flow360.component.case.CaseResultsModel

Contents

flow360.component.case.CaseResultsModel#

class CaseResultsModel[source]#

Bases: BaseModel

Pydantic models for case results

case: Any [Required]#
surfaces: ResultTarGZModel [Optional]#
volumes: ResultTarGZModel [Optional]#
slices: ResultTarGZModel [Optional]#
isosurfaces: ResultTarGZModel [Optional]#
monitors: MonitorsResultModel = MonitorsResultModel(remote_file_name='monitors.tar.gz', local_file_name=None, do_download=None, local_storage=None, get_download_file_list_method=<function MonitorsResultModel.<lambda>>)#
nonlinear_residuals: NonlinearResidualsResultCSVModel [Optional]#
linear_residuals: LinearResidualsResultCSVModel [Optional]#
cfl: CFLResultCSVModel [Optional]#
minmax_state: MinMaxStateResultCSVModel [Optional]#
max_residual_location: MaxResidualLocationResultCSVModel [Optional]#
total_forces: TotalForcesResultCSVModel [Optional]#
surface_forces: SurfaceForcesResultCSVModel [Optional]#
actuator_disks: ActuatorDiskResultCSVModel [Optional]#
bet_forces: BETForcesResultCSVModel [Optional]#
porous_media: PorousMediumResultCSVModel [Optional]#
bet_forces_radial_distribution: BETForcesRadialDistributionResultCSVModel [Optional]#
legacy_force_distribution: LegacyForceDistributionResultCSVModel [Optional]#
x_slicing_force_distribution: XSlicingForceDistributionResultCSVModel [Optional]#
y_slicing_force_distribution: YSlicingForceDistributionResultCSVModel [Optional]#
user_defined_dynamics: UserDefinedDynamicsResultModel [Optional]#
surface_heat_transfer: SurfaceHeatTransferResultCSVModel [Optional]#
aeroacoustics: AeroacousticsResultCSVModel [Optional]#
local_storage: str | None = None#
set_destination(folder_name=None, use_case_name=None, use_case_id=None)[source]#

Set the destination for downloading files.

Parameters:
  • folder_name (str, optional) – The name of the folder where files will be downloaded.

  • use_case_name (bool, optional) – Whether to use the use case name for the destination.

  • use_case_id (bool, optional) – Whether to use the use case ID for the destination.

Raises:

ValueError – If more than one argument is provided or if no arguments are provided.

download(surface=None, volume=None, slices=None, isosurfaces=None, monitors=None, nonlinear_residuals=None, linear_residuals=None, cfl=None, minmax_state=None, max_residual_location=None, surface_forces=None, total_forces=None, bet_forces=None, bet_forces_radial_distribution=None, actuator_disks=None, legacy_force_distribution=None, x_slicing_force_distribution=None, y_slicing_force_distribution=None, user_defined_dynamics=None, aeroacoustics=None, surface_heat_transfer=None, all=None, overwrite=False, destination=None)[source]#

Download result files associated with the case.

Parameters:
  • surface (bool, optional) – Download surface result file if True.

  • volume (bool, optional) – Download volume result file if True.

  • nonlinear_residuals (bool, optional) – Download nonlinear residuals file if True.

  • linear_residuals (bool, optional) – Download linear residuals file if True.

  • cfl (bool, optional) – Download CFL file if True.

  • minmax_state (bool, optional) – Download minmax state file if True.

  • surface_forces (bool, optional) – Download surface forces file if True.

  • total_forces (bool, optional) – Download total forces file if True.

  • bet_forces (bool, optional) – Download BET (Blade Element Theory) forces file if True.

  • bet_forces_radial_distribution (bool, optional) – Download BET (Blade Element Theory) forces radial distribution file if True.

  • actuator_disk_output (bool, optional) – Download actuator disk output file if True.

  • all (bool, optional) – Download all result files if True. Ignore file if explicitly set: <result_name>=False

  • overwrite (bool, optional) – If True, overwrite existing files with the same name in the destination.

  • destination (str, optional) – Location to save downloaded files. If None, files will be saved in the current directory under ID folder.

  • slices (bool | None)

  • isosurfaces (bool | None)

  • monitors (bool | None)

  • max_residual_location (bool | None)

  • actuator_disks (bool | None)

  • legacy_force_distribution (bool | None)

  • x_slicing_force_distribution (bool | None)

  • y_slicing_force_distribution (bool | None)

  • user_defined_dynamics (bool | None)

  • aeroacoustics (bool | None)

  • surface_heat_transfer (bool | None)

download_file_by_name(file_name, to_file=None, to_folder='.', overwrite=True)[source]#

Download file by name

Parameters:

overwrite (bool)

__init__(**data)#

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:

data (Any)

Return type:

None

__new__(**kwargs)#
classmethod construct(_fields_set=None, **values)#
Parameters:
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.

  • exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.

  • update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

Return type:

Self

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)#
Parameters:
Return type:

Dict[str, Any]

classmethod from_orm(obj)#
Parameters:

obj (Any)

Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)#
Parameters:
Return type:

str

classmethod model_construct(_fields_set=None, **values)#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

Return type:

Self

model_copy(*, update=None, deep=False)#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameters:
  • update (Mapping[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Returns:

New model instance.

Return type:

Self

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.

  • exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.

  • context (Any | None) – Additional context to pass to the serializer.

  • by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.

  • exclude_none (bool) – Whether to exclude fields that have a value of None.

  • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

  • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

Return type:

dict[str, Any]

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.

  • exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.

  • context (Any | None) – Additional context to pass to the serializer.

  • by_alias (bool | None) – Whether to serialize using field aliases.

  • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.

  • exclude_none (bool) – Whether to exclude fields that have a value of None.

  • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

  • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

Return type:

str

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')#

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

Return type:

dict[str, Any]

classmethod model_parametrized_name(params)#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

Return type:

str

model_post_init(context, /)#

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that’s what pydantic-core passes when calling it.

Parameters:
  • self (BaseModel) – The BaseModel instance.

  • context (Any) – The context.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (MappingNamespace | None) – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

Return type:

bool | None

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)#

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

Return type:

Self

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

Return type:

Self

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)#

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Return type:

Self

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)#
Parameters:
  • path (str | Path)

  • content_type (str | None)

  • encoding (str)

  • proto (DeprecatedParseProtocol | None)

  • allow_pickle (bool)

Return type:

Self

classmethod parse_obj(obj)#
Parameters:

obj (Any)

Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)#
Parameters:
  • b (str | bytes)

  • content_type (str | None)

  • encoding (str)

  • proto (DeprecatedParseProtocol | None)

  • allow_pickle (bool)

Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')#
Parameters:
  • by_alias (bool)

  • ref_template (str)

Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)#
Parameters:
  • by_alias (bool)

  • ref_template (str)

  • dumps_kwargs (Any)

Return type:

str

set_local_storage(local_storage, keep_remote_structure=False)[source]#

Set local storage for fetching data from. Used with Case.from_local_storage(…)

Parameters:
  • local_storage (str) – Path to local folder

  • keep_remote_structure (bool, optional) – When true, remote folder structure is assumed to be preserved, otherwise flat structure, by default False

classmethod update_forward_refs(**localns)#
Parameters:

localns (Any)

Return type:

None

classmethod validate(value)#
Parameters:

value (Any)

Return type:

Self