# container for specification fully defining the inverse design problemimportabcimporttypingimportwarningsimportautograd.numpyasanpimportnumpyasnpimportpydantic.v1aspdfromautogradimportelementwise_grad,gradimporttidy3dastdfromtidy3d.components.typesimportTYPE_TAG_STR,Coordinate,Sizefromtidy3d.exceptionsimportValidationErrorfrom.baseimportInvdesBaseModelfrom.initializationimportInitializationSpecType,UniformInitializationSpecfrom.penaltyimportPenaltyTypefrom.transformationimportTransformationType# TODO: support auto handling of symmetry in parametersclassDesignRegion(InvdesBaseModel,abc.ABC):"""Base class for design regions in the ``invdes`` plugin."""size:Size=pd.Field(...,title="Size",description="Size in x, y, and z directions.",units=td.constants.MICROMETER,)center:Coordinate=pd.Field(...,title="Center",description="Center of object in x, y, and z.",units=td.constants.MICROMETER,)eps_bounds:typing.Tuple[float,float]=pd.Field(...,ge=1.0,title="Relative Permittivity Bounds",description="Minimum and maximum relative permittivity expressed to the design region.",)transformations:typing.Tuple[TransformationType,...]=pd.Field((),title="Transformations",description="Transformations that get applied from first to last on the parameter array.""The end result of the transformations should be the material density of the design region "". With floating point values between (0, 1), 0 corresponds to the minimum relative ""permittivity and 1 corresponds to the maximum relative permittivity. ""Specific permittivity values given the density array are determined by ``eps_bounds``.",)penalties:typing.Tuple[PenaltyType,...]=pd.Field((),title="Penalties",description="Set of penalties that get evaluated on the material density. Note that the ""penalties are applied after ``transformations`` are applied. Penalty weights can be set ""inside of the penalties directly through the ``.weight`` field.",)initialization_spec:InitializationSpecType=pd.Field(UniformInitializationSpec(value=0.5),title="Initialization Specification",description="Specification of how to initialize the parameters in the design region.",discriminator=TYPE_TAG_STR,)def_post_init_validators(self):"""Automatically call any `_validate_XXX` method."""forattr_nameindir(self):ifattr_name.startswith("_validate")andcallable(getattr(self,attr_name)):getattr(self,attr_name)()def_validate_eps_bounds(self):ifself.eps_bounds[1]<self.eps_bounds[0]:raiseValidationError(f"Maximum relative permittivity ({self.eps_bounds[1]}) must be "f"greater than minimum relative permittivity ({self.eps_bounds[0]}).")@propertydefgeometry(self)->td.Box:"""``Box`` corresponding to this design region."""returntd.Box(center=self.center,size=self.size)defmaterial_density(self,params:anp.ndarray)->anp.ndarray:"""Evaluate the transformations on a parameter array to give the material density (0,1)."""fortransformationinself.transformations:params=self.evaluate_transformation(transformation=transformation,params=params)returnparamsdefpenalty_value(self,data:anp.ndarray)->anp.ndarray:"""Evaluate the transformations on a dataset."""ifnotself.penalties:return0.0# sum the penalty values scaled by their weights (optional)material_density=self.material_density(data)penalty_values=[self.evaluate_penalty(penalty=penalty,material_density=material_density)forpenaltyinself.penalties]returnanp.sum(anp.array(penalty_values))@abc.abstractmethoddefevaluate_transformation(self,transformation:None)->float:"""How this design region evaluates a transformation given some passed information."""@abc.abstractmethoddefevaluate_penalty(self,penalty:None)->float:"""How this design region evaluates a penalty given some passed information."""@abc.abstractmethoddefto_structure(self,*args,**kwargs)->td.Structure:"""Convert this ``DesignRegion`` into a ``Structure`` with tracers. Implement in subs."""@propertydefinitial_parameters(self)->np.ndarray:"""Generate initial parameters based on the initialization specification."""params0=self.initialization_spec.create_parameters(self.params_shape)self._check_params(params0)returnparams0
[docs]classTopologyDesignRegion(DesignRegion):"""Design region as a pixellated permittivity grid."""pixel_size:pd.PositiveFloat=pd.Field(...,title="Pixel Size",description="Pixel size of the design region in x, y, z. For now, we only support the same ""pixel size in all 3 dimensions. If ``TopologyDesignRegion.override_structure_dl`` is left ""``None``, the ``pixel_size`` will determine the FDTD mesh size in the design region. ""Therefore, if your pixel size is large compared to the FDTD grid size, we recommend ""setting the ``override_structure_dl`` directly to ""a value on the same order as the grid size.",)uniform:tuple[bool,bool,bool]=pd.Field((False,False,True),title="Uniform",description="Axes along which the design should be uniform. By default, the structure ""is assumed to be uniform, i.e. invariant, in the z direction.",)transformations:typing.Tuple[TransformationType,...]=pd.Field((),title="Transformations",description="Transformations that get applied from first to last on the parameter array.""The end result of the transformations should be the material density of the design region "". With floating point values between (0, 1), 0 corresponds to the minimum relative ""permittivity and 1 corresponds to the maximum relative permittivity. ""Specific permittivity values given the density array are determined by ``eps_bounds``.",)penalties:typing.Tuple[PenaltyType,...]=pd.Field((),title="Penalties",description="Set of penalties that get evaluated on the material density. Note that the ""penalties are applied after ``transformations`` are applied. Penalty weights can be set ""inside of the penalties directly through the ``.weight`` field.",)override_structure_dl:typing.Union[pd.PositiveFloat,typing.Literal[False]]=pd.Field(None,title="Design Region Override Structure",description="Defines grid size when adding an ``override_structure`` to the ""``JaxSimulation.grid_spec`` corresponding to this design region. ""If left ``None``, ``invdes`` will mesh the simulation with the same resolution as the ""``pixel_size``. ""This is advised if the pixel size is relatively close to the FDTD grid size. ""Supplying ``False`` will completely leave out the override structure.",)def_validate_eps_values(self):"""Validate the epsilon values by evaluating the transformations."""try:x=self.initial_parametersself.eps_values(x)exceptExceptionase:raiseValidationError(f"Could not evaluate transformations: {str(e)}")fromedef_validate_penalty_value(self):"""Validate the penalty values by evaluating the penalties."""try:x=self.initial_parametersself.penalty_value(x)exceptExceptionase:raiseValidationError(f"Could not evaluate penalties: {str(e)}")fromedef_validate_gradients(self):"""Validate the gradients of the penalties and transformations."""x=self.initial_parameterspenalty_independent=Falseifself.penalties:withwarnings.catch_warnings(record=True)asw:penalty_grad=grad(self.penalty_value)(x)penalty_independent=any("independent"instr(warn.message).lower()forwarninw)ifnp.any(np.isnan(penalty_grad)|np.isinf(penalty_grad)):raiseValidationError("Penalty gradients contain 'NaN' or 'Inf' values.")eps_independent=Falseifself.transformations:withwarnings.catch_warnings(record=True)asw:eps_grad=elementwise_grad(self.eps_values)(x)eps_independent=any("independent"instr(warn.message).lower()forwarninw)ifnp.any(np.isnan(eps_grad)|np.isinf(eps_grad)):raiseValidationError("Transformation gradients contain 'NaN' or 'Inf' values.")ifpenalty_independentandeps_independent:raiseValidationError("Both penalty and transformation gradients appear to be independent of the input parameters. ""This indicates that the optimization will not function correctly. ""Please double-check the definitions of both the penalties and transformations.")elifpenalty_independent:td.log.warning("Penalty gradient seems independent of input, meaning that it ""will not contribute to the objective gradient during optimization. ""This is likely not correct - double-check the penalties.")elifeps_independent:td.log.warning("Transformation gradient seems independent of input, meaning that it ""will not contribute to the objective gradient during optimization. ""This is likely not correct - double-check the transformations.")@staticmethoddef_check_params(params:anp.ndarray=None):"""Ensure ``params`` are between 0 and 1."""ifparamsisNone:returnifnp.any((params<0)|(params>1)):raiseValueError("Parameters in the 'invdes' plugin's topology optimization feature ""are restricted to be between 0 and 1.")@propertydefparams_shape(self)->typing.Tuple[int,int,int]:"""Shape of the parameters array in (x, y, z), given the ``pixel_size`` and bounds."""side_lengths=np.array(self.size)num_pixels=np.ceil(side_lengths/self.pixel_size)# TODO: if the structure is infinite but the simulation is finite, need reduced boundsnum_pixels[np.logical_or(np.isinf(num_pixels),self.uniform)]=1returntuple(int(n)forninnum_pixels)def_warn_deprecate_params(self):td.log.warning("Parameter initialization via design region methods is deprecated and will be ""removed in the future. Please specify this through the design region's ""'initialization_spec' instead.")
[docs]defparams_uniform(self,value:float)->np.ndarray:"""Make an array of parameters with all the same value."""self._warn_deprecate_params()returnvalue*np.ones(self.params_shape)
@propertydefparams_random(self)->np.ndarray:"""Convenience for generating random parameters between (0,1) with correct shape."""self._warn_deprecate_params()returnnp.random.random(self.params_shape)@propertydefparams_zeros(self):"""Convenience for generating random parameters of all 0 values with correct shape."""self._warn_deprecate_params()returnself.params_uniform(0.0)@propertydefparams_half(self):"""Convenience for generating random parameters of all 0.5 values with correct shape."""self._warn_deprecate_params()returnself.params_uniform(0.5)@propertydefparams_ones(self):"""Convenience for generating random parameters of all 1 values with correct shape."""self._warn_deprecate_params()returnself.params_uniform(1.0)@propertydefcoords(self)->typing.Dict[str,typing.List[float]]:"""Coordinates for the custom medium corresponding to this design region."""lengths=np.array(self.size)rmin,rmax=self.geometry.boundsparams_shape=self.params_shapecoords=dict()fordim,ptmin,ptmax,length,num_ptsinzip("xyz",rmin,rmax,lengths,params_shape):step_size=length/num_ptsifnp.isinf(length):coord_vals=[self.center["xyz".index(dim)]]else:coord_vals=np.linspace(ptmin+step_size/2,ptmax-step_size/2,num_pts)coord_vals=coord_vals.tolist()coords[dim]=coord_valsreturncoords
[docs]defeps_values(self,params:anp.ndarray)->anp.ndarray:"""Values for the custom medium permittivity."""self._check_params(params)material_density=self.material_density(params)eps_min,eps_max=self.eps_boundseps_arr=eps_min+material_density*(eps_max-eps_min)returneps_arr.reshape(params.shape)
[docs]defto_structure(self,params:anp.ndarray)->td.Structure:"""Convert this ``DesignRegion`` into a custom ``Structure``."""self._check_params(params)coords=self.coordseps_values=self.eps_values(params)eps_data_array=td.SpatialDataArray(eps_values,coords=coords)medium=td.CustomMedium(permittivity=eps_data_array)returntd.Structure(geometry=self.geometry,medium=medium)
@propertydef_override_structure_dl(self)->float:"""Override structure step size along all three dimensions."""ifself.override_structure_dlisNone:returnself.pixel_sizeifself.override_structure_dlisFalse:returnNonereturnself.override_structure_dl@propertydefmesh_override_structure(self)->td.MeshOverrideStructure:"""Generate mesh override structure for this ``DesignRegion`` using ``pixel_size`` step."""dl=self._override_structure_dlifnotdl:returnNonereturntd.MeshOverrideStructure(geometry=self.geometry,dl=(dl,dl,dl),enforce=True,)
[docs]defevaluate_transformation(self,transformation:TransformationType,params:anp.ndarray)->anp.ndarray:"""Evaluate a transformation, passing in design_region_dl."""self._check_params(params)returntransformation.evaluate(spatial_data=params,design_region_dl=self.pixel_size)
[docs]defevaluate_penalty(self,penalty:PenaltyType,material_density:anp.ndarray)->float:"""Evaluate an erosion-dilation penalty, passing in pixel_size."""returnpenalty.evaluate(x=material_density,pixel_size=self.pixel_size)