tidy3d.plugins.smatrix.SMatrixDataArray#
- class SMatrixDataArray[source]#
- Bases: - DataArray- Scattering matrix elements. - Example - >>> port_in = ['port1', 'port2'] >>> port_out = ['port1', 'port2'] >>> mode_index_in = [0, 1] >>> mode_index_out = [0, 1] >>> f = [2e14] >>> coords = dict( ... port_in=ports_in, ... port_out=ports_out, ... mode_index_in=mode_index_in, ... mode_index_out=mode_index_out, ... f=f ... ) >>> fd = SMatrixDataArray((1 + 1j) * np.random.random((2, 2, 2, 2, 1)), coords=coords) - Attributes - Methods - item(*args)- Copy an element of an array to a standard Python scalar and return it. - searchsorted(v[, side, sorter])- Find indices where elements of v should be inserted in a to maintain order. - item(*args)#
- Copy an element of an array to a standard Python scalar and return it. - Parameters:
- *args (Arguments (variable number and type)) – - none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned. 
- int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return. 
- tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array. 
 
- Returns:
- z – A copy of the specified element of the array as a suitable Python scalar 
- Return type:
- Standard Python scalar object 
 - Notes - When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields are defined, in which case a tuple is returned. - item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python’s optimized math. - Examples - >>> np.random.seed(123) >>> x = np.random.randint(9, size=(3, 3)) >>> x array([[2, 2, 6], [1, 3, 6], [1, 0, 1]]) >>> x.item(3) 1 >>> x.item(7) 0 >>> x.item((0, 1)) 2 >>> x.item((2, 2)) 1 
 - searchsorted(v, side='left', sorter=None)#
- Find indices where elements of v should be inserted in a to maintain order. - For full documentation, see numpy.searchsorted - See also - numpy.searchsorted
- equivalent function