tidy3d.CustomPoleResidue#
- class CustomPoleResidue[source]#
Bases:
CustomDispersiveMedium
,PoleResidue
A spatially varying dispersive medium described by the pole-residue pair model.
- Parameters:
name (Attribute:
name
) –Type
Optional[str]
Default
= None
Description
Optional unique name for medium.
frequency_range (Attribute:
frequency_range
) –Type
Optional[Tuple[float, float]]
Default
= None
Units
(Hz, Hz)
Description
Optional range of validity for the medium.
allow_gain (Attribute:
allow_gain
) –Type
bool
Default
= False
Description
Allow the medium to be active. Caution: simulations with a gain medium are unstable, and are likely to diverge.Simulations where ‘allow_gain’ is set to ‘True’ will still be charged even if diverged. Monitor data up to the divergence point will still be returned and can be useful in some cases.
nonlinear_spec (Attribute:
nonlinear_spec
) –Type
Union[NonlinearSpec, NonlinearSusceptibility]
Default
= None
Description
Nonlinear spec applied on top of the base medium properties.
modulation_spec (Attribute:
modulation_spec
) –Type
Optional[ModulationSpec]
Default
= None
Description
Modulation spec applied on top of the base medium properties.
heat_spec (Attribute:
heat_spec
) –Type
Union[FluidSpec, SolidSpec, NoneType]
Default
= None
Description
Specification of the medium heat properties. They are used for solving the heat equation via the
HeatSimulation
interface. Such simulations can be used for investigating the influence of heat propagation on the properties of optical systems. Once the temperature distribution in the system is found usingHeatSimulation
object,Simulation.perturbed_mediums_copy()
can be used to convert mediums with perturbation models defined into spatially dependent custom mediums. Otherwise, theheat_spec
does not directly affect the running of an opticalSimulation
.eps_inf (Attribute:
eps_inf
) –Type
SpatialDataArray
Default
Units
None (relative permittivity)
Description
Relative permittivity at infinite frequency (\(\epsilon_\infty\)).
poles (Attribute:
poles
) –Type
Tuple[Tuple[tidy3d.components.data.data_array.SpatialDataArray, tidy3d.components.data.data_array.SpatialDataArray], …]
Default
= ()
Units
(rad/sec, rad/sec)
Description
Tuple of complex-valued (\(a_i, c_i\)) poles for the model.
interp_method (Attribute:
interp_method
) –Type
Literal[‘nearest’, ‘linear’]
Default
= nearest
Description
Interpolation method to obtain permittivity values that are not supplied at the Yee grids; For grids outside the range of the supplied data, extrapolation will be applied. When the extrapolated value is smaller (greater) than the minimal (maximal) of the supplied data, the extrapolated value will take the minimal (maximal) of the supplied data.
subpixel (Attribute:
subpixel
) –Type
bool
Default
= False
Description
If
True
and simulation’ssubpixel
is alsoTrue
, applies subpixel averaging of the permittivity on the interface of the structure, including exterior boundary and intersection interfaces with other structures.
Notes
In this method, the frequency-dependent permittivity \(\epsilon(\omega)\) is expressed as a sum of resonant material poles [1].
\[\epsilon(\omega) = \epsilon_\infty - \sum_i \left[\frac{c_i}{j \omega + a_i} + \frac{c_i^*}{j \omega + a_i^*}\right]\]For each of these resonant poles identified by the index \(i\), an auxiliary differential equation is used to relate the auxiliary current \(J_i(t)\) to the applied electric field \(E(t)\). The sum of all these auxiliary current contributions describes the total dielectric response of the material.
\[\frac{d}{dt} J_i (t) - a_i J_i (t) = \epsilon_0 c_i \frac{d}{dt} E (t)\]Hence, the computational cost increases with the number of poles.
References
Example
>>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(np.ones((5, 6, 7)), coords=coords) >>> a1 = SpatialDataArray(-np.random.random((5, 6, 7)), coords=coords) >>> c1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> a2 = SpatialDataArray(-np.random.random((5, 6, 7)), coords=coords) >>> c2 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> pole_res = CustomPoleResidue(eps_inf=eps_inf, poles=[(a1, c1), (a2, c2)]) >>> eps = pole_res.eps_model(200e12)
Attributes
Not implemented yet.
Methods
eps_dataarray_freq
(frequency)Permittivity array at
frequency
.from_medium
(medium)Convert a
CustomMedium
to a pole residue model.poles_on_grid
(coords)Spatial profile of poles interpolated at the supplied coordinates.
Convert to a
CustomMedium
.- eps_inf#
- poles#
- eps_dataarray_freq(frequency)[source]#
Permittivity array at
frequency
.- Parameters:
frequency (float) – Frequency to evaluate permittivity at (Hz).
- Returns:
The permittivity evaluated at
frequency
.- Return type:
- poles_on_grid(coords)[source]#
Spatial profile of poles interpolated at the supplied coordinates.
- Parameters:
coords (
Coords
) – The grid point coordinates over which interpolation is performed.- Returns:
The poles interpolated at the supplied coordinate.
- Return type:
Tuple[Tuple[ArrayComplex3D, ArrayComplex3D], …]
- classmethod from_medium(medium)[source]#
Convert a
CustomMedium
to a pole residue model.- Parameters:
medium (
CustomMedium
) – The medium with permittivity and conductivity to convert.- Returns:
The pole residue equivalent.
- Return type:
- to_medium()[source]#
Convert to a
CustomMedium
. Requires the pole residue model to only have a pole at 0 frequency, corresponding to a constant conductivity term.- Returns:
The non-dispersive equivalent with constant permittivity and conductivity.
- Return type:
- property loss_upper_bound#
Not implemented yet.
- __hash__()#
Hash method.