Material Library#

The material library is a dictionary containing various dispersive models from real world materials. To use the materials in the library, import it first by:

>>> from tidy3d import material_library

The key of the dictionary is the abbreviated material name.

Note: some materials have multiple variant models, in which case the second key is the “variant” name.

To import a material “mat” of variant “var”:

>>> medium = material_library['mat']['var']

For example, silver measured by A. D. Rakic et al. (1998) can be loaded as:

>>> silver = material_library['Ag']['Rakic1998BB']

You can also import the default variant of a material by:

>>> medium = material_library['mat'].medium

It is often useful to see the full list of variants for a given medium:

>>> print(material_library['mat'].variants.keys())

To access the details of a variant, including material model, references and tabulated data, use the following command:

>>> material_library['mat'].variants['var']

Silver (“Ag”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972'

0.19 - 1.94 \({\mu}m\)

5-pole, lossy

[1] [data]

'Rakic1998BB' (default)

0.25 - 12.4 \({\mu}m\)

3-pole, lossy

[2] [data]

'RakicLorentzDrude1998'

0.25 - 12.4 \({\mu}m\)

8-pole, lossy

[2] [data]

'Yang2015Drude'

0.19 - 1.94 \({\mu}m\)

3-pole, lossy

[3] [data]

Examples:

>>> medium = material_library['Ag']['JohnsonChristy1972']
>>> medium = material_library['Ag']['Rakic1998BB']
>>> medium = material_library['Ag']['RakicLorentzDrude1998']
>>> medium = material_library['Ag']['Yang2015Drude']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

  3. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, M. B. Raschke. Optical dielectric function of silver, Phys. Rev. B 91, 235137 (2015) [doi]

Aluminum (“Al”)#

Variant

Valid for

Model Info

Reference

'Rakic1995' (default)

0.02 - 1.97 \({\mu}m\)

4-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.06 - 247.97 \({\mu}m\)

7-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Al']['Rakic1995']
>>> medium = material_library['Al']['RakicLorentzDrude1998']

References:

  1. A. D. Rakic. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt. 34, 4755-4767 (1995) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Alumina (“Al2O3”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 2.07 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['Al2O3']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Aluminum Arsenide (“AlAs”)#

Variant

Valid for

Model Info

Reference

'FernOnton1971'

0.56 - 2.2 \({\mu}m\)

2-pole, lossless

[1] [data]

'Horiba' (default)

0.41 - \({\mu}m\)

1-pole, lossy

[2]

Examples:

>>> medium = material_library['AlAs']['FernOnton1971']
>>> medium = material_library['AlAs']['Horiba']

References:

  1. R. E. Fern and A. Onton. Refractive index of AlAs, J. Appl. Phys. 42, 3499-3500 (1971) [doi]

  2. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Aluminum Gallium Nitride (“AlGaN”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 2.07 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['AlGaN']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Aluminum Nitride (“AlN”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.26 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['AlN']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Aluminum Oxide (“AlxOy”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 2.07 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['AlxOy']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Amino Acid (“Aminoacid”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.25 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['Aminoacid']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silicon (Amorphous) (“aSi”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['aSi']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Gold (“Au”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972'

0.19 - 1.94 \({\mu}m\)

5-pole, lossy

[1] [data]

'Olmon2012crystal'

0.3 - 24.93 \({\mu}m\)

3-pole, lossy

[2] [data]

'Olmon2012Drude'

1.24 - 24.93 \({\mu}m\)

3-pole, lossy

[2] [data]

'Olmon2012evaporated' (default)

0.3 - 24.93 \({\mu}m\)

3-pole, lossy

[2] [data]

'Olmon2012stripped'

0.3 - 24.93 \({\mu}m\)

3-pole, lossy

[2] [data]

'RakicLorentzDrude1998'

0.25 - 6.2 \({\mu}m\)

7-pole, lossy

[3] [data]

Examples:

>>> medium = material_library['Au']['JohnsonChristy1972']
>>> medium = material_library['Au']['Olmon2012crystal']
>>> medium = material_library['Au']['Olmon2012Drude']
>>> medium = material_library['Au']['Olmon2012evaporated']
>>> medium = material_library['Au']['Olmon2012stripped']
>>> medium = material_library['Au']['RakicLorentzDrude1998']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke. Optical dielectric function of gold, Phys. Rev. B 86, 235147 (2012) [doi]

  3. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Beryllium (“Be”)#

Variant

Valid for

Model Info

Reference

'Rakic1998BB' (default)

0.25 - 61.99 \({\mu}m\)

4-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.25 - 61.99 \({\mu}m\)

8-pole, lossy

[1] [data]

Examples:

>>> medium = material_library['Be']['Rakic1998BB']
>>> medium = material_library['Be']['RakicLorentzDrude1998']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

N-BK7 Borosilicate Glass (“BK7”)#

Variant

Valid for

Model Info

Reference

'Zemax' (default)

0.3 - 2.5 \({\mu}m\)

3-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['BK7']['Zemax']

References:

  1. SCHOTT Zemax catalog 2017-01-20b [url]

Calcium Fluoride (“CaF2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.26 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['CaF2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Cellulose (“Cellulose”)#

Variant

Valid for

Model Info

Reference

'Sultanova2009' (default)

0.44 - 1.05 \({\mu}m\)

1-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['Cellulose']['Sultanova2009']

References:

  1. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009) [doi]

Chromium (“Cr”)#

Variant

Valid for

Model Info

Reference

'Rakic1998BB' (default)

0.25 - 62.0 \({\mu}m\)

3-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.25 - 61.99 \({\mu}m\)

8-pole, lossy

[1] [data]

Examples:

>>> medium = material_library['Cr']['Rakic1998BB']
>>> medium = material_library['Cr']['RakicLorentzDrude1998']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Silicon (Crystalline) (“cSi”)#

Variant

Valid for

Model Info

Reference

'Green2008' (default)

0.25 - 1.45 \({\mu}m\)

5-pole, lossy

[1] [data]

'Li1993_293K'

1.2 - 14.0 \({\mu}m\)

1-pole, lossless

[2] [data]

'Palik_Lossless'

1.2 - 250.0 \({\mu}m\)

1-pole, low loss

[3]

'Palik_Lossy'

0.1 - 1.4 \({\mu}m\)

5-pole, lossy

[3]

'SalzbergVilla1957'

1.36 - 11.0 \({\mu}m\)

1-pole, lossless

[4][5] [data]

Examples:

>>> medium = material_library['cSi']['Green2008']
>>> medium = material_library['cSi']['Li1993_293K']
>>> medium = material_library['cSi']['Palik_Lossless']
>>> medium = material_library['cSi']['Palik_Lossy']
>>> medium = material_library['cSi']['SalzbergVilla1957']

References:

  1. M. A. Green. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients, Sol. Energ. Mat. Sol. Cells 92, 1305–1310 (2008) [doi]

  2. H. H. Li. Refractive index of silicon and germanium and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 9, 561-658 (1993) [doi]

  3. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi]

  4. C. D. Salzberg and J. J. Villa. Infrared Refractive Indexes of Silicon, Germanium and Modified Selenium Glass, J. Opt. Soc. Am., 47, 244-246 (1957) [doi]

  5. B. Tatian. Fitting refractive-index data with the Sellmeier dispersion formula, Appl. Opt. 23, 4477-4485 (1984) [doi]

Copper (“Cu”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972' (default)

0.19 - 1.94 \({\mu}m\)

5-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.21 - 12.4 \({\mu}m\)

6-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Cu']['JohnsonChristy1972']
>>> medium = material_library['Cu']['RakicLorentzDrude1998']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Fused Silica (“FusedSilica”)#

Variant

Valid for

Model Info

Reference

'ZemaxPMLStable' (default)

0.41 - 1.99 \({\mu}m\)

1-pole, lossless

[1][2] [data]

'ZemaxSellmeier'

0.21 - 6.7 \({\mu}m\)

3-pole, lossless

[1][2] [data]

'ZemaxVisiblePMLStable'

0.41 - 0.78 \({\mu}m\)

1-pole, lossless

[1][2] [data]

Examples:

>>> medium = material_library['FusedSilica']['ZemaxPMLStable']
>>> medium = material_library['FusedSilica']['ZemaxSellmeier']
>>> medium = material_library['FusedSilica']['ZemaxVisiblePMLStable']

References:

  1. I. H. Malitson. Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205-1208 (1965) [doi]

  2. C. Z. Tan. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids 223, 158-163 (1998) [doi]

Gallium Arsenide (“GaAs”)#

Variant

Valid for

Model Info

Reference

'Palik_Lossless'

1.1 - 30.0 \({\mu}m\)

2-pole, low loss

[1]

'Palik_Lossy'

0.22 - 1.3 \({\mu}m\)

6-pole, lossy

[1]

'Skauli2003' (default)

0.97 - 17.0 \({\mu}m\)

3-pole, lossless

[2] [data]

Examples:

>>> medium = material_library['GaAs']['Palik_Lossless']
>>> medium = material_library['GaAs']['Palik_Lossy']
>>> medium = material_library['GaAs']['Skauli2003']

References:

  1. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi]

  2. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier. Improved dispersion relations for GaAs and applications to nonlinear optics, J. Appl. Phys., 94, 6447-6455 (2003) [doi]

Germanium (“Ge”)#

Variant

Valid for

Model Info

Reference

'Icenogle1976' (default)

2.5 - 12.0 \({\mu}m\)

2-pole, lossless

[1][2] [data]

'Palik_Lossless'

1.2 - 20.0 \({\mu}m\)

1-pole, low loss

[3]

'Palik_Lossy'

0.25 - 1.4 \({\mu}m\)

5-pole, lossy

[3]

Examples:

>>> medium = material_library['Ge']['Icenogle1976']
>>> medium = material_library['Ge']['Palik_Lossless']
>>> medium = material_library['Ge']['Palik_Lossy']

References:

  1. H. W. Icenogle, Ben C. Platt, and William L. Wolfe. Refractive indexes and temperature coefficients of germanium and silicon Appl. Opt. 15 2348-2351 (1976) [doi]

  2. N. P. Barnes and M. S. Piltch. Temperature-dependent Sellmeier coefficients and nonlinear optics average power limit for germanium J. Opt. Soc. Am. 69 178-180 (1979) [doi]

  3. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi]

Germanium Oxide (“GeOx”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 2.07 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['GeOx']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Graphene (“graphene”)#

Graphene(*[, type, mu_c, temp, gamma, ...])

Parametric surface conductivity model for graphene.

Water (“H2O”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['H2O']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Hafnium Oxide (“HfO2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['HfO2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Hexamethyldisilazane, or Bis(trimethylsilyl)amine (“HMDS”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.19 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['HMDS']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Indium Arsenide (“InAs”)#

Variant

Valid for

Model Info

Reference

'Palik' (default)

0.55 - 1.4 \({\mu}m\)

3-pole, lossy

[1]

Examples:

>>> medium = material_library['InAs']['Palik']

References:

  1. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi]

Indium Phosphide (“InP”)#

Variant

Valid for

Model Info

Reference

'Palik_Lossless'

0.93 - 10.0 \({\mu}m\)

1-pole, low loss

[1]

'Palik_Lossy'

0.22 - 0.82 \({\mu}m\)

5-pole, lossy

[1]

'Pettit1965' (default)

0.95 - 10.0 \({\mu}m\)

2-pole, lossless

[2][3][4] [data]

Examples:

>>> medium = material_library['InP']['Palik_Lossless']
>>> medium = material_library['InP']['Palik_Lossy']
>>> medium = material_library['InP']['Pettit1965']

References:

  1. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi]

  2. G. D. Pettit and W. J. Turner. Refractive index of InP, J. Appl. Phys. 36, 2081 (1965) [doi]

  3. A. N. Pikhtin and A. D. Yas’kov. Disperson of the refractive index of semiconductors with diamond and zinc-blende structures, Sov. Phys. Semicond. 12, 622-626 (1978)

  4. Handbook of Optics, 2nd edition, Vol. 2. McGraw-Hill 1994 (ISBN 9780070479746)

Indium Tin Oxide (“ITO”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['ITO']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Magnesium Fluoride (“MgF2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.33 - 1.55 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['MgF2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Magnesium Oxide (“MgO”)#

Variant

Valid for

Model Info

Reference

'StephensMalitson1952' (default)

0.36 - 5.4 \({\mu}m\)

2-pole, low loss

[1] [data]

Examples:

>>> medium = material_library['MgO']['StephensMalitson1952']

References:

  1. R. E. Stephens and I. H. Malitson. Index of refraction of magnesium oxide, J. Res. Natl. Bur. Stand. 49 249-252 (1952) [doi]

Molybdenum Disulfide (“MoS2”)#

Variant

Valid for

Model Info

Reference

'Li2014' (default)

0.42 - 0.83 \({\mu}m\)

Medium2D

[1]

Examples:

>>> medium = material_library['MoS2']['Li2014']

References:

  1. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. Shih, J. Hone, and T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014) [doi]

Molybdenum Diselenide (“MoSe2”)#

Variant

Valid for

Model Info

Reference

'Li2014' (default)

0.42 - 0.83 \({\mu}m\)

Medium2D

[1]

Examples:

>>> medium = material_library['MoSe2']['Li2014']

References:

  1. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. Shih, J. Hone, and T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014) [doi]

Nickel (“Ni”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972' (default)

0.19 - 1.94 \({\mu}m\)

5-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.25 - 6.2 \({\mu}m\)

8-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Ni']['JohnsonChristy1972']
>>> medium = material_library['Ni']['RakicLorentzDrude1998']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Palladium (“Pd”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972' (default)

0.19 - 1.94 \({\mu}m\)

5-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.25 - 12.4 \({\mu}m\)

8-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Pd']['JohnsonChristy1972']
>>> medium = material_library['Pd']['RakicLorentzDrude1998']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Polyetherimide (“PEI”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.26 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PEI']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Polyethylene Naphthalate (“PEN”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.39 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PEN']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Polyethylene Terephthalate (“PET”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.39 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PET']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Poly(methyl Methacrylate) (“PMMA”)#

Variant

Valid for

Model Info

Reference

'Horiba'

0.27 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

'Sultanova2009' (default)

0.44 - 1.05 \({\mu}m\)

1-pole, lossless

[2] [data]

Examples:

>>> medium = material_library['PMMA']['Horiba']
>>> medium = material_library['PMMA']['Sultanova2009']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009) [doi]

Polycarbonate (“Polycarbonate”)#

Variant

Valid for

Model Info

Reference

'Horiba'

0.31 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

'Sultanova2009' (default)

0.44 - 1.05 \({\mu}m\)

1-pole, lossless

[2] [data]

Examples:

>>> medium = material_library['Polycarbonate']['Horiba']
>>> medium = material_library['Polycarbonate']['Sultanova2009']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009) [doi]

Polystyrene (“Polystyrene”)#

Variant

Valid for

Model Info

Reference

'Sultanova2009' (default)

0.44 - 1.05 \({\mu}m\)

1-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['Polystyrene']['Sultanova2009']

References:

  1. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009) [doi]

Platinum (“Pt”)#

Variant

Valid for

Model Info

Reference

'RakicLorentzDrude1998'

0.25 - 12.4 \({\mu}m\)

6-pole, lossy

[1] [data]

'Werner2009' (default)

0.1 - 2.48 \({\mu}m\)

3-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Pt']['RakicLorentzDrude1998']
>>> medium = material_library['Pt']['Werner2009']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009) [doi]

Polytetrafluoroethylene, or Teflon (“PTFE”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.19 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PTFE']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Polyvinyl Chloride (“PVC”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.26 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PVC']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Sapphire (“Sapphire”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.23 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['Sapphire']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silicon Nitride (“Si3N4”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.23 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

'Luke2015PMLStable'

0.41 - 1.97 \({\mu}m\)

2-pole, lossless

[2] [data]

'Luke2015Sellmeier'

0.31 - 5.5 \({\mu}m\)

2-pole, lossless

[2] [data]

'Philipp1973Sellmeier'

0.21 - 1.24 \({\mu}m\)

1-pole, lossless

[3][4] [data]

Examples:

>>> medium = material_library['Si3N4']['Horiba']
>>> medium = material_library['Si3N4']['Luke2015PMLStable']
>>> medium = material_library['Si3N4']['Luke2015Sellmeier']
>>> medium = material_library['Si3N4']['Philipp1973Sellmeier']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, Opt. Lett. 40, 4823-4826 (2015) [doi]

  3. H. R. Philipp. Optical properties of silicon nitride, J. Electrochim. Soc. 120, 295-300 (1973) [doi]

  4. T. Baak. Silicon oxynitride; a material for GRIN optics, Appl. Optics 21, 1069-1072 (1982) [doi]

Silicon Carbide (“SiC”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 2.07 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['SiC']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silicon Mononitride (“SiN”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 2.07 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['SiN']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silicon Dioxide (“SiO2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.25 - 1.77 \({\mu}m\)

1-pole, lossy

[1]

'Palik_Lossless'

0.15 - 5.0 \({\mu}m\)

2-pole, low loss

[2]

'Palik_Lossy'

4.0 - 250.0 \({\mu}m\)

5-pole, lossy

[2]

Examples:

>>> medium = material_library['SiO2']['Horiba']
>>> medium = material_library['SiO2']['Palik_Lossless']
>>> medium = material_library['SiO2']['Palik_Lossy']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. E. D. Palik. Handbook of Optical Constants of Solids, Academic Press (1998) [doi]

Silicon Oxynitride (“SiON”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.41 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['SiON']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Tantalum Pentoxide (“Ta2O5”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 1.65 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['Ta2O5']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Titanium (“Ti”)#

Variant

Valid for

Model Info

Reference

'RakicLorentzDrude1998'

0.25 - 31.0 \({\mu}m\)

7-pole, lossy

[1] [data]

'Werner2009' (default)

0.1 - 2.48 \({\mu}m\)

3-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Ti']['RakicLorentzDrude1998']
>>> medium = material_library['Ti']['Werner2009']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009) [doi]

Titanium Oxide (“TiOx”)#

Variant

Valid for

Model Info

Reference

'HorbiaStable'

0.41 - 2.07 \({\mu}m\)

2-pole, lossless

[1]

'Horiba' (default)

0.41 - 2.07 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['TiOx']['HorbiaStable']
>>> medium = material_library['TiOx']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Tungsten (“W”)#

Variant

Valid for

Model Info

Reference

'RakicLorentzDrude1998'

0.25 - 12.4 \({\mu}m\)

6-pole, lossy

[1] [data]

'Werner2009' (default)

0.1 - 2.48 \({\mu}m\)

4-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['W']['RakicLorentzDrude1998']
>>> medium = material_library['W']['Werner2009']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009) [doi]

Tungsten Disulfide (“WS2”)#

Variant

Valid for

Model Info

Reference

'Li2014' (default)

0.42 - 0.83 \({\mu}m\)

Medium2D

[1]

Examples:

>>> medium = material_library['WS2']['Li2014']

References:

  1. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. Shih, J. Hone, and T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014) [doi]

Tungsten Diselenide (“WSe2”)#

Variant

Valid for

Model Info

Reference

'Li2014' (default)

0.42 - 0.83 \({\mu}m\)

Medium2D

[1]

Examples:

>>> medium = material_library['WSe2']['Li2014']

References:

  1. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E. Shih, J. Hone, and T. F. Heinz. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2, Phys. Rev. B 90, 205422 (2014) [doi]

Yttrium Oxide (“Y2O3”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 0.8 \({\mu}m\)

1-pole, lossless

[1]

'Nigara1968'

0.25 - 9.6 \({\mu}m\)

2-pole, lossless

[2] [data]

Examples:

>>> medium = material_library['Y2O3']['Horiba']
>>> medium = material_library['Y2O3']['Nigara1968']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. Y. Nigara. Measurement of the optical constants of yttrium oxide, Jpn. J. Appl. Phys. 7, 404-408 (1968) [doi]

Yttrium Aluminium Garnet (“YAG”)#

Variant

Valid for

Model Info

Reference

'Zelmon1998' (default)

0.4 - 5.0 \({\mu}m\)

2-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['YAG']['Zelmon1998']

References:

  1. D. E. Zelmon, D. L. Small and R. Page. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm, Appl. Opt. 37, 4933-4935 (1998) [doi]

Zirconium Oxide (“ZrO2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.41 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['ZrO2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]