Source code for tidy3d.plugins.adjoint.components.medium

"""Defines jax-compatible mediums."""
from __future__ import annotations

from typing import Dict, Tuple, Union, Callable, Optional
from abc import ABC

import pydantic.v1 as pd
import numpy as np
from jax.tree_util import register_pytree_node_class
import xarray as xr

from ....components.types import Bound, Literal
from ....components.medium import Medium, AnisotropicMedium, CustomMedium
from ....components.geometry.base import Geometry
from ....components.data.monitor_data import FieldData
from ....exceptions import SetupError
from ....constants import CONDUCTIVITY

from .base import JaxObject
from .types import JaxFloat
from .data.data_array import JaxDataArray
from .data.dataset import JaxPermittivityDataset


# number of integration points per unit wavelength in material
PTS_PER_WVL_INTEGRATION = 20

# maximum number of pixels allowed in each component of a JaxCustomMedium
MAX_NUM_CELLS_CUSTOM_MEDIUM = 250_000


class AbstractJaxMedium(ABC, JaxObject):
    """Holds some utility functions for Jax medium types."""

    def _get_volume_disc(
        self, grad_data: FieldData, sim_bounds: Bound, wvl_mat: float
    ) -> Tuple[Dict[str, np.ndarray], float]:
        """Get the coordinates and volume element for the inside of the corresponding structure."""

        # find intersecting volume between structure and simulation
        mnt_bounds = grad_data.monitor.geometry.bounds
        rmin, rmax = Geometry.bounds_intersection(mnt_bounds, sim_bounds)

        # assemble volume coordinates and differential volume element
        d_vol = 1.0
        vol_coords = {}
        for coord_name, min_edge, max_edge in zip("xyz", rmin, rmax):
            size = max_edge - min_edge

            # don't discretize this dimension if there is no thickness along it
            if size == 0:
                vol_coords[coord_name] = [max_edge]
                continue

            # update the volume element value
            num_cells_dim = int(size * PTS_PER_WVL_INTEGRATION / wvl_mat) + 1
            d_len = size / num_cells_dim
            d_vol *= d_len

            # construct the interpolation coordinates along this dimension
            coords_interp = np.linspace(min_edge + d_len / 2, max_edge - d_len / 2, num_cells_dim)
            vol_coords[coord_name] = coords_interp

        return vol_coords, d_vol

    @staticmethod
    def make_inside_mask(vol_coords: Dict[str, np.ndarray], inside_fn: Callable) -> xr.DataArray:
        """Make a 3D mask of where the volume coordinates are inside a supplied function."""

        meshgrid_args = [vol_coords[dim] for dim in "xyz" if dim in vol_coords]
        vol_coords_meshgrid = np.meshgrid(*meshgrid_args, indexing="ij")
        inside_kwargs = dict(zip("xyz", vol_coords_meshgrid))
        values = inside_fn(**inside_kwargs)
        return xr.DataArray(values, coords=vol_coords)

    def e_mult_volume(
        self,
        field: Literal["Ex", "Ey", "Ez"],
        grad_data_fwd: FieldData,
        grad_data_adj: FieldData,
        vol_coords: Dict[str, np.ndarray],
        d_vol: float,
        inside_fn: Callable,
    ) -> xr.DataArray:
        """Get the E_fwd * E_adj * dV field distribution inside of the discretized volume."""

        e_fwd = grad_data_fwd.field_components[field]
        e_adj = grad_data_adj.field_components[field]

        e_dotted = e_fwd * e_adj

        inside_mask = self.make_inside_mask(vol_coords=vol_coords, inside_fn=inside_fn)

        isel_kwargs = {
            key: [0]
            for key, value in vol_coords.items()
            if isinstance(value, float) or len(value) <= 1
        }
        interp_kwargs = {key: value for key, value in vol_coords.items() if key not in isel_kwargs}

        fields_eval = e_dotted.isel(**isel_kwargs).interp(**interp_kwargs, assume_sorted=True)

        inside_mask = inside_mask.isel(**isel_kwargs)

        mask_dV = inside_mask * d_vol
        fields_eval = fields_eval.assign_coords(**mask_dV.coords)

        return mask_dV * fields_eval

    def d_eps_map(
        self,
        grad_data_fwd: FieldData,
        grad_data_adj: FieldData,
        sim_bounds: Bound,
        wvl_mat: float,
        inside_fn: Callable,
    ) -> xr.DataArray:
        """Mapping of gradient w.r.t. permittivity at each point in discretized volume."""

        vol_coords, d_vol = self._get_volume_disc(
            grad_data=grad_data_fwd, sim_bounds=sim_bounds, wvl_mat=wvl_mat
        )

        e_mult_sum = 0.0

        for field in ("Ex", "Ey", "Ez"):
            e_mult_sum += self.e_mult_volume(
                field=field,
                grad_data_fwd=grad_data_fwd,
                grad_data_adj=grad_data_adj,
                vol_coords=vol_coords,
                d_vol=d_vol,
                inside_fn=inside_fn,
            )

        return e_mult_sum


[docs] @register_pytree_node_class class JaxMedium(Medium, AbstractJaxMedium): """A :class:`.Medium` registered with jax.""" _tidy3d_class = Medium permittivity_jax: JaxFloat = pd.Field( 1.0, title="Permittivity", description="Relative permittivity of the medium. May be a ``jax`` ``Array``.", stores_jax_for="permittivity", ) conductivity_jax: JaxFloat = pd.Field( 0.0, title="Conductivity", description="Electric conductivity. Defined such that the imaginary part of the complex " "permittivity at angular frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, stores_jax_for="conductivity", )
[docs] def store_vjp( self, grad_data_fwd: FieldData, grad_data_adj: FieldData, sim_bounds: Bound, wvl_mat: float, inside_fn: Callable[[np.ndarray, np.ndarray, np.ndarray], np.ndarray], ) -> JaxMedium: """Returns the gradient of the medium parameters given forward and adjoint field data.""" # integrate the dot product of each E component over the volume, update vjp for epsilon d_eps_map = self.d_eps_map( grad_data_fwd=grad_data_fwd, grad_data_adj=grad_data_adj, sim_bounds=sim_bounds, wvl_mat=wvl_mat, inside_fn=inside_fn, ) vjp_eps_complex = d_eps_map.sum(dim=("x", "y", "z")) vjp_eps = 0.0 vjp_sigma = 0.0 for freq in d_eps_map.coords["f"]: vjp_eps_complex_f = vjp_eps_complex.sel(f=freq) _vjp_eps, _vjp_sigma = self.eps_complex_to_eps_sigma(vjp_eps_complex_f, freq) vjp_eps += _vjp_eps vjp_sigma += _vjp_sigma return self.copy( update=dict( permittivity_jax=vjp_eps, conductivity_jax=vjp_sigma, ) )
[docs] @register_pytree_node_class class JaxAnisotropicMedium(AnisotropicMedium, AbstractJaxMedium): """A :class:`.Medium` registered with jax.""" _tidy3d_class = AnisotropicMedium xx: JaxMedium = pd.Field( ..., title="XX Component", description="Medium describing the xx-component of the diagonal permittivity tensor.", jax_field=True, ) yy: JaxMedium = pd.Field( ..., title="YY Component", description="Medium describing the yy-component of the diagonal permittivity tensor.", jax_field=True, ) zz: JaxMedium = pd.Field( ..., title="ZZ Component", description="Medium describing the zz-component of the diagonal permittivity tensor.", jax_field=True, )
[docs] def store_vjp( self, grad_data_fwd: FieldData, grad_data_adj: FieldData, sim_bounds: Bound, wvl_mat: float, inside_fn: Callable, ) -> JaxMedium: """Returns the gradient of the medium parameters given forward and adjoint field data.""" # integrate the dot product of each E component over the volume, update vjp for epsilon vol_coords, d_vol = self._get_volume_disc( grad_data=grad_data_fwd, sim_bounds=sim_bounds, wvl_mat=wvl_mat ) vjp_fields = {} for component in "xyz": field_name = "E" + component component_name = component + component e_mult_dim = self.e_mult_volume( field=field_name, grad_data_fwd=grad_data_fwd, grad_data_adj=grad_data_adj, vol_coords=vol_coords, d_vol=d_vol, inside_fn=inside_fn, ) vjp_eps_complex_ii = e_mult_dim.sum(dim=("x", "y", "z")) freq = e_mult_dim.coords["f"][0] vjp_eps_ii = 0.0 vjp_sigma_ii = 0.0 for freq in e_mult_dim.coords["f"]: vjp_eps_complex_ii_f = vjp_eps_complex_ii.sel(f=freq) _vjp_eps_ii, _vjp_sigma_ii = self.eps_complex_to_eps_sigma( vjp_eps_complex_ii_f, freq ) vjp_eps_ii += _vjp_eps_ii vjp_sigma_ii += _vjp_sigma_ii vjp_medium = self.components[component_name] vjp_fields[component_name] = vjp_medium.updated_copy( permittivity_jax=vjp_eps_ii, conductivity_jax=vjp_sigma_ii, ) return self.copy(update=vjp_fields)
[docs] @register_pytree_node_class class JaxCustomMedium(CustomMedium, AbstractJaxMedium): """A :class:`.CustomMedium` registered with ``jax``. Note: The gradient calculation assumes uniform field across the pixel. Therefore, the accuracy degrades as the pixel size becomes large with respect to the field variation. """ _tidy3d_class = CustomMedium eps_dataset: Optional[JaxPermittivityDataset] = pd.Field( None, title="Permittivity Dataset", description="User-supplied dataset containing complex-valued permittivity " "as a function of space. Permittivity distribution over the Yee-grid will be " "interpolated based on the data nearest to the grid location.", jax_field=True, ) @pd.root_validator(pre=True) def _pre_deprecation_dataset(cls, values): """Don't allow permittivity as a field until we support it.""" if values.get("permittivity") or values.get("conductivity"): raise SetupError( "'permittivity' and 'conductivity' are not yet supported in adjoint plugin. " "Please continue to use the 'eps_dataset' field to define the component " "of the permittivity tensor." ) return values @pd.validator("eps_dataset", always=True) def _is_not_too_large(cls, val): """Ensure number of pixels does not surpass a set amount.""" for field_dim in "xyz": field_name = f"eps_{field_dim}{field_dim}" data_array = val.field_components[field_name] coord_lens = [len(data_array.coords[key]) for key in "xyz"] num_cells_dim = np.prod(coord_lens) if num_cells_dim > MAX_NUM_CELLS_CUSTOM_MEDIUM: raise SetupError( "For the adjoint plugin, each component of the 'JaxCustomMedium.eps_dataset' " f"is restricted to have a maximum of {MAX_NUM_CELLS_CUSTOM_MEDIUM} cells. " f"Detected {num_cells_dim} grid cells in the '{field_name}' component ." ) return val @pd.validator("eps_dataset", always=True) def _eps_dataset_single_frequency(cls, val): """Override of inherited validator. (still needed)""" return val @pd.validator("eps_dataset", always=True) def _eps_dataset_eps_inf_greater_no_less_than_one_sigma_positive(cls, val, values): """Override of inherited validator.""" return val
[docs] def store_vjp( self, grad_data_fwd: FieldData, grad_data_adj: FieldData, sim_bounds: Bound, wvl_mat: float, inside_fn: Callable[[np.ndarray, np.ndarray, np.ndarray], np.ndarray], ) -> JaxMedium: """Returns the gradient of the medium parameters given forward and adjoint field data.""" # get the boundaries of the intersection of the CustomMedium and the Simulation mnt_bounds = grad_data_fwd.monitor.geometry.bounds bounds_intersect = Geometry.bounds_intersection(mnt_bounds, sim_bounds) # get the grids associated with the user-supplied coordinates within these bounds grids = self.grids(bounds=bounds_intersect) vjp_field_components = {} for dim in "xyz": eps_field_name = f"eps_{dim}{dim}" # grab the original data and its coordinates orig_data_array = self.eps_dataset.field_components[eps_field_name] coords = orig_data_array.coords grid = grids[eps_field_name] d_sizes = grid.sizes d_sizes = [d_sizes.x, d_sizes.y, d_sizes.z] # construct the coordinates for interpolation and selection within the custom medium # TODO: extend this to all points within the volume. interp_coords = {} sum_axes = [] for dim_index, dim_pt in enumerate("xyz"): coord_dim = coords[dim_pt] # if it's uniform / single pixel along this dim if len(np.array(coord_dim)) == 1: # discretize along this edge like a regular volume # compute the length of the pixel within the sim bounds r_min_coords, r_max_coords = grid.boundaries.to_list[dim_index] r_min_sim, r_max_sim = np.array(sim_bounds).T[dim_index] r_min = max(r_min_coords, r_min_sim) r_max = min(r_max_coords, r_max_sim) size = abs(r_max - r_min) # compute the length element along the dim, handling case of sim.size=0 if size > 0: # discretize according to PTS_PER_WVL num_cells_dim = int(size * PTS_PER_WVL_INTEGRATION / wvl_mat) + 1 d_len = size / num_cells_dim coords_interp = np.linspace( r_min + d_len / 2, r_max - d_len / 2, num_cells_dim ) else: # just interpolate at the single position, dL=1 to normalize out d_len = 1.0 coords_interp = np.array([(r_min + r_max) / 2.0]) # construct the interpolation coordinates along this dimension d_sizes[dim_index] = np.array([d_len]) interp_coords[dim_pt] = coords_interp # only sum this dimension if there are multiple points sum_axes.append(dim_pt) # otherwise else: # just evaluate at the original data coords interp_coords[dim_pt] = coord_dim # outer product all dimensions to get a volume element mask d_vols = np.einsum("i, j, k -> ijk", *d_sizes) # grab the corresponding dotted fields at these interp_coords and sum over len-1 pixels field_name = "E" + dim e_dotted = ( self.e_mult_volume( field=field_name, grad_data_fwd=grad_data_fwd, grad_data_adj=grad_data_adj, vol_coords=interp_coords, d_vol=d_vols, inside_fn=inside_fn, ) .sum(sum_axes) .sum(dim="f") ) # reshape values to the expected vjp shape to be more safe vjp_shape = tuple(len(coord) for _, coord in coords.items()) # make sure this has the same dtype as the original dtype_orig = np.array(orig_data_array.values).dtype vjp_values = e_dotted.values.reshape(vjp_shape) if dtype_orig.kind == "f": vjp_values = vjp_values.real vjp_values = vjp_values.astype(dtype_orig) # construct a DataArray storing the vjp vjp_data_array = JaxDataArray(values=vjp_values, coords=coords) vjp_field_components[eps_field_name] = vjp_data_array # package everything into dataset vjp_eps_dataset = JaxPermittivityDataset(**vjp_field_components) return self.copy(update=dict(eps_dataset=vjp_eps_dataset))
JaxMediumType = Union[JaxMedium, JaxAnisotropicMedium, JaxCustomMedium] JAX_MEDIUM_MAP = { Medium: JaxMedium, AnisotropicMedium: JaxAnisotropicMedium, CustomMedium: JaxCustomMedium, }