tidy3d.Boundary
tidy3d.Boundary#
- class tidy3d.Boundary(*, plus: Union[tidy3d.components.boundary.Periodic, tidy3d.components.boundary.PECBoundary, tidy3d.components.boundary.PMCBoundary, tidy3d.components.boundary.PML, tidy3d.components.boundary.StablePML, tidy3d.components.boundary.Absorber, tidy3d.components.boundary.BlochBoundary] = PML(name=None, type='PML', num_layers=12, parameters=PMLParams(sigma_order=3, sigma_min=0.0, sigma_max=1.5, type='PMLParams', kappa_order=3, kappa_min=1.0, kappa_max=3.0, alpha_order=1, alpha_min=0.0, alpha_max=0.0)), minus: Union[tidy3d.components.boundary.Periodic, tidy3d.components.boundary.PECBoundary, tidy3d.components.boundary.PMCBoundary, tidy3d.components.boundary.PML, tidy3d.components.boundary.StablePML, tidy3d.components.boundary.Absorber, tidy3d.components.boundary.BlochBoundary] = PML(name=None, type='PML', num_layers=12, parameters=PMLParams(sigma_order=3, sigma_min=0.0, sigma_max=1.5, type='PMLParams', kappa_order=3, kappa_min=1.0, kappa_max=3.0, alpha_order=1, alpha_min=0.0, alpha_max=0.0)), type: Literal['Boundary'] = 'Boundary')#
Bases:
tidy3d.components.base.Tidy3dBaseModel
Boundary conditions at the minus and plus extents along a dimension
- Parameters
plus (Union[Periodic, PECBoundary, PMCBoundary, PML, StablePML, Absorber, BlochBoundary] = PML(name=None, type='PML', num_layers=12, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0))) – Boundary condition on the plus side along a dimension.
minus (Union[Periodic, PECBoundary, PMCBoundary, PML, StablePML, Absorber, BlochBoundary] = PML(name=None, type='PML', num_layers=12, parameters=PMLParams(sigma_order=3,, sigma_min=0.0,, sigma_max=1.5,, type='PMLParams',, kappa_order=3,, kappa_min=1.0,, kappa_max=3.0,, alpha_order=1,, alpha_min=0.0,, alpha_max=0.0))) – Boundary condition on the minus side along a dimension.
Example
>>> boundary = Boundary(plus = PML(), minus = PECBoundary())
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__
(**kwargs)Init method, includes post-init validators.
absorber
([num_layers, parameters])Adiabatic absorber boundary specification on both sides along a dimension.
Automatically place "type" field with model name in the model field dictionary.
bloch
(bloch_vec)Bloch boundary specification on both sides along a dimension.
bloch_from_source
(source, domain_size, axis)Bloch boundary specification on both sides along a dimension based on a given source.
bloch_on_both_sides
(values)Error if a Bloch boundary is applied on only one side.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(**kwargs)Copy a Tidy3dBaseModel.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file
(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json
(fname)Load dictionary of the model from a .json file.
dict_from_yaml
(fname)Load dictionary of the model from a .yaml file.
from_file
(fname[, group_path])Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5
(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModel
instance to .hdf5 file.from_hdf5_gz
(fname[, group_path, ...])Loads
Tidy3dBaseModel
instance to .hdf5.gz file.from_json
(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModel
from .json file.from_orm
(obj)from_yaml
(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModel
from .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model
(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name
(index)Get the group name of a tuple element.
get_tuple_index
(key_name)Get the index into the tuple based on its group name.
help
([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel
.json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])pec
()PEC boundary specification on both sides along a dimension.
periodic
()Periodic boundary specification on both sides along a dimension.
periodic_with_pec_pmc
(values)If a PBC is specified along with PEC or PMC on the other side, manually set the PBC to PEC or PMC so that no special treatment of halos is required.
periodic_with_pml
(values)Error if PBC is specified with a PML.
pmc
()PMC boundary specification on both sides along a dimension.
pml
([num_layers, parameters])PML boundary specification on both sides along a dimension.
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])stable_pml
([num_layers, parameters])Stable PML boundary specification on both sides along a dimension.
to_file
(fname)Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 fileto_hdf5
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5 file.to_hdf5_gz
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5.gz file.to_json
(fname)Exports
Tidy3dBaseModel
instance to .json fileto_yaml
(fname)Exports
Tidy3dBaseModel
instance to .yaml file.tuple_to_dict
(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy
(**kwargs)Make copy of a component instance with
**kwargs
indicating updated field values.validate
(value)Attributes
plus
minus
- class Config#
Bases:
object
Sets config for all
Tidy3dBaseModel
objects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int #
Hash method.
- classmethod __init_subclass__() None #
Things that are done to each of the models.
- __iter__() TupleGenerator #
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None] #
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str #
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult #
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None #
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod absorber(num_layers: pydantic.v1.types.NonNegativeInt = 40, parameters: tidy3d.components.boundary.PMLParams = AbsorberParams(sigma_order=3, sigma_min=0.0, sigma_max=6.4, type='AbsorberParams'))#
Adiabatic absorber boundary specification on both sides along a dimension.
- Parameters
num_layers (int = 40) – Number of layers of absorber to add to + and - boundaries.
parameters (
PMLParams
) – Adiabatic absorber parameters.
Example
>>> absorber = Boundary.absorber(num_layers=40)
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- classmethod bloch(bloch_vec: complex)#
Bloch boundary specification on both sides along a dimension.
- Parameters
bloch_vec (complex) – Normalized component of the Bloch vector in units of 2 * pi / (size along dimension) in the background medium, along the dimension in which the boundary is specified.
Example
>>> bloch = Boundary.bloch(bloch_vec=1)
- classmethod bloch_from_source(source: Union[tidy3d.components.source.GaussianBeam, tidy3d.components.source.ModeSource, tidy3d.components.source.PlaneWave, tidy3d.components.source.TFSF], domain_size: float, axis: Literal[0, 1, 2], medium: Optional[tidy3d.components.medium.Medium] = None)#
Bloch boundary specification on both sides along a dimension based on a given source.
- Parameters
source (Union[
GaussianBeam
,ModeSource
,PlaneWave
]) – Angled source.domain_size (float) – Size of the domain in the direction normal to the Bloch boundary
axis (int) – Axis normal to the Bloch boundary
medium (
Medium
) – Background medium associated with the Bloch vector. Default: free space.
Example
>>> from tidy3d import GaussianPulse, PlaneWave, inf >>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12) >>> pw_source = PlaneWave( ... size=(inf,inf,0), source_time=pulse, direction='+', angle_theta=0.2, angle_phi=0.3) >>> bloch = Boundary.bloch_from_source(source=pw_source, domain_size=5, axis=0)
- classmethod bloch_on_both_sides(values)#
Error if a Bloch boundary is applied on only one side.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
An instance of the component class calling
load
.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]] #
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod pec()#
PEC boundary specification on both sides along a dimension.
Example
>>> pec = Boundary.pec()
- classmethod periodic()#
Periodic boundary specification on both sides along a dimension.
Example
>>> pbc = Boundary.periodic()
- classmethod periodic_with_pec_pmc(values)#
If a PBC is specified along with PEC or PMC on the other side, manually set the PBC to PEC or PMC so that no special treatment of halos is required.
- classmethod periodic_with_pml(values)#
Error if PBC is specified with a PML.
- classmethod pmc()#
PMC boundary specification on both sides along a dimension.
Example
>>> pmc = Boundary.pmc()
- classmethod pml(num_layers: pydantic.v1.types.NonNegativeInt = 12, parameters: tidy3d.components.boundary.PMLParams = PMLParams(sigma_order=3, sigma_min=0.0, sigma_max=1.5, type='PMLParams', kappa_order=3, kappa_min=1.0, kappa_max=3.0, alpha_order=1, alpha_min=0.0, alpha_max=0.0))#
PML boundary specification on both sides along a dimension.
- Parameters
num_layers (int = 12) – Number of layers of standard PML to add to + and - boundaries.
parameters (
PMLParams
) – Parameters of the complex frequency-shifted absorption poles.
Example
>>> pml = Boundary.pml(num_layers=20)
- classmethod stable_pml(num_layers: pydantic.v1.types.NonNegativeInt = 40, parameters: tidy3d.components.boundary.PMLParams = PMLParams(sigma_order=3, sigma_min=0.0, sigma_max=1.0, type='PMLParams', kappa_order=3, kappa_min=1.0, kappa_max=5.0, alpha_order=1, alpha_min=0.0, alpha_max=0.9))#
Stable PML boundary specification on both sides along a dimension.
- Parameters
num_layers (int = 40) – Number of layers of ‘stable’ PML to add to + and - boundaries.
parameters (
PMLParams
) – ‘Stable’ parameters of the complex frequency-shifted absorption poles.
Example
>>> stable_pml = Boundary.stable_pml(num_layers=40)
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.