Source code for tidy3d.components.data.dataset

"""Collections of DataArrays."""

from __future__ import annotations

from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, Union

import numpy as np
import pydantic.v1 as pd
import xarray as xr

from ...constants import PICOSECOND_PER_NANOMETER_PER_KILOMETER
from ...exceptions import DataError
from ...log import log
from ..base import Tidy3dBaseModel
from ..types import Axis
from .data_array import (
    DataArray,
    EMEScalarFieldDataArray,
    EMEScalarModeFieldDataArray,
    GroupIndexDataArray,
    ModeDispersionDataArray,
    ModeIndexDataArray,
    ScalarFieldDataArray,
    ScalarFieldTimeDataArray,
    ScalarModeFieldCylindricalDataArray,
    ScalarModeFieldDataArray,
    TimeDataArray,
    TriangleMeshDataArray,
)

DEFAULT_MAX_SAMPLES_PER_STEP = 10_000
DEFAULT_MAX_CELLS_PER_STEP = 10_000
DEFAULT_TOLERANCE_CELL_FINDING = 1e-6


class Dataset(Tidy3dBaseModel, ABC):
    """Abstract base class for objects that store collections of `:class:`.DataArray`s."""


[docs] class AbstractFieldDataset(Dataset, ABC): """Collection of scalar fields with some symmetry properties.""" @property @abstractmethod def field_components(self) -> Dict[str, DataArray]: """Maps the field components to their associated data."""
[docs] def apply_phase(self, phase: float) -> AbstractFieldDataset: """Create a copy where all elements are phase-shifted by a value (in radians).""" if phase == 0.0: return self phasor = np.exp(1j * phase) field_components_shifted = {} for fld_name, fld_cmp in self.field_components.items(): fld_cmp_shifted = phasor * fld_cmp field_components_shifted[fld_name] = fld_cmp_shifted return self.updated_copy(**field_components_shifted)
@property @abstractmethod def grid_locations(self) -> Dict[str, str]: """Maps field components to the string key of their grid locations on the yee lattice.""" @property @abstractmethod def symmetry_eigenvalues(self) -> Dict[str, Callable[[Axis], float]]: """Maps field components to their (positive) symmetry eigenvalues."""
[docs] def package_colocate_results(self, centered_fields: Dict[str, ScalarFieldDataArray]) -> Any: """How to package the dictionary of fields computed via self.colocate().""" return xr.Dataset(centered_fields)
[docs] def colocate(self, x=None, y=None, z=None) -> xr.Dataset: """Colocate all of the data at a set of x, y, z coordinates. Parameters ---------- x : Optional[array-like] = None x coordinates of locations. If not supplied, does not try to colocate on this dimension. y : Optional[array-like] = None y coordinates of locations. If not supplied, does not try to colocate on this dimension. z : Optional[array-like] = None z coordinates of locations. If not supplied, does not try to colocate on this dimension. Returns ------- xr.Dataset Dataset containing all fields at the same spatial locations. For more details refer to `xarray's Documentation <https://tinyurl.com/cyca3krz>`_. Note ---- For many operations (such as flux calculations and plotting), it is important that the fields are colocated at the same spatial locations. Be sure to apply this method to your field data in those cases. """ if hasattr(self, "monitor") and self.monitor.colocate: with log as consolidated_logger: consolidated_logger.warning( "Colocating data that has already been colocated during the solver " "run. For most accurate results when colocating to custom coordinates set " "'Monitor.colocate' to 'False' to use the raw data on the Yee grid " "and avoid double interpolation. Note: the default value was changed to 'True' " "in Tidy3D version 2.4.0." ) # convert supplied coordinates to array and assign string mapping to them supplied_coord_map = {k: np.array(v) for k, v in zip("xyz", (x, y, z)) if v is not None} # dict of data arrays to combine in dataset and return centered_fields = {} # loop through field components for field_name, field_data in self.field_components.items(): # loop through x, y, z dimensions and raise an error if only one element along dim for coord_name, coords_supplied in supplied_coord_map.items(): coord_data = np.array(field_data.coords[coord_name]) if coord_data.size == 1: raise DataError( f"colocate given {coord_name}={coords_supplied}, but " f"data only has one coordinate at {coord_name}={coord_data[0]}. " "Therefore, can't colocate along this dimension. " f"supply {coord_name}=None to skip it." ) centered_fields[field_name] = field_data.interp( **supplied_coord_map, kwargs={"bounds_error": True} ) # combine all centered fields in a dataset return self.package_colocate_results(centered_fields)
EMScalarFieldType = Union[ ScalarFieldDataArray, ScalarFieldTimeDataArray, ScalarModeFieldDataArray, ScalarModeFieldCylindricalDataArray, EMEScalarModeFieldDataArray, EMEScalarFieldDataArray, ] class ElectromagneticFieldDataset(AbstractFieldDataset, ABC): """Stores a collection of E and H fields with x, y, z components.""" Ex: EMScalarFieldType = pd.Field( None, title="Ex", description="Spatial distribution of the x-component of the electric field.", ) Ey: EMScalarFieldType = pd.Field( None, title="Ey", description="Spatial distribution of the y-component of the electric field.", ) Ez: EMScalarFieldType = pd.Field( None, title="Ez", description="Spatial distribution of the z-component of the electric field.", ) Hx: EMScalarFieldType = pd.Field( None, title="Hx", description="Spatial distribution of the x-component of the magnetic field.", ) Hy: EMScalarFieldType = pd.Field( None, title="Hy", description="Spatial distribution of the y-component of the magnetic field.", ) Hz: EMScalarFieldType = pd.Field( None, title="Hz", description="Spatial distribution of the z-component of the magnetic field.", ) @property def field_components(self) -> Dict[str, DataArray]: """Maps the field components to their associated data.""" fields = { "Ex": self.Ex, "Ey": self.Ey, "Ez": self.Ez, "Hx": self.Hx, "Hy": self.Hy, "Hz": self.Hz, } return {field_name: field for field_name, field in fields.items() if field is not None} @property def grid_locations(self) -> Dict[str, str]: """Maps field components to the string key of their grid locations on the yee lattice.""" return dict(Ex="Ex", Ey="Ey", Ez="Ez", Hx="Hx", Hy="Hy", Hz="Hz") @property def symmetry_eigenvalues(self) -> Dict[str, Callable[[Axis], float]]: """Maps field components to their (positive) symmetry eigenvalues.""" return dict( Ex=lambda dim: -1 if (dim == 0) else +1, Ey=lambda dim: -1 if (dim == 1) else +1, Ez=lambda dim: -1 if (dim == 2) else +1, Hx=lambda dim: +1 if (dim == 0) else -1, Hy=lambda dim: +1 if (dim == 1) else -1, Hz=lambda dim: +1 if (dim == 2) else -1, )
[docs] class FieldDataset(ElectromagneticFieldDataset): """Dataset storing a collection of the scalar components of E and H fields in the freq. domain Example ------- >>> x = [-1,1] >>> y = [-2,0,2] >>> z = [-3,-1,1,3] >>> f = [2e14, 3e14] >>> coords = dict(x=x, y=y, z=z, f=f) >>> scalar_field = ScalarFieldDataArray((1+1j) * np.random.random((2,3,4,2)), coords=coords) >>> data = FieldDataset(Ex=scalar_field, Hz=scalar_field) """ Ex: ScalarFieldDataArray = pd.Field( None, title="Ex", description="Spatial distribution of the x-component of the electric field.", ) Ey: ScalarFieldDataArray = pd.Field( None, title="Ey", description="Spatial distribution of the y-component of the electric field.", ) Ez: ScalarFieldDataArray = pd.Field( None, title="Ez", description="Spatial distribution of the z-component of the electric field.", ) Hx: ScalarFieldDataArray = pd.Field( None, title="Hx", description="Spatial distribution of the x-component of the magnetic field.", ) Hy: ScalarFieldDataArray = pd.Field( None, title="Hy", description="Spatial distribution of the y-component of the magnetic field.", ) Hz: ScalarFieldDataArray = pd.Field( None, title="Hz", description="Spatial distribution of the z-component of the magnetic field.", )
[docs] class FieldTimeDataset(ElectromagneticFieldDataset): """Dataset storing a collection of the scalar components of E and H fields in the time domain Example ------- >>> x = [-1,1] >>> y = [-2,0,2] >>> z = [-3,-1,1,3] >>> t = [0, 1e-12, 2e-12] >>> coords = dict(x=x, y=y, z=z, t=t) >>> scalar_field = ScalarFieldTimeDataArray(np.random.random((2,3,4,3)), coords=coords) >>> data = FieldTimeDataset(Ex=scalar_field, Hz=scalar_field) """ Ex: ScalarFieldTimeDataArray = pd.Field( None, title="Ex", description="Spatial distribution of the x-component of the electric field.", ) Ey: ScalarFieldTimeDataArray = pd.Field( None, title="Ey", description="Spatial distribution of the y-component of the electric field.", ) Ez: ScalarFieldTimeDataArray = pd.Field( None, title="Ez", description="Spatial distribution of the z-component of the electric field.", ) Hx: ScalarFieldTimeDataArray = pd.Field( None, title="Hx", description="Spatial distribution of the x-component of the magnetic field.", ) Hy: ScalarFieldTimeDataArray = pd.Field( None, title="Hy", description="Spatial distribution of the y-component of the magnetic field.", ) Hz: ScalarFieldTimeDataArray = pd.Field( None, title="Hz", description="Spatial distribution of the z-component of the magnetic field.", )
[docs] def apply_phase(self, phase: float) -> AbstractFieldDataset: """Create a copy where all elements are phase-shifted by a value (in radians).""" if phase != 0.0: raise ValueError("Can't apply phase to time-domain field data, which is real-valued.") return self
[docs] class ModeSolverDataset(ElectromagneticFieldDataset): """Dataset storing scalar components of E and H fields as a function of freq. and mode_index. Example ------- >>> from tidy3d import ModeSpec >>> x = [-1,1] >>> y = [0] >>> z = [-3,-1,1,3] >>> f = [2e14, 3e14] >>> mode_index = np.arange(5) >>> field_coords = dict(x=x, y=y, z=z, f=f, mode_index=mode_index) >>> field = ScalarModeFieldDataArray((1+1j)*np.random.random((2,1,4,2,5)), coords=field_coords) >>> index_coords = dict(f=f, mode_index=mode_index) >>> index_data = ModeIndexDataArray((1+1j) * np.random.random((2,5)), coords=index_coords) >>> data = ModeSolverDataset( ... Ex=field, ... Ey=field, ... Ez=field, ... Hx=field, ... Hy=field, ... Hz=field, ... n_complex=index_data ... ) """ Ex: ScalarModeFieldDataArray = pd.Field( None, title="Ex", description="Spatial distribution of the x-component of the electric field of the mode.", ) Ey: ScalarModeFieldDataArray = pd.Field( None, title="Ey", description="Spatial distribution of the y-component of the electric field of the mode.", ) Ez: ScalarModeFieldDataArray = pd.Field( None, title="Ez", description="Spatial distribution of the z-component of the electric field of the mode.", ) Hx: ScalarModeFieldDataArray = pd.Field( None, title="Hx", description="Spatial distribution of the x-component of the magnetic field of the mode.", ) Hy: ScalarModeFieldDataArray = pd.Field( None, title="Hy", description="Spatial distribution of the y-component of the magnetic field of the mode.", ) Hz: ScalarModeFieldDataArray = pd.Field( None, title="Hz", description="Spatial distribution of the z-component of the magnetic field of the mode.", ) n_complex: ModeIndexDataArray = pd.Field( ..., title="Propagation Index", description="Complex-valued effective propagation constants associated with the mode.", ) n_group_raw: GroupIndexDataArray = pd.Field( None, alias="n_group", # This is for backwards compatibility only when loading old data title="Group Index", description="Index associated with group velocity of the mode.", ) dispersion_raw: ModeDispersionDataArray = pd.Field( None, title="Dispersion", description="Dispersion parameter for the mode.", units=PICOSECOND_PER_NANOMETER_PER_KILOMETER, ) @property def field_components(self) -> Dict[str, DataArray]: """Maps the field components to their associated data.""" fields = { "Ex": self.Ex, "Ey": self.Ey, "Ez": self.Ez, "Hx": self.Hx, "Hy": self.Hy, "Hz": self.Hz, } return {field_name: field for field_name, field in fields.items() if field is not None} @property def n_eff(self) -> ModeIndexDataArray: """Real part of the propagation index.""" return self.n_complex.real @property def k_eff(self) -> ModeIndexDataArray: """Imaginary part of the propagation index.""" return self.n_complex.imag @property def n_group(self) -> GroupIndexDataArray: """Group index.""" if self.n_group_raw is None: log.warning( "The group index was not computed. To calculate group index, pass " "'group_index_step = True' in the 'ModeSpec'.", log_once=True, ) return self.n_group_raw @property def dispersion(self) -> ModeDispersionDataArray: r"""Dispersion parameter. .. math:: D = -\frac{\lambda}{c_0} \frac{{\rm d}^2 n_{\text{eff}}}{{\rm d}\lambda^2} """ if self.dispersion_raw is None: log.warning( "The dispersion was not computed. To calculate dispersion, pass " "'group_index_step = True' in the 'ModeSpec'.", log_once=True, ) return self.dispersion_raw
[docs] def plot_field(self, *args, **kwargs): """Warn user to use the :class:`.ModeSolver` ``plot_field`` function now.""" raise DeprecationWarning( "The 'plot_field()' method was moved to the 'ModeSolver' object." "Once the 'ModeSolver' is constructed, one may call '.plot_field()' on the object and " "the modes will be computed and displayed with 'Simulation' overlay." )
[docs] class PermittivityDataset(AbstractFieldDataset): """Dataset storing the diagonal components of the permittivity tensor. Example ------- >>> x = [-1,1] >>> y = [-2,0,2] >>> z = [-3,-1,1,3] >>> f = [2e14, 3e14] >>> coords = dict(x=x, y=y, z=z, f=f) >>> sclr_fld = ScalarFieldDataArray((1+1j) * np.random.random((2,3,4,2)), coords=coords) >>> data = PermittivityDataset(eps_xx=sclr_fld, eps_yy=sclr_fld, eps_zz=sclr_fld) """ @property def field_components(self) -> Dict[str, ScalarFieldDataArray]: """Maps the field components to their associated data.""" return dict(eps_xx=self.eps_xx, eps_yy=self.eps_yy, eps_zz=self.eps_zz) @property def grid_locations(self) -> Dict[str, str]: """Maps field components to the string key of their grid locations on the yee lattice.""" return dict(eps_xx="Ex", eps_yy="Ey", eps_zz="Ez") @property def symmetry_eigenvalues(self) -> Dict[str, Callable[[Axis], float]]: """Maps field components to their (positive) symmetry eigenvalues.""" return dict(eps_xx=None, eps_yy=None, eps_zz=None) eps_xx: ScalarFieldDataArray = pd.Field( ..., title="Epsilon xx", description="Spatial distribution of the xx-component of the relative permittivity.", ) eps_yy: ScalarFieldDataArray = pd.Field( ..., title="Epsilon yy", description="Spatial distribution of the yy-component of the relative permittivity.", ) eps_zz: ScalarFieldDataArray = pd.Field( ..., title="Epsilon zz", description="Spatial distribution of the zz-component of the relative permittivity.", )
class TriangleMeshDataset(Dataset): """Dataset for storing triangular surface data.""" surface_mesh: TriangleMeshDataArray = pd.Field( ..., title="Surface mesh data", description="Dataset containing the surface triangles and corresponding face indices " "for a surface mesh.", ) class TimeDataset(Dataset): """Dataset for storing a function of time.""" values: TimeDataArray = pd.Field( ..., title="Values", description="Values as a function of time." )