[docs]classRectangularDielectric(Tidy3dBaseModel):"""General rectangular dielectric waveguide Supports: - Strip and rib geometries - Angled sidewalls - Modes in waveguide bends - Surface and sidewall loss models - Coupled waveguides """wavelength:Union[float,ArrayFloat1D]=pydantic.Field(...,title="Wavelength",description="Wavelength(s) at which to calculate modes (in μm).",units=MICROMETER,)core_width:Union[Size1D,ArrayFloat1D]=pydantic.Field(...,title="Core width",description="Core width at the top of the waveguide. If set to an array, defines ""the widths of adjacent waveguides.",units=MICROMETER,)core_thickness:Size1D=pydantic.Field(...,title="Core Thickness",description="Thickness of the core layer.",units=MICROMETER,)core_medium:MediumType=pydantic.Field(...,title="Core Medium",description="Medium associated with the core layer.",discriminator=TYPE_TAG_STR,)clad_medium:MediumType=pydantic.Field(...,title="Clad Medium",description="Medium associated with the upper cladding layer.",discriminator=TYPE_TAG_STR,)box_medium:MediumType=pydantic.Field(None,title="Box Medium",description="Medium associated with the lower cladding layer.",discriminator=TYPE_TAG_STR,)slab_thickness:Size1D=pydantic.Field(0.0,title="Slab Thickness",description="Thickness of the slab for rib geometry.",units=MICROMETER,)clad_thickness:Size1D=pydantic.Field(None,title="Clad Thickness",description="Domain size above the core layer.",units=MICROMETER,)box_thickness:Size1D=pydantic.Field(None,title="Box Thickness",description="Domain size below the core layer.",units=MICROMETER,)side_margin:Size1D=pydantic.Field(None,title="Side Margin",description="Domain size to the sides of the waveguide core.",units=MICROMETER,)sidewall_angle:float=pydantic.Field(0.0,title="Sidewall Angle",description="Angle of the core sidewalls measured from the vertical direction (in ""radians). Positive (negative) values create waveguides with bases wider (narrower) ""than their tops.",units=RADIAN,)gap:Union[float,ArrayFloat1D]=pydantic.Field(0.0,title="Gap",description="Distance between adjacent waveguides, measured at the top core edges. ""An array can be used to define one gap per pair of adjacent waveguides.",units=MICROMETER,)sidewall_thickness:Size1D=pydantic.Field(0.0,title="Sidewall Thickness",description="Sidewall layer thickness (within core).",units=MICROMETER,)sidewall_medium:MediumType=pydantic.Field(None,title="Sidewall medium",description="Medium associated with the sidewall layer to model sidewall losses.",discriminator=TYPE_TAG_STR,)surface_thickness:Size1D=pydantic.Field(0.0,title="Surface Thickness",description="Thickness of the surface layers defined on the top of the waveguide and ""slab regions (if any).",units=MICROMETER,)surface_medium:MediumType=pydantic.Field(None,title="Surface Medium",description="Medium associated with the surface layer to model surface losses.",discriminator=TYPE_TAG_STR,)origin:Coordinate=pydantic.Field((0,0,0),title="Origin",description="Center of the waveguide geometry. This coordinate represents the base ""of the waveguides (substrate surface) in the normal axis, and center of the geometry ""in the remaining axes.",units=MICROMETER,)length:Size1D=pydantic.Field(1e30,title="Length",description="Length of the waveguides in the propagation direction",units=MICROMETER,)propagation_axis:Axis=pydantic.Field(0,title="Propagation Axis",description="Axis of propagation of the waveguide",)normal_axis:Axis=pydantic.Field(2,title="Normal Axis",description="Axis normal to the substrate surface",)mode_spec:ModeSpec=pydantic.Field(ModeSpec(num_modes=2),title="Mode Specification",description=":class:`ModeSpec` defining waveguide mode properties.",)grid_resolution:int=pydantic.Field(15,title="Grid Resolution",description="Solver grid resolution per wavelength.",)max_grid_scaling:float=pydantic.Field(1.2,title="Maximal Grid Scaling",description="Maximal size increase between adjacent grid boundaries.",)@pydantic.validator("wavelength","core_width","gap",always=True)def_set_array(cls,val):"""Ensure values are not negative and convert to numpy arrays."""result=numpy.array(val,ndmin=1)ifany(result<0):raiseValidationError("Values may not be negative.")returnresult@pydantic.validator("box_medium",always=True)@skip_if_fields_missing(["clad_medium"])def_set_box_medium(cls,val,values):"""Set BOX medium same as cladding as default value."""returnvalues["clad_medium"]ifvalisNoneelseval@pydantic.validator("clad_thickness",always=True)@skip_if_fields_missing(["clad_medium","wavelength"])def_set_clad_thickness(cls,val,values):"""Set default cladding thickness based on the max wavelength in the cladding medium."""ifvalisNone:wavelength=values["wavelength"]medium=values["clad_medium"]n=numpy.array([medium.nk_model(f)[0]forfinC_0/wavelength])lda=wavelength/nreturn1.5*lda.max()returnval@pydantic.validator("box_thickness",always=True)@skip_if_fields_missing(["clad_medium","wavelength"])def_set_box_thickness(cls,val,values):"""Set default BOX thickness based on the max wavelength in the BOX medium."""ifvalisNone:wavelength=values["wavelength"]medium=values["box_medium"]n=numpy.array([medium.nk_model(f)[0]forfinC_0/wavelength])lda=wavelength/nreturn1.5*lda.max()returnval@pydantic.validator("side_margin",always=True)@skip_if_fields_missing(["clad_thickness","box_thickness"])def_set_side_margin(cls,val,values):"""Set default side margin based on BOX and cladding thicknesses."""returnmax(values["clad_thickness"],values["box_thickness"])ifvalisNoneelseval@pydantic.validator("gap",always=True)@skip_if_fields_missing(["core_width"])def_validate_gaps(cls,val,values):"""Ensure the number of gaps is compatible with the number of cores supplied."""ifval.size==1andvalues["core_width"].size!=2:# If a single value is defined, use it for all gapsreturnnumpy.array([val[0]]*(values["core_width"].size-1))ifval.size!=values["core_width"].size-1:raiseValidationError("Number of gaps must be 1 less than number of core widths.")returnval@pydantic.root_validatordef_ensure_consistency(cls,values):"""Ensure consistency in setting surface/sidewall models and propagation/normal axes."""sidewall_thickness=values["sidewall_thickness"]sidewall_medium=values["sidewall_medium"]surface_thickness=values["surface_thickness"]surface_medium=values["surface_medium"]propagation_axis=values["propagation_axis"]normal_axis=values["normal_axis"]ifsidewall_thickness>0andsidewall_mediumisNone:raiseValidationError("Sidewall medium must be provided when sidewall thickness is greater than 0.")ifsidewall_thickness==0andsidewall_mediumisnotNone:log.warning("Sidewall medium not used because sidewall thickness is zero.")ifsurface_thickness>0andsurface_mediumisNone:raiseValidationError("Surface medium must be provided when surface thickness is greater than 0.")ifsurface_thickness==0andsurface_mediumisnotNone:log.warning("Surface medium not used because surface thickness is zero.")ifpropagation_axis==normal_axis:raiseValidationError("Propagation and normal axes must be different.")returnvalues@cached_propertydeflateral_axis(self)->Axis:"""Lateral direction axis."""return3-self.propagation_axis-self.normal_axisdef_swap_axis(self,lateral_coord:Any,normal_coord:Any,propagation_coord:Any)->List[Any]:"""Swap the model coordinates to desired axes."""result=[None,None,None]result[self.lateral_axis]=lateral_coordresult[self.propagation_axis]=propagation_coordresult[self.normal_axis]=normal_coordreturnresultdef_translate(self,lateral_coord:float,normal_coord:float,propagation_coord:float)->List[float]:"""Swap the model coordinates to desired axes and translate to origin."""coordinates=self._swap_axis(lateral_coord,normal_coord,propagation_coord)result=[a+bfora,binzip(self.origin,coordinates)]returnresultdef_transform_in_plane(self,lateral_coord:float,propagation_coord:float)->List[float]:"""Swap the model coordinates to desired axes in the substrate plane."""result=self._translate(lateral_coord,0,propagation_coord)_,result=Box.pop_axis(result,self.normal_axis)returnresult@cached_propertydefheight(self)->Size1D:"""Domain height (size in the normal direction)."""returnself.box_thickness+self.core_thickness+self.clad_thickness@cached_propertydefwidth(self)->Size1D:"""Domain width (size in the lateral direction)."""w=self.core_width.sum()+self.gap.sum()+2*self.side_marginifself.sidewall_angle>0:w+=2*self.core_thickness*numpy.tan(self.sidewall_angle)returnw@propertydef_core_starts(self)->List[float]:"""Starting positions of each waveguide (x is the position in the lateral direction)."""core_x=[-0.5*(self.core_width.sum()+self.gap.sum())]core_x.extend(core_x[0]+numpy.cumsum(self.core_width[:-1])+numpy.cumsum(self.gap))returncore_x@propertydef_override_structures(self)->List[Structure]:"""Build override structures to define the simulation grid."""# Grid resolution factor applied to the materials (increase for waveguide corners# and decrease for evanescent tail regions).scale_factor=1.5freqs=C_0/self.wavelengthnk_core=numpy.array([self.core_medium.nk_model(f)forfinfreqs])nk_clad=numpy.array([self.clad_medium.nk_model(f)forfinfreqs])nk_box=numpy.array([self.box_medium.nk_model(f)forfinfreqs])lda_core=self.wavelength/nk_core[:,0]lda_clad=self.wavelength/nk_clad[:,0]lda_box=self.wavelength/nk_box[:,0]core_x=self._core_startsi=numpy.argmin(lda_core)hi_index=Medium.from_nk(n=nk_core[i,0]*scale_factor,k=0,freq=freqs[i])i=numpy.argmin(lda_box)lo_index_box=Medium.from_nk(n=max(1.0,nk_box[i,0]/scale_factor),k=0,freq=freqs[i])i=numpy.argmin(lda_clad)lo_index_clad=Medium.from_nk(n=max(1.0,nk_clad[i,0]/scale_factor),k=0,freq=freqs[i])# Gather all waveguide edge intervals into `hi_res` listcorner_margin=max(lda_box.max(),lda_clad.max())/self.grid_resolutionifself.sidewall_angle>0:dx=(self.core_thickness-self.slab_thickness)*numpy.tan(self.sidewall_angle)hi_res=[pairforx,winzip(core_x,self.core_width)forpairin[[x-dx-corner_margin,x+corner_margin],[x+w-corner_margin,x+w+dx+corner_margin],]]elifself.sidewall_angle<0:dx=(self.core_thickness-self.slab_thickness)*numpy.tan(self.sidewall_angle)hi_res=[pairforx,winzip(core_x,self.core_width)forpairin[[x-corner_margin,x-dx+corner_margin],[x+w+dx-corner_margin,x+w+corner_margin],]]else:hi_res=[pairforx,winzip(core_x,self.core_width)forpairin[[x-corner_margin,x+corner_margin],[x+w-corner_margin,x+w+corner_margin],]]# The gaps between waveguides can be small enough to merge adjacent high# resolution intervals (specially with angled sidewalls), so we merge# intervals that overlapi=0whilei<len(hi_res)-1:ifhi_res[i][1]>=hi_res[i+1][0]:hi_res[i][1]=hi_res.pop(i+1)[1]else:i+=1# Create override structures to improve the mode solver grid. We want# high resolution around all core edges, but not along the whole slab# in case of rib geometry. Start with the 4 corners:override_structures=[Structure(geometry=Box(center=self._translate(0.5*(a+b),y,0),size=self._swap_axis(b-a,2*corner_margin,inf),),medium=hi_index,)for(a,b)inhi_resforyin(self.slab_thickness,self.core_thickness)]# Low resolution on the sides:override_structures.extend(Structure(geometry=Box(center=self._translate(0.5*(a+b),0,0),size=self._swap_axis(b-a,inf,inf),),medium=lo_index_clad,)for(a,b)in((-self.width,hi_res[0][0]),(hi_res[-1][1],self.width)))# Low resolution above and below:override_structures.extend(Structure(geometry=Box(center=self._translate(0,0.5*(a+b),0),size=self._swap_axis(inf,b-a,inf),),medium=lo_index,)for(a,b,lo_index)in((-2*self.box_thickness,-corner_margin,lo_index_box),(self.core_thickness+corner_margin,self.core_thickness+2*self.clad_thickness,lo_index_clad,),))returnoverride_structures@cached_propertydefgrid_spec(self)->GridSpec:"""Waveguide grid specification with overriding geometry."""grid_spec=GridSpec.auto(min_steps_per_wvl=self.grid_resolution,wavelength=self.wavelength.min(),override_structures=self._override_structures,max_scale=self.max_grid_scaling,)returngrid_spec@cached_propertydefstructures(self)->List[Structure]:"""Waveguide structures for simulation, including the core(s), slabs (if any), and bottom cladding, if different from the top. For bend modes, the structure is a 270 degree bend regardless of :attr:`length`."""# Create a local copy of these values, as they will be modified# according to the desired geometrycore_w=numpy.array(self.core_width,copy=True)core_t=self.core_thicknessslab_t=self.slab_thicknesscore_x=self._core_startsifself.mode_spec.bend_radiusisNoneorself.mode_spec.bend_radius==0.0:half_length=0.5*self.lengthdefpolyslab_vertices(x,w):return(self._transform_in_plane(x,-half_length),self._transform_in_plane(x+w,-half_length),self._transform_in_plane(x+w,half_length),self._transform_in_plane(x,half_length),)else:if(self.normal_axis>self.lateral_axis)!=(self.mode_spec.bend_axis==1):raiseTidy3dError("Waveguide band axis must be the substrate normal "f"(mode_spec.bend_axis = {1-self.mode_spec.bend_axis})")bend_radius=self.mode_spec.bend_radius# 10 nm resolution (at center)num_points=1+int(0.5+1.5*numpy.pi*abs(bend_radius)/0.01)angles=numpy.linspace(-0.75*numpy.pi,0.75*numpy.pi,num_points)ifbend_radius<0:angles=-anglessin=numpy.sin(angles)cos=numpy.cos(angles)defpolyslab_vertices(x,w):r_in=bend_radius+xv_in=numpy.vstack((-bend_radius+r_in*cos,r_in*sin)).Tr_out=r_in+wv_out=numpy.vstack((-bend_radius+r_out*cos,r_out*sin)).Treturn[self._transform_in_plane(*v)forvinlist(v_out)+list(v_in[::-1])]# Create the actual waveguide geometrystructures=[]normal_origin=self.origin[self.normal_axis]# Surface and sidewall loss regions are created first, so that the core# can be applied on top.ifself.surface_thickness>0:structures.extend(Structure(geometry=PolySlab(vertices=polyslab_vertices(x,w),slab_bounds=(normal_origin+core_t-self.surface_thickness,normal_origin+core_t,),sidewall_angle=self.sidewall_angle,reference_plane="top",axis=self.normal_axis,),medium=self.surface_medium,)forx,winzip(core_x,core_w))# Add loss region over slab surface, if rib geometryifslab_t>0:structures.append(Structure(geometry=Box(center=self._translate(0,0.5*slab_t,0),size=self._swap_axis(inf,slab_t,self.length),),medium=self.surface_medium,))# Correct core geometry to leave the lossy regions with their# specified thicknessdx=self.surface_thickness*numpy.tan(self.sidewall_angle)core_x-=dxcore_w+=2*dxcore_t-=self.surface_thicknessslab_t=max(0,slab_t-self.surface_thickness)ifself.sidewall_thickness>0:structures.extend(Structure(geometry=PolySlab(vertices=polyslab_vertices(x,w),slab_bounds=(normal_origin,normal_origin+core_t),sidewall_angle=self.sidewall_angle,reference_plane="top",axis=self.normal_axis,),medium=self.sidewall_medium,)forx,winzip(core_x,core_w))# Core position offset and width reduction to accommodate lossy# regionsdx=self.sidewall_thickness/numpy.cos(self.sidewall_angle)core_x+=dxcore_w-=2*dx# Waveguide coresstructures.extend(Structure(geometry=PolySlab(vertices=polyslab_vertices(x,w),slab_bounds=(normal_origin,normal_origin+core_t),sidewall_angle=self.sidewall_angle,reference_plane="top",axis=self.normal_axis,),medium=self.core_medium,)forx,winzip(core_x,core_w))# Slab for rib geometryifslab_t>0:structures.append(Structure(geometry=Box(center=self._translate(0,0.5*slab_t,0),size=self._swap_axis(inf,slab_t,self.length),),medium=self.core_medium,))# Lower claddingifself.box_medium!=self.clad_medium:structures.append(Structure(geometry=Box(center=self._translate(0,-self.box_thickness,0),size=self._swap_axis(inf,2*self.box_thickness,self.length),),medium=self.box_medium,))returnstructures@cached_propertydefmode_solver(self)->ModeSolver:"""Create a mode solver based on this waveguide structure Returns ------- :class:`ModeSolver` Example ------- >>> wg = waveguide.RectangularDielectric( ... wavelength=1.55, ... core_width=0.5, ... core_thickness=0.22, ... core_medium=Medium(permittivity=3.48**2), ... clad_medium=Medium(permittivity=1.45**2), ... num_modes=2, ... ) >>> mode_data = wg.mode_solver.solve() >>> mode_data.n_eff.values array([[2.4536054 1.7850305]], dtype=float32) """freqs=C_0/self.wavelengthf_max=freqs.max()f_min=freqs.min()freq0=0.5*(f_max+f_min)fwidth=max(0.1*freq0,f_max-f_min)plane=Box(center=self._translate(0,0.5*self.height-self.box_thickness,0),size=self._swap_axis(self.width,self.height,0),)# Source used only to silence warningsmode_source=ModeSource(center=plane.center,size=plane.size,source_time=GaussianPulse(freq0=freq0,fwidth=fwidth),direction="+",mode_spec=self.mode_spec,)simulation=Simulation(center=plane.center,size=plane.size,medium=self.clad_medium,structures=self.structures,boundary_spec=BoundarySpec.all_sides(Periodic()),grid_spec=self.grid_spec,sources=[mode_source],run_time=1e-12,)mode_solver=ModeSolver(simulation=simulation,plane=plane,mode_spec=self.mode_spec,freqs=freqs,)returnmode_solver@propertydefn_eff(self)->ModeIndexDataArray:"""Calculate the effective index."""returnself.mode_solver.data.n_eff@propertydefn_complex(self)->ModeIndexDataArray:"""Calculate the complex effective index."""returnself.mode_solver.data.n_complex@propertydefn_group(self)->ModeIndexDataArray:r"""Calculate the group index."""returnself.mode_solver.data.n_group@propertydefmode_area(self)->FreqModeDataArray:"""Calculate the effective mode area."""returnself.mode_solver.data.mode_area# plot wrappers
[docs]defplot(self,x:float=None,y:float=None,z:float=None,ax:Ax=None,source_alpha:float=None,monitor_alpha:float=None,**patch_kwargs,)->Ax:"""Plot each of simulation's components on a plane defined by one nonzero x,y,z coordinate. Parameters ---------- x : float = None position of plane in x direction, only one of x, y, z must be specified to define plane. y : float = None position of plane in y direction, only one of x, y, z must be specified to define plane. z : float = None position of plane in z direction, only one of x, y, z must be specified to define plane. source_alpha : float = None Opacity of the sources. If ``None``, uses Tidy3d default. monitor_alpha : float = None Opacity of the monitors. If ``None``, uses Tidy3d default. ax : matplotlib.axes._subplots.Axes = None Matplotlib axes to plot on, if not specified, one is created. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """returnself.mode_solver.simulation.plot(x=x,y=y,z=z,ax=ax,source_alpha=source_alpha,monitor_alpha=monitor_alpha,**patch_kwargs,)
[docs]defplot_eps(self,x:float=None,y:float=None,z:float=None,freq:float=None,alpha:float=None,source_alpha:float=None,monitor_alpha:float=None,ax:Ax=None,)->Ax:"""Plot each of simulation's components on a plane defined by one nonzero x,y,z coordinate. The permittivity is plotted in grayscale based on its value at the specified frequency. Parameters ---------- x : float = None position of plane in x direction, only one of x, y, z must be specified to define plane. y : float = None position of plane in y direction, only one of x, y, z must be specified to define plane. z : float = None position of plane in z direction, only one of x, y, z must be specified to define plane. freq : float = None Frequency to evaluate the relative permittivity of all mediums. If not specified, evaluates at infinite frequency. alpha : float = None Opacity of the structures being plotted. Defaults to the structure default alpha. source_alpha : float = None Opacity of the sources. If ``None``, uses Tidy3d default. monitor_alpha : float = None Opacity of the monitors. If ``None``, uses Tidy3d default. ax : matplotlib.axes._subplots.Axes = None Matplotlib axes to plot on, if not specified, one is created. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """returnself.mode_solver.simulation.plot_eps(x=x,y=y,z=z,freq=freq,alpha=alpha,source_alpha=source_alpha,monitor_alpha=monitor_alpha,ax=ax,)
[docs]defplot_structures(self,x:float=None,y:float=None,z:float=None,ax:Ax=None)->Ax:"""Plot each of simulation's structures on a plane defined by one nonzero x,y,z coordinate. Parameters ---------- x : float = None position of plane in x direction, only one of x, y, z must be specified to define plane. y : float = None position of plane in y direction, only one of x, y, z must be specified to define plane. z : float = None position of plane in z direction, only one of x, y, z must be specified to define plane. ax : matplotlib.axes._subplots.Axes = None Matplotlib axes to plot on, if not specified, one is created. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """returnself.mode_solver.simulation.plot_structures(x=x,y=y,z=z,ax=ax,)
[docs]defplot_structures_eps(self,x:float=None,y:float=None,z:float=None,freq:float=None,alpha:float=None,cbar:bool=True,reverse:bool=False,ax:Ax=None,)->Ax:"""Plot each of simulation's structures on a plane defined by one nonzero x,y,z coordinate. The permittivity is plotted in grayscale based on its value at the specified frequency. Parameters ---------- x : float = None position of plane in x direction, only one of x, y, z must be specified to define plane. y : float = None position of plane in y direction, only one of x, y, z must be specified to define plane. z : float = None position of plane in z direction, only one of x, y, z must be specified to define plane. freq : float = None Frequency to evaluate the relative permittivity of all mediums. If not specified, evaluates at infinite frequency. reverse : bool = False If ``False``, the highest permittivity is plotted in black. If ``True``, it is plotteed in white (suitable for black backgrounds). cbar : bool = True Whether to plot a colorbar for the relative permittivity. alpha : float = None Opacity of the structures being plotted. Defaults to the structure default alpha. ax : matplotlib.axes._subplots.Axes = None Matplotlib axes to plot on, if not specified, one is created. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """returnself.mode_solver.simulation.plot_structures_eps(x=x,y=y,z=z,freq=freq,alpha=alpha,cbar=cbar,reverse=reverse,ax=ax,)
[docs]defplot_grid(self,x:float=None,y:float=None,z:float=None,ax:Ax=None,**kwargs,)->Ax:"""Plot the cell boundaries as lines on a plane defined by one nonzero x,y,z coordinate. Parameters ---------- x : float = None position of plane in x direction, only one of x, y, z must be specified to define plane. y : float = None position of plane in y direction, only one of x, y, z must be specified to define plane. z : float = None position of plane in z direction, only one of x, y, z must be specified to define plane. ax : matplotlib.axes._subplots.Axes = None Matplotlib axes to plot on, if not specified, one is created. **kwargs Optional keyword arguments passed to the matplotlib ``LineCollection``. For details on accepted values, refer to `Matplotlib's documentation <https://tinyurl.com/2p97z4cn>`_. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """returnself.mode_solver.simulation.plot_grid(x=x,y=y,z=z,ax=ax,**kwargs,)
[docs]defplot_field(self,field_name:str,val:Literal["real","imag","abs"]="real",eps_alpha:float=0.2,robust:bool=True,vmin:float=None,vmax:float=None,ax:Ax=None,**sel_kwargs,)->Ax:"""Plot the field for a :class:`.ModeSolverData` with :class:`.Simulation` plot overlaid. Parameters ---------- field_name : str Name of ``field`` component to plot (eg. ``'Ex'``). Also accepts ``'E'`` and ``'H'`` to plot the vector magnitudes of the electric and magnetic fields, and ``'S'`` for the Poynting vector. val : Literal['real', 'imag', 'abs', 'abs^2', 'dB'] = 'real' Which part of the field to plot. eps_alpha : float = 0.2 Opacity of the structure permittivity. Must be between 0 and 1 (inclusive). robust : bool = True If True and vmin or vmax are absent, uses the 2nd and 98th percentiles of the data to compute the color limits. This helps in visualizing the field patterns especially in the presence of a source. vmin : float = None The lower bound of data range that the colormap covers. If ``None``, they are inferred from the data and other keyword arguments. vmax : float = None The upper bound of data range that the colormap covers. If ``None``, they are inferred from the data and other keyword arguments. ax : matplotlib.axes._subplots.Axes = None matplotlib axes to plot on, if not specified, one is created. sel_kwargs : keyword arguments used to perform ``.sel()`` selection in the monitor data. These kwargs can select over the spatial dimensions (``x``, ``y``, ``z``), frequency or time dimensions (``f``, ``t``) or `mode_index`, if applicable. For the plotting to work appropriately, the resulting data after selection must contain only two coordinates with len > 1. Furthermore, these should be spatial coordinates (``x``, ``y``, or ``z``). Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """returnself.mode_solver.plot_field(field_name=field_name,val=val,eps_alpha=eps_alpha,robust=robust,vmin=vmin,vmax=vmax,ax=ax,**sel_kwargs,)