Source code for tidy3d.plugins.invdes.region

# container for specification fully defining the inverse design problem

import abc
import typing
import warnings

import autograd.numpy as anp
import numpy as np
import pydantic.v1 as pd
from autograd import elementwise_grad, grad

import tidy3d as td
from tidy3d.components.types import TYPE_TAG_STR, Coordinate, Size
from tidy3d.exceptions import ValidationError

from .base import InvdesBaseModel
from .initialization import InitializationSpecType, UniformInitializationSpec
from .penalty import PenaltyType
from .transformation import TransformationType

# TODO: support auto handling of symmetry in parameters


class DesignRegion(InvdesBaseModel, abc.ABC):
    """Base class for design regions in the ``invdes`` plugin."""

    size: Size = pd.Field(
        ...,
        title="Size",
        description="Size in x, y, and z directions.",
        units=td.constants.MICROMETER,
    )

    center: Coordinate = pd.Field(
        ...,
        title="Center",
        description="Center of object in x, y, and z.",
        units=td.constants.MICROMETER,
    )

    eps_bounds: typing.Tuple[float, float] = pd.Field(
        ...,
        ge=1.0,
        title="Relative Permittivity Bounds",
        description="Minimum and maximum relative permittivity expressed to the design region.",
    )

    transformations: typing.Tuple[TransformationType, ...] = pd.Field(
        (),
        title="Transformations",
        description="Transformations that get applied from first to last on the parameter array."
        "The end result of the transformations should be the material density of the design region "
        ". With floating point values between (0, 1), 0 corresponds to the minimum relative "
        "permittivity and 1 corresponds to the maximum relative permittivity. "
        "Specific permittivity values given the density array are determined by ``eps_bounds``.",
    )

    penalties: typing.Tuple[PenaltyType, ...] = pd.Field(
        (),
        title="Penalties",
        description="Set of penalties that get evaluated on the material density. Note that the "
        "penalties are applied after ``transformations`` are applied. Penalty weights can be set "
        "inside of the penalties directly through the ``.weight`` field.",
    )

    initialization_spec: InitializationSpecType = pd.Field(
        UniformInitializationSpec(value=0.5),
        title="Initialization Specification",
        description="Specification of how to initialize the parameters in the design region.",
        discriminator=TYPE_TAG_STR,
    )

    def _post_init_validators(self):
        """Automatically call any `_validate_XXX` method."""
        for attr_name in dir(self):
            if attr_name.startswith("_validate") and callable(getattr(self, attr_name)):
                getattr(self, attr_name)()

    def _validate_eps_bounds(self):
        if self.eps_bounds[1] < self.eps_bounds[0]:
            raise ValidationError(
                f"Maximum relative permittivity ({self.eps_bounds[1]}) must be "
                f"greater than minimum relative permittivity ({self.eps_bounds[0]})."
            )

    @property
    def geometry(self) -> td.Box:
        """``Box`` corresponding to this design region."""
        return td.Box(center=self.center, size=self.size)

    def material_density(self, params: anp.ndarray) -> anp.ndarray:
        """Evaluate the transformations on a parameter array to give the material density (0,1)."""
        for transformation in self.transformations:
            params = self.evaluate_transformation(transformation=transformation, params=params)
        return params

    def penalty_value(self, data: anp.ndarray) -> anp.ndarray:
        """Evaluate the transformations on a dataset."""

        if not self.penalties:
            return 0.0

        # sum the penalty values scaled by their weights (optional)
        material_density = self.material_density(data)
        penalty_values = [
            self.evaluate_penalty(penalty=penalty, material_density=material_density)
            for penalty in self.penalties
        ]
        return anp.sum(anp.array(penalty_values))

    @abc.abstractmethod
    def evaluate_transformation(self, transformation: None) -> float:
        """How this design region evaluates a transformation given some passed information."""

    @abc.abstractmethod
    def evaluate_penalty(self, penalty: None) -> float:
        """How this design region evaluates a penalty given some passed information."""

    @abc.abstractmethod
    def to_structure(self, *args, **kwargs) -> td.Structure:
        """Convert this ``DesignRegion`` into a ``Structure`` with tracers. Implement in subs."""

    @property
    def initial_parameters(self) -> np.ndarray:
        """Generate initial parameters based on the initialization specification."""
        params0 = self.initialization_spec.create_parameters(self.params_shape)
        self._check_params(params0)
        return params0


[docs] class TopologyDesignRegion(DesignRegion): """Design region as a pixellated permittivity grid.""" pixel_size: pd.PositiveFloat = pd.Field( ..., title="Pixel Size", description="Pixel size of the design region in x, y, z. For now, we only support the same " "pixel size in all 3 dimensions. If ``TopologyDesignRegion.override_structure_dl`` is left " "``None``, the ``pixel_size`` will determine the FDTD mesh size in the design region. " "Therefore, if your pixel size is large compared to the FDTD grid size, we recommend " "setting the ``override_structure_dl`` directly to " "a value on the same order as the grid size.", ) uniform: tuple[bool, bool, bool] = pd.Field( (False, False, True), title="Uniform", description="Axes along which the design should be uniform. By default, the structure " "is assumed to be uniform, i.e. invariant, in the z direction.", ) transformations: typing.Tuple[TransformationType, ...] = pd.Field( (), title="Transformations", description="Transformations that get applied from first to last on the parameter array." "The end result of the transformations should be the material density of the design region " ". With floating point values between (0, 1), 0 corresponds to the minimum relative " "permittivity and 1 corresponds to the maximum relative permittivity. " "Specific permittivity values given the density array are determined by ``eps_bounds``.", ) penalties: typing.Tuple[PenaltyType, ...] = pd.Field( (), title="Penalties", description="Set of penalties that get evaluated on the material density. Note that the " "penalties are applied after ``transformations`` are applied. Penalty weights can be set " "inside of the penalties directly through the ``.weight`` field.", ) override_structure_dl: typing.Union[pd.PositiveFloat, typing.Literal[False]] = pd.Field( None, title="Design Region Override Structure", description="Defines grid size when adding an ``override_structure`` to the " "``JaxSimulation.grid_spec`` corresponding to this design region. " "If left ``None``, ``invdes`` will mesh the simulation with the same resolution as the " "``pixel_size``. " "This is advised if the pixel size is relatively close to the FDTD grid size. " "Supplying ``False`` will completely leave out the override structure.", ) def _validate_eps_values(self): """Validate the epsilon values by evaluating the transformations.""" try: x = self.initial_parameters self.eps_values(x) except Exception as e: raise ValidationError(f"Could not evaluate transformations: {str(e)}") from e def _validate_penalty_value(self): """Validate the penalty values by evaluating the penalties.""" try: x = self.initial_parameters self.penalty_value(x) except Exception as e: raise ValidationError(f"Could not evaluate penalties: {str(e)}") from e def _validate_gradients(self): """Validate the gradients of the penalties and transformations.""" x = self.initial_parameters penalty_independent = False if self.penalties: with warnings.catch_warnings(record=True) as w: penalty_grad = grad(self.penalty_value)(x) penalty_independent = any("independent" in str(warn.message).lower() for warn in w) if np.any(np.isnan(penalty_grad) | np.isinf(penalty_grad)): raise ValidationError("Penalty gradients contain 'NaN' or 'Inf' values.") eps_independent = False if self.transformations: with warnings.catch_warnings(record=True) as w: eps_grad = elementwise_grad(self.eps_values)(x) eps_independent = any("independent" in str(warn.message).lower() for warn in w) if np.any(np.isnan(eps_grad) | np.isinf(eps_grad)): raise ValidationError("Transformation gradients contain 'NaN' or 'Inf' values.") if penalty_independent and eps_independent: raise ValidationError( "Both penalty and transformation gradients appear to be independent of the input parameters. " "This indicates that the optimization will not function correctly. " "Please double-check the definitions of both the penalties and transformations." ) elif penalty_independent: td.log.warning( "Penalty gradient seems independent of input, meaning that it " "will not contribute to the objective gradient during optimization. " "This is likely not correct - double-check the penalties." ) elif eps_independent: td.log.warning( "Transformation gradient seems independent of input, meaning that it " "will not contribute to the objective gradient during optimization. " "This is likely not correct - double-check the transformations." ) @staticmethod def _check_params(params: anp.ndarray = None): """Ensure ``params`` are between 0 and 1.""" if params is None: return if np.any((params < 0) | (params > 1)): raise ValueError( "Parameters in the 'invdes' plugin's topology optimization feature " "are restricted to be between 0 and 1." ) @property def params_shape(self) -> typing.Tuple[int, int, int]: """Shape of the parameters array in (x, y, z), given the ``pixel_size`` and bounds.""" side_lengths = np.array(self.size) num_pixels = np.ceil(side_lengths / self.pixel_size) # TODO: if the structure is infinite but the simulation is finite, need reduced bounds num_pixels[np.logical_or(np.isinf(num_pixels), self.uniform)] = 1 return tuple(int(n) for n in num_pixels) def _warn_deprecate_params(self): td.log.warning( "Parameter initialization via design region methods is deprecated and will be " "removed in the future. Please specify this through the design region's " "'initialization_spec' instead." )
[docs] def params_uniform(self, value: float) -> np.ndarray: """Make an array of parameters with all the same value.""" self._warn_deprecate_params() return value * np.ones(self.params_shape)
@property def params_random(self) -> np.ndarray: """Convenience for generating random parameters between (0,1) with correct shape.""" self._warn_deprecate_params() return np.random.random(self.params_shape) @property def params_zeros(self): """Convenience for generating random parameters of all 0 values with correct shape.""" self._warn_deprecate_params() return self.params_uniform(0.0) @property def params_half(self): """Convenience for generating random parameters of all 0.5 values with correct shape.""" self._warn_deprecate_params() return self.params_uniform(0.5) @property def params_ones(self): """Convenience for generating random parameters of all 1 values with correct shape.""" self._warn_deprecate_params() return self.params_uniform(1.0) @property def coords(self) -> typing.Dict[str, typing.List[float]]: """Coordinates for the custom medium corresponding to this design region.""" lengths = np.array(self.size) rmin, rmax = self.geometry.bounds params_shape = self.params_shape coords = dict() for dim, ptmin, ptmax, length, num_pts in zip("xyz", rmin, rmax, lengths, params_shape): step_size = length / num_pts if np.isinf(length): coord_vals = [self.center["xyz".index(dim)]] else: coord_vals = np.linspace(ptmin + step_size / 2, ptmax - step_size / 2, num_pts) coord_vals = coord_vals.tolist() coords[dim] = coord_vals return coords
[docs] def eps_values(self, params: anp.ndarray) -> anp.ndarray: """Values for the custom medium permittivity.""" self._check_params(params) material_density = self.material_density(params) eps_min, eps_max = self.eps_bounds eps_arr = eps_min + material_density * (eps_max - eps_min) return eps_arr.reshape(params.shape)
[docs] def to_structure(self, params: anp.ndarray) -> td.Structure: """Convert this ``DesignRegion`` into a custom ``Structure``.""" self._check_params(params) coords = self.coords eps_values = self.eps_values(params) eps_data_array = td.SpatialDataArray(eps_values, coords=coords) medium = td.CustomMedium(permittivity=eps_data_array) return td.Structure(geometry=self.geometry, medium=medium)
@property def _override_structure_dl(self) -> float: """Override structure step size along all three dimensions.""" if self.override_structure_dl is None: return self.pixel_size if self.override_structure_dl is False: return None return self.override_structure_dl @property def mesh_override_structure(self) -> td.MeshOverrideStructure: """Generate mesh override structure for this ``DesignRegion`` using ``pixel_size`` step.""" dl = self._override_structure_dl if not dl: return None return td.MeshOverrideStructure( geometry=self.geometry, dl=(dl, dl, dl), enforce=True, )
[docs] def evaluate_transformation( self, transformation: TransformationType, params: anp.ndarray ) -> anp.ndarray: """Evaluate a transformation, passing in design_region_dl.""" self._check_params(params) return transformation.evaluate(spatial_data=params, design_region_dl=self.pixel_size)
[docs] def evaluate_penalty(self, penalty: PenaltyType, material_density: anp.ndarray) -> float: """Evaluate an erosion-dilation penalty, passing in pixel_size.""" return penalty.evaluate(x=material_density, pixel_size=self.pixel_size)
DesignRegionType = typing.Union[TopologyDesignRegion]