Source code for tidy3d.components.source.time

"""Defines time dependencies of injected electromagnetic sources."""

from __future__ import annotations

from abc import ABC, abstractmethod
from typing import Optional, Union

import numpy as np
import pydantic.v1 as pydantic

from ...constants import HERTZ
from ...exceptions import ValidationError
from ..data.data_array import TimeDataArray
from ..data.dataset import TimeDataset
from ..data.validators import validate_no_nans
from ..time import AbstractTimeDependence
from ..types import (
    ArrayComplex1D,
    ArrayFloat1D,
    Ax,
    FreqBound,
    PlotVal,
)
from ..validators import warn_if_dataset_none
from ..viz import add_ax_if_none

# how many units of ``twidth`` from the ``offset`` until a gaussian pulse is considered "off"
END_TIME_FACTOR_GAUSSIAN = 10


class SourceTime(AbstractTimeDependence):
    """Base class describing the time dependence of a source."""

    @add_ax_if_none
    def plot_spectrum(
        self,
        times: ArrayFloat1D,
        num_freqs: int = 101,
        val: PlotVal = "real",
        ax: Ax = None,
    ) -> Ax:
        """Plot the complex-valued amplitude of the source time-dependence.
        Note: Only the real part of the time signal is used.

        Parameters
        ----------
        times : np.ndarray
            Array of evenly-spaced times (seconds) to evaluate source time-dependence at.
            The spectrum is computed from this value and the source time frequency content.
            To see source spectrum for a specific :class:`Simulation`,
            pass ``simulation.tmesh``.
        num_freqs : int = 101
            Number of frequencies to plot within the SourceTime.frequency_range.
        ax : matplotlib.axes._subplots.Axes = None
            Matplotlib axes to plot on, if not specified, one is created.

        Returns
        -------
        matplotlib.axes._subplots.Axes
            The supplied or created matplotlib axes.
        """

        fmin, fmax = self.frequency_range()
        return self.plot_spectrum_in_frequency_range(
            times, fmin, fmax, num_freqs=num_freqs, val=val, ax=ax
        )

    @abstractmethod
    def frequency_range(self, num_fwidth: float = 4.0) -> FreqBound:
        """Frequency range within plus/minus ``num_fwidth * fwidth`` of the central frequency."""

    @abstractmethod
    def end_time(self) -> Optional[float]:
        """Time after which the source is effectively turned off / close to zero amplitude."""


class Pulse(SourceTime, ABC):
    """A source time that ramps up with some ``fwidth`` and oscillates at ``freq0``."""

    freq0: pydantic.PositiveFloat = pydantic.Field(
        ..., title="Central Frequency", description="Central frequency of the pulse.", units=HERTZ
    )
    fwidth: pydantic.PositiveFloat = pydantic.Field(
        ...,
        title="",
        description="Standard deviation of the frequency content of the pulse.",
        units=HERTZ,
    )

    offset: float = pydantic.Field(
        5.0,
        title="Offset",
        description="Time delay of the maximum value of the "
        "pulse in units of 1 / (``2pi * fwidth``).",
        ge=2.5,
    )

    @property
    def twidth(self) -> float:
        """Width of pulse in seconds."""
        return 1.0 / (2 * np.pi * self.fwidth)

    def frequency_range(self, num_fwidth: float = 4.0) -> FreqBound:
        """Frequency range within 5 standard deviations of the central frequency.

        Parameters
        ----------
        num_fwidth : float = 4.
            Frequency range defined as plus/minus ``num_fwidth * self.fwdith``.

        Returns
        -------
        Tuple[float, float]
            Minimum and maximum frequencies of the :class:`GaussianPulse` or :class:`ContinuousWave`
            power.
        """

        freq_width_range = num_fwidth * self.fwidth
        freq_min = max(0, self.freq0 - freq_width_range)
        freq_max = self.freq0 + freq_width_range
        return (freq_min, freq_max)


[docs] class GaussianPulse(Pulse): """Source time dependence that describes a Gaussian pulse. Example ------- >>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12) """ remove_dc_component: bool = pydantic.Field( True, title="Remove DC Component", description="Whether to remove the DC component in the Gaussian pulse spectrum. " "If ``True``, the Gaussian pulse is modified at low frequencies to zero out the " "DC component, which is usually desirable so that the fields will decay. However, " "for broadband simulations, it may be better to have non-vanishing source power " "near zero frequency. Setting this to ``False`` results in an unmodified Gaussian " "pulse spectrum which can have a nonzero DC component.", )
[docs] def amp_time(self, time: float) -> complex: """Complex-valued source amplitude as a function of time.""" omega0 = 2 * np.pi * self.freq0 time_shifted = time - self.offset * self.twidth offset = np.exp(1j * self.phase) oscillation = np.exp(-1j * omega0 * time) amp = np.exp(-(time_shifted**2) / 2 / self.twidth**2) * self.amplitude pulse_amp = offset * oscillation * amp # subtract out DC component if self.remove_dc_component: pulse_amp = pulse_amp * (1j + time_shifted / self.twidth**2 / omega0) else: # 1j to make it agree in large omega0 limit pulse_amp = pulse_amp * 1j return pulse_amp
[docs] def end_time(self) -> Optional[float]: """Time after which the source is effectively turned off / close to zero amplitude.""" # TODO: decide if we should continue to return an end_time if the DC component remains # if not self.remove_dc_component: # return None return self.offset * self.twidth + END_TIME_FACTOR_GAUSSIAN * self.twidth
@property def amp_complex(self) -> complex: """Grab the complex amplitude from a ``GaussianPulse``.""" phase = np.exp(1j * self.phase) return self.amplitude * phase
[docs] @classmethod def from_amp_complex(cls, amp: complex, **kwargs) -> GaussianPulse: """Set the complex amplitude of a ``GaussianPulse``. Parameters ---------- amp : complex Complex-valued amplitude to set in the returned ``GaussianPulse``. kwargs : dict Keyword arguments passed to ``GaussianPulse()``, excluding ``amplitude`` & ``phase``. """ amplitude = abs(amp) phase = np.angle(amp) return cls(amplitude=amplitude, phase=phase, **kwargs)
[docs] class ContinuousWave(Pulse): """Source time dependence that ramps up to continuous oscillation and holds until end of simulation. Note ---- Field decay will not occur, so the simulation will run for the full ``run_time``. Also, source normalization of frequency-domain monitors is not meaningful. Example ------- >>> cw = ContinuousWave(freq0=200e12, fwidth=20e12) """
[docs] def amp_time(self, time: float) -> complex: """Complex-valued source amplitude as a function of time.""" twidth = 1.0 / (2 * np.pi * self.fwidth) omega0 = 2 * np.pi * self.freq0 time_shifted = time - self.offset * twidth const = 1.0 offset = np.exp(1j * self.phase) oscillation = np.exp(-1j * omega0 * time) amp = 1 / (1 + np.exp(-time_shifted / twidth)) * self.amplitude return const * offset * oscillation * amp
[docs] def end_time(self) -> Optional[float]: """Time after which the source is effectively turned off / close to zero amplitude.""" return None
[docs] class CustomSourceTime(Pulse): """Custom source time dependence consisting of a real or complex envelope modulated at a central frequency, as shown below. Note ---- .. math:: amp\\_time(t) = amplitude \\cdot \\ e^{i \\cdot phase - 2 \\pi i \\cdot freq0 \\cdot t} \\cdot \\ envelope(t - offset / (2 \\pi \\cdot fwidth)) Note ---- Depending on the envelope, field decay may not occur. If field decay does not occur, then the simulation will run for the full ``run_time``. Also, if field decay does not occur, then source normalization of frequency-domain monitors is not meaningful. Note ---- The source time dependence is linearly interpolated to the simulation time steps. The sampling rate should be sufficiently fast that this interpolation does not introduce artifacts. The source time dependence should also start at zero and ramp up smoothly. The first and last values of the envelope will be used for times that are out of range of the provided data. Example ------- >>> cst = CustomSourceTime.from_values(freq0=1, fwidth=0.1, ... values=np.linspace(0, 9, 10), dt=0.1) """ offset: float = pydantic.Field( 0.0, title="Offset", description="Time delay of the envelope in units of 1 / (``2pi * fwidth``).", ) source_time_dataset: Optional[TimeDataset] = pydantic.Field( ..., title="Source time dataset", description="Dataset for storing the envelope of the custom source time. " "This envelope will be modulated by a complex exponential at frequency ``freq0``.", ) _no_nans_dataset = validate_no_nans("source_time_dataset") _source_time_dataset_none_warning = warn_if_dataset_none("source_time_dataset") @pydantic.validator("source_time_dataset", always=True) def _more_than_one_time(cls, val): """Must have more than one time to interpolate.""" if val is None: return val if val.values.size <= 1: raise ValidationError("'CustomSourceTime' must have more than one time coordinate.") return val
[docs] @classmethod def from_values( cls, freq0: float, fwidth: float, values: ArrayComplex1D, dt: float ) -> CustomSourceTime: """Create a :class:`.CustomSourceTime` from a numpy array. Parameters ---------- freq0 : float Central frequency of the source. The envelope provided will be modulated by a complex exponential at this frequency. fwidth : float Estimated frequency width of the source. values: ArrayComplex1D Complex values of the source envelope. dt: float Time step for the ``values`` array. This value should be sufficiently small that the interpolation to simulation time steps does not introduce artifacts. Returns ------- CustomSourceTime :class:`.CustomSourceTime` with envelope given by ``values``, modulated by a complex exponential at frequency ``freq0``. The time coordinates are evenly spaced between ``0`` and ``dt * (N-1)`` with a step size of ``dt``, where ``N`` is the length of the values array. """ times = np.arange(len(values)) * dt source_time_dataarray = TimeDataArray(values, coords=dict(t=times)) source_time_dataset = TimeDataset(values=source_time_dataarray) return CustomSourceTime( freq0=freq0, fwidth=fwidth, source_time_dataset=source_time_dataset, )
@property def data_times(self) -> ArrayFloat1D: """Times of envelope definition.""" if self.source_time_dataset is None: return [] data_times = self.source_time_dataset.values.coords["t"].values.squeeze() return data_times def _all_outside_range(self, run_time: float) -> bool: """Whether all times are outside range of definition.""" # can't validate if data isn't loaded if self.source_time_dataset is None: return False # make time a numpy array for uniform handling data_times = self.data_times # shift time twidth = 1.0 / (2 * np.pi * self.fwidth) max_time_shifted = run_time - self.offset * twidth min_time_shifted = -self.offset * twidth return (max_time_shifted < min(data_times)) | (min_time_shifted > max(data_times))
[docs] def amp_time(self, time: float) -> complex: """Complex-valued source amplitude as a function of time. Parameters ---------- time : float Time in seconds. Returns ------- complex Complex-valued source amplitude at that time. """ if self.source_time_dataset is None: return None # make time a numpy array for uniform handling times = np.array([time] if isinstance(time, (int, float)) else time) data_times = self.data_times # shift time twidth = 1.0 / (2 * np.pi * self.fwidth) time_shifted = times - self.offset * twidth # mask times that are out of range mask = (time_shifted < min(data_times)) | (time_shifted > max(data_times)) # get envelope envelope = np.zeros(len(time_shifted), dtype=complex) values = self.source_time_dataset.values envelope[mask] = values.sel(t=time_shifted[mask], method="nearest").to_numpy() if not all(mask): envelope[~mask] = values.interp(t=time_shifted[~mask]).to_numpy() # modulation, phase, amplitude omega0 = 2 * np.pi * self.freq0 offset = np.exp(1j * self.phase) oscillation = np.exp(-1j * omega0 * times) amp = self.amplitude return offset * oscillation * amp * envelope
[docs] def end_time(self) -> Optional[float]: """Time after which the source is effectively turned off / close to zero amplitude.""" if self.source_time_dataset is None: return None data_array = self.source_time_dataset.values t_coords = data_array.coords["t"] source_is_non_zero = ~np.isclose(abs(data_array), 0) t_non_zero = t_coords[source_is_non_zero] return np.max(t_non_zero)
SourceTimeType = Union[GaussianPulse, ContinuousWave, CustomSourceTime]