tidy3d.plugins.mode.ModeSolverData
tidy3d.plugins.mode.ModeSolverData#
- class tidy3d.plugins.mode.ModeSolverData(*, type: Literal['ModeSolverData'] = 'ModeSolverData', Ex: tidy3d.components.data.data_array.ScalarModeFieldDataArray, Ey: tidy3d.components.data.data_array.ScalarModeFieldDataArray, Ez: tidy3d.components.data.data_array.ScalarModeFieldDataArray, Hx: tidy3d.components.data.data_array.ScalarModeFieldDataArray, Hy: tidy3d.components.data.data_array.ScalarModeFieldDataArray, Hz: tidy3d.components.data.data_array.ScalarModeFieldDataArray, monitor: tidy3d.components.monitor.ModeSolverMonitor, symmetry: Tuple[typing.Literal[0, - 1, 1], typing.Literal[0, - 1, 1], typing.Literal[0, - 1, 1]] = (0, 0, 0), symmetry_center: Tuple[float, float, float] = None, grid_expanded: tidy3d.components.grid.grid.Grid = None, grid_primal_correction: Union[float, tidy3d.components.data.data_array.FreqDataArray, tidy3d.components.data.data_array.TimeDataArray, tidy3d.components.data.data_array.FreqModeDataArray] = 1.0, grid_dual_correction: Union[float, tidy3d.components.data.data_array.FreqDataArray, tidy3d.components.data.data_array.TimeDataArray, tidy3d.components.data.data_array.FreqModeDataArray] = 1.0, n_complex: tidy3d.components.data.data_array.ModeIndexDataArray, n_group: tidy3d.components.data.data_array.GroupIndexDataArray = None, dispersion_raw: tidy3d.components.data.data_array.ModeDispersionDataArray = None, eps_spec: List[Literal['diagonal', 'tensorial_real', 'tensorial_complex']] = None)#
Bases:
tidy3d.components.data.dataset.ModeSolverDataset
,tidy3d.components.data.monitor_data.ElectromagneticFieldData
Data associated with a
ModeSolverMonitor
: scalar components of E and H fields.- Parameters
Ex (ScalarModeFieldDataArray) – Spatial distribution of the x-component of the electric field of the mode.
Ey (ScalarModeFieldDataArray) – Spatial distribution of the y-component of the electric field of the mode.
Ez (ScalarModeFieldDataArray) – Spatial distribution of the z-component of the electric field of the mode.
Hx (ScalarModeFieldDataArray) – Spatial distribution of the x-component of the magnetic field of the mode.
Hy (ScalarModeFieldDataArray) – Spatial distribution of the y-component of the magnetic field of the mode.
Hz (ScalarModeFieldDataArray) – Spatial distribution of the z-component of the magnetic field of the mode.
monitor (ModeSolverMonitor) – Mode solver monitor associated with the data.
symmetry (Tuple[Literal[0, -1, 1], Literal[0, -1, 1], Literal[0, -1, 1]] = (0, 0, 0)) – Symmetry eigenvalues of the original simulation in x, y, and z.
symmetry_center (Optional[Tuple[float, float, float]] = None) – Center of the symmetry planes of the original simulation in x, y, and z. Required only if any of the
symmetry
field are non-zero.grid_expanded (Optional[Grid] = None) –
Grid
discretization of the associated monitor in the simulation which created the data. Required if symmetries are present, as well as in order to use some functionalities like getting poynting and flux.grid_primal_correction (Union[float, FreqDataArray, TimeDataArray, FreqModeDataArray] = 1.0) – Correction factor that needs to be applied for data corresponding to a 2D monitor to take into account the finite grid in the normal direction in the simulation in which the data was computed. The factor is applied to fields defined on the primal grid locations along the normal direction.
grid_dual_correction (Union[float, FreqDataArray, TimeDataArray, FreqModeDataArray] = 1.0) – Correction factor that needs to be applied for data corresponding to a 2D monitor to take into account the finite grid in the normal direction in the simulation in which the data was computed. The factor is applied to fields defined on the dual grid locations along the normal direction.
n_complex (ModeIndexDataArray) – Complex-valued effective propagation constants associated with the mode.
n_group_raw (Optional[GroupIndexDataArray] = None) – Index associated with group velocity of the mode.
dispersion_raw (Optional[ModeDispersionDataArray] = None) – [units = ps/(nm km)]. Dispersion parameter for the mode.
eps_spec (Optional[List[Literal['diagonal', 'tensorial_real', 'tensorial_complex']]] = None) – Characterization of the permittivity profile on the plane where modes are computed. Possible values are ‘diagonal’, ‘tensorial_real’, ‘tensorial_complex’.
Example
>>> from tidy3d import ModeSpec >>> from tidy3d import ScalarModeFieldDataArray, ModeIndexDataArray >>> x = [-1,1,3] >>> y = [-2,0] >>> z = [-3,-1,1,3,5] >>> f = [2e14, 3e14] >>> mode_index = np.arange(5) >>> grid = Grid(boundaries=Coords(x=x, y=y, z=z)) >>> field_coords = dict(x=x[:-1], y=y[:-1], z=z[:-1], f=f, mode_index=mode_index) >>> field = ScalarModeFieldDataArray((1+1j)*np.random.random((2,1,4,2,5)), coords=field_coords) >>> index_coords = dict(f=f, mode_index=mode_index) >>> index_data = ModeIndexDataArray((1+1j) * np.random.random((2,5)), coords=index_coords) >>> monitor = ModeSolverMonitor( ... size=(2,0,6), ... freqs=[2e14, 3e14], ... mode_spec=ModeSpec(num_modes=5), ... name='mode_solver', ... ) >>> data = ModeSolverData( ... monitor=monitor, ... Ex=field, ... Ey=field, ... Ez=field, ... Hx=field, ... Hy=field, ... Hz=field, ... n_complex=index_data, ... grid_expanded=grid ... )
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__
(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
apply_phase
(phase)Create a copy where all elements are phase-shifted by a value (in radians).
at_coords
(coords)Colocate data to some supplied coordinates.
colocate
([x, y, z])Colocate all of the data at a set of x, y, z coordinates.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(**kwargs)Copy a Tidy3dBaseModel.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file
(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json
(fname)Load dictionary of the model from a .json file.
dict_from_yaml
(fname)Load dictionary of the model from a .yaml file.
dot
(field_data[, conjugate])Dot product (modal overlap) with another
FieldData
object.eps_spec_match_mode_spec
(val, values)Raise validation error if frequencies in eps_spec does not match frequency list
from_file
(fname[, group_path])Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5
(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModel
instance to .hdf5 file.from_hdf5_gz
(fname[, group_path, ...])Loads
Tidy3dBaseModel
instance to .hdf5.gz file.from_json
(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModel
from .json file.from_orm
(obj)from_yaml
(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModel
from .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model
(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name
(index)Get the group name of a tuple element.
get_tuple_index
(key_name)Get the index into the tuple based on its group name.
help
([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel
.json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
normalize
(source_spectrum_fn)Return copy of self after normalization is applied using source spectrum function.
outer_dot
(field_data[, conjugate])Dot product (modal overlap) with another
FieldData
object.overlap_sort
(track_freq[, overlap_thresh])Starting from the base frequency defined by parameter
track_freq
, sort modes at each frequency according to their overlap values with the modes at the previous frequency.package_colocate_results
(centered_fields)How to package the dictionary of fields computed via self.colocate().
package_flux_results
(flux_values)How to package flux
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])plot_field
(*args, **kwargs)Warn user to use the
ModeSolver
plot_field
function now.schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])xarray-like method to export the
modes_info
into a pandas dataframe which is e.g.to_file
(fname)Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 fileto_hdf5
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5 file.to_hdf5_gz
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5.gz file.to_json
(fname)Exports
Tidy3dBaseModel
instance to .json fileto_yaml
(fname)Exports
Tidy3dBaseModel
instance to .yaml file.tuple_to_dict
(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy
(**kwargs)Make copy of a component instance with
**kwargs
indicating updated field values.validate
(value)If
colocate
not provided, set to true, but warn that behavior has changed.Attributes
Coordinates to be used for colocation of the data to grid boundaries.
Coordinates to be used for colocation of the data to grid centers.
Dispersion parameter.
Maps the field components to thier associated data.
Flux for data corresponding to a 2D monitor.
Return a copy of self with grid correction factors applied (if necessary) and symmetry expanded.
Maps field components to the string key of their grid locations on the yee lattice.
Return the sum of the squared absolute electric field components.
Imaginary part of the propagation index.
Effective mode area corresponding to a 2D monitor.
Dataset collecting various properties of the stored modes.
Real part of the propagation index.
Group index.
Compute the TE and TM polarization fraction defined as the field intensity along the first or the second of the two tangential axes.
Compute the TE and TM polarization fraction using the waveguide definition.
Time-averaged Poynting vector for frequency-domain data associated to a 2D monitor, projected to the direction normal to the monitor plane.
Maps field components to their (positive) symmetry eigenvalues.
Return the
AbstractFieldData
with fields expanded based on symmetry.Create a copy of the
AbstractFieldData
with fields expanded based on symmetry.Make a copy of the data with direction-reversed fields.
monitor
eps_spec
- class Config#
Bases:
object
Sets config for all
Tidy3dBaseModel
objects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int #
Hash method.
- classmethod __init_subclass__() None #
Things that are done to each of the models.
- __iter__() TupleGenerator #
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None] #
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str #
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult #
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None #
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- apply_phase(phase: float) tidy3d.components.data.dataset.AbstractFieldDataset #
Create a copy where all elements are phase-shifted by a value (in radians).
- at_coords(coords: tidy3d.components.grid.grid.Coords) xarray.core.dataset.Dataset #
Colocate data to some supplied coordinates. This is a convenience method that wraps
colocate
, and skips dimensions for which the data has a single data point only (colocate
will error in that case.) If the coords are out of bounds for the data otherwise, an error will still be produced.- Parameters
coords (
Coords
) – Coordinates in x, y and z to colocate to.- Returns
Dataset containing all of the fields in the data interpolated to boundary locations on the Yee grid.
- Return type
xarray.Dataset
- colocate(x=None, y=None, z=None) xarray.core.dataset.Dataset #
Colocate all of the data at a set of x, y, z coordinates.
- Parameters
x (Optional[array-like] = None) – x coordinates of locations. If not supplied, does not try to colocate on this dimension.
y (Optional[array-like] = None) – y coordinates of locations. If not supplied, does not try to colocate on this dimension.
z (Optional[array-like] = None) – z coordinates of locations. If not supplied, does not try to colocate on this dimension.
- Returns
Dataset containing all fields at the same spatial locations. For more details refer to xarray’s Documentaton.
- Return type
xr.Dataset
Note
For many operations (such as flux calculations and plotting), it is important that the fields are colocated at the same spatial locations. Be sure to apply this method to your field data in those cases.
- property colocation_boundaries: tidy3d.components.grid.grid.Coords#
Coordinates to be used for colocation of the data to grid boundaries.
- property colocation_centers: tidy3d.components.grid.grid.Coords#
Coordinates to be used for colocation of the data to grid centers.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- property dispersion: tidy3d.components.data.data_array.ModeDispersionDataArray#
Dispersion parameter.
\[D = -\frac{\lambda}{c_0} \frac{{\rm d}^2 n_{\text{eff}}}{{\rm d}\lambda^2}\]
- dot(field_data: Union[tidy3d.components.data.monitor_data.FieldData, tidy3d.components.data.monitor_data.ModeSolverData], conjugate: bool = True) tidy3d.components.data.data_array.ModeAmpsDataArray #
Dot product (modal overlap) with another
FieldData
object. Both datasets have to be frequency-domain data associated with a 2D monitor. Along the tangential directions, the datasets have to have the same discretization. Along the normal direction, the monitor position may differ and is ignored. Other coordinates (frequency
,mode_index
) have to be either identical or broadcastable. Broadcasting is also supported in the case in which the otherfield_data
has a dimension of size1
whose coordinate is not in the list of coordinates in theself
dataset along the corresponding dimension. In that case, the coordinates of theself
dataset are used in the output.- Parameters
field_data (
ElectromagneticFieldData
) – A data instance to compute the dot product with.conjugate (bool, optional) – If
True
(default), the dot product is defined as1 / 4
times the integral ofE_self* x H_other - H_self* x E_other
, wherex
is the cross product and*
is complex conjugation. IfFalse
, the complex conjugation is skipped.
Note
The dot product with and without conjugation is equivalent (up to a phase) for modes in lossless waveguides but differs for modes in lossy materials. In that case, the conjugated dot product can be interpreted as the fraction of the power of the first mode carried by the second, but modes are not orthogonal with respect to that product and the sum of carried power fractions may be different from the total flux. In the non-conjugated definition, modes are orthogonal, but the interpretation of the dot product power carried by a given mode is no longer valid.
- classmethod eps_spec_match_mode_spec(val, values)#
Raise validation error if frequencies in eps_spec does not match frequency list
- property field_components: Dict[str, tidy3d.components.data.data_array.DataArray]#
Maps the field components to thier associated data.
- property flux: tidy3d.components.data.data_array.FluxDataArray#
Flux for data corresponding to a 2D monitor.
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
An instance of the component class calling
load
.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]] #
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- property grid_corrected_copy: tidy3d.components.data.monitor_data.ElectromagneticFieldData#
Return a copy of self with grid correction factors applied (if necessary) and symmetry expanded.
- property grid_locations: Dict[str, str]#
Maps field components to the string key of their grid locations on the yee lattice.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- property intensity: tidy3d.components.data.data_array.ScalarFieldDataArray#
Return the sum of the squared absolute electric field components.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- property k_eff: tidy3d.components.data.data_array.ModeIndexDataArray#
Imaginary part of the propagation index.
- property mode_area: tidy3d.components.data.data_array.FreqModeDataArray#
Effective mode area corresponding to a 2D monitor.
Effective mode area is calculated as: (∫|E|²dA)² / (∫|E|⁴dA)
- property modes_info: xarray.core.dataset.Dataset#
Dataset collecting various properties of the stored modes.
- property n_eff: tidy3d.components.data.data_array.ModeIndexDataArray#
Real part of the propagation index.
- property n_group: tidy3d.components.data.data_array.GroupIndexDataArray#
Group index.
- normalize(source_spectrum_fn: Callable[[float], complex]) tidy3d.components.data.dataset.Dataset #
Return copy of self after normalization is applied using source spectrum function.
- outer_dot(field_data: Union[tidy3d.components.data.monitor_data.FieldData, tidy3d.components.data.monitor_data.ModeSolverData], conjugate: bool = True) tidy3d.components.data.data_array.MixedModeDataArray #
Dot product (modal overlap) with another
FieldData
object.The tangential fields from
field_data
are interpolated to this object’s grid, so the data arrays don’t need to have the same discretization. The calculation is performed for all common frequencies between data arrays. In the output,mode_index_0
andmode_index_1
are the mode indices from this object andfield_data
, respectively, if they are instances ofModeSolverData
.- Parameters
field_data (
ElectromagneticFieldData
) – A data instance to compute the dot product with.conjugate (bool = True) – If
True
(default), the dot product is defined as1 / 4
times the integral ofE_self* x H_other - H_self* x E_other
, wherex
is the cross product and*
is complex conjugation. IfFalse
, the complex conjugation is skipped.
- Returns
Data array with the complex-valued modal overlaps between the two mode data.
- Return type
xarray.DataArray
See also
- overlap_sort(track_freq: Literal['central', 'lowest', 'highest'], overlap_thresh: float = 0.9) tidy3d.components.data.monitor_data.ModeSolverData #
Starting from the base frequency defined by parameter
track_freq
, sort modes at each frequency according to their overlap values with the modes at the previous frequency. That is, it attempts to rearrange modes in such a way that a givenmode_index
corresponds to physically the same mode at all frequencies. Modes with overlap values overoverlap_tresh
are considered matching and not rearranged.- Parameters
track_freq (Literal["central", "lowest", "highest"]) – Parameter that specifies which frequency will serve as a starting point in the reordering process.
overlap_thresh (float = 0.9) – Modal overlap threshold above which two modes are considered to be the same and are not rearranged. If after the sorting procedure the overlap value between two corresponding modes is less than this threshold, a warning about a possible discontinuity is displayed.
- package_colocate_results(centered_fields: Dict[str, tidy3d.components.data.data_array.ScalarFieldDataArray]) Any #
How to package the dictionary of fields computed via self.colocate().
- package_flux_results(flux_values: xarray.core.dataarray.DataArray) Any #
How to package flux
- plot_field(*args, **kwargs)#
Warn user to use the
ModeSolver
plot_field
function now.
- property pol_fraction: xarray.core.dataset.Dataset#
Compute the TE and TM polarization fraction defined as the field intensity along the first or the second of the two tangential axes. More precisely, if
E1
andE2
are the electric field components along the two tangential axes, the TE fraction is defined asintegrate(E1.abs**2) / integrate(E1.abs**2 + E2.abs**2)
, and theTM
fraction is equal to one minus the TE fraction. The tangential axes are defined by popping the normal axis from the list ofx, y, z
, so e.g.x
andz
for propagation in they
direction.
- property pol_fraction_waveguide: xarray.core.dataset.Dataset#
Compute the TE and TM polarization fraction using the waveguide definition. If
E1
andE2
are the electric field components along the two tangential axes andEn
is the component along the propagation direction, the TE fraction is defined as1 - integrate(En.abs**2) / integrate(E1.abs**2 + E2.abs**2 + En.abs**2)
, and theTM
fraction is defined as1 - integrate(Hn.abs**2) / integrate(H1.abs**2 + H2.abs**2 + Hn.abs**2)
, withH
denoting the magnetic field components.Note
The waveguide TE and TM fractions do not sum to one. For example, TEM modes that are completely transverse (zero electric and magnetic field in the propagation direction) have TE fraction and TM fraction both equal to one.
- property poynting: tidy3d.components.data.data_array.ScalarFieldDataArray#
Time-averaged Poynting vector for frequency-domain data associated to a 2D monitor, projected to the direction normal to the monitor plane.
- property symmetry_eigenvalues: Dict[str, Callable[[Literal[0, 1, 2]], float]]#
Maps field components to their (positive) symmetry eigenvalues.
- property symmetry_expanded#
Return the
AbstractFieldData
with fields expanded based on symmetry. If any symmetry is nonzero (i.e. expanded), the interpolation implicitly creates a copy of the data array. However, if symmetry is not expanded, the returned array contains a view of the data, not a copy.- Returns
A data object with the symmetry expanded fields.
- Return type
AbstractFieldData
- property symmetry_expanded_copy: tidy3d.components.data.monitor_data.AbstractFieldData#
Create a copy of the
AbstractFieldData
with fields expanded based on symmetry.- Returns
A data object with the symmetry expanded fields.
- Return type
AbstractFieldData
- property time_reversed_copy: tidy3d.components.data.monitor_data.FieldData#
Make a copy of the data with direction-reversed fields. In lossy or gyrotropic systems, the time-reversed fields will not be the same as the backward-propagating modes.
- to_dataframe() pandas.core.frame.DataFrame #
xarray-like method to export the
modes_info
into a pandas dataframe which is e.g. simple to visualize as a table.
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.
- classmethod warn_missing_grid_expanded(val)#
If
colocate
not provided, set to true, but warn that behavior has changed.