tidy3d.DiffractionMonitor#
- class DiffractionMonitor[source]#
Bases:
PlanarMonitor
,FreqMonitor
Monitor
that uses a 2D Fourier transform to compute the diffraction amplitudes and efficiency for allowed diffraction orders.- Parameters:
center (Attribute:
center
) –Type
Tuple[float, float, float]
Default
= (0.0, 0.0, 0.0)
Units
um
Description
Center of object in x, y, and z.
size (Attribute:
size
) –Type
Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]
Default
Units
um
Description
Size in x, y, and z directions.
name (Attribute:
name
) –Type
ConstrainedStrValue
Default
Description
Unique name for monitor.
interval_space (Attribute:
interval_space
) –Type
Tuple[Literal[1], Literal[1], Literal[1]]
Default
= (1, 1, 1)
Description
Number of grid step intervals between monitor recordings. If equal to 1, there will be no downsampling. If greater than 1, the step will be applied, but the first and last point of the monitor grid are always included. Not all monitors support values different from 1.
colocate (Attribute:
colocate
) –Type
Literal[False]
Default
= False
Description
Defines whether fields are colocated to grid cell boundaries (i.e. to the primal grid) on-the-fly during a solver run. Can be toggled for field recording monitors and is hard-coded for other monitors depending on their specific function.
freqs (Attribute:
freqs
) –Type
Union[Tuple[float, …], ArrayLike[dtype=float, ndim=1]]
Default
Units
Hz
Description
Array or list of frequencies stored by the field monitor.
apodization (Attribute:
apodization
) –Type
ApodizationSpec
Default
= ApodizationSpec(startNone, endNone, widthNone, type’ApodizationSpec’)
Description
Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.
normal_dir (Attribute:
normal_dir
) –Type
Literal[‘+’, ‘-‘]
Default
= +
Description
Direction of the surface monitor’s normal vector w.r.t. the positive x, y or z unit vectors. Must be one of
'+'
or'-'
. Defaults to'+'
if not provided.
Example
>>> monitor = DiffractionMonitor( ... center=(1,2,3), ... size=(inf,inf,0), ... freqs=[250e12, 300e12], ... name='diffraction_monitor', ... normal_dir='+', ... )
See also
- Notebooks
Attributes
Methods
Ensure that the monitor is infinite in the transverse direction.
storage_size
(num_cells, tmesh)Size of monitor storage given the number of points after discretization.
- normal_dir#
- colocate#
- classmethod diffraction_monitor_size(val)[source]#
Ensure that the monitor is infinite in the transverse direction.
- storage_size(num_cells, tmesh)[source]#
Size of monitor storage given the number of points after discretization.
- __hash__()#
Hash method.