applied on top of the base medium properties.", ) @cached_property def _nonlinear_models(self) -> NonlinearSpec: """The nonlinear models in the nonlinear_spec.""" if self.nonlinear_spec is None: return [] if isinstance(self.nonlinear_spec, NonlinearModel): return [self.nonlinear_spec] if self.nonlinear_spec.models is None: return [] return self.nonlinear_spec.models @cached_property def _nonlinear_num_iters(self) -> pd.PositiveInt: """The num_iters of the nonlinear_spec.""" if self.nonlinear_spec is None: return 0 if isinstance(self.nonlinear_spec, NonlinearModel): if self.nonlinear_spec.numiters is None: return 1 # old default value for backwards compatibility return self.nonlinear_spec.numiters return self.nonlinear_spec.num_iters def _post_init_validators(self) -> None: """Call validators taking ``self`` that get run after init.""" self._validate_nonlinear_spec() self._validate_modulation_spec_post_init() def _validate_nonlinear_spec(self): """Check compatibility with nonlinear_spec.""" if self.__class__.__name__ == "AnisotropicMedium" and any( comp.nonlinear_spec is not None for comp in [self.xx, self.yy, self.zz] ): raise ValidationError( "Nonlinearities are not currently supported for the components " "of an anisotropic medium." ) if self.__class__.__name__ == "Medium2D" and any( comp.nonlinear_spec is not None for comp in [self.ss, self.tt] ): raise ValidationError( "Nonlinearities are not currently supported for the components " "of a 2D medium." ) if self.nonlinear_spec is None: return if isinstance(self.nonlinear_spec, NonlinearModel): log.warning( "The API for 'nonlinear_spec' has changed. " "The old usage 'nonlinear_spec=model' is deprecated and will be removed " "in a future release. The new usage is " r"'nonlinear_spec=NonlinearSpec(models=\[model])'." ) for model in self._nonlinear_models: model._validate_medium_type(self) model._validate_medium(self) if ( isinstance(self.nonlinear_spec, NonlinearSpec) and isinstance(model, NonlinearSusceptibility) and model.numiters is not None ): raise ValidationError( "'NonlinearSusceptibility.numiters' is deprecated. " "Please use 'NonlinearSpec.num_iters' instead." ) def _validate_modulation_spec_post_init(self): """Check compatibility with nonlinear_spec.""" if self.__class__.__name__ == "Medium2D" and any( comp.modulation_spec is not None for comp in [self.ss, self.tt] ): raise ValidationError( "Time modulation is not currently supported for the components " "of a 2D medium." ) heat_spec: Optional[HeatSpecType] = pd.Field( None, title="Heat Specification", description="Specification of the medium heat properties. They are used for solving " "the heat equation via the ``HeatSimulation`` interface. Such simulations can be used for " "investigating the influence of heat propagation on the properties of optical systems. " "Once the temperature distribution in the system is found using ``HeatSimulation`` object, " "``Simulation.perturbed_mediums_copy()`` can be used to convert mediums with perturbation " "models defined into spatially dependent custom mediums. " "Otherwise, the ``heat_spec`` does not directly affect the running of an optical " "``Simulation``.", discriminator=TYPE_TAG_STR, ) @pd.validator("modulation_spec", always=True) @skip_if_fields_missing(["nonlinear_spec"]) def _validate_modulation_spec(cls, val, values): """Check compatibility with modulation_spec.""" nonlinear_spec = values.get("nonlinear_spec") if val is not None and nonlinear_spec is not None: raise ValidationError( f"For medium class {cls}, 'modulation_spec' of class {type(val)} and " f"'nonlinear_spec' of class {type(nonlinear_spec)} are " "not simultaneously supported." ) return val _name_validator = validate_name_str() @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" return True @cached_property def is_time_modulated(self) -> bool: """Whether any component of the medium is time modulated.""" return self.modulation_spec is not None and self.modulation_spec.applied_modulation @cached_property def is_nonlinear(self) -> bool: """Whether the medium is nonlinear.""" return self.nonlinear_spec is not None @cached_property def is_custom(self) -> bool: """Whether the medium is custom.""" return isinstance(self, AbstractCustomMedium) @cached_property def is_fully_anisotropic(self) -> bool: """Whether the medium is fully anisotropic.""" return isinstance(self, FullyAnisotropicMedium) @cached_property def _incompatible_material_types(self) -> List[str]: """A list of material properties present which may lead to incompatibilities.""" properties = [ self.is_time_modulated, self.is_nonlinear, self.is_custom, self.is_fully_anisotropic, ] names = ["time modulated", "nonlinear", "custom", "fully anisotropic"] types = [name for name, prop in zip(names, properties) if prop] return types @cached_property def _has_incompatibilities(self) -> bool: """Whether the medium has incompatibilities. Certain medium types are incompatible with certain others, and such pairs are not allowed to intersect in a simulation.""" return len(self._incompatible_material_types) > 0 def _compatible_with(self, other: AbstractMedium) -> bool: """Whether these two media are compatible if in structures that intersect.""" if not (self._has_incompatibilities and other._has_incompatibilities): return True for med1, med2 in [(self, other), (other, self)]: if med1.is_custom: # custom and fully_anisotropic is OK if med2.is_nonlinear or med2.is_time_modulated: return False if med1.is_fully_anisotropic: if med2.is_nonlinear or med2.is_time_modulated: return False if med1.is_nonlinear: if med2.is_time_modulated: return False return True
[docs] @abstractmethod def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- complex Complex-valued relative permittivity evaluated at ``frequency``. """
[docs] def nk_model(self, frequency: float) -> Tuple[float, float]: """Real and imaginary parts of the refactive index as a function of frequency. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[float, float] Real part (n) and imaginary part (k) of refractive index of medium. """ eps_complex = self.eps_model(frequency=frequency) return self.eps_complex_to_nk(eps_complex)
[docs] def loss_tangent_model(self, frequency: float) -> Tuple[float, float]: """Permittivity and loss tangent as a function of frequency. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[float, float] Real part of permittivity and loss tangent. """ eps_complex = self.eps_model(frequency=frequency) return self.eps_complex_to_eps_loss_tangent(eps_complex)
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> Tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor as a function of frequency. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- complex The diagonal elements of the relative permittivity tensor evaluated at ``frequency``. """ # This only needs to be overwritten for anisotropic materials eps = self.eps_model(frequency) return (eps, eps, eps)
[docs] def eps_comp(self, row: Axis, col: Axis, frequency: float) -> complex: """Single component of the complex-valued permittivity tensor as a function of frequency. Parameters ---------- row : int Component's row in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). col : int Component's column in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- complex Element of the relative permittivity tensor evaluated at ``frequency``. """ # This only needs to be overwritten for anisotropic materials if row == col: return self.eps_model(frequency) return 0j
@cached_property @abstractmethod def n_cfl(self): """To ensure a stable FDTD simulation, it is essential to select an appropriate time step size in accordance with the CFL condition. The maximal time step size is inversely proportional to the speed of light in the medium, and thus proportional to the index of refraction. However, for dispersive medium, anisotropic medium, and other more complicated media, there are complications in deciding on the choice of the index of refraction. This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. """
[docs] @add_ax_if_none def plot(self, freqs: float, ax: Ax = None) -> Ax: """Plot n, k of a :class:`Medium` as a function of frequency. Parameters ---------- freqs: float Frequencies (Hz) to evaluate the medium properties at. ax : matplotlib.axes._subplots.Axes = None Matplotlib axes to plot on, if not specified, one is created. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """ freqs = np.array(freqs) eps_complex = np.array([self.eps_model(freq) for freq in freqs]) n, k = AbstractMedium.eps_complex_to_nk(eps_complex) freqs_thz = freqs / 1e12 ax.plot(freqs_thz, n, label="n") ax.plot(freqs_thz, k, label="k") ax.set_xlabel("frequency (THz)") ax.set_title("medium dispersion") ax.legend() ax.set_aspect("auto") return ax
""" Conversion helper functions """
[docs] @staticmethod def nk_to_eps_complex(n: float, k: float = 0.0) -> complex: """Convert n, k to complex permittivity. Parameters ---------- n : float Real part of refractive index. k : float = 0.0 Imaginary part of refrative index. Returns ------- complex Complex-valued relative permittivity. """ eps_real = n**2 - k**2 eps_imag = 2 * n * k return eps_real + 1j * eps_imag
[docs] @staticmethod def eps_complex_to_nk(eps_c: complex) -> Tuple[float, float]: """Convert complex permittivity to n, k values. Parameters ---------- eps_c : complex Complex-valued relative permittivity. Returns ------- Tuple[float, float] Real and imaginary parts of refractive index (n & k). """ eps_c = np.array(eps_c) ref_index = np.sqrt(eps_c) return np.real(ref_index), np.imag(ref_index)
[docs] @staticmethod def nk_to_eps_sigma(n: float, k: float, freq: float) -> Tuple[float, float]: """Convert ``n``, ``k`` at frequency ``freq`` to permittivity and conductivity values. Parameters ---------- n : float Real part of refractive index. k : float = 0.0 Imaginary part of refrative index. frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[float, float] Real part of relative permittivity & electric conductivity. """ eps_complex = AbstractMedium.nk_to_eps_complex(n, k) eps_real, eps_imag = eps_complex.real, eps_complex.imag omega = 2 * np.pi * freq sigma = omega * eps_imag * EPSILON_0 return eps_real, sigma
[docs] @staticmethod def eps_sigma_to_eps_complex(eps_real: float, sigma: float, freq: float) -> complex: """convert permittivity and conductivity to complex permittivity at freq Parameters ---------- eps_real : float Real-valued relative permittivity. sigma : float Conductivity. freq : float Frequency to evaluate permittivity at (Hz). If not supplied, returns real part of permittivity (limit as frequency -> infinity.) Returns ------- complex Complex-valued relative permittivity. """ if freq is None: return eps_real omega = 2 * np.pi * freq return eps_real + 1j * sigma / omega / EPSILON_0
[docs] @staticmethod def eps_complex_to_eps_sigma(eps_complex: complex, freq: float) -> Tuple[float, float]: """Convert complex permittivity at frequency ``freq`` to permittivity and conductivity values. Parameters ---------- eps_complex : complex Complex-valued relative permittivity. freq : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[float, float] Real part of relative permittivity & electric conductivity. """ eps_real, eps_imag = eps_complex.real, eps_complex.imag omega = 2 * np.pi * freq sigma = omega * eps_imag * EPSILON_0 return eps_real, sigma
[docs] @staticmethod def eps_complex_to_eps_loss_tangent(eps_complex: complex) -> Tuple[float, float]: """Convert complex permittivity to permittivity and loss tangent. Parameters ---------- eps_complex : complex Complex-valued relative permittivity. Returns ------- Tuple[float, float] Real part of relative permittivity & loss tangent """ eps_real, eps_imag = eps_complex.real, eps_complex.imag return eps_real, eps_imag / eps_real
[docs] @staticmethod def eps_loss_tangent_to_eps_complex(eps_real: float, loss_tangent: float) -> complex: """Convert permittivity and loss tangent to complex permittivity. Parameters ---------- eps_real : float Real part of relative permittivity loss_tangent : float Loss tangent Returns ------- eps_complex : complex Complex-valued relative permittivity. """ return eps_real * (1 + 1j * loss_tangent)
[docs] @ensure_freq_in_range def sigma_model(self, freq: float) -> complex: """Complex-valued conductivity as a function of frequency. Parameters ---------- freq: float Frequency to evaluate conductivity at (Hz). Returns ------- complex Complex conductivity at this frequency. """ omega = freq * 2 * np.pi eps_complex = self.eps_model(freq) eps_inf = self.eps_model(np.inf) sigma = (eps_inf - eps_complex) * 1j * omega * EPSILON_0 return sigma
@cached_property def is_pec(self): """Whether the medium is a PEC.""" return False
[docs] def sel_inside(self, bounds: Bound) -> AbstractMedium: """Return a new medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- AbstractMedium Medium with reduced data. """ if self.modulation_spec is not None: modulation_reduced = self.modulation_spec.sel_inside(bounds) return self.updated_copy(modulation_spec=modulation_reduced) return self
""" Autograd code """
[docs] def compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" raise NotImplementedError(f"Can't compute derivative for 'Medium': '{type(self)}'.")
[docs] def derivative_eps_sigma_volume( self, E_der_map: ElectromagneticFieldDataset, bounds: Bound, ) -> dict[str, xr.DataArray]: """Get the derivative w.r.t permittivity and conductivity in the volume.""" vjp_eps_complex = self.derivative_eps_complex_volume(E_der_map=E_der_map, bounds=bounds) freqs = vjp_eps_complex.coords["f"].values values = vjp_eps_complex.values eps_vjp, sigma_vjp = self.eps_complex_to_eps_sigma(eps_complex=values, freq=freqs) eps_vjp = np.sum(eps_vjp) sigma_vjp = np.sum(sigma_vjp) return dict(permittivity=eps_vjp, conductivity=sigma_vjp)
[docs] def derivative_eps_complex_volume( self, E_der_map: ElectromagneticFieldDataset, bounds: Bound ) -> xr.DataArray: """Get the derivative w.r.t complex-valued permittivity in the volume.""" vjp_value = 0.0 for field_name in ("Ex", "Ey", "Ez"): fld = E_der_map[field_name] vjp_value_fld = integrate_within_bounds( arr=fld, dims=("x", "y", "z"), bounds=bounds, ) vjp_value += vjp_value_fld return vjp_value.sum("f")
[docs] class AbstractCustomMedium(AbstractMedium, ABC): """A spatially varying medium.""" interp_method: InterpMethod = pd.Field( "nearest", title="Interpolation method", description="Interpolation method to obtain permittivity values " "that are not supplied at the Yee grids; For grids outside the range " "of the supplied data, extrapolation will be applied. When the extrapolated " "value is smaller (greater) than the minimal (maximal) of the supplied data, " "the extrapolated value will take the minimal (maximal) of the supplied data.", ) subpixel: bool = pd.Field( False, title="Subpixel averaging", description="If ``True``, apply the subpixel averaging method specified by " "``Simulation``'s field ``subpixel`` for this type of material on the " "interface of the structure, including exterior boundary and " "intersection interfaces with other structures.", ) @cached_property @abstractmethod def is_isotropic(self) -> bool: """The medium is isotropic or anisotropic.""" def _interp_method(self, comp: Axis) -> InterpMethod: """Interpolation method applied to comp.""" return self.interp_method
[docs] @abstractmethod def eps_dataarray_freq( self, frequency: float ) -> Tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], ] The permittivity evaluated at ``frequency``. """
[docs] def eps_diagonal_on_grid( self, frequency: float, coords: Coords, ) -> Tuple[ArrayComplex3D, ArrayComplex3D, ArrayComplex3D]: """Spatial profile of main diagonal of the complex-valued permittivity at ``frequency`` interpolated at the supplied coordinates. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). coords : :class:`.Coords` The grid point coordinates over which interpolation is performed. Returns ------- Tuple[ArrayComplex3D, ArrayComplex3D, ArrayComplex3D] The complex-valued permittivity tensor at ``frequency`` interpolated at the supplied coordinate. """ eps_spatial = self.eps_dataarray_freq(frequency) if self.is_isotropic: eps_interp = _get_numpy_array( coords.spatial_interp(eps_spatial[0], self._interp_method(0)) ) return (eps_interp, eps_interp, eps_interp) return tuple( _get_numpy_array(coords.spatial_interp(eps_comp, self._interp_method(comp))) for comp, eps_comp in enumerate(eps_spatial) )
[docs] def eps_comp_on_grid( self, row: Axis, col: Axis, frequency: float, coords: Coords, ) -> ArrayComplex3D: """Spatial profile of a single component of the complex-valued permittivity tensor at ``frequency`` interpolated at the supplied coordinates. Parameters ---------- row : int Component's row in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). col : int Component's column in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). frequency : float Frequency to evaluate permittivity at (Hz). coords : :class:`.Coords` The grid point coordinates over which interpolation is performed. Returns ------- ArrayComplex3D Single component of the complex-valued permittivity tensor at ``frequency`` interpolated at the supplied coordinates. """ if row == col: return self.eps_diagonal_on_grid(frequency, coords)[row] return 0j
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued spatially averaged permittivity as a function of frequency.""" if self.is_isotropic: return np.mean(_get_numpy_array(self.eps_dataarray_freq(frequency)[0])) return np.mean( [np.mean(_get_numpy_array(eps_comp)) for eps_comp in self.eps_dataarray_freq(frequency)] )
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> Tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor at ``frequency``. Spatially, we take max{||eps||}, so that autoMesh generation works appropriately. """ eps_spatial = self.eps_dataarray_freq(frequency) if self.is_isotropic: eps_comp = _get_numpy_array(eps_spatial[0]).ravel() eps = eps_comp[np.argmax(np.abs(eps_comp))] return (eps, eps, eps) eps_spatial_array = (_get_numpy_array(eps_comp).ravel() for eps_comp in eps_spatial) return tuple(eps_comp[np.argmax(np.abs(eps_comp))] for eps_comp in eps_spatial_array)
@staticmethod def _validate_isreal_dataarray(dataarray: CustomSpatialDataType) -> bool: """Validate that the dataarray is real""" return np.all(np.isreal(_get_numpy_array(dataarray))) @staticmethod def _validate_isreal_dataarray_tuple( dataarray_tuple: Tuple[CustomSpatialDataType, ...], ) -> bool: """Validate that the dataarray is real""" return np.all([AbstractCustomMedium._validate_isreal_dataarray(f) for f in dataarray_tuple]) @abstractmethod def _sel_custom_data_inside(self, bounds: Bound): """Return a new medium that contains the minimal amount custom data necessary to cover a spatial region defined by ``bounds``."""
[docs] def sel_inside(self, bounds: Bound) -> AbstractCustomMedium: """Return a new medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- AbstractMedium Medium with reduced data. """ self_mod_data_reduced = super().sel_inside(bounds) return self_mod_data_reduced._sel_custom_data_inside(bounds)
@staticmethod def _not_loaded(field): """Check whether data was not loaded.""" if isinstance(field, str) and field in DATA_ARRAY_MAP: return True # attempting to construct an UnstructuredGridDataset from a dict elif isinstance(field, dict) and field.get("type") in ( "TriangularGridDataset", "TetrahedralGridDataset", ): return any( isinstance(subfield, str) and subfield in DATA_ARRAY_MAP for subfield in [field["points"], field["cells"], field["values"]] ) # attempting to pass an UnstructuredGridDataset with zero points elif isinstance(field, UnstructuredGridDataset): return any(len(subfield) == 0 for subfield in [field.points, field.cells, field.values]) def _derivative_field_cmp( self, E_der_map: ElectromagneticFieldDataset, eps_data: PermittivityDataset, dim: str, ) -> np.ndarray: coords_interp = {key: val for key, val in eps_data.coords.items() if len(val) > 1} dims_sum = {dim for dim in eps_data.coords.keys() if dim not in coords_interp} # compute sizes along each of the interpolation dimensions sizes_list = [] for _, coords in coords_interp.items(): num_coords = len(coords) coords = np.array(coords) # compute distances between midpoints for all internal coords mid_points = (coords[1:] + coords[:-1]) / 2.0 dists = np.diff(mid_points) sizes = np.zeros(num_coords) sizes[1:-1] = dists # estimate the sizes on the edges using 2 x the midpoint distance sizes[0] = 2 * abs(mid_points[0] - coords[0]) sizes[-1] = 2 * abs(coords[-1] - mid_points[-1]) sizes_list.append(sizes) # turn this into a volume element, should be re-sizeable to the gradient shape if sizes_list: d_vol = functools.reduce(np.outer, sizes_list) else: # if sizes_list is empty, then reduce() fails d_vol = np.array(1.0) # TODO: probably this could be more robust. eg if the DataArray has weird edge cases E_der_dim = E_der_map[f"E{dim}"] E_der_dim_interp = E_der_dim.interp(**coords_interp).fillna(0.0).sum(dims_sum).sum("f") vjp_array = np.array(E_der_dim_interp.values).astype(complex) vjp_array = vjp_array.reshape(eps_data.shape) # multiply by volume elements (if possible, being defensive here..) try: vjp_array *= d_vol.reshape(vjp_array.shape) except ValueError: log.warning( "Skipping volume element normalization of 'CustomMedium' gradients. " f"Could not reshape the volume elements of shape {d_vol.shape} " f"to the shape of the gradient {vjp_array.shape}. " "If you encounter this warning, gradient direction will be accurate but the norm " "will be inaccurate. Please raise an issue on the tidy3d front end with this " "message and some information about your simulation setup and we will investigate. " ) return vjp_array
""" Dispersionless Medium """ # PEC keyword
[docs] class PECMedium(AbstractMedium): """Perfect electrical conductor class. Note ---- To avoid confusion from duplicate PECs, must import ``tidy3d.PEC`` instance directly. """ @pd.validator("modulation_spec", always=True) def _validate_modulation_spec(cls, val): """Check compatibility with modulation_spec.""" if val is not None: raise ValidationError( f"A 'modulation_spec' of class {type(val)} is not " f"currently supported for medium class {cls}." ) return val
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: # return something like frequency with value of pec_val + 0j return 0j * frequency + pec_val
@cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. """ return 1.0 @cached_property def is_pec(self): """Whether the medium is a PEC.""" return True
# PEC builtin instance PEC = PECMedium(name="PEC")
[docs] class Medium(AbstractMedium): """Dispersionless medium. Mediums define the optical properties of the materials within the simulation. Notes ----- In a dispersion-less medium, the displacement field :math:`D(t)` reacts instantaneously to the applied electric field :math:`E(t)`. .. math:: D(t) = \\epsilon E(t) Example ------- >>> dielectric = Medium(permittivity=4.0, name='my_medium') >>> eps = dielectric.eps_model(200e12) See Also -------- **Notebooks** * `Introduction on Tidy3D working principles <../../notebooks/Primer.html#Mediums>`_ * `Index <../../notebooks/docs/features/medium.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ **GUI** * `Mediums <https://www.flexcompute.com/tidy3d/learning-center/tidy3d-gui/Lecture-2-Mediums/>`_ """ permittivity: TracedFloat = pd.Field( 1.0, ge=1.0, title="Permittivity", description="Relative permittivity.", units=PERMITTIVITY ) conductivity: TracedFloat = pd.Field( 0.0, title="Conductivity", description="Electric conductivity. Defined such that the imaginary part of the complex " "permittivity at angular frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, ) @pd.validator("conductivity", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" if not values.get("allow_gain") and val < 0: raise ValidationError( "For passive medium, 'conductivity' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, and are likely to diverge." ) return val @pd.validator("permittivity", always=True) @skip_if_fields_missing(["modulation_spec"]) def _permittivity_modulation_validation(cls, val, values): """Assert modulated permittivity cannot be <= 0.""" modulation = values.get("modulation_spec") if modulation is None or modulation.permittivity is None: return val min_eps_inf = np.min(_get_numpy_array(val)) if min_eps_inf - modulation.permittivity.max_modulation <= 0: raise ValidationError( "The minimum permittivity value with modulation applied was found to be negative." ) return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["modulation_spec", "allow_gain"]) def _passivity_modulation_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" modulation = values.get("modulation_spec") if modulation is None or modulation.conductivity is None: return val min_sigma = np.min(_get_numpy_array(val)) if not values.get("allow_gain") and min_sigma - modulation.conductivity.max_modulation < 0: raise ValidationError( "For passive medium, 'conductivity' must be non-negative at any time." "With conductivity modulation, this medium can sometimes be active. " "Please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For dispersiveless medium, it equals ``sqrt(permittivity)``. """ permittivity = self.permittivity if self.modulation_spec is not None and self.modulation_spec.permittivity is not None: permittivity -= self.modulation_spec.permittivity.max_modulation n, _ = self.eps_complex_to_nk(permittivity) return n @staticmethod def _eps_model(permittivity: float, conductivity: float, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return AbstractMedium.eps_sigma_to_eps_complex(permittivity, conductivity, frequency)
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return self._eps_model(self.permittivity, self.conductivity, frequency)
[docs] @classmethod def from_nk(cls, n: float, k: float, freq: float, **kwargs): """Convert ``n`` and ``k`` values at frequency ``freq`` to :class:`Medium`. Parameters ---------- n : float Real part of refractive index. k : float = 0 Imaginary part of refrative index. freq : float Frequency to evaluate permittivity at (Hz). Returns ------- :class:`Medium` medium containing the corresponding ``permittivity`` and ``conductivity``. """ eps, sigma = AbstractMedium.nk_to_eps_sigma(n, k, freq) if eps < 1: raise ValidationError( "Dispersiveless medium must have 'permittivity>=1`. " "Please use 'Lorentz.from_nk()' to covert to a Lorentz medium, or the utility " "function 'td.medium_from_nk()' to automatically return the proper medium type." ) return cls(permittivity=eps, conductivity=sigma, **kwargs)
[docs] def compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" # get vjps w.r.t. permittivity and conductivity of the bulk vjps_volume = self.derivative_eps_sigma_volume( E_der_map=derivative_info.E_der_map, bounds=derivative_info.bounds ) # store the fields asked for by ``field_paths`` derivative_map = {} for field_path in derivative_info.paths: field_name, *_ = field_path if field_name in vjps_volume: derivative_map[field_path] = vjps_volume[field_name] return derivative_map
[docs] def derivative_eps_sigma_volume( self, E_der_map: ElectromagneticFieldDataset, bounds: Bound, ) -> dict[str, xr.DataArray]: """Get the derivative w.r.t permittivity and conductivity in the volume.""" vjp_eps_complex = self.derivative_eps_complex_volume(E_der_map=E_der_map, bounds=bounds) freqs = vjp_eps_complex.coords["f"].values values = vjp_eps_complex.values # vjp of eps_complex_to_eps_sigma omegas = 2 * np.pi * freqs eps_vjp = np.real(values) sigma_vjp = -np.imag(values) / omegas / EPSILON_0 eps_vjp = np.sum(eps_vjp) sigma_vjp = np.sum(sigma_vjp) return dict(permittivity=eps_vjp, conductivity=sigma_vjp)
[docs] def derivative_eps_complex_volume( self, E_der_map: ElectromagneticFieldDataset, bounds: Bound ) -> xr.DataArray: """Get the derivative w.r.t complex-valued permittivity in the volume.""" vjp_value = 0.0 for field_name in ("Ex", "Ey", "Ez"): fld = E_der_map[field_name] vjp_value_fld = integrate_within_bounds( arr=fld, dims=("x", "y", "z"), bounds=bounds, ) vjp_value += vjp_value_fld return vjp_value
class CustomIsotropicMedium(AbstractCustomMedium, Medium): """:class:`.Medium` with user-supplied permittivity distribution. (This class is for internal use in v2.0; it will be renamed as `CustomMedium` in v3.0.) Example ------- >>> Nx, Ny, Nz = 10, 9, 8 >>> X = np.linspace(-1, 1, Nx) >>> Y = np.linspace(-1, 1, Ny) >>> Z = np.linspace(-1, 1, Nz) >>> coords = dict(x=X, y=Y, z=Z) >>> permittivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> conductivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> dielectric = CustomIsotropicMedium(permittivity=permittivity, conductivity=conductivity) >>> eps = dielectric.eps_model(200e12) """ permittivity: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Permittivity", description="Relative permittivity.", units=PERMITTIVITY, ) conductivity: Optional[CustomSpatialDataTypeAnnotated] = pd.Field( None, title="Conductivity", description="Electric conductivity. Defined such that the imaginary part of the complex " "permittivity at angular frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, ) _no_nans_eps = validate_no_nans("permittivity") _no_nans_sigma = validate_no_nans("conductivity") @pd.validator("permittivity", always=True) def _eps_inf_greater_no_less_than_one(cls, val): """Assert any eps_inf must be >=1""" if not CustomIsotropicMedium._validate_isreal_dataarray(val): raise SetupError("'permittivity' must be real.") if np.any(_get_numpy_array(val) < 1): raise SetupError("'permittivity' must be no less than one.") return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["permittivity"]) def _conductivity_real_and_correct_shape(cls, val, values): """Assert conductivity is real and of right shape.""" if val is None: return val if not CustomIsotropicMedium._validate_isreal_dataarray(val): raise SetupError("'conductivity' must be real.") if not _check_same_coordinates(values["permittivity"], val): raise SetupError("'permittivity' and 'conductivity' must have the same coordinates.") return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" if val is None: return val if not values.get("allow_gain") and np.any(_get_numpy_array(val) < 0): raise ValidationError( "For passive medium, 'conductivity' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, and are likely to diverge." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if self.conductivity is None: return self.permittivity.is_uniform return self.permittivity.is_uniform and self.conductivity.is_uniform @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For dispersiveless medium, it equals ``sqrt(permittivity)``. """ permittivity = np.min(_get_numpy_array(self.permittivity)) if self.modulation_spec is not None and self.modulation_spec.permittivity is not None: permittivity -= self.modulation_spec.permittivity.max_modulation n, _ = self.eps_complex_to_nk(permittivity) return n @cached_property def is_isotropic(self): """Whether the medium is isotropic.""" return True def eps_dataarray_freq( self, frequency: float ) -> Tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], ] The permittivity evaluated at ``frequency``. """ conductivity = self.conductivity if conductivity is None: conductivity = _zeros_like(self.permittivity) eps = self.eps_sigma_to_eps_complex(self.permittivity, conductivity, frequency) return (eps, eps, eps) def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomMedium CustomMedium with reduced data. """ if not self.permittivity.does_cover(bounds=bounds): log.warning( "Permittivity spatial data array does not fully cover the requested region." ) perm_reduced = self.permittivity.sel_inside(bounds=bounds) cond_reduced = None if self.conductivity is not None: if not self.conductivity.does_cover(bounds=bounds): log.warning( "Conductivity spatial data array does not fully cover the requested region." ) cond_reduced = self.conductivity.sel_inside(bounds=bounds) return self.updated_copy( permittivity=perm_reduced, conductivity=cond_reduced, )
[docs] class CustomMedium(AbstractCustomMedium): """:class:`.Medium` with user-supplied permittivity distribution. Example ------- >>> Nx, Ny, Nz = 10, 9, 8 >>> X = np.linspace(-1, 1, Nx) >>> Y = np.linspace(-1, 1, Ny) >>> Z = np.linspace(-1, 1, Nz) >>> coords = dict(x=X, y=Y, z=Z) >>> permittivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> conductivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> dielectric = CustomMedium(permittivity=permittivity, conductivity=conductivity) >>> eps = dielectric.eps_model(200e12) """ eps_dataset: Optional[PermittivityDataset] = pd.Field( None, title="Permittivity Dataset", description="[To be deprecated] User-supplied dataset containing complex-valued " "permittivity as a function of space. Permittivity distribution over the Yee-grid " "will be interpolated based on ``interp_method``.", ) permittivity: Optional[CustomSpatialDataTypeAnnotated] = pd.Field( None, title="Permittivity", description="Spatial profile of relative permittivity.", units=PERMITTIVITY, ) conductivity: Optional[CustomSpatialDataTypeAnnotated] = pd.Field( None, title="Conductivity", description="Spatial profile Electric conductivity. Defined such " "that the imaginary part of the complex permittivity at angular " "frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, ) _no_nans_eps_dataset = validate_no_nans("eps_dataset") _no_nans_permittivity = validate_no_nans("permittivity") _no_nans_sigma = validate_no_nans("conductivity") @pd.root_validator(pre=True) def _warn_if_none(cls, values): """Warn if the data array fails to load, and return a vacuum medium.""" eps_dataset = values.get("eps_dataset") permittivity = values.get("permittivity") conductivity = values.get("conductivity") fail_load = False if cls._not_loaded(permittivity): log.warning( "Loading 'permittivity' without data; constructing a vacuum medium instead." ) fail_load = True if cls._not_loaded(conductivity): log.warning( "Loading 'conductivity' without data; constructing a vacuum medium instead." ) fail_load = True if isinstance(eps_dataset, dict): if any((v in DATA_ARRAY_MAP for _, v in eps_dataset.items() if isinstance(v, str))): log.warning( "Loading 'eps_dataset' without data; constructing a vacuum medium instead." ) fail_load = True if fail_load: eps_real = SpatialDataArray(np.ones((1, 1, 1)), coords=dict(x=[0], y=[0], z=[0])) return dict(permittivity=eps_real) return values @pd.root_validator(pre=True) def _deprecation_dataset(cls, values): """Raise deprecation warning if dataset supplied and convert to dataset.""" eps_dataset = values.get("eps_dataset") permittivity = values.get("permittivity") conductivity = values.get("conductivity") # Incomplete custom medium definition. if eps_dataset is None and permittivity is None and conductivity is None: raise SetupError("Missing spatial profiles of 'permittivity' or 'eps_dataset'.") if eps_dataset is None and permittivity is None: raise SetupError("Missing spatial profiles of 'permittivity'.") # Definition racing if eps_dataset is not None and (permittivity is not None or conductivity is not None): raise SetupError( "Please either define 'permittivity' and 'conductivity', or 'eps_dataset', " "but not both simultaneously." ) if eps_dataset is None: return values # TODO: sometime before 3.0, uncomment these lines to warn users to start using new API # if isinstance(eps_dataset, dict): # eps_components = [eps_dataset[f"eps_{dim}{dim}"] for dim in "xyz"] # else: # eps_components = [eps_dataset.eps_xx, eps_dataset.eps_yy, eps_dataset.eps_zz] # is_isotropic = eps_components[0] == eps_components[1] == eps_components[2] # if is_isotropic: # # deprecation warning for isotropic custom medium # log.warning( # "For spatially varying isotropic medium, the 'eps_dataset' field " # "is being replaced by 'permittivity' and 'conductivity' in v3.0. " # "We recommend you change your scripts to be compatible with the new API." # ) # else: # # deprecation warning for anisotropic custom medium # log.warning( # "For spatially varying anisotropic medium, this class is being replaced " # "by 'CustomAnisotropicMedium' in v3.0. " # "We recommend you change your scripts to be compatible with the new API." # ) return values @pd.validator("eps_dataset", always=True) def _eps_dataset_single_frequency(cls, val): """Assert only one frequency supplied.""" if val is None: return val for name, eps_dataset_component in val.field_components.items(): freqs = eps_dataset_component.f if len(freqs) != 1: raise SetupError( f"'eps_dataset.{name}' must have a single frequency, " f"but it contains {len(freqs)} frequencies." ) return val @pd.validator("eps_dataset", always=True) @skip_if_fields_missing(["modulation_spec", "allow_gain"]) def _eps_dataset_eps_inf_greater_no_less_than_one_sigma_positive(cls, val, values): """Assert any eps_inf must be >=1""" if val is None: return val modulation = values.get("modulation_spec") for comp in ["eps_xx", "eps_yy", "eps_zz"]: eps_real, sigma = CustomMedium.eps_complex_to_eps_sigma( val.field_components[comp], val.field_components[comp].f ) if np.any(_get_numpy_array(eps_real) < 1): raise SetupError( "Permittivity at infinite frequency at any spatial point " "must be no less than one." ) if modulation is not None and modulation.permittivity is not None: if np.any(_get_numpy_array(eps_real) - modulation.permittivity.max_modulation <= 0): raise ValidationError( "The minimum permittivity value with modulation applied " "was found to be negative." ) if not values.get("allow_gain") and np.any(_get_numpy_array(sigma) < 0): raise ValidationError( "For passive medium, imaginary part of permittivity must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) if ( not values.get("allow_gain") and modulation is not None and modulation.conductivity is not None and np.any(_get_numpy_array(sigma) - modulation.conductivity.max_modulation <= 0) ): raise ValidationError( "For passive medium, imaginary part of permittivity must be non-negative " "at any time. " "With conductivity modulation, this medium can sometimes be active. " "Please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @pd.validator("permittivity", always=True) @skip_if_fields_missing(["modulation_spec"]) def _eps_inf_greater_no_less_than_one(cls, val, values): """Assert any eps_inf must be >=1""" if val is None: return val if not CustomMedium._validate_isreal_dataarray(val): raise SetupError("'permittivity' must be real.") if np.any(_get_numpy_array(val) < 1): raise SetupError("'permittivity' must be no less than one.") modulation = values.get("modulation_spec") if modulation is None or modulation.permittivity is None: return val if np.any(_get_numpy_array(val) - modulation.permittivity.max_modulation <= 0): raise ValidationError( "The minimum permittivity value with modulation applied was found to be negative." ) return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["permittivity", "allow_gain"]) def _conductivity_non_negative_correct_shape(cls, val, values): """Assert conductivity>=0""" if val is None: return val if not CustomMedium._validate_isreal_dataarray(val): raise SetupError("'conductivity' must be real.") if not values.get("allow_gain") and np.any(_get_numpy_array(val) < 0): raise ValidationError( "For passive medium, 'conductivity' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) if not _check_same_coordinates(values["permittivity"], val): raise SetupError("'permittivity' and 'conductivity' must have the same coordinates.") return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["eps_dataset", "modulation_spec", "allow_gain"]) def _passivity_modulation_validation(cls, val, values): """Assert passive medium at any time during modulation if ``allow_gain`` is False.""" # validated already when the data is supplied through `eps_dataset` if values.get("eps_dataset"): return val # permittivity defined with ``permittivity`` and ``conductivity`` modulation = values.get("modulation_spec") if values.get("allow_gain") or modulation is None or modulation.conductivity is None: return val if val is None or np.any( _get_numpy_array(val) - modulation.conductivity.max_modulation < 0 ): raise ValidationError( "For passive medium, 'conductivity' must be non-negative at any time. " "With conductivity modulation, this medium can sometimes be active. " "Please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @pd.validator("permittivity", "conductivity", always=True) def _check_permittivity_conductivity_interpolate(cls, val, values, field): """Check that the custom medium 'SpatialDataArrays' can be interpolated.""" if isinstance(val, SpatialDataArray): val._interp_validator(field.name) return val @cached_property def is_isotropic(self) -> bool: """Check if the medium is isotropic or anisotropic.""" if self.eps_dataset is None: return True if self.eps_dataset.eps_xx == self.eps_dataset.eps_yy == self.eps_dataset.eps_zz: return True return False @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" return self._medium.is_spatially_uniform @cached_property def freqs(self) -> np.ndarray: """float array of frequencies. This field is to be deprecated in v3.0. """ # return dummy values in this case if self.eps_dataset is None: return np.array([0, 0, 0]) return np.array( [ self.eps_dataset.eps_xx.coords["f"], self.eps_dataset.eps_yy.coords["f"], self.eps_dataset.eps_zz.coords["f"], ] ) @cached_property def _medium(self): """Internal representation in the form of either `CustomIsotropicMedium` or `CustomAnisotropicMedium`. """ self_dict = self.dict(exclude={"type", "eps_dataset"}) # isotropic if self.eps_dataset is None: self_dict.update({"permittivity": self.permittivity, "conductivity": self.conductivity}) return CustomIsotropicMedium.parse_obj(self_dict) def get_eps_sigma(eps_complex: SpatialDataArray, freq: float) -> tuple: """Convert a complex permittivity to real permittivity and conductivity.""" eps_values = np.array(eps_complex.values) eps_real, sigma = CustomMedium.eps_complex_to_eps_sigma(eps_values, freq) coords = eps_complex.coords eps_real = ScalarFieldDataArray(eps_real, coords=coords) sigma = ScalarFieldDataArray(sigma, coords=coords) eps_real = SpatialDataArray(eps_real.squeeze(dim="f", drop=True)) sigma = SpatialDataArray(sigma.squeeze(dim="f", drop=True)) return eps_real, sigma # isotropic, but with `eps_dataset` if self.is_isotropic: eps_complex = self.eps_dataset.eps_xx eps_real, sigma = get_eps_sigma(eps_complex, freq=self.freqs[0]) self_dict.update({"permittivity": eps_real, "conductivity": sigma}) return CustomIsotropicMedium.parse_obj(self_dict) # anisotropic mat_comp = {"interp_method": self.interp_method} for freq, comp in zip(self.freqs, ["xx", "yy", "zz"]): eps_complex = self.eps_dataset.field_components["eps_" + comp] eps_real, sigma = get_eps_sigma(eps_complex, freq=freq) comp_dict = self_dict.copy() comp_dict.update({"permittivity": eps_real, "conductivity": sigma}) mat_comp.update({comp: CustomIsotropicMedium.parse_obj(comp_dict)}) return CustomAnisotropicMediumInternal(**mat_comp) def _interp_method(self, comp: Axis) -> InterpMethod: """Interpolation method applied to comp.""" return self._medium._interp_method(comp) @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl```. For dispersiveless custom medium, it equals ``min[sqrt(eps_inf)]``, where ``min`` is performed over all components and spatial points. """ return self._medium.n_cfl
[docs] def eps_dataarray_freq( self, frequency: float ) -> Tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. () Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ return self._medium.eps_dataarray_freq(frequency)
[docs] def eps_diagonal_on_grid( self, frequency: float, coords: Coords, ) -> Tuple[ArrayComplex3D, ArrayComplex3D, ArrayComplex3D]: """Spatial profile of main diagonal of the complex-valued permittivity at ``frequency`` interpolated at the supplied coordinates. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). coords : :class:`.Coords` The grid point coordinates over which interpolation is performed. Returns ------- Tuple[ArrayComplex3D, ArrayComplex3D, ArrayComplex3D] The complex-valued permittivity tensor at ``frequency`` interpolated at the supplied coordinate. """ return self._medium.eps_diagonal_on_grid(frequency, coords)
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> Tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor at ``frequency``. Spatially, we take max{|eps|}, so that autoMesh generation works appropriately. """ return self._medium.eps_diagonal(frequency)
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Spatial and polarizaiton average of complex-valued permittivity as a function of frequency. """ return self._medium.eps_model(frequency)
[docs] @classmethod def from_eps_raw( cls, eps: Union[ScalarFieldDataArray, CustomSpatialDataType], freq: float = None, interp_method: InterpMethod = "nearest", **kwargs, ) -> CustomMedium: """Construct a :class:`.CustomMedium` from datasets containing raw permittivity values. Parameters ---------- eps : Union[ :class:`.SpatialDataArray`, :class:`.ScalarFieldDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] Dataset containing complex-valued permittivity as a function of space. freq : float, optional Frequency at which ``eps`` are defined. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain permittivity values that are not supplied at the Yee grids. Notes ----- For lossy medium that has a complex-valued ``eps``, if ``eps`` is supplied through :class:`.SpatialDataArray`, which doesn't contain frequency information, the ``freq`` kwarg will be used to evaluate the permittivity and conductivity. Alternatively, ``eps`` can be supplied through :class:`.ScalarFieldDataArray`, which contains a frequency coordinate. In this case, leave ``freq`` kwarg as the default of ``None``. Returns ------- :class:`.CustomMedium` Medium containing the spatially varying permittivity data. """ if isinstance(eps, CustomSpatialDataType.__args__): # purely real, not need to know `freq` if CustomMedium._validate_isreal_dataarray(eps): return cls(permittivity=eps, interp_method=interp_method, **kwargs) # complex permittivity, needs to know `freq` if freq is None: raise SetupError( "For a complex 'eps', 'freq' at which 'eps' is defined must be supplied", ) eps_real, sigma = CustomMedium.eps_complex_to_eps_sigma(eps, freq) return cls( permittivity=eps_real, conductivity=sigma, interp_method=interp_method, **kwargs ) # eps is ScalarFieldDataArray # contradictory definition of frequency freq_data = eps.coords["f"].data[0] if freq is not None and not isclose(freq, freq_data): raise SetupError( "'freq' value is inconsistent with the coordinate 'f'" "in 'eps' DataArray. It's unclear at which frequency 'eps' " "is defined. Please leave 'freq=None' to use the frequency " "value in the DataArray." ) eps_real, sigma = CustomMedium.eps_complex_to_eps_sigma(eps, freq_data) eps_real = SpatialDataArray(eps_real.squeeze(dim="f", drop=True)) sigma = SpatialDataArray(sigma.squeeze(dim="f", drop=True)) return cls(permittivity=eps_real, conductivity=sigma, interp_method=interp_method, **kwargs)
[docs] @classmethod def from_nk( cls, n: Union[ScalarFieldDataArray, CustomSpatialDataType], k: Optional[Union[ScalarFieldDataArray, CustomSpatialDataType]] = None, freq: float = None, interp_method: InterpMethod = "nearest", **kwargs, ) -> CustomMedium: """Construct a :class:`.CustomMedium` from datasets containing n and k values. Parameters ---------- n : Union[ :class:`.SpatialDataArray`, :class:`.ScalarFieldDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] Real part of refractive index. k : Union[ :class:`.SpatialDataArray`, :class:`.ScalarFieldDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], optional Imaginary part of refrative index for lossy medium. freq : float, optional Frequency at which ``n`` and ``k`` are defined. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain permittivity values that are not supplied at the Yee grids. Note ---- For lossy medium, if both ``n`` and ``k`` are supplied through :class:`.SpatialDataArray`, which doesn't contain frequency information, the ``freq`` kwarg will be used to evaluate the permittivity and conductivity. Alternatively, ``n`` and ``k`` can be supplied through :class:`.ScalarFieldDataArray`, which contains a frequency coordinate. In this case, leave ``freq`` kwarg as the default of ``None``. Returns ------- :class:`.CustomMedium` Medium containing the spatially varying permittivity data. """ # lossless if k is None: if isinstance(n, ScalarFieldDataArray): n = SpatialDataArray(n.squeeze(dim="f", drop=True)) freq = 0 # dummy value eps_real, _ = CustomMedium.nk_to_eps_sigma(n, 0 * n, freq) return cls(permittivity=eps_real, interp_method=interp_method, **kwargs) # lossy case if not _check_same_coordinates(n, k): raise SetupError("'n' and 'k' must be of the same type and must have same coordinates.") # k is a SpatialDataArray if isinstance(k, CustomSpatialDataType.__args__): if freq is None: raise SetupError( "For a lossy medium, must supply 'freq' at which to convert 'n' " "and 'k' to a complex valued permittivity." ) eps_real, sigma = CustomMedium.nk_to_eps_sigma(n, k, freq) return cls( permittivity=eps_real, conductivity=sigma, interp_method=interp_method, **kwargs ) # k is a ScalarFieldDataArray freq_data = k.coords["f"].data[0] if freq is not None and not isclose(freq, freq_data): raise SetupError( "'freq' value is inconsistent with the coordinate 'f'" "in 'k' DataArray. It's unclear at which frequency 'k' " "is defined. Please leave 'freq=None' to use the frequency " "value in the DataArray." ) eps_real, sigma = CustomMedium.nk_to_eps_sigma(n, k, freq_data) eps_real = SpatialDataArray(eps_real.squeeze(dim="f", drop=True)) sigma = SpatialDataArray(sigma.squeeze(dim="f", drop=True)) return cls(permittivity=eps_real, conductivity=sigma, interp_method=interp_method, **kwargs)
[docs] def grids(self, bounds: Bound) -> Dict[str, Grid]: """Make a :class:`.Grid` corresponding to the data in each ``eps_ii`` component. The min and max coordinates along each dimension are bounded by ``bounds``.""" rmin, rmax = bounds pt_mins = dict(zip("xyz", rmin)) pt_maxs = dict(zip("xyz", rmax)) def make_grid(scalar_field: Union[ScalarFieldDataArray, SpatialDataArray]) -> Grid: """Make a grid for a single dataset.""" def make_bound_coords(coords: np.ndarray, pt_min: float, pt_max: float) -> List[float]: """Convert user supplied coords into boundary coords to use in :class:`.Grid`.""" # get coordinates of the bondaries halfway between user-supplied data coord_bounds = (coords[1:] + coords[:-1]) / 2.0 # res-set coord boundaries that lie outside geometry bounds to the boundary (0 vol.) coord_bounds[coord_bounds <= pt_min] = pt_min coord_bounds[coord_bounds >= pt_max] = pt_max # add the geometry bounds in explicitly return [pt_min] + coord_bounds.tolist() + [pt_max] # grab user supplied data long this dimension coords = {key: np.array(val) for key, val in scalar_field.coords.items()} spatial_coords = {key: coords[key] for key in "xyz"} # convert each spatial coord to boundary coords bound_coords = {} for key, coords in spatial_coords.items(): pt_min = pt_mins[key] pt_max = pt_maxs[key] bound_coords[key] = make_bound_coords(coords=coords, pt_min=pt_min, pt_max=pt_max) # construct grid boundaries = Coords(**bound_coords) return Grid(boundaries=boundaries) grids = {} for field_name in ("eps_xx", "eps_yy", "eps_zz"): # grab user supplied data long this dimension scalar_field = self.eps_dataset.field_components[field_name] # feed it to make_grid grids[field_name] = make_grid(scalar_field) return grids
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomMedium CustomMedium with reduced data. """ perm_reduced = None if self.permittivity is not None: if not self.permittivity.does_cover(bounds=bounds): log.warning( "Permittivity spatial data array does not fully cover the requested region." ) perm_reduced = self.permittivity.sel_inside(bounds=bounds) cond_reduced = None if self.conductivity is not None: if not self.conductivity.does_cover(bounds=bounds): log.warning( "Conductivity spatial data array does not fully cover the requested region." ) cond_reduced = self.conductivity.sel_inside(bounds=bounds) eps_reduced = None if self.eps_dataset is not None: eps_reduced_dict = {} for key, comp in self.eps_dataset.field_components.items(): if not comp.does_cover(bounds=bounds): log.warning( f"{key} spatial data array does not fully cover the requested region." ) eps_reduced_dict[key] = comp.sel_inside(bounds=bounds) eps_reduced = PermittivityDataset(**eps_reduced_dict) return self.updated_copy( permittivity=perm_reduced, conductivity=cond_reduced, eps_dataset=eps_reduced, )
[docs] def compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" vjps = {} for field_path in derivative_info.paths: if field_path == ("permittivity",): vjp_array = 0.0 for dim in "xyz": vjp_array += self._derivative_field_cmp( E_der_map=derivative_info.E_der_map, eps_data=self.permittivity, dim=dim ) vjps[field_path] = vjp_array elif field_path[0] == "eps_dataset": key = field_path[1] dim = key[-1] vjps[field_path] = self._derivative_field_cmp( E_der_map=derivative_info.E_der_map, eps_data=self.eps_dataset.field_components[key], dim=dim, ) else: raise NotImplementedError( f"No derivative defined for 'CustomMedium' field: {field_path}." ) return vjps
def _derivative_field_cmp( self, E_der_map: ElectromagneticFieldDataset, eps_data: PermittivityDataset, dim: str, ) -> np.ndarray: """Compute derivative with respect to the ``dim`` components within the custom medium.""" coords_interp = {key: eps_data.coords[key] for key in "xyz"} coords_interp = {key: val for key, val in coords_interp.items() if len(val) > 1} dims_sum = [dim for dim in "xyz" if dim not in coords_interp] # compute sizes along each of the interpolation dimensions sizes_list = [] for _, coords in coords_interp.items(): num_coords = len(coords) coords = np.array(coords) # compute distances between midpoints for all internal coords mid_points = (coords[1:] + coords[:-1]) / 2.0 dists = np.diff(mid_points) sizes = np.zeros(num_coords) sizes[1:-1] = dists # estimate the sizes on the edges using 2 x the midpoint distance sizes[0] = 2 * abs(mid_points[0] - coords[0]) sizes[-1] = 2 * abs(coords[-1] - mid_points[-1]) sizes_list.append(sizes) # turn this into a volume element, should be re-sizeable to the gradient shape if sizes_list: d_vol = functools.reduce(np.outer, sizes_list) else: # if sizes_list is empty, then reduce() fails d_vol = np.array(1.0) # TODO: probably this could be more robust. eg if the DataArray has weird edge cases E_der_dim = E_der_map[f"E{dim}"] E_der_dim_interp = E_der_dim.interp(**coords_interp).fillna(0.0).sum(dims_sum).real E_der_dim_interp = E_der_dim_interp.sum("f") vjp_array = np.array(E_der_dim_interp.values, dtype=float) vjp_array = vjp_array.reshape(eps_data.shape) # multiply by volume elements (if possible, being defensive here..) try: vjp_array *= d_vol.reshape(vjp_array.shape) except ValueError: log.warning( "Skipping volume element normalization of 'CustomMedium' gradients. " f"Could not reshape the volume elements of shape {d_vol.shape} " f"to the shape of the gradient {vjp_array.shape}. " "If you encounter this warning, gradient direction will be accurate but the norm " "will be inaccurate. Please raise an issue on the tidy3d front end with this " "message and some information about your simulation setup and we will investigate. " ) return vjp_array
""" Dispersive Media """
[docs] class DispersiveMedium(AbstractMedium, ABC): """ A Medium with dispersion: field propagation characteristics depend on frequency. Notes ----- In dispersive mediums, the displacement field :math:`D(t)` depends on the previous electric field :math:`E( t')` and time-dependent permittivity :math:`\\epsilon` changes. .. math:: D(t) = \\int \\epsilon(t - t') E(t') \\delta t' Dispersive mediums can be defined in three ways: - Imported from our `material library <../material_library.html>`_. - Defined directly by specifying the parameters in the `various supplied dispersive models <../mediums.html>`_. - Fitted to optical n-k data using the `dispersion fitting tool plugin <../plugins/dispersion.html>`_. It is important to keep in mind that dispersive materials are inevitably slower to simulate than their dispersion-less counterparts, with complexity increasing with the number of poles included in the dispersion model. For simulations with a narrow range of frequencies of interest, it may sometimes be faster to define the material through its real and imaginary refractive index at the center frequency. See Also -------- :class:`CustomPoleResidue`: A spatially varying dispersive medium described by the pole-residue pair model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ @staticmethod def _permittivity_modulation_validation(): """Assert modulated permittivity cannot be <= 0 at any time.""" @pd.validator("eps_inf", allow_reuse=True, always=True) @skip_if_fields_missing(["modulation_spec"]) def _validate_permittivity_modulation(cls, val, values): """Assert modulated permittivity cannot be <= 0.""" modulation = values.get("modulation_spec") if modulation is None or modulation.permittivity is None: return val min_eps_inf = np.min(_get_numpy_array(val)) if min_eps_inf - modulation.permittivity.max_modulation <= 0: raise ValidationError( "The minimum permittivity value with modulation applied was found to be negative." ) return val return _validate_permittivity_modulation @staticmethod def _conductivity_modulation_validation(): """Assert passive medium at any time if not ``allow_gain``.""" @pd.validator("modulation_spec", allow_reuse=True, always=True) @skip_if_fields_missing(["allow_gain"]) def _validate_conductivity_modulation(cls, val, values): """With conductivity modulation, the medium can exhibit gain during the cycle. So `allow_gain` must be True when the conductivity is modulated. """ if val is None or val.conductivity is None: return val if not values.get("allow_gain"): raise ValidationError( "For passive medium, 'conductivity' must be non-negative at any time. " "With conductivity modulation, this medium can sometimes be active. " "Please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, and are likely to diverge." ) return val return _validate_conductivity_modulation @abstractmethod def _pole_residue_dict(self) -> Dict: """Dict representation of Medium as a pole-residue model.""" @cached_property def pole_residue(self): """Representation of Medium as a pole-residue model.""" return PoleResidue(**self._pole_residue_dict(), allow_gain=self.allow_gain) @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For PoleResidue model, it equals ``sqrt(eps_inf)`` [https://ieeexplore.ieee.org/document/9082879]. """ permittivity = self.pole_residue.eps_inf if self.modulation_spec is not None and self.modulation_spec.permittivity is not None: permittivity -= self.modulation_spec.permittivity.max_modulation n, _ = self.eps_complex_to_nk(permittivity) return n
[docs] @staticmethod def tuple_to_complex(value: Tuple[float, float]) -> complex: """Convert a tuple of real and imaginary parts to complex number.""" val_r, val_i = value return val_r + 1j * val_i
[docs] @staticmethod def complex_to_tuple(value: complex) -> Tuple[float, float]: """Convert a complex number to a tuple of real and imaginary parts.""" return (value.real, value.imag)
[docs] class CustomDispersiveMedium(AbstractCustomMedium, DispersiveMedium, ABC): """A spatially varying dispersive medium.""" @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For PoleResidue model, it equals ``sqrt(eps_inf)`` [https://ieeexplore.ieee.org/document/9082879]. """ permittivity = np.min(_get_numpy_array(self.pole_residue.eps_inf)) if self.modulation_spec is not None and self.modulation_spec.permittivity is not None: permittivity -= self.modulation_spec.permittivity.max_modulation n, _ = self.eps_complex_to_nk(permittivity) return n @cached_property def is_isotropic(self): """Whether the medium is isotropic.""" return True @cached_property def pole_residue(self): """Representation of Medium as a pole-residue model.""" return CustomPoleResidue( **self._pole_residue_dict(), interp_method=self.interp_method, allow_gain=self.allow_gain, subpixel=self.subpixel, ) @staticmethod def _warn_if_data_none(nested_tuple_field: str): """Warn if any of `eps_inf` and nested_tuple_field are not loaded, and return a vacuum with eps_inf = 1. """ @pd.root_validator(pre=True, allow_reuse=True) def _warn_if_none(cls, values): """Warn if any of `eps_inf` and nested_tuple_field are not load.""" eps_inf = values.get("eps_inf") coeffs = values.get(nested_tuple_field) fail_load = False if AbstractCustomMedium._not_loaded(eps_inf): log.warning("Loading 'eps_inf' without data; constructing a vacuum medium instead.") fail_load = True for coeff in coeffs: if fail_load: break for coeff_i in coeff: if AbstractCustomMedium._not_loaded(coeff_i): log.warning( f"Loading '{nested_tuple_field}' without data; " "constructing a vacuum medium instead." ) fail_load = True break if fail_load and eps_inf is None: return {nested_tuple_field: ()} if fail_load: eps_inf = SpatialDataArray(np.ones((1, 1, 1)), coords=dict(x=[0], y=[0], z=[0])) return {"eps_inf": eps_inf, nested_tuple_field: ()} return values return _warn_if_none
[docs] class PoleResidue(DispersiveMedium): """A dispersive medium described by the pole-residue pair model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(\\omega) = \\epsilon_\\infty - \\sum_i \\left[\\frac{c_i}{j \\omega + a_i} + \\frac{c_i^*}{j \\omega + a_i^*}\\right] Example ------- >>> pole_res = PoleResidue(eps_inf=2.0, poles=[((-1+2j), (3+4j)), ((-5+6j), (7+8j))]) >>> eps = pole_res.eps_model(200e12) See Also -------- :class:`CustomPoleResidue`: A spatially varying dispersive medium described by the pole-residue pair model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: TracedPositiveFloat = pd.Field( 1.0, title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) poles: Tuple[TracedPoleAndResidue, ...] = pd.Field( (), title="Poles", description="Tuple of complex-valued (:math:`a_i, c_i`) poles for the model.", units=(RADPERSEC, RADPERSEC), ) @pd.validator("poles", always=True) def _causality_validation(cls, val): """Assert causal medium.""" for a, _ in val: if np.any(np.real(_get_numpy_array(a)) > 0): raise SetupError("For stable medium, 'Re(a_i)' must be non-positive.") return val _validate_permittivity_modulation = DispersiveMedium._permittivity_modulation_validation() _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation() @staticmethod def _eps_model( eps_inf: pd.PositiveFloat, poles: Tuple[PoleAndResidue, ...], frequency: float ) -> complex: """Complex-valued permittivity as a function of frequency.""" omega = 2 * np.pi * frequency eps = eps_inf + 0 * frequency + 0.0j for a, c in poles: a_cc = np.conj(a) c_cc = np.conj(c) eps = eps - c / (1j * omega + a) eps = eps - c_cc / (1j * omega + a_cc) return eps
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return self._eps_model(eps_inf=self.eps_inf, poles=self.poles, frequency=frequency)
def _pole_residue_dict(self) -> Dict: """Dict representation of Medium as a pole-residue model.""" return dict( eps_inf=self.eps_inf, poles=self.poles, frequency_range=self.frequency_range, name=self.name, )
[docs] def __str__(self): """string representation""" return ( f"td.PoleResidue(" f"\n\teps_inf={self.eps_inf}, " f"\n\tpoles={self.poles}, " f"\n\tfrequency_range={self.frequency_range})" )
[docs] @classmethod def from_medium(cls, medium: Medium) -> PoleResidue: """Convert a :class:`.Medium` to a pole residue model. Parameters ---------- medium: :class:`.Medium` The medium with permittivity and conductivity to convert. Returns ------- :class:`.PoleResidue` The pole residue equivalent. """ poles = [(0, medium.conductivity / (2 * EPSILON_0))] return PoleResidue( eps_inf=medium.permittivity, poles=poles, frequency_range=medium.frequency_range )
[docs] def to_medium(self) -> Medium: """Convert to a :class:`.Medium`. Requires the pole residue model to only have a pole at 0 frequency, corresponding to a constant conductivity term. Returns ------- :class:`.Medium` The non-dispersive equivalent with constant permittivity and conductivity. """ res = 0 for a, c in self.poles: if abs(a) > fp_eps: raise ValidationError("Cannot convert dispersive 'PoleResidue' to 'Medium'.") res = res + (c + np.conj(c)) / 2 sigma = res * 2 * EPSILON_0 return Medium( permittivity=self.eps_inf, conductivity=np.real(sigma), frequency_range=self.frequency_range, )
[docs] @staticmethod def lo_to_eps_model( poles: Tuple[Tuple[float, float, float, float], ...], eps_inf: pd.PositiveFloat, frequency: float, ) -> complex: """Complex permittivity as a function of frequency for a given set of LO-TO coefficients. See ``from_lo_to`` in :class:`.PoleResidue` for the detailed form of the model and a reference paper. Parameters ---------- poles : Tuple[Tuple[float, float, float, float], ...] The LO-TO poles, given as list of tuples of the form (omega_LO, gamma_LO, omega_TO, gamma_TO). eps_inf: pd.PositiveFloat The relative permittivity at infinite frequency. frequency: float Frequency at which to evaluate the permittivity. Returns ------- complex The complex permittivity of the given LO-TO model at the given frequency. """ omega = 2 * np.pi * frequency eps = eps_inf for omega_lo, gamma_lo, omega_to, gamma_to in poles: eps *= omega_lo**2 - omega**2 - 1j * omega * gamma_lo eps /= omega_to**2 - omega**2 - 1j * omega * gamma_to return eps
[docs] @classmethod def from_lo_to( cls, poles: Tuple[Tuple[float, float, float, float], ...], eps_inf: pd.PositiveFloat = 1 ) -> PoleResidue: """Construct a pole residue model from the LO-TO form (longitudinal and transverse optical modes). The LO-TO form is :math:`\\epsilon_\\infty \\prod_{i=1}^l \\frac{\\omega_{LO, i}^2 - \\omega^2 - i \\omega \\gamma_{LO, i}}{\\omega_{TO, i}^2 - \\omega^2 - i \\omega \\gamma_{TO, i}}` as given in the paper: M. Schubert, T. E. Tiwald, and C. M. Herzinger, "Infrared dielectric anisotropy and phonon modes of sapphire," Phys. Rev. B 61, 8187 (2000). Parameters ---------- poles : Tuple[Tuple[float, float, float, float], ...] The LO-TO poles, given as list of tuples of the form (omega_LO, gamma_LO, omega_TO, gamma_TO). eps_inf: pd.PositiveFloat The relative permittivity at infinite frequency. Returns ------- :class:`.PoleResidue` The pole residue equivalent of the LO-TO form provided. """ omegas_lo, gammas_lo, omegas_to, gammas_to = map(np.array, zip(*poles)) # discriminants of quadratic factors of denominator discs = 2 * npo.emath.sqrt((gammas_to / 2) ** 2 - omegas_to**2) # require nondegenerate TO poles if len({(omega_to, gamma_to) for (_, _, omega_to, gamma_to) in poles}) != len(poles) or any( disc == 0 for disc in discs ): raise ValidationError( "Unable to construct a pole residue model " "from an LO-TO form with degenerate TO poles. Consider adding a " "perturbation to split the poles, or using " "'PoleResidue.lo_to_eps_model' and fitting with the 'FastDispersionFitter'." ) # roots of denominator, in pairs roots = [] for gamma_to, disc in zip(gammas_to, discs): roots.append(-gamma_to / 2 + disc / 2) roots.append(-gamma_to / 2 - disc / 2) # interpolants interpolants = eps_inf * np.ones(len(roots), dtype=complex) for i, a in enumerate(roots): for omega_lo, gamma_lo in zip(omegas_lo, gammas_lo): interpolants[i] *= omega_lo**2 + a**2 + a * gamma_lo for j, a2 in enumerate(roots): if j != i: interpolants[i] /= a - a2 a_coeffs = [] c_coeffs = [] for i in range(0, len(roots), 2): if not np.isreal(roots[i]): a_coeffs.append(roots[i]) c_coeffs.append(interpolants[i]) else: a_coeffs.append(roots[i]) a_coeffs.append(roots[i + 1]) # factor of two from adding conjugate pole of real pole c_coeffs.append(interpolants[i] / 2) c_coeffs.append(interpolants[i + 1] / 2) return PoleResidue(eps_inf=eps_inf, poles=list(zip(a_coeffs, c_coeffs)))
[docs] @staticmethod def eV_to_angular_freq(f_eV: float): """Convert frequency in unit of eV to rad/s. Parameters ---------- f_eV : float Frequency in unit of eV """ return f_eV / HBAR
[docs] @staticmethod def angular_freq_to_eV(f_rad: float): """Convert frequency in unit of rad/s to eV. Parameters ---------- f_rad : float Frequency in unit of rad/s """ return f_rad * HBAR
[docs] @staticmethod def angular_freq_to_Hz(f_rad: float): """Convert frequency in unit of rad/s to Hz. Parameters ---------- f_rad : float Frequency in unit of rad/s """ return f_rad / 2 / np.pi
[docs] @staticmethod def Hz_to_angular_freq(f_hz: float): """Convert frequency in unit of Hz to rad/s. Parameters ---------- f_hz : float Frequency in unit of Hz """ return f_hz * 2 * np.pi
[docs] @staticmethod def imag_ep_extrema(poles: Tuple[PoleAndResidue, ...]) -> ArrayFloat1D: """Extrema of Im[eps] in the same unit as poles. Parameters ---------- poles: Tuple[PoleAndResidue, ...] Tuple of complex-valued (``a_i, c_i``) poles for the model. """ def _extrema_loss_freq_finder(areal, aimag, creal, cimag): """For each pole, find frequencies for the extrema of Im[eps]""" a_square = areal**2 + aimag**2 alpha = creal beta = creal * (areal**2 - aimag**2) + 2 * cimag * areal * aimag mus = 2 * (areal**2 - aimag**2) nus = a_square**2 numerator = np.array([0]) denominator = np.array([1]) for i in range(len(creal)): numerator_i = np.array( [ -alpha[i], alpha[i] * mus[i] - 3 * beta[i], 3 * alpha[i] * nus[i] - beta[i] * mus[i], beta[i] * nus[i], ] ) denominator_i = np.array( [1, 2 * mus[i], 2 * nus[i] + mus[i] ** 2, 2 * mus[i] * nus[i], nus[i] ** 2] ) # to avoid divergence, let's renormalize if np.abs(alpha[i]) > 1: numerator_i /= alpha[i] denominator_i /= alpha[i] # n/d + ni/di = (n*di+d*ni)/(d*di) n_di = np.polymul(numerator, denominator_i) d_ni = np.polymul(denominator, numerator_i) numerator = np.polyadd(n_di, d_ni) denominator = np.polymul(denominator, denominator_i) roots = np.sqrt(np.roots(numerator) + 0j) # cutoff to determine if it's a real number r_real = roots.real[np.abs(roots.imag) / (np.abs(roots) + fp_eps) < fp_eps] return r_real[r_real > 0] try: poles_a, poles_c = zip(*poles) poles_a = np.array(poles_a) poles_c = np.array(poles_c) extrema_freq = _extrema_loss_freq_finder( poles_a.real, poles_a.imag, poles_c.real, poles_c.imag ) return extrema_freq except np.linalg.LinAlgError: log.warning( "'LinAlgError' in computing Im[eps] extrema. " "This can result in inaccurate estimation of lower and upper bound of " "Im[eps]. When used in passivity enforcement, passivity is not guaranteed." ) return np.array([])
def _imag_ep_extrema_with_samples(self) -> ArrayFloat1D: """Provide a list of frequencies (in unit of rad/s) to probe the possible lower and upper bound of Im[eps] within the ``frequency_range``. If ``frequency_range`` is None, it checks the entire frequency range. The returned frequencies include not only extrema, but also a list of sampled frequencies. """ # extrema frequencies: in the intermediate stage, convert to the unit eV for # better numerical handling, since those quantities will be ~ 1 in photonics extrema_freq = self.imag_ep_extrema(self.angular_freq_to_eV(np.array(self.poles))) extrema_freq = self.eV_to_angular_freq(extrema_freq) # let's check a big range in addition to the imag_extrema if self.frequency_range is None: range_ev = np.logspace(LOSS_CHECK_MIN, LOSS_CHECK_MAX, LOSS_CHECK_NUM) range_omega = self.eV_to_angular_freq(range_ev) else: fmin, fmax = self.frequency_range fmin = max(fmin, fp_eps) range_freq = np.logspace(np.log10(fmin), np.log10(fmax), LOSS_CHECK_NUM) range_omega = self.Hz_to_angular_freq(range_freq) extrema_freq = extrema_freq[ np.logical_and(extrema_freq > range_omega[0], extrema_freq < range_omega[-1]) ] return np.concatenate((range_omega, extrema_freq)) @cached_property def loss_upper_bound(self) -> float: """Upper bound of Im[eps] in `frequency_range`""" freq_list = self.angular_freq_to_Hz(self._imag_ep_extrema_with_samples()) ep = self.eps_model(freq_list) # filter `NAN` in case some of freq_list are exactly at the pole frequency # of Sellmeier-type poles. ep = ep[~np.isnan(ep)] return max(ep.imag)
[docs] def compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute adjoint derivatives for each of the ``fields`` given the multiplied E and D.""" # compute all derivatives beforehand dJ_deps = self.derivative_eps_complex_volume( E_der_map=derivative_info.E_der_map, bounds=derivative_info.bounds ) dJ_deps = complex(dJ_deps) # TODO: fix for multi-frequency frequency = derivative_info.frequency poles_complex = [(complex(a), complex(c)) for a, c in self.poles] poles_complex = np.stack(poles_complex, axis=0) # compute gradients of eps_model with respect to eps_inf and poles grad_eps_model = ag.holomorphic_grad(self._eps_model, argnum=(0, 1)) with warnings.catch_warnings(): # ignore warnings about holmorphic grad being passed a non-complex input (poles) warnings.simplefilter("ignore") deps_deps_inf, deps_dpoles = grad_eps_model( complex(self.eps_inf), poles_complex, complex(frequency) ) # multiply with partial dJ/deps to give full gradients dJ_deps_inf = dJ_deps * deps_deps_inf dJ_dpoles = [(dJ_deps * a, dJ_deps * c) for a, c in deps_dpoles] # get vjps w.r.t. permittivity and conductivity of the bulk derivative_map = {} for field_path in derivative_info.paths: field_name, *rest = field_path if field_name == "eps_inf": derivative_map[field_path] = float(np.real(dJ_deps_inf)) elif field_name == "poles": pole_index, a_or_c = rest derivative_map[field_path] = complex(dJ_dpoles[pole_index][a_or_c]) return derivative_map
[docs] class CustomPoleResidue(CustomDispersiveMedium, PoleResidue): """A spatially varying dispersive medium described by the pole-residue pair model. Notes ----- In this method, the frequency-dependent permittivity :math:`\\epsilon(\\omega)` is expressed as a sum of resonant material poles _`[1]`. .. math:: \\epsilon(\\omega) = \\epsilon_\\infty - \\sum_i \\left[\\frac{c_i}{j \\omega + a_i} + \\frac{c_i^*}{j \\omega + a_i^*}\\right] For each of these resonant poles identified by the index :math:`i`, an auxiliary differential equation is used to relate the auxiliary current :math:`J_i(t)` to the applied electric field :math:`E(t)`. The sum of all these auxiliary current contributions describes the total dielectric response of the material. .. math:: \\frac{d}{dt} J_i (t) - a_i J_i (t) = \\epsilon_0 c_i \\frac{d}{dt} E (t) Hence, the computational cost increases with the number of poles. **References** .. [1] M. Han, R.W. Dutton and S. Fan, IEEE Microwave and Wireless Component Letters, 16, 119 (2006). .. TODO add links to notebooks using this. Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(np.ones((5, 6, 7)), coords=coords) >>> a1 = SpatialDataArray(-np.random.random((5, 6, 7)), coords=coords) >>> c1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> a2 = SpatialDataArray(-np.random.random((5, 6, 7)), coords=coords) >>> c2 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> pole_res = CustomPoleResidue(eps_inf=eps_inf, poles=[(a1, c1), (a2, c2)]) >>> eps = pole_res.eps_model(200e12) See Also -------- **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) poles: Tuple[Tuple[CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated], ...] = ( pd.Field( (), title="Poles", description="Tuple of complex-valued (:math:`a_i, c_i`) poles for the model.", units=(RADPERSEC, RADPERSEC), ) ) _no_nans_eps_inf = validate_no_nans("eps_inf") _no_nans_poles = validate_no_nans("poles") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("poles") @pd.validator("eps_inf", always=True) def _eps_inf_positive(cls, val): """eps_inf must be positive""" if not CustomDispersiveMedium._validate_isreal_dataarray(val): raise SetupError("'eps_inf' must be real.") if np.any(_get_numpy_array(val) < 0): raise SetupError("'eps_inf' must be positive.") return val @pd.validator("poles", always=True) @skip_if_fields_missing(["eps_inf"]) def _poles_correct_shape(cls, val, values): """poles must have the same shape.""" for coeffs in val: for coeff in coeffs: if not _check_same_coordinates(coeff, values["eps_inf"]): raise SetupError( "All pole coefficients 'a' and 'c' must have the same coordinates; " "The coordinates must also be consistent with 'eps_inf'." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if not self.eps_inf.is_uniform: return False for coeffs in self.poles: for coeff in coeffs: if not coeff.is_uniform: return False return True
[docs] def eps_dataarray_freq( self, frequency: float ) -> Tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = PoleResidue.eps_model(self, frequency) return (eps, eps, eps)
[docs] def poles_on_grid(self, coords: Coords) -> Tuple[Tuple[ArrayComplex3D, ArrayComplex3D], ...]: """Spatial profile of poles interpolated at the supplied coordinates. Parameters ---------- coords : :class:`.Coords` The grid point coordinates over which interpolation is performed. Returns ------- Tuple[Tuple[ArrayComplex3D, ArrayComplex3D], ...] The poles interpolated at the supplied coordinate. """ def fun_interp(input_data: SpatialDataArray) -> ArrayComplex3D: return _get_numpy_array(coords.spatial_interp(input_data, self.interp_method)) return tuple((fun_interp(a), fun_interp(c)) for (a, c) in self.poles)
[docs] @classmethod def from_medium(cls, medium: CustomMedium) -> CustomPoleResidue: """Convert a :class:`.CustomMedium` to a pole residue model. Parameters ---------- medium: :class:`.CustomMedium` The medium with permittivity and conductivity to convert. Returns ------- :class:`.CustomPoleResidue` The pole residue equivalent. """ poles = [(_zeros_like(medium.conductivity), medium.conductivity / (2 * EPSILON_0))] medium_dict = medium.dict(exclude={"type", "eps_dataset", "permittivity", "conductivity"}) medium_dict.update({"eps_inf": medium.permittivity, "poles": poles}) return CustomPoleResidue.parse_obj(medium_dict)
[docs] def to_medium(self) -> CustomMedium: """Convert to a :class:`.CustomMedium`. Requires the pole residue model to only have a pole at 0 frequency, corresponding to a constant conductivity term. Returns ------- :class:`.CustomMedium` The non-dispersive equivalent with constant permittivity and conductivity. """ res = 0 for a, c in self.poles: if np.any(abs(_get_numpy_array(a)) > fp_eps): raise ValidationError( "Cannot convert dispersive 'CustomPoleResidue' to 'CustomMedium'." ) res = res + (c + np.conj(c)) / 2 sigma = res * 2 * EPSILON_0 self_dict = self.dict(exclude={"type", "eps_inf", "poles"}) self_dict.update({"permittivity": self.eps_inf, "conductivity": np.real(sigma)}) return CustomMedium.parse_obj(self_dict)
@cached_property def loss_upper_bound(self) -> float: """Not implemented yet.""" raise SetupError("To be implemented.") def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomPoleResidue CustomPoleResidue with reduced data. """ if not self.eps_inf.does_cover(bounds=bounds): log.warning("eps_inf spatial data array does not fully cover the requested region.") eps_inf_reduced = self.eps_inf.sel_inside(bounds=bounds) poles_reduced = [] for pole, residue in self.poles: if not pole.does_cover(bounds=bounds): log.warning("Pole spatial data array does not fully cover the requested region.") if not residue.does_cover(bounds=bounds): log.warning("Residue spatial data array does not fully cover the requested region.") poles_reduced.append((pole.sel_inside(bounds), residue.sel_inside(bounds))) return self.updated_copy(eps_inf=eps_inf_reduced, poles=poles_reduced)
[docs] def compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute adjoint derivatives for each of the ``fields`` given the multiplied E and D.""" dJ_deps = 0.0 for dim in "xyz": dJ_deps += self._derivative_field_cmp( E_der_map=derivative_info.E_der_map, eps_data=self.eps_inf, dim=dim ) # TODO: fix for multi-frequency frequency = derivative_info.frequency poles_complex = [ (np.array(a.values, dtype=complex), np.array(c.values, dtype=complex)) for a, c in self.poles ] poles_complex = np.stack(poles_complex, axis=0) def eps_model_r( eps_inf: complex, poles: list[tuple[complex, complex]], frequency: float ) -> float: """Real part of ``eps_model`` evaluated on ``self`` fields.""" return np.real(self._eps_model(eps_inf, poles, frequency)) def eps_model_i( eps_inf: complex, poles: list[tuple[complex, complex]], frequency: float ) -> float: """Real part of ``eps_model`` evaluated on ``self`` fields.""" return np.imag(self._eps_model(eps_inf, poles, frequency)) # compute the gradients w.r.t. each real and imaginary parts for eps_inf and poles grad_eps_model_r = ag.elementwise_grad(eps_model_r, argnum=(0, 1)) grad_eps_model_i = ag.elementwise_grad(eps_model_i, argnum=(0, 1)) deps_deps_inf_r, deps_dpoles_r = grad_eps_model_r( self.eps_inf.values, poles_complex, frequency ) deps_deps_inf_i, deps_dpoles_i = grad_eps_model_i( self.eps_inf.values, poles_complex, frequency ) # multiply with dJ_deps partial derivative to give full gradients deps_deps_inf = deps_deps_inf_r + 1j * deps_deps_inf_i dJ_deps_inf = dJ_deps * deps_deps_inf / 3.0 # mysterious 3 dJ_dpoles = [] for (da_r, dc_r), (da_i, dc_i) in zip(deps_dpoles_r, deps_dpoles_i): da = da_r + 1j * da_i dc = dc_r + 1j * dc_i dJ_da = dJ_deps * da / 2.0 # mysterious 2 dJ_dc = dJ_deps * dc / 2.0 # mysterious 2 dJ_dpoles.append((dJ_da, dJ_dc)) derivative_map = {} for field_path in derivative_info.paths: field_name, *rest = field_path if field_name == "eps_inf": derivative_map[field_path] = np.real(dJ_deps_inf) elif field_name == "poles": pole_index, a_or_c = rest derivative_map[field_path] = dJ_dpoles[pole_index][a_or_c] return derivative_map
[docs] class Sellmeier(DispersiveMedium): """A dispersive medium described by the Sellmeier model. Notes ----- The frequency-dependence of the refractive index is described by: .. math:: n(\\lambda)^2 = 1 + \\sum_i \\frac{B_i \\lambda^2}{\\lambda^2 - C_i} For lossless, weakly dispersive materials, the best way to incorporate the dispersion without doing complicated fits and without slowing the simulation down significantly is to provide the value of the refractive index dispersion :math:`\\frac{dn}{d\\lambda}` in :meth:`tidy3d.Sellmeier.from_dispersion`. The value is assumed to be at the central frequency or wavelength (whichever is provided), and a one-pole model for the material is generated. Example ------- >>> sellmeier_medium = Sellmeier(coeffs=[(1,2), (3,4)]) >>> eps = sellmeier_medium.eps_model(200e12) See Also -------- :class:`CustomSellmeier` A spatially varying dispersive medium described by the Sellmeier model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ coeffs: Tuple[Tuple[float, pd.PositiveFloat], ...] = pd.Field( title="Coefficients", description="List of Sellmeier (:math:`B_i, C_i`) coefficients.", units=(None, MICROMETER + "^2"), ) @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if `allow_gain` is False.""" if values.get("allow_gain"): return val for B, _ in val: if B < 0: raise ValidationError( "For passive medium, 'B_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @pd.validator("modulation_spec", always=True) def _validate_permittivity_modulation(cls, val): """Assert modulated permittivity cannot be <= 0.""" if val is None or val.permittivity is None: return val min_eps_inf = 1.0 if min_eps_inf - val.permittivity.max_modulation <= 0: raise ValidationError( "The minimum permittivity value with modulation applied was found to be negative." ) return val _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation() def _n_model(self, frequency: float) -> complex: """Complex-valued refractive index as a function of frequency.""" wvl = C_0 / np.array(frequency) wvl2 = wvl**2 n_squared = 1.0 for B, C in self.coeffs: n_squared = n_squared + B * wvl2 / (wvl2 - C) return np.sqrt(n_squared + 0j)
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" n = self._n_model(frequency) return AbstractMedium.nk_to_eps_complex(n)
def _pole_residue_dict(self) -> Dict: """Dict representation of Medium as a pole-residue model""" poles = [] for B, C in self.coeffs: beta = 2 * np.pi * C_0 / np.sqrt(C) alpha = -0.5 * beta * B a = 1j * beta c = 1j * alpha poles.append((a, c)) return dict(eps_inf=1, poles=poles, frequency_range=self.frequency_range, name=self.name) @staticmethod def _from_dispersion_to_coeffs(n: float, freq: float, dn_dwvl: float): """Compute Sellmeier coefficients from dispersion.""" wvl = C_0 / np.array(freq) nsqm1 = n**2 - 1 c_coeff = -(wvl**3) * n * dn_dwvl / (nsqm1 - wvl * n * dn_dwvl) b_coeff = (wvl**2 - c_coeff) / wvl**2 * nsqm1 return [(b_coeff, c_coeff)]
[docs] @classmethod def from_dispersion(cls, n: float, freq: float, dn_dwvl: float = 0, **kwargs): """Convert ``n`` and wavelength dispersion ``dn_dwvl`` values at frequency ``freq`` to a single-pole :class:`Sellmeier` medium. Parameters ---------- n : float Real part of refractive index. Must be larger than or equal to one. dn_dwvl : float = 0 Derivative of the refractive index with wavelength (1/um). Must be negative. freq : float Frequency at which ``n`` and ``dn_dwvl`` are sampled. Returns ------- :class:`Sellmeier` Single-pole Sellmeier medium with the prvoided refractive index and index dispersion valuesat at the prvoided frequency. """ if dn_dwvl >= 0: raise ValidationError("Dispersion ``dn_dwvl`` must be smaller than zero.") if n < 1: raise ValidationError("Refractive index ``n`` cannot be smaller than one.") return cls(coeffs=cls._from_dispersion_to_coeffs(n, freq, dn_dwvl), **kwargs)
[docs] class CustomSellmeier(CustomDispersiveMedium, Sellmeier): """A spatially varying dispersive medium described by the Sellmeier model. Notes ----- The frequency-dependence of the refractive index is described by: .. math:: n(\\lambda)^2 = 1 + \\sum_i \\frac{B_i \\lambda^2}{\\lambda^2 - C_i} Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> b1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> c1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> sellmeier_medium = CustomSellmeier(coeffs=[(b1,c1),]) >>> eps = sellmeier_medium.eps_model(200e12) See Also -------- :class:`Sellmeier` A dispersive medium described by the Sellmeier model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ coeffs: Tuple[Tuple[CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated], ...] = ( pd.Field( ..., title="Coefficients", description="List of Sellmeier (:math:`B_i, C_i`) coefficients.", units=(None, MICROMETER + "^2"), ) ) _no_nans = validate_no_nans("coeffs") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("coeffs") @pd.validator("coeffs", always=True) def _correct_shape_and_sign(cls, val): """every term in coeffs must have the same shape, and B>=0 and C>0.""" if len(val) == 0: return val for B, C in val: if not _check_same_coordinates(B, val[0][0]) or not _check_same_coordinates( C, val[0][0] ): raise SetupError("Every term in 'coeffs' must have the same coordinates.") if not CustomDispersiveMedium._validate_isreal_dataarray_tuple((B, C)): raise SetupError("'B' and 'C' must be real.") if np.any(_get_numpy_array(C) <= 0): raise SetupError("'C' must be positive.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if `allow_gain` is False.""" if values.get("allow_gain"): return val for B, _ in val: if np.any(_get_numpy_array(B) < 0): raise ValidationError( "For passive medium, 'B_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" for coeffs in self.coeffs: for coeff in coeffs: if not coeff.is_uniform: return False return True def _pole_residue_dict(self) -> Dict: """Dict representation of Medium as a pole-residue model.""" poles_dict = Sellmeier._pole_residue_dict(self) if len(self.coeffs) > 0: poles_dict.update({"eps_inf": _ones_like(self.coeffs[0][0])}) return poles_dict
[docs] def eps_dataarray_freq( self, frequency: float ) -> Tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = Sellmeier.eps_model(self, frequency) # if `eps` is simply a float, convert it to a SpatialDataArray ; this is possible when # `coeffs` is empty. if isinstance(eps, (int, float, complex)): eps = SpatialDataArray(eps * np.ones((1, 1, 1)), coords=dict(x=[0], y=[0], z=[0])) return (eps, eps, eps)
[docs] @classmethod def from_dispersion( cls, n: CustomSpatialDataType, freq: float, dn_dwvl: CustomSpatialDataType, interp_method="nearest", **kwargs, ): """Convert ``n`` and wavelength dispersion ``dn_dwvl`` values at frequency ``freq`` to a single-pole :class:`CustomSellmeier` medium. Parameters ---------- n : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] Real part of refractive index. Must be larger than or equal to one. dn_dwvl : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] Derivative of the refractive index with wavelength (1/um). Must be negative. freq : float Frequency at which ``n`` and ``dn_dwvl`` are sampled. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain permittivity values that are not supplied at the Yee grids. Returns ------- :class:`.CustomSellmeier` Single-pole Sellmeier medium with the prvoided refractive index and index dispersion valuesat at the prvoided frequency. """ if not _check_same_coordinates(n, dn_dwvl): raise ValidationError("'n' and'dn_dwvl' must have the same dimension.") if np.any(_get_numpy_array(dn_dwvl) >= 0): raise ValidationError("Dispersion ``dn_dwvl`` must be smaller than zero.") if np.any(_get_numpy_array(n) < 1): raise ValidationError("Refractive index ``n`` cannot be smaller than one.") return cls( coeffs=cls._from_dispersion_to_coeffs(n, freq, dn_dwvl), interp_method=interp_method, **kwargs, )
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomSellmeier CustomSellmeier with reduced data. """ coeffs_reduced = [] for b_coeff, c_coeff in self.coeffs: if not b_coeff.does_cover(bounds=bounds): log.warning( "Sellmeier B coeff spatial data array does not fully cover the requested region." ) if not c_coeff.does_cover(bounds=bounds): log.warning( "Sellmeier C coeff spatial data array does not fully cover the requested region." ) coeffs_reduced.append((b_coeff.sel_inside(bounds), c_coeff.sel_inside(bounds))) return self.updated_copy(coeffs=coeffs_reduced)
[docs] class Lorentz(DispersiveMedium): """A dispersive medium described by the Lorentz model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty + \\sum_i \\frac{\\Delta\\epsilon_i f_i^2}{f_i^2 - 2jf\\delta_i - f^2} Example ------- >>> lorentz_medium = Lorentz(eps_inf=2.0, coeffs=[(1,2,3), (4,5,6)]) >>> eps = lorentz_medium.eps_model(200e12) See Also -------- **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: pd.PositiveFloat = pd.Field( 1.0, title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: Tuple[Tuple[float, float, pd.NonNegativeFloat], ...] = pd.Field( ..., title="Coefficients", description="List of (:math:`\\Delta\\epsilon_i, f_i, \\delta_i`) values for model.", units=(PERMITTIVITY, HERTZ, HERTZ), ) @pd.validator("coeffs", always=True) def _coeffs_unequal_f_delta(cls, val): """f**2 and delta**2 cannot be exactly the same.""" for _, f, delta in val: if f**2 == delta**2: raise SetupError("'f' and 'delta' cannot take equal values.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" if values.get("allow_gain"): return val for del_ep, _, _ in val: if del_ep < 0: raise ValidationError( "For passive medium, 'Delta epsilon_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val _validate_permittivity_modulation = DispersiveMedium._permittivity_modulation_validation() _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation()
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" eps = self.eps_inf + 0.0j for de, f, delta in self.coeffs: eps = eps + (de * f**2) / (f**2 - 2j * frequency * delta - frequency**2) return eps
def _pole_residue_dict(self) -> Dict: """Dict representation of Medium as a pole-residue model.""" poles = [] for de, f, delta in self.coeffs: w = 2 * np.pi * f d = 2 * np.pi * delta if self._all_larger(d**2, w**2): r = np.sqrt(d * d - w * w) + 0j a0 = -d + r c0 = de * w**2 / 4 / r a1 = -d - r c1 = -c0 poles.extend(((a0, c0), (a1, c1))) else: r = np.sqrt(w * w - d * d) a = -d - 1j * r c = 1j * de * w**2 / 2 / r poles.append((a, c)) return dict( eps_inf=self.eps_inf, poles=poles, frequency_range=self.frequency_range, name=self.name, ) @staticmethod def _all_larger(coeff_a, coeff_b) -> bool: """``coeff_a`` and ``coeff_b`` can be either float or SpatialDataArray.""" if isinstance(coeff_a, CustomSpatialDataType.__args__): return np.all(_get_numpy_array(coeff_a) > _get_numpy_array(coeff_b)) return coeff_a > coeff_b
[docs] @classmethod def from_nk(cls, n: float, k: float, freq: float, **kwargs): """Convert ``n`` and ``k`` values at frequency ``freq`` to a single-pole Lorentz medium. Parameters ---------- n : float Real part of refractive index. k : float = 0 Imaginary part of refrative index. freq : float Frequency to evaluate permittivity at (Hz). Returns ------- :class:`Lorentz` Lorentz medium having refractive index n+ik at frequency ``freq``. """ eps_complex = AbstractMedium.nk_to_eps_complex(n, k) eps_r, eps_i = eps_complex.real, eps_complex.imag if eps_r >= 1: log.warning( "For 'permittivity>=1', it is more computationally efficient to " "use a dispersiveless medium constructed from 'Medium.from_nk()'." ) # first, lossless medium if isclose(eps_i, 0): if eps_r < 1: fp = np.sqrt((eps_r - 1) / (eps_r - 2)) * freq return cls( eps_inf=1, coeffs=[ (1, fp, 0), ], ) return cls( eps_inf=1, coeffs=[ ((eps_r - 1) / 2, np.sqrt(2) * freq, 0), ], ) # lossy medium alpha = (eps_r - 1) / eps_i delta_p = freq / 2 / (alpha**2 - alpha + 1) fp = np.sqrt((alpha**2 + 1) / (alpha**2 - alpha + 1)) * freq return cls( eps_inf=1, coeffs=[ (eps_i, fp, delta_p), ], )
[docs] class CustomLorentz(CustomDispersiveMedium, Lorentz): """A spatially varying dispersive medium described by the Lorentz model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty + \\sum_i \\frac{\\Delta\\epsilon_i f_i^2}{f_i^2 - 2jf\\delta_i - f^2} Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(np.ones((5, 6, 7)), coords=coords) >>> d_epsilon = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> f = SpatialDataArray(1+np.random.random((5, 6, 7)), coords=coords) >>> delta = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> lorentz_medium = CustomLorentz(eps_inf=eps_inf, coeffs=[(d_epsilon,f,delta),]) >>> eps = lorentz_medium.eps_model(200e12) See Also -------- :class:`CustomPoleResidue`: A spatially varying dispersive medium described by the pole-residue pair model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: Tuple[ Tuple[ CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated, ], ..., ] = pd.Field( ..., title="Coefficients", description="List of (:math:`\\Delta\\epsilon_i, f_i, \\delta_i`) values for model.", units=(PERMITTIVITY, HERTZ, HERTZ), ) _no_nans_eps_inf = validate_no_nans("eps_inf") _no_nans_coeffs = validate_no_nans("coeffs") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("coeffs") @pd.validator("eps_inf", always=True) def _eps_inf_positive(cls, val): """eps_inf must be positive""" if not CustomDispersiveMedium._validate_isreal_dataarray(val): raise SetupError("'eps_inf' must be real.") if np.any(_get_numpy_array(val) < 0): raise SetupError("'eps_inf' must be positive.") return val @pd.validator("coeffs", always=True) def _coeffs_unequal_f_delta(cls, val): """f and delta cannot be exactly the same. Not needed for now because we have a more strict validator `_coeffs_delta_all_smaller_or_larger_than_fi`. """ return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["eps_inf"]) def _coeffs_correct_shape(cls, val, values): """coeffs must have consistent shape.""" for de, f, delta in val: if ( not _check_same_coordinates(de, values["eps_inf"]) or not _check_same_coordinates(f, values["eps_inf"]) or not _check_same_coordinates(delta, values["eps_inf"]) ): raise SetupError( "All terms in 'coeffs' must have the same coordinates; " "The coordinates must also be consistent with 'eps_inf'." ) if not CustomDispersiveMedium._validate_isreal_dataarray_tuple((de, f, delta)): raise SetupError("All terms in 'coeffs' must be real.") return val @pd.validator("coeffs", always=True) def _coeffs_delta_all_smaller_or_larger_than_fi(cls, val): """We restrict either all f**2>delta**2 or all f**2<delta**2 for now.""" for _, f, delta in val: f2 = f**2 delta2 = delta**2 if not (Lorentz._all_larger(f2, delta2) or Lorentz._all_larger(delta2, f2)): raise SetupError( "Coefficients in 'coeffs' are restricted to have " "either all 'delta**2'<'f**2' or all 'delta**2'>'f**2'." ) return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" allow_gain = values.get("allow_gain") for del_ep, _, delta in val: if np.any(_get_numpy_array(delta) < 0): raise ValidationError("For stable medium, 'delta_i' must be non-negative.") if not allow_gain and np.any(_get_numpy_array(del_ep) < 0): raise ValidationError( "For passive medium, 'Delta epsilon_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if not self.eps_inf.is_uniform: return False for coeffs in self.coeffs: for coeff in coeffs: if not coeff.is_uniform: return False return True
[docs] def eps_dataarray_freq( self, frequency: float ) -> Tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = Lorentz.eps_model(self, frequency) return (eps, eps, eps)
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomLorentz CustomLorentz with reduced data. """ if not self.eps_inf.does_cover(bounds=bounds): log.warning("Eps inf spatial data array does not fully cover the requested region.") eps_inf_reduced = self.eps_inf.sel_inside(bounds=bounds) coeffs_reduced = [] for de, f, delta in self.coeffs: if not de.does_cover(bounds=bounds): log.warning( "Lorentz 'de' spatial data array does not fully cover the requested region." ) if not f.does_cover(bounds=bounds): log.warning( "Lorentz 'f' spatial data array does not fully cover the requested region." ) if not delta.does_cover(bounds=bounds): log.warning( "Lorentz 'delta' spatial data array does not fully cover the requested region." ) coeffs_reduced.append( (de.sel_inside(bounds), f.sel_inside(bounds), delta.sel_inside(bounds)) ) return self.updated_copy(eps_inf=eps_inf_reduced, coeffs=coeffs_reduced)
[docs] class Drude(DispersiveMedium): """A dispersive medium described by the Drude model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty - \\sum_i \\frac{ f_i^2}{f^2 + jf\\delta_i} Example ------- >>> drude_medium = Drude(eps_inf=2.0, coeffs=[(1,2), (3,4)]) >>> eps = drude_medium.eps_model(200e12) See Also -------- :class:`CustomDrude`: A spatially varying dispersive medium described by the Drude model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: pd.PositiveFloat = pd.Field( 1.0, title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: Tuple[Tuple[float, pd.PositiveFloat], ...] = pd.Field( ..., title="Coefficients", description="List of (:math:`f_i, \\delta_i`) values for model.", units=(HERTZ, HERTZ), ) _validate_permittivity_modulation = DispersiveMedium._permittivity_modulation_validation() _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation()
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" eps = self.eps_inf + 0.0j for f, delta in self.coeffs: eps = eps - (f**2) / (frequency**2 + 1j * frequency * delta) return eps
def _pole_residue_dict(self) -> Dict: """Dict representation of Medium as a pole-residue model.""" poles = [] for f, delta in self.coeffs: w = 2 * np.pi * f d = 2 * np.pi * delta c0 = (w**2) / 2 / d + 0j c1 = -c0 a1 = -d + 0j if isinstance(c0, complex): a0 = 0j else: a0 = 0 * c0 poles.extend(((a0, c0), (a1, c1))) return dict( eps_inf=self.eps_inf, poles=poles, frequency_range=self.frequency_range, name=self.name, )
[docs] class CustomDrude(CustomDispersiveMedium, Drude): """A spatially varying dispersive medium described by the Drude model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty - \\sum_i \\frac{ f_i^2}{f^2 + jf\\delta_i} Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(np.ones((5, 6, 7)), coords=coords) >>> f1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> delta1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> drude_medium = CustomDrude(eps_inf=eps_inf, coeffs=[(f1,delta1),]) >>> eps = drude_medium.eps_model(200e12) See Also -------- :class:`Drude`: A dispersive medium described by the Drude model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: Tuple[Tuple[CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated], ...] = ( pd.Field( ..., title="Coefficients", description="List of (:math:`f_i, \\delta_i`) values for model.", units=(HERTZ, HERTZ), ) ) _no_nans_eps_inf = validate_no_nans("eps_inf") _no_nans_coeffs = validate_no_nans("coeffs") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("coeffs") @pd.validator("eps_inf", always=True) def _eps_inf_positive(cls, val): """eps_inf must be positive""" if not CustomDispersiveMedium._validate_isreal_dataarray(val): raise SetupError("'eps_inf' must be real.") if np.any(_get_numpy_array(val) < 0): raise SetupError("'eps_inf' must be positive.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["eps_inf"]) def _coeffs_correct_shape_and_sign(cls, val, values): """coeffs must have consistent shape and sign.""" for f, delta in val: if not _check_same_coordinates(f, values["eps_inf"]) or not _check_same_coordinates( delta, values["eps_inf"] ): raise SetupError( "All terms in 'coeffs' must have the same coordinates; " "The coordinates must also be consistent with 'eps_inf'." ) if not CustomDispersiveMedium._validate_isreal_dataarray_tuple((f, delta)): raise SetupError("All terms in 'coeffs' must be real.") if np.any(_get_numpy_array(delta) <= 0): raise SetupError("For stable medium, 'delta' must be positive.") return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if not self.eps_inf.is_uniform: return False for coeffs in self.coeffs: for coeff in coeffs: if not coeff.is_uniform: return False return True
[docs] def eps_dataarray_freq( self, frequency: float ) -> Tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = Drude.eps_model(self, frequency) return (eps, eps, eps)
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomDrude CustomDrude with reduced data. """ if not self.eps_inf.does_cover(bounds=bounds): log.warning("Eps inf spatial data array does not fully cover the requested region.") eps_inf_reduced = self.eps_inf.sel_inside(bounds=bounds) coeffs_reduced = [] for f, delta in self.coeffs: if not f.does_cover(bounds=bounds): log.warning( "Drude 'f' spatial data array does not fully cover the requested region." ) if not delta.does_cover(bounds=bounds): log.warning( "Drude 'delta' spatial data array does not fully cover the requested region." ) coeffs_reduced.append((f.sel_inside(bounds), delta.sel_inside(bounds))) return self.updated_copy(eps_inf=eps_inf_reduced, coeffs=coeffs_reduced)
[docs] class Debye(DispersiveMedium): """A dispersive medium described by the Debye model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty + \\sum_i \\frac{\\Delta\\epsilon_i}{1 - jf\\tau_i} Example ------- >>> debye_medium = Debye(eps_inf=2.0, coeffs=[(1,2),(3,4)]) >>> eps = debye_medium.eps_model(200e12) See Also -------- :class:`CustomDebye` A spatially varying dispersive medium described by the Debye model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: pd.PositiveFloat = pd.Field( 1.0, title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: Tuple[Tuple[float, pd.PositiveFloat], ...] = pd.Field( ..., title="Coefficients", description="List of (:math:`\\Delta\\epsilon_i, \\tau_i`) values for model.", units=(PERMITTIVITY, SECOND), ) @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if `allow_gain` is False.""" if values.get("allow_gain"): return val for del_ep, _ in val: if del_ep < 0: raise ValidationError( "For passive medium, 'Delta epsilon_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val _validate_permittivity_modulation = DispersiveMedium._permittivity_modulation_validation() _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation()
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" eps = self.eps_inf + 0.0j for de, tau in self.coeffs: eps = eps + de / (1 - 1j * frequency * tau) return eps
def _pole_residue_dict(self): """Dict representation of Medium as a pole-residue model.""" poles = [] for de, tau in self.coeffs: a = -2 * np.pi / tau + 0j c = -0.5 * de * a poles.append((a, c)) return dict( eps_inf=self.eps_inf, poles=poles, frequency_range=self.frequency_range, name=self.name, )
[docs] class CustomDebye(CustomDispersiveMedium, Debye): """A spatially varying dispersive medium described by the Debye model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty + \\sum_i \\frac{\\Delta\\epsilon_i}{1 - jf\\tau_i} Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(1+np.random.random((5, 6, 7)), coords=coords) >>> eps1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> tau1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> debye_medium = CustomDebye(eps_inf=eps_inf, coeffs=[(eps1,tau1),]) >>> eps = debye_medium.eps_model(200e12) See Also -------- :class:`Debye` A dispersive medium described by the Debye model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: Tuple[Tuple[CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated], ...] = ( pd.Field( ..., title="Coefficients", description="List of (:math:`\\Delta\\epsilon_i, \\tau_i`) values for model.", units=(PERMITTIVITY, SECOND), ) ) _no_nans_eps_inf = validate_no_nans("eps_inf") _no_nans_coeffs = validate_no_nans("coeffs") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("coeffs") @pd.validator("eps_inf", always=True) def _eps_inf_positive(cls, val): """eps_inf must be positive""" if not CustomDispersiveMedium._validate_isreal_dataarray(val): raise SetupError("'eps_inf' must be real.") if np.any(_get_numpy_array(val) < 0): raise SetupError("'eps_inf' must be positive.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["eps_inf"]) def _coeffs_correct_shape(cls, val, values): """coeffs must have consistent shape.""" for de, tau in val: if not _check_same_coordinates(de, values["eps_inf"]) or not _check_same_coordinates( tau, values["eps_inf"] ): raise SetupError( "All terms in 'coeffs' must have the same coordinates; " "The coordinates must also be consistent with 'eps_inf'." ) if not CustomDispersiveMedium._validate_isreal_dataarray_tuple((de, tau)): raise SetupError("All terms in 'coeffs' must be real.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" allow_gain = values.get("allow_gain") for del_ep, tau in val: if np.any(_get_numpy_array(tau) <= 0): raise SetupError("For stable medium, 'tau_i' must be positive.") if not allow_gain and np.any(_get_numpy_array(del_ep) < 0): raise ValidationError( "For passive medium, 'Delta epsilon_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if not self.eps_inf.is_uniform: return False for coeffs in self.coeffs: for coeff in coeffs: if not coeff.is_uniform: return False return True
[docs] def eps_dataarray_freq( self, frequency: float ) -> Tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = Debye.eps_model(self, frequency) return (eps, eps, eps)
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomDebye CustomDebye with reduced data. """ if not self.eps_inf.does_cover(bounds=bounds): log.warning("Eps inf spatial data array does not fully cover the requested region.") eps_inf_reduced = self.eps_inf.sel_inside(bounds=bounds) coeffs_reduced = [] for de, tau in self.coeffs: if not de.does_cover(bounds=bounds): log.warning( "Debye 'f' spatial data array does not fully cover the requested region." ) if not tau.does_cover(bounds=bounds): log.warning( "Debye 'tau' spatial data array does not fully cover the requested region." ) coeffs_reduced.append((de.sel_inside(bounds), tau.sel_inside(bounds))) return self.updated_copy(eps_inf=eps_inf_reduced, coeffs=coeffs_reduced)
IsotropicUniformMediumType = Union[Medium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, PECMedium] IsotropicCustomMediumType = Union[ CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, ] IsotropicCustomMediumInternalType = Union[IsotropicCustomMediumType, CustomIsotropicMedium] IsotropicMediumType = Union[IsotropicCustomMediumType, IsotropicUniformMediumType]
[docs] class AnisotropicMedium(AbstractMedium): """Diagonally anisotropic medium. Notes ----- Only diagonal anisotropy is currently supported. Example ------- >>> medium_xx = Medium(permittivity=4.0) >>> medium_yy = Medium(permittivity=4.1) >>> medium_zz = Medium(permittivity=3.9) >>> anisotropic_dielectric = AnisotropicMedium(xx=medium_xx, yy=medium_yy, zz=medium_zz) See Also -------- :class:`CustomAnisotropicMedium` Diagonally anisotropic medium with spatially varying permittivity in each component. :class:`FullyAnisotropicMedium` Fully anisotropic medium including all 9 components of the permittivity and conductivity tensors. **Notebooks** * `Broadband polarizer assisted by anisotropic metamaterial <../../notebooks/SWGBroadbandPolarizer.html>`_ * `Thin film lithium niobate adiabatic waveguide coupler <../../notebooks/AdiabaticCouplerLN.html>`_ """ xx: IsotropicUniformMediumType = pd.Field( ..., title="XX Component", description="Medium describing the xx-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) yy: IsotropicUniformMediumType = pd.Field( ..., title="YY Component", description="Medium describing the yy-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) zz: IsotropicUniformMediumType = pd.Field( ..., title="ZZ Component", description="Medium describing the zz-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) allow_gain: bool = pd.Field( None, title="Allow gain medium", description="This field is ignored. Please set ``allow_gain`` in each component", ) @pd.validator("modulation_spec", always=True) def _validate_modulation_spec(cls, val): """Check compatibility with modulation_spec.""" if val is not None: raise ValidationError( f"A 'modulation_spec' of class {type(val)} is not " f"currently supported for medium class {cls}. " "Please add modulation to each component." ) return val @pd.root_validator(pre=True) def _ignored_fields(cls, values): """The field is ignored.""" if values.get("xx") is not None and values.get("allow_gain") is not None: log.warning( "The field 'allow_gain' is ignored. Please set 'allow_gain' in each component." ) return values @cached_property def components(self) -> Dict[str, Medium]: """Dictionary of diagonal medium components.""" return dict(xx=self.xx, yy=self.yy, zz=self.zz) @cached_property def is_time_modulated(self) -> bool: """Whether any component of the medium is time modulated.""" return any(mat.is_time_modulated for mat in self.components.values()) @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For this medium, it takes the minimal of ``n_clf`` in all components. """ return min(mat_component.n_cfl for mat_component in self.components.values())
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return np.mean(self.eps_diagonal(frequency), axis=0)
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> Tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor as a function of frequency.""" eps_xx = self.xx.eps_model(frequency) eps_yy = self.yy.eps_model(frequency) eps_zz = self.zz.eps_model(frequency) return (eps_xx, eps_yy, eps_zz)
[docs] def eps_comp(self, row: Axis, col: Axis, frequency: float) -> complex: """Single component the complex-valued permittivity tensor as a function of frequency. Parameters ---------- row : int Component's row in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). col : int Component's column in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- complex Element of the relative permittivity tensor evaluated at ``frequency``. """ if row != col: return 0j cmp = "xyz"[row] field_name = cmp + cmp return self.components[field_name].eps_model(frequency)
[docs] @add_ax_if_none def plot(self, freqs: float, ax: Ax = None) -> Ax: """Plot n, k of a :class:`.Medium` as a function of frequency.""" freqs = np.array(freqs) freqs_thz = freqs / 1e12 for label, medium_component in self.elements.items(): eps_complex = medium_component.eps_model(freqs) n, k = AbstractMedium.eps_complex_to_nk(eps_complex) ax.plot(freqs_thz, n, label=f"n, eps_{label}") ax.plot(freqs_thz, k, label=f"k, eps_{label}") ax.set_xlabel("frequency (THz)") ax.set_title("medium dispersion") ax.legend() ax.set_aspect("auto") return ax
@property def elements(self) -> Dict[str, IsotropicUniformMediumType]: """The diagonal elements of the medium as a dictionary.""" return dict(xx=self.xx, yy=self.yy, zz=self.zz) @cached_property def is_pec(self): """Whether the medium is a PEC.""" return any(self.is_comp_pec(i) for i in range(3))
[docs] def is_comp_pec(self, comp: Axis): """Whether the medium is a PEC.""" return isinstance(self.components[["xx", "yy", "zz"][comp]], PECMedium)
[docs] def sel_inside(self, bounds: Bound): """Return a new medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- AnisotropicMedium AnisotropicMedium with reduced data. """ new_comps = [comp.sel_inside(bounds) for comp in [self.xx, self.yy, self.zz]] return self.updated_copy(**dict(zip(["xx", "yy", "zz"], new_comps)))
class AnisotropicMediumFromMedium2D(AnisotropicMedium): """The same as ``AnisotropicMedium``, but converted from Medium2D. (This class is for internal use only) """
[docs] class FullyAnisotropicMedium(AbstractMedium): """Fully anisotropic medium including all 9 components of the permittivity and conductivity tensors. Notes ----- Provided permittivity tensor and the symmetric part of the conductivity tensor must have coinciding main directions. A non-symmetric conductivity tensor can be used to model magneto-optic effects. Note that dispersive properties and subpixel averaging are currently not supported for fully anisotropic materials. Note ---- Simulations involving fully anisotropic materials are computationally more intensive, thus, they take longer time to complete. This increase strongly depends on the filling fraction of the simulation domain by fully anisotropic materials, varying approximately in the range from 1.5 to 5. The cost of running a simulation is adjusted correspondingly. Example ------- >>> perm = [[2, 0, 0], [0, 1, 0], [0, 0, 3]] >>> cond = [[0.1, 0, 0], [0, 0, 0], [0, 0, 0]] >>> anisotropic_dielectric = FullyAnisotropicMedium(permittivity=perm, conductivity=cond) See Also -------- :class:`CustomAnisotropicMedium` Diagonally anisotropic medium with spatially varying permittivity in each component. :class:`AnisotropicMedium` Diagonally anisotropic medium. **Notebooks** * `Broadband polarizer assisted by anisotropic metamaterial <../../notebooks/SWGBroadbandPolarizer.html>`_ * `Thin film lithium niobate adiabatic waveguide coupler <../../notebooks/AdiabaticCouplerLN.html>`_ * `Defining fully anisotropic materials <../../notebooks/FullyAnisotropic.html>`_ """ permittivity: TensorReal = pd.Field( [[1, 0, 0], [0, 1, 0], [0, 0, 1]], title="Permittivity", description="Relative permittivity tensor.", units=PERMITTIVITY, ) conductivity: TensorReal = pd.Field( [[0, 0, 0], [0, 0, 0], [0, 0, 0]], title="Conductivity", description="Electric conductivity tensor. Defined such that the imaginary part " "of the complex permittivity at angular frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, ) @pd.validator("modulation_spec", always=True) def _validate_modulation_spec(cls, val): """Check compatibility with modulation_spec.""" if val is not None: raise ValidationError( f"A 'modulation_spec' of class {type(val)} is not " f"currently supported for medium class {cls}." ) return val
[docs] @pd.validator("permittivity", always=True) def permittivity_spd_and_ge_one(cls, val): """Check that provided permittivity tensor is symmetric positive definite with eigenvalues >= 1. """ if not np.allclose(val, np.transpose(val), atol=fp_eps): raise ValidationError("Provided permittivity tensor is not symmetric.") if np.any(np.linalg.eigvals(val) < 1 - fp_eps): raise ValidationError("Main diagonal of provided permittivity tensor is not >= 1.") return val
[docs] @pd.validator("conductivity", always=True) @skip_if_fields_missing(["permittivity"]) def conductivity_commutes(cls, val, values): """Check that the symmetric part of conductivity tensor commutes with permittivity tensor (that is, simultaneously diagonalizable). """ perm = values.get("permittivity") cond_sym = 0.5 * (val + val.T) comm_diff = np.abs(np.matmul(perm, cond_sym) - np.matmul(cond_sym, perm)) if not np.allclose(comm_diff, 0, atol=fp_eps): raise ValidationError( "Main directions of conductivity and permittivity tensor do not coincide." ) return val
@pd.validator("conductivity", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" if values.get("allow_gain"): return val cond_sym = 0.5 * (val + val.T) if np.any(np.linalg.eigvals(cond_sym) < -fp_eps): raise ValidationError( "For passive medium, main diagonal of provided conductivity tensor " "must be non-negative. "