tidy3d.plugins.dispersion.DispersionFitter#

class DispersionFitter[source]#

Bases: Tidy3dBaseModel

Tool for fitting refractive index data to get a dispersive medium described by PoleResidue model.

Parameters:
  • wvl_um (ArrayLike[dtype=float, ndim=1]) – [units = um]. Wavelength data in micrometers.

  • n_data (ArrayLike[dtype=float, ndim=1]) – Real part of the complex index of refraction.

  • k_data (Optional[ArrayLike[dtype=float, ndim=1]] = None) – Imaginary part of the complex index of refraction.

  • wvl_range (Tuple[float, float] = (None, None)) – [units = um]. Truncate the wavelength, n and k data to the wavelength range β€˜[wvl_min, wvl_max]’ for fitting.

Attributes

data_in_range

Filter the wavelength-nk data to wavelength range for fitting.

eps_data

Convert filtered input n(k) data into complex permittivity.

freqs

Convert filtered input wavelength data to frequency.

frequency_range

Frequency range of filtered input data

lossy

Find out if the medium is lossy or lossless based on the filtered input data.

Methods

fit([num_poles, num_tries, tolerance_rms, guess])

Fit data a number of times and returns best results.

from_file(fname, **loadtxt_kwargs)

Loads DispersionFitter from file containing wavelength, n, k data.

from_url(url_file[, delimiter, ignore_k])

loads DispersionFitter from url linked to a csv/txt file that contains wavelength (micron), n, and optionally k data.

plot([medium, wvl_um, ax])

Make plot of model vs data, at a set of wavelengths (if supplied).

wvl_um#
n_data#
k_data#
wvl_range#
property data_in_range#

Filter the wavelength-nk data to wavelength range for fitting.

Returns:

Filtered wvl_um, n_data, k_data

Return type:

Tuple[ArrayFloat1D, ArrayFloat1D, ArrayFloat1D]

property lossy#

Find out if the medium is lossy or lossless based on the filtered input data.

Returns:

True for lossy medium; False for lossless medium

Return type:

bool

property eps_data#

Convert filtered input n(k) data into complex permittivity.

Returns:

Complex-valued relative permittivty.

Return type:

complex

property freqs#

Convert filtered input wavelength data to frequency.

Returns:

Frequency array converted from filtered input wavelength data

Return type:

Tuple[float, …]

property frequency_range#

Frequency range of filtered input data

Returns:

The minimal frequency and the maximal frequency

Return type:

Tuple[float, float]

fit(num_poles=1, num_tries=50, tolerance_rms=0.01, guess=None)[source]#

Fit data a number of times and returns best results.

Parameters:
  • num_poles (int, optional) – Number of poles in the model.

  • num_tries (int, optional) – Number of optimizations to run with different initial guesses.

  • tolerance_rms (float, optional) – RMS error below which the fit is successful and the result is returned.

  • guess (PoleResidue = None) – A PoleResidue medium to use as the initial guess in the first optimization run.

Returns:

Best results of multiple fits: (dispersive medium, RMS error).

Return type:

Tuple[PoleResidue, float]

plot(medium=None, wvl_um=None, ax=None)[source]#

Make plot of model vs data, at a set of wavelengths (if supplied).

Parameters:
  • medium (PoleResidue = None) – medium containing model to plot against data

  • wvl_um (ArrayFloat1D = None) – Wavelengths to evaluate model at for plot in micrometers.

  • ax (matplotlib.axes._subplots.Axes = None) – Axes to plot the data on, if None, a new one is created.

Returns:

Matplotlib axis corresponding to plot.

Return type:

matplotlib.axis.Axes

classmethod from_url(url_file, delimiter=',', ignore_k=False, **kwargs)[source]#

loads DispersionFitter from url linked to a csv/txt file that contains wavelength (micron), n, and optionally k data. Preferred from refractiveindex.info.

Hint

The data file from url should be in this format (delimiter not displayed here, and note that the strings such as β€œwl”, β€œn” need to be included in the file):

  • For lossless media:

    wl       n
    [float] [float]
    .       .
    .       .
    .       .
    
  • For lossy media:

    wl       n
    [float] [float]
    .       .
    .       .
    .       .
    wl       k
    [float] [float]
    .       .
    .       .
    .       .
    
Parameters:
  • url_file (str) – Url link to the data file. e.g. β€œhttps://refractiveindex.info/data_csv.php?datafile=data/main/Ag/Johnson.yml”

  • delimiter (str = ",") – E.g. in refractiveindex.info, it’ll be β€œ,” for csv file, and β€œ\t” for txt file.

  • ignore_k (bool = False) – Ignore the k data if they are present, so the fitted material is lossless.

Returns:

A DispersionFitter instance.

Return type:

DispersionFitter

classmethod from_file(fname, **loadtxt_kwargs)[source]#

Loads DispersionFitter from file containing wavelength, n, k data.

Parameters:
  • fname (str) – Path to file containing wavelength (um), n, k (optional) data in columns.

  • **loadtxt_kwargs – Kwargs passed to np.loadtxt, such as skiprows, delimiter.

Hint

The data file should be in this format (delimiter and skiprows can be customized in **loadtxt_kwargs):

  • For lossless media:

    wl       n
    [float] [float]
    .       .
    .       .
    .       .
    
  • For lossy media:

    wl       n       k
    [float] [float] [float]
    .       .       .
    .       .       .
    .       .       .
    
Returns:

A DispersionFitter instance.

Return type:

DispersionFitter

__hash__()#

Hash method.