tidy3d.plugins.mode.ModeSolver
tidy3d.plugins.mode.ModeSolver#
- class tidy3d.plugins.mode.ModeSolver(*, simulation: tidy3d.components.simulation.Simulation, plane: tidy3d.components.geometry.base.Box, mode_spec: tidy3d.components.mode.ModeSpec, freqs: typing.Union[typing.Tuple[float, ...], tidy3d.components.types.ArrayLike[dtype=float, ndim=1]], direction: typing.Literal['+', '-'] = '+', colocate: bool = True, type: typing.Literal['ModeSolver'] = 'ModeSolver')#
Bases:
tidy3d.components.base.Tidy3dBaseModel
Interface for solving electromagnetic eigenmodes in a 2D plane with translational invariance in the third dimension.
- Parameters
simulation (Simulation) – Simulation defining all structures and mediums.
plane (Box) – Cross-sectional plane in which the mode will be computed.
mode_spec (ModeSpec) – Container with specifications about the modes to be solved for.
freqs (Union[Tuple[float, ...], ArrayLike[dtype=float, ndim=1]]) – A list of frequencies at which to solve.
direction (Literal['+', '-'] = +) – Direction of waveguide mode propagation along the axis defined by its normal dimension.
colocate (bool = True) – Toggle whether fields should be colocated to grid cell boundaries (i.e. primal grid nodes). Default is
True
.
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__
(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(**kwargs)Copy a Tidy3dBaseModel.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file
(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json
(fname)Load dictionary of the model from a .json file.
dict_from_yaml
(fname)Load dictionary of the model from a .yaml file.
from_file
(fname[, group_path])Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5
(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModel
instance to .hdf5 file.from_hdf5_gz
(fname[, group_path, ...])Loads
Tidy3dBaseModel
instance to .hdf5.gz file.from_json
(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModel
from .json file.from_orm
(obj)from_yaml
(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModel
from .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model
(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name
(index)Get the group name of a tuple element.
get_tuple_index
(key_name)Get the index into the tuple based on its group name.
help
([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel
.is_plane
(val)Raise validation error if not planar.
json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])plane_in_sim_bounds
(val, values)Check that the plane is at least partially inside the simulation bounds.
plot_field
(field_name[, val, scale, ...])Plot the field for a
ModeSolverData
withSimulation
plot overlayed.schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])Creates
Simulation
from aModeSolver
.sim_with_monitor
([freqs, name])Creates
Simulation
from aModeSolver
.sim_with_source
(source_time[, direction, ...])Creates
Simulation
from aModeSolver
.solve
()ModeSolverData
containing the field and effective index data.to_file
(fname)Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 fileto_hdf5
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5 file.to_hdf5_gz
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5.gz file.to_json
(fname)Exports
Tidy3dBaseModel
instance to .json fileto_mode_solver_monitor
(name[, colocate])Creates
ModeSolverMonitor
from aModeSolver
instance.to_monitor
([freqs, name])Creates
ModeMonitor
from aModeSolver
instance plus additional specifications.to_source
(source_time[, direction, mode_index])Creates
ModeSource
from aModeSolver
instance plus additional specifications.to_yaml
(fname)Exports
Tidy3dBaseModel
instance to .yaml file.tuple_to_dict
(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy
(**kwargs)Make copy of a component instance with
**kwargs
indicating updated field values.validate
(value)validate_pre_upload
([source_required])Attributes
ModeSolverData
containing the field and effective index data.ModeSolverData
containing the field and effective index on unexpanded grid.The solver grid snapped to the plane normal and to simulation 0-sized dims if any.
Axis normal to the mode plane.
SimulationData
object containing theModeSolverData
for this object.Get symmetry for solver for propagation along self.normal axis.
simulation
plane
mode_spec
freqs
direction
colocate
- class Config#
Bases:
object
Sets config for all
Tidy3dBaseModel
objects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int #
Hash method.
- classmethod __init_subclass__() None #
Things that are done to each of the models.
- __iter__() TupleGenerator #
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None] #
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str #
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult #
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None #
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- property data: tidy3d.components.data.monitor_data.ModeSolverData#
ModeSolverData
containing the field and effective index data.- Returns
ModeSolverData
object containing the effective index and mode fields.- Return type
- property data_raw: tidy3d.components.data.monitor_data.ModeSolverData#
ModeSolverData
containing the field and effective index on unexpanded grid.- Returns
ModeSolverData
object containing the effective index and mode fields.- Return type
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
An instance of the component class calling
load
.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]] #
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- property grid_snapped: tidy3d.components.grid.grid.Grid#
The solver grid snapped to the plane normal and to simulation 0-sized dims if any.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- classmethod is_plane(val)#
Raise validation error if not planar.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- property normal_axis: Literal[0, 1, 2]#
Axis normal to the mode plane.
- classmethod plane_in_sim_bounds(val, values)#
Check that the plane is at least partially inside the simulation bounds.
- plot_field(field_name: str, val: Literal['real', 'imag', 'abs'] = 'real', scale: Literal['lin', 'dB'] = 'lin', eps_alpha: float = 0.2, robust: bool = True, vmin: Optional[float] = None, vmax: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None, **sel_kwargs) matplotlib.axes._axes.Axes #
Plot the field for a
ModeSolverData
withSimulation
plot overlayed.- Parameters
field_name (str) – Name of field component to plot (eg. ‘Ex’). Also accepts ‘E’ and ‘H’ to plot the vector magnitudes of the electric and magnetic fields, and ‘S’ for the Poynting vector.
val (Literal['real', 'imag', 'abs', 'abs^2', 'dB'] = 'real') – Which part of the field to plot.
eps_alpha (float = 0.2) – Opacity of the structure permittivity. Must be between 0 and 1 (inclusive).
robust (bool = True) – If True and vmin or vmax are absent, uses the 2nd and 98th percentiles of the data to compute the color limits. This helps in visualizing the field patterns especially in the presence of a source.
vmin (float = None) – The lower bound of data range that the colormap covers. If
None
, they are inferred from the data and other keyword arguments.vmax (float = None) – The upper bound of data range that the colormap covers. If
None
, they are inferred from the data and other keyword arguments.ax (matplotlib.axes._subplots.Axes = None) – matplotlib axes to plot on, if not specified, one is created.
sel_kwargs (keyword arguments used to perform
.sel()
selection in the monitor data.) – These kwargs can select over the spatial dimensions (x
,y
,z
), frequency or time dimensions (f
,t
) or mode_index, if applicable. For the plotting to work appropriately, the resulting data after selection must contain only two coordinates with len > 1. Furthermore, these should be spatial coordinates (x
,y
, orz
).
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- property sim_data: tidy3d.components.data.sim_data.SimulationData#
SimulationData
object containing theModeSolverData
for this object.- Returns
SimulationData
object containing the effective index and mode fields.- Return type
- sim_with_mode_solver_monitor(name: str) tidy3d.components.simulation.Simulation #
Creates
Simulation
from aModeSolver
. Creates a copy of the ModeSolver’s original simulation with a mode solver monitor added corresponding to the ModeSolver parameters.- Parameters
name (str) – Name of the monitor.
- Returns
Copy of the simulation with a
ModeSolverMonitor
with specifications taken from the ModeSolver instance andname
.- Return type
- sim_with_monitor(freqs: Optional[List[float]] = None, name: Optional[str] = None) tidy3d.components.simulation.Simulation #
Creates
Simulation
from aModeSolver
. Creates a copy of the ModeSolver’s original simulation with a mode monitor added corresponding to the ModeSolver parameters.- Parameters
freqs (List[float] = None) – Frequencies to include in Monitor (Hz). If not specified, uses the frequencies from the mode solver.
name (str) – Required name of monitor.
- Returns
Copy of the simulation with a
ModeMonitor
with specifications taken from the ModeSolver instance and the method inputs.- Return type
- sim_with_source(source_time: tidy3d.components.source.SourceTime, direction: Optional[Literal['+', '-']] = None, mode_index: pydantic.v1.types.NonNegativeInt = 0) tidy3d.components.simulation.Simulation #
Creates
Simulation
from aModeSolver
. Creates a copy of the ModeSolver’s original simulation with a ModeSource added corresponding to the ModeSolver parameters.- Parameters
source_time (
SourceTime
) – Specification of the source time-dependence.direction (Direction = None) – Whether source will inject in
"+"
or"-"
direction relative to plane normal. If not specified, uses the direction from the mode solver.mode_index (int = 0) – Index into the list of modes returned by mode solver to use in source.
- Returns
Copy of the simulation with a
ModeSource
with specifications taken from the ModeSolver instance and the method inputs.- Return type
- solve() tidy3d.components.data.monitor_data.ModeSolverData #
ModeSolverData
containing the field and effective index data.- Returns
ModeSolverData
object containing the effective index and mode fields.- Return type
- property solver_symmetry: Tuple[Literal[0, -1, 1], Literal[0, -1, 1]]#
Get symmetry for solver for propagation along self.normal axis.
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_mode_solver_monitor(name: str, colocate: Optional[bool] = None) tidy3d.components.monitor.ModeSolverMonitor #
Creates
ModeSolverMonitor
from aModeSolver
instance.- Parameters
name (str) – Name of the monitor.
colocate (bool) – Whether to colocate fields or compute on the Yee grid. If not provided, the value set in the
ModeSolver
instance is used.
- Returns
Mode monitor with specifications taken from the ModeSolver instance and
name
.- Return type
- to_monitor(freqs: Optional[List[float]] = None, name: Optional[str] = None) tidy3d.components.monitor.ModeMonitor #
Creates
ModeMonitor
from aModeSolver
instance plus additional specifications.- Parameters
freqs (List[float]) – Frequencies to include in Monitor (Hz). If not specified, passes
self.freqs
.name (str) – Required name of monitor.
- Returns
Mode monitor with specifications taken from the ModeSolver instance and the method inputs.
- Return type
- to_source(source_time: tidy3d.components.source.SourceTime, direction: Optional[Literal['+', '-']] = None, mode_index: pydantic.v1.types.NonNegativeInt = 0) tidy3d.components.source.ModeSource #
Creates
ModeSource
from aModeSolver
instance plus additional specifications.- Parameters
source_time (
SourceTime
) – Specification of the source time-dependence.direction (Direction = None) – Whether source will inject in
"+"
or"-"
direction relative to plane normal. If not specified, uses the direction from the mode solver.mode_index (int = 0) – Index into the list of modes returned by mode solver to use in source.
- Returns
Mode source with specifications taken from the ModeSolver instance and the method inputs.
- Return type
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.