tidy3d.plugins.dispersion.DispersionFitter
tidy3d.plugins.dispersion.DispersionFitter#
- class tidy3d.plugins.dispersion.DispersionFitter(*, wvl_um: tidy3d.components.types.ArrayLike[dtype=float, ndim=1], n_data: tidy3d.components.types.ArrayLike[dtype=float, ndim=1], k_data: tidy3d.components.types.ArrayLike[dtype=float, ndim=1] = None, wvl_range: typing.Tuple[typing.Optional[float], typing.Optional[float]] = (None, None), type: typing.Literal['DispersionFitter'] = 'DispersionFitter')#
Bases:
tidy3d.components.base.Tidy3dBaseModel
Tool for fitting refractive index data to get a dispersive medium described by
PoleResidue
model.- Parameters
wvl_um (ArrayLike[dtype=float, ndim=1]) – [units = um]. Wavelength data in micrometers.
n_data (ArrayLike[dtype=float, ndim=1]) – Real part of the complex index of refraction.
k_data (Optional[ArrayLike[dtype=float, ndim=1]] = None) – Imaginary part of the complex index of refraction.
wvl_range (Tuple[float, float] = (None, None)) – [units = um]. Truncate the wavelength, n and k data to the wavelength range ‘[wvl_min, wvl_max]’ for fitting.
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__
(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(**kwargs)Copy a Tidy3dBaseModel.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file
(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json
(fname)Load dictionary of the model from a .json file.
dict_from_yaml
(fname)Load dictionary of the model from a .yaml file.
fit
([num_poles, num_tries, tolerance_rms, guess])Fit data a number of times and returns best results.
from_file
(fname, **loadtxt_kwargs)Loads
DispersionFitter
from file containing wavelength, n, k data.from_hdf5
(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModel
instance to .hdf5 file.from_hdf5_gz
(fname[, group_path, ...])Loads
Tidy3dBaseModel
instance to .hdf5.gz file.from_json
(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModel
from .json file.from_orm
(obj)from_url
(url_file[, delimiter, ignore_k])loads
DispersionFitter
from url linked to a csv/txt file that contains wavelength (micron), n, and optionally k data.from_yaml
(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModel
from .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model
(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name
(index)Get the group name of a tuple element.
get_tuple_index
(key_name)Get the index into the tuple based on its group name.
help
([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel
.json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])plot
([medium, wvl_um, ax])Make plot of model vs data, at a set of wavelengths (if supplied).
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])to_file
(fname)Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 fileto_hdf5
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5 file.to_hdf5_gz
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5.gz file.to_json
(fname)Exports
Tidy3dBaseModel
instance to .json fileto_yaml
(fname)Exports
Tidy3dBaseModel
instance to .yaml file.tuple_to_dict
(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy
(**kwargs)Make copy of a component instance with
**kwargs
indicating updated field values.validate
(value)Attributes
Filter the wavelength-nk data to wavelength range for fitting.
Convert filtered input n(k) data into complex permittivity.
Convert filtered input wavelength data to frequency.
Frequency range of filtered input data
Find out if the medium is lossy or lossless based on the filtered input data.
wvl_um
n_data
k_data
wvl_range
- class Config#
Bases:
object
Sets config for all
Tidy3dBaseModel
objects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int #
Hash method.
- classmethod __init_subclass__() None #
Things that are done to each of the models.
- __iter__() TupleGenerator #
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None] #
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str #
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult #
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None #
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- property data_in_range: Tuple[tidy3d.components.types.ArrayLike[dtype=float, ndim=1], tidy3d.components.types.ArrayLike[dtype=float, ndim=1], tidy3d.components.types.ArrayLike[dtype=float, ndim=1]]#
Filter the wavelength-nk data to wavelength range for fitting.
- Returns
Filtered wvl_um, n_data, k_data
- Return type
Tuple[ArrayFloat1D, ArrayFloat1D, ArrayFloat1D]
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- property eps_data: complex#
Convert filtered input n(k) data into complex permittivity.
- Returns
Complex-valued relative permittivty.
- Return type
complex
- fit(num_poles: int = 1, num_tries: int = 50, tolerance_rms: float = 0.01, guess: Optional[tidy3d.components.medium.PoleResidue] = None) Tuple[tidy3d.components.medium.PoleResidue, float] #
Fit data a number of times and returns best results.
- Parameters
num_poles (int, optional) – Number of poles in the model.
num_tries (int, optional) – Number of optimizations to run with different initial guesses.
tolerance_rms (float, optional) – RMS error below which the fit is successful and the result is returned.
guess (
PoleResidue
= None) – APoleResidue
medium to use as the initial guess in the first optimization run.
- Returns
Best results of multiple fits: (dispersive medium, RMS error).
- Return type
Tuple[
PoleResidue
, float]
- property freqs: Tuple[float, ...]#
Convert filtered input wavelength data to frequency.
- Returns
Frequency array converted from filtered input wavelength data
- Return type
Tuple[float, …]
- property frequency_range: Tuple[float, float]#
Frequency range of filtered input data
- Returns
The minimal frequency and the maximal frequency
- Return type
Tuple[float, float]
- classmethod from_file(fname: str, **loadtxt_kwargs)#
Loads
DispersionFitter
from file containing wavelength, n, k data.- Parameters
fname (str) – Path to file containing wavelength (um), n, k (optional) data in columns.
**loadtxt_kwargs – Kwargs passed to
np.loadtxt
, such asskiprows
,delimiter
.
Hint
The data file should be in this format (
delimiter
andskiprows
can be customized in**loadtxt_kwargs
):For lossless media:
wl n [float] [float] . . . . . .
For lossy media:
wl n k [float] [float] [float] . . . . . . . . .
- Returns
A
DispersionFitter
instance.- Return type
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_url(url_file: str, delimiter: str = ',', ignore_k: bool = False, **kwargs)#
loads
DispersionFitter
from url linked to a csv/txt file that contains wavelength (micron), n, and optionally k data. Preferred from refractiveindex.info.Hint
The data file from url should be in this format (delimiter not displayed here, and note that the strings such as “wl”, “n” need to be included in the file):
For lossless media:
wl n [float] [float] . . . . . .
For lossy media:
wl n [float] [float] . . . . . . wl k [float] [float] . . . . . .
- Parameters
url_file (str) – Url link to the data file. e.g. “https://refractiveindex.info/data_csv.php?datafile=data/main/Ag/Johnson.yml”
delimiter (str = ",") – E.g. in refractiveindex.info, it’ll be “,” for csv file, and “\t” for txt file.
ignore_k (bool = False) – Ignore the k data if they are present, so the fitted material is lossless.
- Returns
A
DispersionFitter
instance.- Return type
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]] #
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- property lossy: bool#
Find out if the medium is lossy or lossless based on the filtered input data.
- Returns
True for lossy medium; False for lossless medium
- Return type
bool
- plot(medium: tidy3d.components.medium.PoleResidue = None, wvl_um: tidy3d.components.types.ArrayLike[dtype=float, ndim=1] = None, ax: matplotlib.axes._axes.Axes = None) matplotlib.axes._axes.Axes #
Make plot of model vs data, at a set of wavelengths (if supplied).
- Parameters
medium (
PoleResidue
= None) – medium containing model to plot against datawvl_um (ArrayFloat1D = None) – Wavelengths to evaluate model at for plot in micrometers.
ax (matplotlib.axes._subplots.Axes = None) – Axes to plot the data on, if None, a new one is created.
- Returns
Matplotlib axis corresponding to plot.
- Return type
matplotlib.axis.Axes
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.