tidy3d.SimulationData
tidy3d.SimulationData#
- class tidy3d.SimulationData(*, simulation: tidy3d.components.simulation.Simulation, data: Tuple[Union[tidy3d.components.data.monitor_data.FieldData, tidy3d.components.data.monitor_data.FieldTimeData, tidy3d.components.data.monitor_data.PermittivityData, tidy3d.components.data.monitor_data.ModeSolverData, tidy3d.components.data.monitor_data.ModeData, tidy3d.components.data.monitor_data.FluxData, tidy3d.components.data.monitor_data.FluxTimeData, tidy3d.components.data.monitor_data.FieldProjectionKSpaceData, tidy3d.components.data.monitor_data.FieldProjectionCartesianData, tidy3d.components.data.monitor_data.FieldProjectionAngleData, tidy3d.components.data.monitor_data.DiffractionData], ...], log: str = None, type: Literal['SimulationData'] = 'SimulationData', diverged: bool = False)#
Bases:
tidy3d.components.base_sim.data.sim_data.AbstractSimulationData
Stores data from a collection of
Monitor
objects in aSimulation
.- Parameters
simulation (Simulation) – Original
Simulation
associated with the data.data (Tuple[Annotated[Union[tidy3d.components.data.monitor_data.FieldData, tidy3d.components.data.monitor_data.FieldTimeData, tidy3d.components.data.monitor_data.PermittivityData, tidy3d.components.data.monitor_data.ModeSolverData, tidy3d.components.data.monitor_data.ModeData, tidy3d.components.data.monitor_data.FluxData, tidy3d.components.data.monitor_data.FluxTimeData, tidy3d.components.data.monitor_data.FieldProjectionKSpaceData, tidy3d.components.data.monitor_data.FieldProjectionCartesianData, tidy3d.components.data.monitor_data.FieldProjectionAngleData, tidy3d.components.data.monitor_data.DiffractionData], FieldInfo(default=PydanticUndefined, discriminator='type', extra={})], ...]) – List of
MonitorData
instances associated with the monitors of the originalSimulation
.log (Optional[str] = None) – A string containing the log information from the simulation run.
diverged (bool = False) – A boolean flag denoting whether the simulation run diverged.
Example
>>> import tidy3d as td >>> num_modes = 5 >>> x = [-1,1,3] >>> y = [-2,0,2,4] >>> z = [-3,-1,1,3,5] >>> f = [2e14, 3e14] >>> coords = dict(x=x[:-1], y=y[:-1], z=z[:-1], f=f) >>> grid = td.Grid(boundaries=td.Coords(x=x, y=y, z=z)) >>> scalar_field = td.ScalarFieldDataArray((1+1j) * np.random.random((2,3,4,2)), coords=coords) >>> field_monitor = td.FieldMonitor( ... size=(2,4,6), ... freqs=[2e14, 3e14], ... name='field', ... fields=['Ex'], ... colocate=True, ... ) >>> sim = Simulation( ... size=(2, 4, 6), ... grid_spec=td.GridSpec(wavelength=1.0), ... monitors=[field_monitor], ... run_time=2e-12, ... sources=[ ... td.UniformCurrentSource( ... size=(0, 0, 0), ... center=(0, 0.5, 0), ... polarization="Hx", ... source_time=td.GaussianPulse( ... freq0=2e14, ... fwidth=4e13, ... ), ... ) ... ], ... ) >>> field_data = td.FieldData(monitor=field_monitor, Ex=scalar_field, grid_expanded=grid) >>> sim_data = td.SimulationData(simulation=sim, data=(field_data,))
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__
(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
apply_phase
(data[, phase])Apply a phase to xarray data.
at_boundaries
(field_monitor_name)Return xarray.Dataset representation of field monitor data colocated at Yee cell boundaries.
at_centers
(field_monitor_name)Return xarray.Dataset representation of field monitor data colocated at Yee cell centers.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(**kwargs)Copy a Tidy3dBaseModel.
data_monitors_match_sim
(val, values)Ensure each
AbstractMonitorData
in.data
corresponds to a monitor in.simulation
.dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file
(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json
(fname)Load dictionary of the model from a .json file.
dict_from_yaml
(fname)Load dictionary of the model from a .yaml file.
from_file
(fname[, group_path])Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5
(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModel
instance to .hdf5 file.from_hdf5_gz
(fname[, group_path, ...])Loads
Tidy3dBaseModel
instance to .hdf5.gz file.from_json
(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModel
from .json file.from_orm
(obj)from_yaml
(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModel
from .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_intensity
(field_monitor_name)return xarray.DataArray of the intensity of a field monitor at Yee cell centers.
get_poynting_vector
(field_monitor_name)return
xarray.Dataset
of the Poynting vector at Yee cell centers.get_sub_model
(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name
(index)Get the group name of a tuple element.
get_tuple_index
(key_name)Get the index into the tuple based on its group name.
help
([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel
.json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
load_field_monitor
(monitor_name)Load monitor and raise exception if not a field monitor.
mnt_data_from_file
(fname, mnt_name, ...)Loads data for a specific monitor from a .hdf5 file with data for a
SimulationData
.parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])plot_field
(field_monitor_name, field_name[, ...])Plot the field data for a monitor with simulation plot overlayed.
plot_scalar_array
(field_data, axis, position)Plot the field data for a monitor with simulation plot overlayed.
renormalize
(normalize_index)Return a copy of the
SimulationData
with a different source used for the normalization.schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])source_spectrum
(source_index)Get a spectrum normalization function for a given source index.
to_file
(fname)Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 fileto_hdf5
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5 file.to_hdf5_gz
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5.gz file.to_json
(fname)Exports
Tidy3dBaseModel
instance to .json fileto_yaml
(fname)Exports
Tidy3dBaseModel
instance to .yaml file.tuple_to_dict
(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy
(**kwargs)Make copy of a component instance with
**kwargs
indicating updated field values.validate
(value)validate_no_ambiguity
(val, values)Ensure all
AbstractMonitorData
entries in.data
correspond to different monitors in.simulation
.Attributes
Returns value of the field decay at the final time step.
Dictionary mapping monitor name to its associated
AbstractMonitorData
.simulation
data
diverged
- class Config#
Bases:
object
Sets config for all
Tidy3dBaseModel
objects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __getitem__(monitor_name: str) tidy3d.components.base_sim.data.monitor_data.AbstractMonitorData #
Get a
AbstractMonitorData
by name. Apply symmetry if applicable.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int #
Hash method.
- classmethod __init_subclass__() None #
Things that are done to each of the models.
- __iter__() TupleGenerator #
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None] #
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str #
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult #
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None #
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- static apply_phase(data: Union[xarray.core.dataarray.DataArray, xarray.core.dataset.Dataset], phase: float = 0.0) xarray.core.dataarray.DataArray #
Apply a phase to xarray data.
- at_boundaries(field_monitor_name: str) xarray.core.dataset.Dataset #
Return xarray.Dataset representation of field monitor data colocated at Yee cell boundaries.
- Parameters
field_monitor_name (str) – Name of field monitor used in the original
Simulation
.- Returns
Dataset containing all of the fields in the data interpolated to boundary locations on the Yee grid.
- Return type
xarray.Dataset
- at_centers(field_monitor_name: str) xarray.core.dataset.Dataset #
Return xarray.Dataset representation of field monitor data colocated at Yee cell centers.
- Parameters
field_monitor_name (str) – Name of field monitor used in the original
Simulation
.- Returns
Dataset containing all of the fields in the data interpolated to center locations on the Yee grid.
- Return type
xarray.Dataset
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- classmethod data_monitors_match_sim(val, values)#
Ensure each
AbstractMonitorData
in.data
corresponds to a monitor in.simulation
.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- property final_decay_value: float#
Returns value of the field decay at the final time step.
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
An instance of the component class calling
load
.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- get_intensity(field_monitor_name: str) xarray.core.dataarray.DataArray #
return xarray.DataArray of the intensity of a field monitor at Yee cell centers.
- Parameters
field_monitor_name (str) – Name of field monitor used in the original
Simulation
.- Returns
DataArray containing the electric intensity of the field-like monitor. Data is interpolated to the center locations on Yee grid.
- Return type
xarray.DataArray
- get_poynting_vector(field_monitor_name: str) xarray.core.dataset.Dataset #
return
xarray.Dataset
of the Poynting vector at Yee cell centers.Calculated values represent the instantaneous Poynting vector for time-domain fields and the complex vector for frequency-domain:
S = 1/2 E × conj(H)
.Only the available components are returned, e.g., if the indicated monitor doesn’t include field component “Ex”, then “Sy” and “Sz” will not be calculated.
- Parameters
field_monitor_name (str) – Name of field monitor used in the original
Simulation
.- Returns
DataArray containing the Poynting vector calculated based on the field components colocated at the center locations of the Yee grid.
- Return type
xarray.DataArray
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]] #
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- load_field_monitor(monitor_name: str) tidy3d.components.data.monitor_data.AbstractFieldData #
Load monitor and raise exception if not a field monitor.
- classmethod mnt_data_from_file(fname: str, mnt_name: str, **parse_obj_kwargs) Union[tidy3d.components.data.monitor_data.FieldData, tidy3d.components.data.monitor_data.FieldTimeData, tidy3d.components.data.monitor_data.PermittivityData, tidy3d.components.data.monitor_data.ModeSolverData, tidy3d.components.data.monitor_data.ModeData, tidy3d.components.data.monitor_data.FluxData, tidy3d.components.data.monitor_data.FluxTimeData, tidy3d.components.data.monitor_data.FieldProjectionKSpaceData, tidy3d.components.data.monitor_data.FieldProjectionCartesianData, tidy3d.components.data.monitor_data.FieldProjectionAngleData, tidy3d.components.data.monitor_data.DiffractionData] #
Loads data for a specific monitor from a .hdf5 file with data for a
SimulationData
.- Parameters
fname (str) – Full path to an hdf5 file containing
SimulationData
data.mnt_name (str, optional) – .name of the monitor to load the data from.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
Monitor data corresponding to the mnt_name type.
- Return type
MonitorData
Example
>>> field_data = SimulationData.from_file(fname='folder/data.hdf5', mnt_name="field")
- property monitor_data: Dict[str, tidy3d.components.base_sim.data.monitor_data.AbstractMonitorData]#
Dictionary mapping monitor name to its associated
AbstractMonitorData
.
- plot_field(field_monitor_name: str, field_name: str, val: Literal['real', 'imag', 'abs', 'abs^2', 'phase'] = 'real', scale: Literal['lin', 'dB'] = 'lin', eps_alpha: float = 0.2, phase: float = 0.0, robust: bool = True, vmin: Optional[float] = None, vmax: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None, **sel_kwargs) matplotlib.axes._axes.Axes #
Plot the field data for a monitor with simulation plot overlayed.
- Parameters
field_monitor_name (str) – Name of
FieldMonitor
,FieldTimeData
, orModeSolverData
to plot.field_name (str) – Name of field component to plot (eg. ‘Ex’). Also accepts ‘E’ and ‘H’ to plot the vector magnitudes of the electric and magnetic fields, and ‘S’ for the Poynting vector.
val (Literal['real', 'imag', 'abs', 'abs^2', 'phase'] = 'real') – Which part of the field to plot.
scale (Literal['lin', 'dB']) – Plot in linear or logarithmic (dB) scale.
eps_alpha (float = 0.2) – Opacity of the structure permittivity. Must be between 0 and 1 (inclusive).
phase (float = 0.0) – Optional phase (radians) to apply to the fields. Only has an effect on frequency-domain fields.
robust (bool = True) – If True and vmin or vmax are absent, uses the 2nd and 98th percentiles of the data to compute the color limits. This helps in visualizing the field patterns especially in the presence of a source.
vmin (float = None) – The lower bound of data range that the colormap covers. If None, they are inferred from the data and other keyword arguments.
vmax (float = None) – The upper bound of data range that the colormap covers. If None, they are inferred from the data and other keyword arguments.
ax (matplotlib.axes._subplots.Axes = None) – matplotlib axes to plot on, if not specified, one is created.
sel_kwargs (keyword arguments used to perform .sel() selection in the monitor data.) – These kwargs can select over the spatial dimensions (x, y, z), frequency or time dimensions (f, t) or mode_index, if applicable. For the plotting to work appropriately, the resulting data after selection must contain only two coordinates with len > 1. Furthermore, these should be spatial coordinates (x, y, or z).
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- plot_scalar_array(field_data: xarray.core.dataarray.DataArray, axis: Literal[0, 1, 2], position: float, freq: float = None, eps_alpha: float = 0.2, robust: bool = True, vmin: float = None, vmax: float = None, cmap_type: Literal['divergent', 'sequential', 'cyclic'] = 'divergent', ax: matplotlib.axes._axes.Axes = None) matplotlib.axes._axes.Axes #
Plot the field data for a monitor with simulation plot overlayed.
- Parameters
field_data (xr.DataArray) – DataArray with the field data to plot. Must be a scalar field.
axis (Axis) – Axis normal to the plotting plane.
position (float) – Position along the axis.
freq (float = None) – Frequency at which the permittivity is evaluated at (if dispersive). By default, chooses permittivity as frequency goes to infinity.
eps_alpha (float = 0.2) – Opacity of the structure permittivity. Must be between 0 and 1 (inclusive).
robust (bool = True) – If True and vmin or vmax are absent, uses the 2nd and 98th percentiles of the data to compute the color limits. This helps in visualizing the field patterns especially in the presence of a source.
vmin (float = None) – The lower bound of data range that the colormap covers. If None, they are inferred from the data and other keyword arguments.
vmax (float = None) – The upper bound of data range that the colormap covers. If None, they are inferred from the data and other keyword arguments.
cmap_type (Literal["divergent", "sequential", "cyclic"] = "divergent") – Type of color map to use for plotting.
ax (matplotlib.axes._subplots.Axes = None) – matplotlib axes to plot on, if not specified, one is created.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- renormalize(normalize_index: int) tidy3d.components.data.sim_data.SimulationData #
Return a copy of the
SimulationData
with a different source used for the normalization.
- source_spectrum(source_index: int) Callable #
Get a spectrum normalization function for a given source index.
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.
- classmethod validate_no_ambiguity(val, values)#
Ensure all
AbstractMonitorData
entries in.data
correspond to different monitors in.simulation
.