tidy3d.FieldProjector
tidy3d.FieldProjector#
- class tidy3d.FieldProjector(*, sim_data: tidy3d.components.data.sim_data.SimulationData, surfaces: Tuple[tidy3d.components.monitor.FieldProjectionSurface, ...], pts_per_wavelength: Optional[int] = 10, origin: Tuple[float, float, float] = None, type: Literal['FieldProjector'] = 'FieldProjector')#
Bases:
tidy3d.components.base.Tidy3dBaseModel
Projection of near fields to points on a given observation grid.
- Parameters
sim_data (SimulationData) – Container for simulation data containing the near field monitors.
surfaces (Tuple[FieldProjectionSurface, ...]) – Tuple of each
FieldProjectionSurface
to use as source of near field.pts_per_wavelength (Optional[int] = 10) – Number of points per wavelength in the background medium with which to discretize the surface monitors for the projection. If
None
, fields will will not resampled, but will still be colocated.origin (Optional[Tuple[float, float, float]] = None) – [units = um]. Local origin used for defining observation points. If
None
, uses the average of the centers of all surface monitors.
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__
(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
apply_window_to_currents
(proj_monitor, currents)Apply windowing function to the surface currents.
compute_surface_currents
(sim_data, surface, ...)Returns resampled surface current densities associated with the surface monitor.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(**kwargs)Copy a Tidy3dBaseModel.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file
(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json
(fname)Load dictionary of the model from a .json file.
dict_from_yaml
(fname)Load dictionary of the model from a .yaml file.
from_file
(fname[, group_path])Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5
(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModel
instance to .hdf5 file.from_hdf5_gz
(fname[, group_path, ...])Loads
Tidy3dBaseModel
instance to .hdf5.gz file.from_json
(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModel
from .json file.from_near_field_monitors
(sim_data, ...[, ...])Constructs
FieldProjection
from a list of surface monitors and their directions.from_orm
(obj)from_yaml
(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModel
from .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model
(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name
(index)Get the group name of a tuple element.
get_tuple_index
(key_name)Get the index into the tuple based on its group name.
help
([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel
.integrate_2d
(function, phase, pts_u, pts_v)Trapezoidal integration in two dimensions.
json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])project_fields
(proj_monitor)Compute projected fields.
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])set_origin
(val, values)Sets .origin as the average of centers of all surface monitors if not provided.
to_file
(fname)Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 fileto_hdf5
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5 file.to_hdf5_gz
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5.gz file.to_json
(fname)Exports
Tidy3dBaseModel
instance to .json fileto_yaml
(fname)Exports
Tidy3dBaseModel
instance to .yaml file.tuple_to_dict
(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy
(**kwargs)Make copy of a component instance with
**kwargs
indicating updated field values.validate
(value)Attributes
Sets the surface currents.
Return the list of frequencies associated with the field monitors.
Medium into which fields are to be projected.
sim_data
surfaces
pts_per_wavelength
origin
- class Config#
Bases:
object
Sets config for all
Tidy3dBaseModel
objects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int #
Hash method.
- classmethod __init_subclass__() None #
Things that are done to each of the models.
- __iter__() TupleGenerator #
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None] #
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str #
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult #
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None #
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- static apply_window_to_currents(proj_monitor: tidy3d.components.monitor.AbstractFieldProjectionMonitor, currents: xarray.core.dataset.Dataset) xarray.core.dataset.Dataset #
Apply windowing function to the surface currents.
- static compute_surface_currents(sim_data: tidy3d.components.data.sim_data.SimulationData, surface: tidy3d.components.monitor.FieldProjectionSurface, medium: Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D], pts_per_wavelength: int = 10) xarray.core.dataset.Dataset #
Returns resampled surface current densities associated with the surface monitor.
- Parameters
sim_data (
SimulationData
) – Container for simulation data containing the near field monitors.surface (
FieldProjectionSurface
) –FieldProjectionSurface
to use as source of near field.medium (
MediumType
) – Background medium through which to project fields.pts_per_wavelength (int = 10) – Number of points per wavelength with which to discretize the surface monitors for the projection. If
None
, fields will not be resampled, but will still be colocated.
- Returns
Colocated surface current densities for the given surface.
- Return type
xarray.Dataset
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- property currents#
Sets the surface currents.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- property frequencies: List[float]#
Return the list of frequencies associated with the field monitors.
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
An instance of the component class calling
load
.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_near_field_monitors(sim_data: tidy3d.components.data.sim_data.SimulationData, near_monitors: List[tidy3d.components.monitor.FieldMonitor], normal_dirs: List[Literal['+', '-']], pts_per_wavelength: int = 10, origin: Optional[Tuple[float, float, float]] = None)#
Constructs
FieldProjection
from a list of surface monitors and their directions.- Parameters
sim_data (
SimulationData
) – Container for simulation data containing the near field monitors.near_monitors (List[
FieldMonitor
]) – Tuple ofFieldMonitor
objects on which near fields will be sampled.normal_dirs (List[
Direction
]) – Tuple containing theDirection
of the normal to each surface monitor w.r.t. to the positive x, y or z unit vectors. Must have the same length as monitors.pts_per_wavelength (int = 10) – Number of points per wavelength with which to discretize the surface monitors for the projection. If
None
, fields will not be resampled.origin (
Coordinate
) – Local origin used for defining observation points. IfNone
, uses the average of the centers of all surface monitors.
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]] #
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- integrate_2d(function: numpy.ndarray, phase: numpy.ndarray, pts_u: numpy.ndarray, pts_v: numpy.ndarray)#
Trapezoidal integration in two dimensions.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- property medium: Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D]#
Medium into which fields are to be projected.
- project_fields(proj_monitor: tidy3d.components.monitor.AbstractFieldProjectionMonitor) tidy3d.components.data.monitor_data.AbstractFieldProjectionData #
Compute projected fields.
- Parameters
proj_monitor (
AbstractFieldProjectionMonitor
) – Instance ofAbstractFieldProjectionMonitor
defining the projection observation grid.- Returns
Data structure with
Er
,Etheta
,Ephi
,Hr
,Htheta
,Hphi
.- Return type
AbstractFieldProjectionData
- classmethod set_origin(val, values)#
Sets .origin as the average of centers of all surface monitors if not provided.
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.