tidy3d.components.medium.CustomDispersiveMedium#
- class CustomDispersiveMedium[source]#
Bases:
AbstractCustomMedium
,DispersiveMedium
,ABC
A spatially varying dispersive medium.
- Parameters:
name (Attribute:
name
) –Type
Optional[str]
Default
= None
Description
Optional unique name for medium.
frequency_range (Attribute:
frequency_range
) –Type
Optional[Tuple[float, float]]
Default
= None
Units
(Hz, Hz)
Description
Optional range of validity for the medium.
allow_gain (Attribute:
allow_gain
) –Type
bool
Default
= False
Description
Allow the medium to be active. Caution: simulations with a gain medium are unstable, and are likely to diverge.Simulations where ‘allow_gain’ is set to ‘True’ will still be charged even if diverged. Monitor data up to the divergence point will still be returned and can be useful in some cases.
nonlinear_spec (Attribute:
nonlinear_spec
) –Type
Union[NonlinearSpec, NonlinearSusceptibility]
Default
= None
Description
Nonlinear spec applied on top of the base medium properties.
modulation_spec (Attribute:
modulation_spec
) –Type
Optional[ModulationSpec]
Default
= None
Description
Modulation spec applied on top of the base medium properties.
heat_spec (Attribute:
heat_spec
) –Type
Union[FluidSpec, SolidSpec, NoneType]
Default
= None
Description
Specification of the medium heat properties. They are used for solving the heat equation via the
HeatSimulation
interface. Such simulations can be used for investigating the influence of heat propagation on the properties of optical systems. Once the temperature distribution in the system is found usingHeatSimulation
object,Simulation.perturbed_mediums_copy()
can be used to convert mediums with perturbation models defined into spatially dependent custom mediums. Otherwise, theheat_spec
does not directly affect the running of an opticalSimulation
.interp_method (Attribute:
interp_method
) –Type
Literal[‘nearest’, ‘linear’]
Default
= nearest
Description
Interpolation method to obtain permittivity values that are not supplied at the Yee grids; For grids outside the range of the supplied data, extrapolation will be applied. When the extrapolated value is smaller (greater) than the minimal (maximal) of the supplied data, the extrapolated value will take the minimal (maximal) of the supplied data.
subpixel (Attribute:
subpixel
) –Type
bool
Default
= False
Description
If
True
and simulation’ssubpixel
is alsoTrue
, applies subpixel averaging of the permittivity on the interface of the structure, including exterior boundary and intersection interfaces with other structures.
Attributes
Whether the medium is isotropic.
This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by
n_cfl
.Representation of Medium as a pole-residue model.
Methods
- property n_cfl#
This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn’t take material factor into account is multiplied by
n_cfl
.For PoleResidue model, it equals
sqrt(eps_inf)
[https://ieeexplore.ieee.org/document/9082879].
- property is_isotropic#
Whether the medium is isotropic.
- property pole_residue#
Representation of Medium as a pole-residue model.
- __hash__()#
Hash method.