flow360.component.case.CaseResultsModel#
- class CaseResultsModel[source]#
Bases:
BaseModelPydantic models for case results
- case: Any [Required]#
- surfaces: ResultTarGZModel [Optional]#
- volumes: ResultTarGZModel [Optional]#
- slices: ResultTarGZModel [Optional]#
- isosurfaces: ResultTarGZModel [Optional]#
- monitors: MonitorsResultModel = MonitorsResultModel(remote_file_name='monitors.tar.gz', local_file_name=None, do_download=None, local_storage=None, get_download_file_list_method=<function MonitorsResultModel.<lambda>>)#
- nonlinear_residuals: NonlinearResidualsResultCSVModel [Optional]#
- linear_residuals: LinearResidualsResultCSVModel [Optional]#
- cfl: CFLResultCSVModel [Optional]#
- minmax_state: MinMaxStateResultCSVModel [Optional]#
- max_residual_location: MaxResidualLocationResultCSVModel [Optional]#
- total_forces: TotalForcesResultCSVModel [Optional]#
- surface_forces: SurfaceForcesResultCSVModel [Optional]#
- actuator_disks: ActuatorDiskResultCSVModel [Optional]#
- bet_forces: BETForcesResultCSVModel [Optional]#
- porous_media: PorousMediumResultCSVModel [Optional]#
- bet_forces_radial_distribution: BETForcesRadialDistributionResultCSVModel [Optional]#
- legacy_force_distribution: LegacyForceDistributionResultCSVModel [Optional]#
- x_slicing_force_distribution: XSlicingForceDistributionResultCSVModel [Optional]#
- y_slicing_force_distribution: YSlicingForceDistributionResultCSVModel [Optional]#
- user_defined_dynamics: UserDefinedDynamicsResultModel [Optional]#
- surface_heat_transfer: SurfaceHeatTransferResultCSVModel [Optional]#
- aeroacoustics: AeroacousticsResultCSVModel [Optional]#
- set_destination(folder_name=None, use_case_name=None, use_case_id=None)[source]#
Set the destination for downloading files.
- Parameters:
- Raises:
ValueError – If more than one argument is provided or if no arguments are provided.
- download(surface=None, volume=None, slices=None, isosurfaces=None, monitors=None, nonlinear_residuals=None, linear_residuals=None, cfl=None, minmax_state=None, max_residual_location=None, surface_forces=None, total_forces=None, bet_forces=None, bet_forces_radial_distribution=None, actuator_disks=None, legacy_force_distribution=None, x_slicing_force_distribution=None, y_slicing_force_distribution=None, user_defined_dynamics=None, aeroacoustics=None, surface_heat_transfer=None, all=None, overwrite=False, destination=None)[source]#
Download result files associated with the case.
- Parameters:
surface (bool, optional) – Download surface result file if True.
volume (bool, optional) – Download volume result file if True.
nonlinear_residuals (bool, optional) – Download nonlinear residuals file if True.
linear_residuals (bool, optional) – Download linear residuals file if True.
cfl (bool, optional) – Download CFL file if True.
minmax_state (bool, optional) – Download minmax state file if True.
surface_forces (bool, optional) – Download surface forces file if True.
total_forces (bool, optional) – Download total forces file if True.
bet_forces (bool, optional) – Download BET (Blade Element Theory) forces file if True.
bet_forces_radial_distribution (bool, optional) – Download BET (Blade Element Theory) forces radial distribution file if True.
actuator_disk_output (bool, optional) – Download actuator disk output file if True.
all (bool, optional) – Download all result files if True. Ignore file if explicitly set: <result_name>=False
overwrite (bool, optional) – If True, overwrite existing files with the same name in the destination.
destination (str, optional) – Location to save downloaded files. If None, files will be saved in the current directory under ID folder.
slices (bool | None)
isosurfaces (bool | None)
monitors (bool | None)
max_residual_location (bool | None)
actuator_disks (bool | None)
legacy_force_distribution (bool | None)
x_slicing_force_distribution (bool | None)
y_slicing_force_distribution (bool | None)
user_defined_dynamics (bool | None)
aeroacoustics (bool | None)
surface_heat_transfer (bool | None)
- download_file_by_name(file_name, to_file=None, to_folder='.', overwrite=True)[source]#
Download file by name
- Parameters:
overwrite (bool)
- __init__(**data)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- __new__(**kwargs)#
- classmethod construct(_fields_set=None, **values)#
- copy(*, include=None, exclude=None, update=None, deep=False)#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)#
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)#
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- classmethod model_construct(_fields_set=None, **values)#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
Self
- model_copy(*, update=None, deep=False)#
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)#
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)#
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None#
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- property model_fields_set: set[str]#
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')#
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)#
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that’s what pydantic-core passes when calling it.
- Parameters:
self (BaseModel) – The BaseModel instance.
context (Any) – The context.
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)#
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
Self
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)#
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
Self
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)#
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
Self
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)#
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)#
- classmethod schema(by_alias=True, ref_template='#/$defs/{model}')#
- classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)#