tidy3d.GaussianBeam
tidy3d.GaussianBeam#
- class tidy3d.GaussianBeam(*, name: str = None, type: Literal['GaussianBeam'] = 'GaussianBeam', center: Tuple[float, float, float] = (0.0, 0.0, 0.0), size: Tuple[pydantic.v1.types.NonNegativeFloat, pydantic.v1.types.NonNegativeFloat, pydantic.v1.types.NonNegativeFloat], source_time: Union[tidy3d.components.source.GaussianPulse, tidy3d.components.source.ContinuousWave, tidy3d.components.source.CustomSourceTime], num_freqs: pydantic.v1.types.ConstrainedIntValue = 1, direction: Literal['+', '-'], angle_theta: float = 0.0, angle_phi: float = 0.0, pol_angle: float = 0, waist_radius: pydantic.v1.types.PositiveFloat = 1.0, waist_distance: float = 0.0)#
Bases:
tidy3d.components.source.AngledFieldSource
,tidy3d.components.source.PlanarSource
,tidy3d.components.source.BroadbandSource
Guassian distribution on finite extent plane.
- Parameters
name (Optional[str] = None) – Optional name for the source.
center (Tuple[float, float, float] = (0.0, 0.0, 0.0)) – [units = um]. Center of object in x, y, and z.
size (Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]) – [units = um]. Size in x, y, and z directions.
source_time (Union[GaussianPulse, ContinuousWave, CustomSourceTime]) – Specification of the source time-dependence.
num_freqs (ConstrainedIntValue = 1) – Number of points used to approximate the frequency dependence of injected field. A Chebyshev interpolation is used, thus, only a small number of points, i.e., less than 20, is typically sufficient to obtain converged results.
direction (Literal['+', '-']) – Specifies propagation in the positive or negative direction of the injection axis.
angle_theta (float = 0.0) – [units = rad]. Polar angle of the propagation axis from the injection axis.
angle_phi (float = 0.0) – [units = rad]. Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.
pol_angle (float = 0) – [units = rad]. Specifies the angle between the electric field polarization of the source and the plane defined by the injection axis and the propagation axis (rad).
pol_angle=0
(default) specifies P polarization, whilepol_angle=np.pi/2
specifies S polarization. At normal incidence when S and P are undefined,pol_angle=0
defines: -Ey
polarization for propagation alongx
.-Ex
polarization for propagation alongy
.-Ex
polarization for propagation alongz
.waist_radius (PositiveFloat = 1.0) – [units = um]. Radius of the beam at the waist.
waist_distance (float = 0.0) – [units = um]. Distance from the beam waist along the propagation direction. When
direction
is+
andwaist_distance
is positive, the waist is on the-
side (behind) the source plane. Whendirection
is+
andwaist_distance``is negative, the waist is on the ``+
side (in front) of the source plane.
Example
>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12) >>> gauss = GaussianBeam( ... size=(0,3,3), ... source_time=pulse, ... pol_angle=np.pi / 2, ... direction='+', ... waist_radius=1.0)
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__
(**kwargs)Init method, includes post-init validators.
add_ax_labels_lims
(axis, ax[, buffer])Sets the x,y labels based on
axis
and the extends based onself.bounds
.Automatically place "type" field with model name in the model field dictionary.
bounds_intersection
(bounds1, bounds2)Return the bounds that are the intersection of two bounds.
car_2_sph
(x, y, z)Convert Cartesian to spherical coordinates.
car_2_sph_field
(f_x, f_y, f_z, theta, phi)Convert vector field components in cartesian coordinates to spherical.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(**kwargs)Copy a Tidy3dBaseModel.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file
(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json
(fname)Load dictionary of the model from a .json file.
dict_from_yaml
(fname)Load dictionary of the model from a .yaml file.
evaluate_inf_shape
(shape)Returns a copy of shape with inf vertices replaced by large numbers if polygon.
from_bounds
(rmin, rmax, **kwargs)Constructs a
Box
from minimum and maximum coordinate boundsfrom_file
(fname[, group_path])Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.from_gds
(gds_cell, axis, slab_bounds, gds_layer)Import a
gdstk.Cell
or agdspy.Cell
and extrude it into a GeometryGroup.from_hdf5
(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModel
instance to .hdf5 file.from_hdf5_gz
(fname[, group_path, ...])Loads
Tidy3dBaseModel
instance to .hdf5.gz file.from_json
(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModel
from .json file.from_orm
(obj)from_shapely
(shape, axis, slab_bounds[, ...])Convert a shapely primitive into a geometry instance by extrusion.
from_yaml
(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModel
from .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model
(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name
(index)Get the group name of a tuple element.
get_tuple_index
(key_name)Get the index into the tuple based on its group name.
glancing_incidence
(val)Warn if close to glancing incidence.
help
([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel
.inside
(x, y, z)For input arrays
x
,y
,z
of arbitrary but identical shape, return an array with the same shape which isTrue
for every point in zip(x, y, z) that is inside the volume of theGeometry
, andFalse
otherwise.inside_meshgrid
(x, y, z)Perform
self.inside
on a set of sorted 1D coordinates.intersections_2dbox
(plane)Returns list of shapely geometries representing the intersections of the geometry with a 2D box.
intersections_plane
([x, y, z])Returns shapely geometry at plane specified by one non None value of x,y,z.
intersections_tilted_plane
(normal, origin, to_2D)Return a list of shapely geometries at the plane specified by normal and origin.
intersections_with
(other)Returns list of shapely geometries representing the intersections of the geometry with this 2D box.
intersects
(other)Returns
True
if twoGeometry
have intersecting .bounds.intersects_axis_position
(axis, position)Whether self intersects plane specified by a given position along a normal axis.
intersects_plane
([x, y, z])Whether self intersects plane specified by one non-None value of x,y,z.
json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
kspace_2_sph
(ux, uy, axis)Convert normalized k-space coordinates to angles.
load_gds_vertices_gdspy
(gds_cell, gds_layer)Load polygon vertices from a
gdspy.Cell
.load_gds_vertices_gdstk
(gds_cell, gds_layer)Load polygon vertices from a
gdstk.Cell
.parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])parse_xyz_kwargs
(**xyz)Turns x,y,z kwargs into index of the normal axis and position along that axis.
plot
([x, y, z, ax])Plot this source.
plot_shape
(shape, plot_params, ax)Defines how a shape is plotted on a matplotlib axes.
pop_axis
(coord, axis)Separates coordinate at
axis
index from coordinates on the plane tangent toaxis
.reflect_points
(points, polar_axis, ...)Reflect a set of points in 3D at a plane passing through the coordinate origin defined and normal to a given axis defined in polar coordinates (theta, phi) w.r.t.
rotate_points
(points, axis, angle)Rotate a set of points in 3D.
rotated
(angle, axis)Return a rotated copy of this geometry.
scaled
([x, y, z])Return a scaled copy of this geometry.
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])sph_2_car
(r, theta, phi)Convert spherical to Cartesian coordinates.
sph_2_car_field
(f_r, f_theta, f_phi, theta, phi)Convert vector field components in spherical coordinates to cartesian.
surface_area
([bounds])Returns object's surface area with optional bounds.
surfaces
(size, center, **kwargs)Returns a list of 6
Box
instances corresponding to each surface of a 3D volume.surfaces_with_exclusion
(size, center, **kwargs)Returns a list of 6
Box
instances corresponding to each surface of a 3D volume.to_file
(fname)Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 fileto_gds
(cell[, x, y, z, gds_layer, gds_dtype])Append a Geometry object's planar slice to a .gds cell.
to_gds_file
(fname[, x, y, z, gds_layer, ...])Export a Geometry object's planar slice to a .gds file.
to_gdspy
([x, y, z, gds_layer, gds_dtype])Convert a Geometry object's planar slice to a .gds type polygon.
to_gdstk
([x, y, z, gds_layer, gds_dtype])Convert a Geometry object's planar slice to a .gds type polygon.
to_hdf5
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5 file.to_hdf5_gz
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5.gz file.to_json
(fname)Exports
Tidy3dBaseModel
instance to .json fileto_yaml
(fname)Exports
Tidy3dBaseModel
instance to .yaml file.translated
(x, y, z)Return a translated copy of this geometry.
tuple_to_dict
(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
unpop_axis
(ax_coord, plane_coords, axis)Combine coordinate along axis with coordinates on the plane tangent to the axis.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy
(**kwargs)Make copy of a component instance with
**kwargs
indicating updated field values.validate
(value)volume
([bounds])Returns object's volume with optional bounds.
Attributes
Returns
Box
representation of the bounding box of aGeometry
.Returns bounding box min and max coordinates.
A Chebyshev grid used to approximate frequency dependence.
Box
representation of source.Injection axis of the source.
Default parameters for plotting a Source object.
A list of axes along which the
Box
is zero-sized.waist_radius
waist_distance
- class Config#
Bases:
object
Sets config for all
Tidy3dBaseModel
objects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __add__(other)#
Union of geometries
- __and__(other)#
Intersection of geometries
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int #
Hash method.
- classmethod __init_subclass__() None #
Things that are done to each of the models.
- __invert__()#
Opposite of a geometry
- __iter__() TupleGenerator #
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __mul__(other)#
Intersection of geometries
- __neg__()#
Opposite of a geometry
- __or__(other)#
Union of geometries
- __pos__()#
No op
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None] #
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __radd__(other)#
Union of geometries
- __repr_name__() str #
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult #
Get fields for Rich library
- __sub__(other)#
Difference of geometries
- classmethod __try_update_forward_refs__(**localns: Any) None #
Same as update_forward_refs but will not raise exception when forward references are not defined.
- __xor__(other)#
Symmetric difference of geometries
- add_ax_labels_lims(axis: Literal[0, 1, 2], ax: matplotlib.axes._axes.Axes, buffer: float = 0.3) matplotlib.axes._axes.Axes #
Sets the x,y labels based on
axis
and the extends based onself.bounds
.- Parameters
axis (int) – Integer index into ‘xyz’ (0,1,2).
ax (matplotlib.axes._subplots.Axes) – Matplotlib axes to add labels and limits on.
buffer (float = 0.3) – Amount of space to place around the limits on the + and - sides.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- property bounding_box#
Returns
Box
representation of the bounding box of aGeometry
.- Returns
Geometric object representing bounding box.
- Return type
- property bounds: Tuple[Tuple[float, float, float], Tuple[float, float, float]]#
Returns bounding box min and max coordinates.
- Returns
Min and max bounds packaged as
(minx, miny, minz), (maxx, maxy, maxz)
.- Return type
Tuple[float, float, float], Tuple[float, float float]
- static bounds_intersection(bounds1: Tuple[Tuple[float, float, float], Tuple[float, float, float]], bounds2: Tuple[Tuple[float, float, float], Tuple[float, float, float]]) Tuple[Tuple[float, float, float], Tuple[float, float, float]] #
Return the bounds that are the intersection of two bounds.
- static car_2_sph(x: float, y: float, z: float) Tuple[float, float, float] #
Convert Cartesian to spherical coordinates.
- Parameters
x (float) – x coordinate relative to
local_origin
.y (float) – y coordinate relative to
local_origin
.z (float) – z coordinate relative to
local_origin
.
- Returns
r, theta, and phi coordinates relative to
local_origin
.- Return type
Tuple[float, float, float]
- static car_2_sph_field(f_x: float, f_y: float, f_z: float, theta: float, phi: float) Tuple[complex, complex, complex] #
Convert vector field components in cartesian coordinates to spherical.
- Parameters
f_x (float) – x component of the vector field.
f_y (float) – y component of the vector fielf.
f_z (float) – z component of the vector field.
theta (float) – polar angle (rad) of location of the vector field.
phi (float) – azimuthal angle (rad) of location of the vector field.
- Returns
radial (s), elevation (theta), and azimuthal (phi) components of the vector field in spherical coordinates.
- Return type
Tuple[float, float, float]
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- static evaluate_inf_shape(shape: shapely.geometry.base.BaseGeometry) shapely.geometry.base.BaseGeometry #
Returns a copy of shape with inf vertices replaced by large numbers if polygon.
- property frequency_grid: numpy.ndarray#
A Chebyshev grid used to approximate frequency dependence.
- classmethod from_bounds(rmin: Tuple[float, float, float], rmax: Tuple[float, float, float], **kwargs)#
Constructs a
Box
from minimum and maximum coordinate bounds- Parameters
rmin (Tuple[float, float, float]) – (x, y, z) coordinate of the minimum values.
rmax (Tuple[float, float, float]) – (x, y, z) coordinate of the maximum values.
Example
>>> b = Box.from_bounds(rmin=(-1, -2, -3), rmax=(3, 2, 1))
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
An instance of the component class calling
load
.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- static from_gds(gds_cell, axis: Literal[0, 1, 2], slab_bounds: Tuple[float, float], gds_layer: int, gds_dtype: Optional[int] = None, gds_scale: pydantic.v1.types.PositiveFloat = 1.0, dilation: float = 0.0, sidewall_angle: float = 0, reference_plane: Literal['bottom', 'middle', 'top'] = 'middle') tidy3d.components.geometry.base.Geometry #
Import a
gdstk.Cell
or agdspy.Cell
and extrude it into a GeometryGroup.- Parameters
gds_cell (Union[gdstk.Cell, gdspy.Cell]) –
gdstk.Cell
orgdspy.Cell
containing 2D geometric data.axis (int) – Integer index defining the extrusion axis: 0 (x), 1 (y), or 2 (z).
slab_bounds (Tuple[float, float]) – Minimal and maximal positions of the extruded slab along
axis
.gds_layer (int) – Layer index in the
gds_cell
.gds_dtype (int = None) – Data-type index in the
gds_cell
. IfNone
, imports all data for this layer into the returned list.gds_scale (float = 1.0) – Length scale used in GDS file in units of micrometer. For example, if gds file uses nanometers, set
gds_scale=1e-3
. Must be positive.dilation (float = 0.0) – Dilation (positive) or erosion (negative) amount to be applied to the original polygons.
sidewall_angle (float = 0) – Angle of the extrusion sidewalls, away from the vertical direction, in radians. Positive (negative) values result in slabs larger (smaller) at the base than at the top.
reference_plane (PlanePosition = "middle") – Reference position of the (dilated/eroded) polygons along the slab axis. One of
"middle"
(polygons correspond to the center of the slab bounds),"bottom"
(minimal slab bound position), or"top"
(maximal slab bound position). This value has no effect ifsidewall_angle == 0
.
- Returns
Geometries created from the 2D data.
- Return type
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- static from_shapely(shape: shapely.geometry.base.BaseGeometry, axis: Literal[0, 1, 2], slab_bounds: Tuple[float, float], dilation: float = 0.0, sidewall_angle: float = 0, reference_plane: Literal['bottom', 'middle', 'top'] = 'middle') tidy3d.components.geometry.base.Geometry #
Convert a shapely primitive into a geometry instance by extrusion.
- Parameters
shape (shapely.geometry.base.BaseGeometry) – Shapely primitive to be converted. It must be a linear ring, a polygon or a collection of any of those.
axis (int) – Integer index defining the extrusion axis: 0 (x), 1 (y), or 2 (z).
slab_bounds (Tuple[float, float]) – Minimal and maximal positions of the extruded slab along
axis
.dilation (float) – Dilation of the polygon in the base by shifting each edge along its normal outwards direction by a distance; a negative value corresponds to erosion.
sidewall_angle (float = 0) – Angle of the extrusion sidewalls, away from the vertical direction, in radians. Positive (negative) values result in slabs larger (smaller) at the base than at the top.
reference_plane (PlanePosition = "middle") – Reference position of the (dilated/eroded) polygons along the slab axis. One of
"middle"
(polygons correspond to the center of the slab bounds),"bottom"
(minimal slab bound position), or"top"
(maximal slab bound position). This value has no effect ifsidewall_angle == 0
.
- Returns
Geometry extruded from the 2D data.
- Return type
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- property geometry: tidy3d.components.geometry.base.Box#
Box
representation of source.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]] #
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- classmethod glancing_incidence(val)#
Warn if close to glancing incidence.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- property injection_axis#
Injection axis of the source.
- inside(x: numpy.ndarray[float], y: numpy.ndarray[float], z: numpy.ndarray[float]) numpy.ndarray[bool] #
For input arrays
x
,y
,z
of arbitrary but identical shape, return an array with the same shape which isTrue
for every point in zip(x, y, z) that is inside the volume of theGeometry
, andFalse
otherwise.- Parameters
x (np.ndarray[float]) – Array of point positions in x direction.
y (np.ndarray[float]) – Array of point positions in y direction.
z (np.ndarray[float]) – Array of point positions in z direction.
- Returns
True
for every point that is inside the geometry.- Return type
np.ndarray[bool]
- inside_meshgrid(x: numpy.ndarray[float], y: numpy.ndarray[float], z: numpy.ndarray[float]) numpy.ndarray[bool] #
Perform
self.inside
on a set of sorted 1D coordinates. Applies meshgrid to the supplied coordinates before checking inside.- Parameters
x (np.ndarray[float]) – 1D array of point positions in x direction.
y (np.ndarray[float]) – 1D array of point positions in y direction.
z (np.ndarray[float]) – 1D array of point positions in z direction.
- Returns
Array with shape
(x.size, y.size, z.size)
, which isTrue
for every point that is inside the geometry.- Return type
np.ndarray[bool]
- intersections_2dbox(plane: tidy3d.components.geometry.base.Box) List[shapely.geometry.base.BaseGeometry] #
Returns list of shapely geometries representing the intersections of the geometry with a 2D box.
- Returns
List of 2D shapes that intersect plane. For more details refer to Shapely’s Documentaton.
- Return type
List[shapely.geometry.base.BaseGeometry]
- intersections_plane(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None)#
Returns shapely geometry at plane specified by one non None value of x,y,z.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
- Returns
List of 2D shapes that intersect plane. For more details refer to Shapely’s Documentaton.
- Return type
List[shapely.geometry.base.BaseGeometry]
- intersections_tilted_plane(normal: typing.Tuple[float, float, float], origin: typing.Tuple[float, float, float], to_2D: tidy3d.components.types.ArrayLike[dtype=float, ndim=2, shape=(4, 4)]) List[shapely.geometry.base.BaseGeometry] #
Return a list of shapely geometries at the plane specified by normal and origin.
- Parameters
normal (Coordinate) – Vector defining the normal direction to the plane.
origin (Coordinate) – Vector defining the plane origin.
to_2D (MatrixReal4x4) – Transformation matrix to apply to resulting shapes.
- Returns
List of 2D shapes that intersect plane. For more details refer to Shapely’s Documentaton.
- Return type
List[shapely.geometry.base.BaseGeometry]
- intersections_with(other)#
Returns list of shapely geometries representing the intersections of the geometry with this 2D box.
- Returns
List of 2D shapes that intersect this 2D box. For more details refer to Shapely’s Documentaton.
- Return type
List[shapely.geometry.base.BaseGeometry]
- intersects(other) bool #
Returns
True
if twoGeometry
have intersecting .bounds.- Parameters
other (
Geometry
) – Geometry to check intersection with.- Returns
Whether the rectangular bounding boxes of the two geometries intersect.
- Return type
bool
- intersects_axis_position(axis: int, position: float) bool #
Whether self intersects plane specified by a given position along a normal axis.
- Parameters
axis (int = None) – Axis nomral to the plane.
position (float = None) – Position of plane along the normal axis.
- Returns
Whether this geometry intersects the plane.
- Return type
bool
- intersects_plane(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None) bool #
Whether self intersects plane specified by one non-None value of x,y,z.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
- Returns
Whether this geometry intersects the plane.
- Return type
bool
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- static kspace_2_sph(ux: float, uy: float, axis: Literal[0, 1, 2]) Tuple[float, float] #
Convert normalized k-space coordinates to angles.
- Parameters
ux (float) – normalized kx coordinate.
uy (float) – normalized ky coordinate.
axis (int) – axis along which the observation plane is oriented.
- Returns
theta and phi coordinates relative to
local_origin
.- Return type
Tuple[float, float]
- static load_gds_vertices_gdspy(gds_cell, gds_layer: int, gds_dtype: Optional[int] = None, gds_scale: pydantic.v1.types.PositiveFloat = 1.0) List[tidy3d.components.types.ArrayLike[dtype=float, ndim=2]] #
Load polygon vertices from a
gdspy.Cell
.- Parameters
gds_cell (gdspy.Cell) –
gdstk.Cell
orgdspy.Cell
containing 2D geometric data.gds_layer (int) – Layer index in the
gds_cell
.gds_dtype (int = None) – Data-type index in the
gds_cell
. IfNone
, imports all data for this layer into the returned list.gds_scale (float = 1.0) – Length scale used in GDS file in units of micrometer. For example, if gds file uses nanometers, set
gds_scale=1e-3
. Must be positive.
- Returns
List of polygon vertices
- Return type
List[ArrayFloat2D]
- static load_gds_vertices_gdstk(gds_cell, gds_layer: int, gds_dtype: Optional[int] = None, gds_scale: pydantic.v1.types.PositiveFloat = 1.0) List[tidy3d.components.types.ArrayLike[dtype=float, ndim=2]] #
Load polygon vertices from a
gdstk.Cell
.- Parameters
gds_cell (gdstk.Cell) –
gdstk.Cell
orgdspy.Cell
containing 2D geometric data.gds_layer (int) – Layer index in the
gds_cell
.gds_dtype (int = None) – Data-type index in the
gds_cell
. IfNone
, imports all data for this layer into the returned list.gds_scale (float = 1.0) – Length scale used in GDS file in units of micrometer. For example, if gds file uses nanometers, set
gds_scale=1e-3
. Must be positive.
- Returns
List of polygon vertices
- Return type
List[ArrayFloat2D]
- static parse_xyz_kwargs(**xyz) Tuple[Literal[0, 1, 2], float] #
Turns x,y,z kwargs into index of the normal axis and position along that axis.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
- Returns
Index into xyz axis (0,1,2) and position along that axis.
- Return type
int, float
- plot(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None, **patch_kwargs) matplotlib.axes._axes.Axes #
Plot this source.
- property plot_params: tidy3d.components.viz.PlotParams#
Default parameters for plotting a Source object.
- plot_shape(shape: shapely.geometry.base.BaseGeometry, plot_params: tidy3d.components.viz.PlotParams, ax: matplotlib.axes._axes.Axes) matplotlib.axes._axes.Axes #
Defines how a shape is plotted on a matplotlib axes.
- static pop_axis(coord: Tuple[Any, Any, Any], axis: int) Tuple[Any, Tuple[Any, Any]] #
Separates coordinate at
axis
index from coordinates on the plane tangent toaxis
.- Parameters
coord (Tuple[Any, Any, Any]) – Tuple of three values in original coordinate system.
axis (int) – Integer index into ‘xyz’ (0,1,2).
- Returns
The input coordinates are separated into the one along the axis provided and the two on the planar coordinates, like
axis_coord, (planar_coord1, planar_coord2)
.- Return type
Any, Tuple[Any, Any]
- reflect_points(points: tidy3d.components.types.ArrayLike[dtype=float, ndim=3], polar_axis: typing.Literal[0, 1, 2], angle_theta: float, angle_phi: float) tidy3d.components.types.ArrayLike[dtype=float, ndim=3] #
Reflect a set of points in 3D at a plane passing through the coordinate origin defined and normal to a given axis defined in polar coordinates (theta, phi) w.r.t. the
polar_axis
which can be 0, 1, or 2.- Parameters
points (ArrayLike[float]) – Array of shape
(3, ...)
.polar_axis (Axis) – Cartesian axis w.r.t. which the normal axis angles are defined.
angle_theta (float) – Polar angle w.r.t. the polar axis.
angle_phi (float) – Azimuth angle around the polar axis.
- static rotate_points(points: tidy3d.components.types.ArrayLike[dtype=float, ndim=3], axis: typing.Tuple[float, float, float], angle: float) tidy3d.components.types.ArrayLike[dtype=float, ndim=3] #
Rotate a set of points in 3D.
- Parameters
points (ArrayLike[float]) – Array of shape
(3, ...)
.axis (Coordinate) – Axis of rotation
angle (float) – Angle of rotation counter-clockwise around the axis (rad).
- rotated(angle: float, axis: Union[Literal[0, 1, 2], Tuple[float, float, float]]) tidy3d.components.geometry.base.Geometry #
Return a rotated copy of this geometry.
- Parameters
angle (float) – Rotation angle (in radians).
axis (Union[int, Tuple[float, float, float]]) – Axis of rotation: 0, 1, or 2 for x, y, and z, respectively, or a 3D vector.
- Returns
Rotated copy of this geometry.
- Return type
- scaled(x: float = 1.0, y: float = 1.0, z: float = 1.0) tidy3d.components.geometry.base.Geometry #
Return a scaled copy of this geometry.
- Parameters
x (float = 1.0) – Scaling factor along x.
y (float = 1.0) – Scaling factor along y.
z (float = 1.0) – Scaling factor along z.
- Returns
Scaled copy of this geometry.
- Return type
- static sph_2_car(r: float, theta: float, phi: float) Tuple[float, float, float] #
Convert spherical to Cartesian coordinates.
- Parameters
r (float) – radius.
theta (float) – polar angle (rad) downward from x=y=0 line.
phi (float) – azimuthal (rad) angle from y=z=0 line.
- Returns
x, y, and z coordinates relative to
local_origin
.- Return type
Tuple[float, float, float]
- static sph_2_car_field(f_r: float, f_theta: float, f_phi: float, theta: float, phi: float) Tuple[complex, complex, complex] #
Convert vector field components in spherical coordinates to cartesian.
- Parameters
f_r (float) – radial component of the vector field.
f_theta (float) – polar angle component of the vector fielf.
f_phi (float) – azimuthal angle component of the vector field.
theta (float) – polar angle (rad) of location of the vector field.
phi (float) – azimuthal angle (rad) of location of the vector field.
- Returns
x, y, and z components of the vector field in cartesian coordinates.
- Return type
Tuple[float, float, float]
- surface_area(bounds: Optional[Tuple[Tuple[float, float, float], Tuple[float, float, float]]] = None)#
Returns object’s surface area with optional bounds.
- Parameters
bounds (Tuple[Tuple[float, float, float], Tuple[float, float, float]] = None) – Min and max bounds packaged as
(minx, miny, minz), (maxx, maxy, maxz)
.- Returns
Surface area in um^2.
- Return type
float
- classmethod surfaces(size: Tuple[pydantic.v1.types.NonNegativeFloat, pydantic.v1.types.NonNegativeFloat, pydantic.v1.types.NonNegativeFloat], center: Tuple[float, float, float], **kwargs)#
Returns a list of 6
Box
instances corresponding to each surface of a 3D volume. The output surfaces are stored in the order [x-, x+, y-, y+, z-, z+], where x, y, and z denote which axis is perpendicular to that surface, while “-” and “+” denote the direction of the normal vector of that surface. If a name is provided, each output surface’s name will be that of the provided name appended with the above symbols. E.g., if the provided name is “box”, the x+ surfaces’s name will be “box_x+”.- Parameters
size (Tuple[float, float, float]) – Size of object in x, y, and z directions.
center (Tuple[float, float, float]) – Center of object in x, y, and z.
Example
>>> b = Box.surfaces(size=(1, 2, 3), center=(3, 2, 1))
- classmethod surfaces_with_exclusion(size: Tuple[pydantic.v1.types.NonNegativeFloat, pydantic.v1.types.NonNegativeFloat, pydantic.v1.types.NonNegativeFloat], center: Tuple[float, float, float], **kwargs)#
Returns a list of 6
Box
instances corresponding to each surface of a 3D volume. The output surfaces are stored in the order [x-, x+, y-, y+, z-, z+], where x, y, and z denote which axis is perpendicular to that surface, while “-” and “+” denote the direction of the normal vector of that surface. If a name is provided, each output surface’s name will be that of the provided name appended with the above symbols. E.g., if the provided name is “box”, the x+ surfaces’s name will be “box_x+”. If kwargs contains an exclude_surfaces parameter, the returned list of surfaces will not include the excluded surfaces. Otherwise, the behavior is identical to that of surfaces().- Parameters
size (Tuple[float, float, float]) – Size of object in x, y, and z directions.
center (Tuple[float, float, float]) – Center of object in x, y, and z.
Example
>>> b = Box.surfaces_with_exclusion( ... size=(1, 2, 3), center=(3, 2, 1), exclude_surfaces=["x-"] ... )
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_gds(cell, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, gds_layer: pydantic.v1.types.NonNegativeInt = 0, gds_dtype: pydantic.v1.types.NonNegativeInt = 0) None #
Append a Geometry object’s planar slice to a .gds cell.
- Parameters
cell (
gdstk.Cell
orgdspy.Cell
) – Cell object to which the generated polygons are added.x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
gds_layer (int = 0) – Layer index to use for the shapes stored in the .gds file.
gds_dtype (int = 0) – Data-type index to use for the shapes stored in the .gds file.
- to_gds_file(fname: str, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, gds_layer: pydantic.v1.types.NonNegativeInt = 0, gds_dtype: pydantic.v1.types.NonNegativeInt = 0, gds_cell_name: str = 'MAIN') None #
Export a Geometry object’s planar slice to a .gds file.
- Parameters
fname (str) – Full path to the .gds file to save the
Geometry
slice to.x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
gds_layer (int = 0) – Layer index to use for the shapes stored in the .gds file.
gds_dtype (int = 0) – Data-type index to use for the shapes stored in the .gds file.
gds_cell_name (str = 'MAIN') – Name of the cell created in the .gds file to store the geometry.
- to_gdspy(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, gds_layer: pydantic.v1.types.NonNegativeInt = 0, gds_dtype: pydantic.v1.types.NonNegativeInt = 0) List #
Convert a Geometry object’s planar slice to a .gds type polygon.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
gds_layer (int = 0) – Layer index to use for the shapes stored in the .gds file.
gds_dtype (int = 0) – Data-type index to use for the shapes stored in the .gds file.
- Returns
List of gdspy.Polygon and gdspy.PolygonSet.
- Return type
List
- to_gdstk(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, gds_layer: pydantic.v1.types.NonNegativeInt = 0, gds_dtype: pydantic.v1.types.NonNegativeInt = 0) List #
Convert a Geometry object’s planar slice to a .gds type polygon.
- Parameters
x (float = None) – Position of plane in x direction, only one of x,y,z can be specified to define plane.
y (float = None) – Position of plane in y direction, only one of x,y,z can be specified to define plane.
z (float = None) – Position of plane in z direction, only one of x,y,z can be specified to define plane.
gds_layer (int = 0) – Layer index to use for the shapes stored in the .gds file.
gds_dtype (int = 0) – Data-type index to use for the shapes stored in the .gds file.
- Returns
List of gdstk.Polygon.
- Return type
List
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- translated(x: float, y: float, z: float) tidy3d.components.geometry.base.Geometry #
Return a translated copy of this geometry.
- Parameters
x (float) – Translation along x.
y (float) – Translation along y.
z (float) – Translation along z.
- Returns
Translated copy of this geometry.
- Return type
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- static unpop_axis(ax_coord: Any, plane_coords: Tuple[Any, Any], axis: int) Tuple[Any, Any, Any] #
Combine coordinate along axis with coordinates on the plane tangent to the axis.
- Parameters
ax_coord (Any) – Value along axis direction.
plane_coords (Tuple[Any, Any]) – Values along ordered planar directions.
axis (int) – Integer index into ‘xyz’ (0,1,2).
- Returns
The three values in the xyz coordinate system.
- Return type
Tuple[Any, Any, Any]
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.
- volume(bounds: Optional[Tuple[Tuple[float, float, float], Tuple[float, float, float]]] = None)#
Returns object’s volume with optional bounds.
- Parameters
bounds (Tuple[Tuple[float, float, float], Tuple[float, float, float]] = None) – Min and max bounds packaged as
(minx, miny, minz), (maxx, maxy, maxz)
.- Returns
Volume in um^3.
- Return type
float