tidy3d.PECMedium#

class PECMedium[source]#

Bases: AbstractMedium

Perfect electrical conductor class.

Parameters:
  • name (Attribute: name) –

    Type

    Optional[str]

    Default

    = None

    Description

    Optional unique name for medium.

  • frequency_range (Attribute: frequency_range) –

    Type

    Optional[Tuple[float, float]]

    Default

    = None

    Units

    (Hz, Hz)

    Description

    Optional range of validity for the medium.

  • allow_gain (Attribute: allow_gain) –

    Type

    bool

    Default

    = False

    Description

    Allow the medium to be active. Caution: simulations with a gain medium are unstable, and are likely to diverge.Simulations where β€˜allow_gain’ is set to β€˜True’ will still be charged even if diverged. Monitor data up to the divergence point will still be returned and can be useful in some cases.

  • nonlinear_spec (Attribute: nonlinear_spec) –

    Type

    Union[NonlinearSpec, NonlinearSusceptibility]

    Default

    = None

    Description

    Nonlinear spec applied on top of the base medium properties.

  • modulation_spec (Attribute: modulation_spec) –

    Type

    Optional[ModulationSpec]

    Default

    = None

    Description

    Modulation spec applied on top of the base medium properties.

  • heat_spec (Attribute: heat_spec) –

    Type

    Union[FluidSpec, SolidSpec, NoneType]

    Default

    = None

    Description

    Specification of the medium heat properties. They are used for solving the heat equation via the HeatSimulation interface. Such simulations can be used for investigating the influence of heat propagation on the properties of optical systems. Once the temperature distribution in the system is found using HeatSimulation object, Simulation.perturbed_mediums_copy() can be used to convert mediums with perturbation models defined into spatially dependent custom mediums. Otherwise, the heat_spec does not directly affect the running of an optical Simulation.

Note

To avoid confusion from duplicate PECs, must import tidy3d.PEC instance directly.

Attributes

is_pec

Whether the medium is a PEC.

n_cfl

This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by n_cfl.

Methods

eps_model(frequency)

Complex-valued permittivity as a function of frequency.

eps_model(frequency)[source]#

Complex-valued permittivity as a function of frequency.

Parameters:

frequency (float) – Frequency to evaluate permittivity at (Hz).

Returns:

Complex-valued relative permittivity evaluated at frequency.

Return type:

complex

property n_cfl#

This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn’t take material factor into account is multiplied by n_cfl.

property is_pec#

Whether the medium is a PEC.

__hash__()#

Hash method.