tidy3d.PoleResidue
tidy3d.PoleResidue#
- class tidy3d.PoleResidue(*, name: str = None, frequency_range: Tuple[float, float] = None, allow_gain: bool = False, nonlinear_spec: Union[tidy3d.components.medium.NonlinearSpec, tidy3d.components.medium.NonlinearSusceptibility] = None, modulation_spec: tidy3d.components.time_modulation.ModulationSpec = None, heat_spec: Optional[Union[tidy3d.components.heat_spec.FluidSpec, tidy3d.components.heat_spec.SolidSpec]] = None, type: Literal['PoleResidue'] = 'PoleResidue', eps_inf: pydantic.v1.types.PositiveFloat = 1.0, poles: Tuple[Tuple[Union[tidy3d.components.types.tidycomplex, tidy3d.components.types.ComplexNumber], Union[tidy3d.components.types.tidycomplex, tidy3d.components.types.ComplexNumber]], ...] = ())#
Bases:
tidy3d.components.medium.DispersiveMedium
A dispersive medium described by the pole-residue pair model. The frequency-dependence of the complex-valued permittivity is described by:
- Parameters
name (Optional[str] = None) – Optional unique name for medium.
frequency_range (Optional[Tuple[float, float]] = None) – [units = (Hz, Hz)]. Optional range of validity for the medium.
allow_gain (bool = False) – Allow the medium to be active. Caution: simulations with a gain medium are unstable, and are likely to diverge.Simulations where ‘allow_gain’ is set to ‘True’ will still be charged even if diverged. Monitor data up to the divergence point will still be returned and can be useful in some cases.
nonlinear_spec (Union[NonlinearSpec, NonlinearSusceptibility] = None) – Nonlinear spec applied on top of the base medium properties.
modulation_spec (Optional[ModulationSpec] = None) – Modulation spec applied on top of the base medium properties.
heat_spec (Union[FluidSpec, SolidSpec, NoneType] = None) – Specification of the medium heat properties. They are used for solving the heat equation via the
HeatSimulation
interface. Such simulations can be used for investigating the influence of heat propagation on the properties of optical systems. Once the temperature distribution in the system is found usingHeatSimulation
object,Simulation.perturbed_mediums_copy()
can be used to convert mediums with perturbation models defined into spatially dependent custom mediums. Otherwise, theheat_spec
does not directly affect the running of an opticalSimulation
.eps_inf (PositiveFloat = 1.0) – [units = None (relative permittivity)]. Relative permittivity at infinite frequency (
).poles (Tuple[Tuple[Union[tidy3d.components.types.tidycomplex, tidy3d.components.types.ComplexNumber], Union[tidy3d.components.types.tidycomplex, tidy3d.components.types.ComplexNumber]], ...] = ()) – [units = (rad/sec, rad/sec)]. Tuple of complex-valued (
) poles for the model.
Note
Example
>>> pole_res = PoleResidue(eps_inf=2.0, poles=[((-1+2j), (3+4j)), ((-5+6j), (7+8j))]) >>> eps = pole_res.eps_model(200e12)
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
Hz_to_angular_freq
(f_hz)Convert frequency in unit of Hz to rad/s.
__init__
(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
angular_freq_to_Hz
(f_rad)Convert frequency in unit of rad/s to Hz.
angular_freq_to_eV
(f_rad)Convert frequency in unit of rad/s to eV.
complex_to_tuple
(value)Convert a complex number to a tuple of real and imaginary parts.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(**kwargs)Copy a Tidy3dBaseModel.
dict
(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file
(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz
(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json
(fname)Load dictionary of the model from a .json file.
dict_from_yaml
(fname)Load dictionary of the model from a .yaml file.
eV_to_angular_freq
(f_eV)Convert frequency in unit of eV to rad/s.
eps_comp
(row, col, frequency)Single component of the complex-valued permittivity tensor as a function of frequency.
eps_complex_to_eps_sigma
(eps_complex, freq)Convert complex permittivity at frequency
freq
to permittivity and conductivity values.eps_complex_to_nk
(eps_c)Convert complex permittivity to n, k values.
eps_diagonal
(frequency)Main diagonal of the complex-valued permittivity tensor as a function of frequency.
eps_model
(frequency)Complex-valued permittivity as a function of frequency.
eps_sigma_to_eps_complex
(eps_real, sigma, freq)convert permittivity and conductivity to complex permittivity at freq
from_file
(fname[, group_path])Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5
(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModel
instance to .hdf5 file.from_hdf5_gz
(fname[, group_path, ...])Loads
Tidy3dBaseModel
instance to .hdf5.gz file.from_json
(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModel
from .json file.from_lo_to
(poles[, eps_inf])Construct a pole residue model from the LO-TO form (longitudinal and transverse optical modes).
from_medium
(medium)Convert a
Medium
to a pole residue model.from_orm
(obj)from_yaml
(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModel
from .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model
(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name
(index)Get the group name of a tuple element.
get_tuple_index
(key_name)Get the index into the tuple based on its group name.
help
([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel
.imag_ep_extrema
(poles)Extrema of Im[eps] in the same unit as poles.
json
(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
lo_to_eps_model
(poles, eps_inf, frequency)Complex permittivity as a function of frequency for a given set of LO-TO coefficients.
nk_model
(frequency)Real and imaginary parts of the refactive index as a function of frequency.
nk_to_eps_complex
(n[, k])Convert n, k to complex permittivity.
nk_to_eps_sigma
(n, k, freq)Convert
n
,k
at frequencyfreq
to permittivity and conductivity values.parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])plot
(freqs[, ax])Plot n, k of a
Medium
as a function of frequency.schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])sigma_model
(freq)Complex-valued conductivity as a function of frequency.
to_file
(fname)Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 fileto_hdf5
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5 file.to_hdf5_gz
(fname[, custom_encoders])Exports
Tidy3dBaseModel
instance to .hdf5.gz file.to_json
(fname)Exports
Tidy3dBaseModel
instance to .json fileConvert to a
Medium
.to_yaml
(fname)Exports
Tidy3dBaseModel
instance to .yaml file.tuple_to_complex
(value)Convert a tuple of real and imaginary parts to complex number.
tuple_to_dict
(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy
(**kwargs)Make copy of a component instance with
**kwargs
indicating updated field values.validate
(value)Attributes
Whether the medium is a PEC.
Upper bound of Im[eps] in frequency_range
This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by
n_cfl
.Representation of Medium as a pole-residue model.
Whether any component of the medium is time modulated.
eps_inf
poles
- class Config#
Bases:
object
Sets config for all
Tidy3dBaseModel
objects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- static Hz_to_angular_freq(f_hz: float)#
Convert frequency in unit of Hz to rad/s.
- Parameters
f_hz (float) – Frequency in unit of Hz
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int #
Hash method.
- classmethod __init_subclass__() None #
Things that are done to each of the models.
- __iter__() TupleGenerator #
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None] #
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str #
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult #
Get fields for Rich library
- __str__()#
string representation
- classmethod __try_update_forward_refs__(**localns: Any) None #
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- static angular_freq_to_Hz(f_rad: float)#
Convert frequency in unit of rad/s to Hz.
- Parameters
f_rad (float) – Frequency in unit of rad/s
- static angular_freq_to_eV(f_rad: float)#
Convert frequency in unit of rad/s to eV.
- Parameters
f_rad (float) – Frequency in unit of rad/s
- static complex_to_tuple(value: complex) Tuple[float, float] #
Convert a complex number to a tuple of real and imaginary parts.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict #
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- static eV_to_angular_freq(f_eV: float)#
Convert frequency in unit of eV to rad/s.
- Parameters
f_eV (float) – Frequency in unit of eV
- eps_comp(row: Literal[0, 1, 2], col: Literal[0, 1, 2], frequency: float) complex #
Single component of the complex-valued permittivity tensor as a function of frequency.
- Parameters
row (int) – Component’s row in the permittivity tensor (0, 1, or 2 for x, y, or z respectively).
col (int) – Component’s column in the permittivity tensor (0, 1, or 2 for x, y, or z respectively).
frequency (float) – Frequency to evaluate permittivity at (Hz).
- Returns
Element of the relative permittivity tensor evaluated at
frequency
.- Return type
complex
- static eps_complex_to_eps_sigma(eps_complex: complex, freq: float) Tuple[float, float] #
Convert complex permittivity at frequency
freq
to permittivity and conductivity values.- Parameters
eps_complex (complex) – Complex-valued relative permittivity.
freq (float) – Frequency to evaluate permittivity at (Hz).
- Returns
Real part of relative permittivity & electric conductivity.
- Return type
Tuple[float, float]
- static eps_complex_to_nk(eps_c: complex) Tuple[float, float] #
Convert complex permittivity to n, k values.
- Parameters
eps_c (complex) – Complex-valued relative permittivity.
- Returns
Real and imaginary parts of refractive index (n & k).
- Return type
Tuple[float, float]
- eps_diagonal(frequency: float) Tuple[complex, complex, complex] #
Main diagonal of the complex-valued permittivity tensor as a function of frequency.
- Parameters
frequency (float) – Frequency to evaluate permittivity at (Hz).
- Returns
The diagonal elements of the relative permittivity tensor evaluated at
frequency
.- Return type
complex
- eps_model(frequency: float) complex #
Complex-valued permittivity as a function of frequency.
- static eps_sigma_to_eps_complex(eps_real: float, sigma: float, freq: float) complex #
convert permittivity and conductivity to complex permittivity at freq
- Parameters
eps_real (float) – Real-valued relative permittivity.
sigma (float) – Conductivity.
freq (float) – Frequency to evaluate permittivity at (Hz). If not supplied, returns real part of permittivity (limit as frequency -> infinity.)
- Returns
Complex-valued relative permittivity.
- Return type
complex
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads a
Tidy3dBaseModel
from .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
An instance of the component class calling
load
.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_lo_to(poles: Tuple[Tuple[float, float, float, float], ...], eps_inf: pydantic.v1.types.PositiveFloat = 1) tidy3d.components.medium.PoleResidue #
Construct a pole residue model from the LO-TO form (longitudinal and transverse optical modes). The LO-TO form is
as given in the paper:M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B 61, 8187 (2000).
- Parameters
poles (Tuple[Tuple[float, float, float, float], ...]) – The LO-TO poles, given as list of tuples of the form (omega_LO, gamma_LO, omega_TO, gamma_TO).
eps_inf (pd.PositiveFloat) – The relative permittivity at infinite frequency.
- Returns
The pole residue equivalent of the LO-TO form provided.
- Return type
- classmethod from_medium(medium: tidy3d.components.medium.Medium) tidy3d.components.medium.PoleResidue #
Convert a
Medium
to a pole residue model.- Parameters
medium (
Medium
) – The medium with permittivity and conductivity to convert.- Returns
The pole residue equivalent.
- Return type
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]] #
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- static imag_ep_extrema(poles: Tuple[Tuple[Union[tidy3d.components.types.tidycomplex, tidy3d.components.types.ComplexNumber], Union[tidy3d.components.types.tidycomplex, tidy3d.components.types.ComplexNumber]], ...]) tidy3d.components.types.ArrayLike[dtype=float, ndim=1] #
Extrema of Im[eps] in the same unit as poles.
- Parameters
poles (Tuple[PoleAndResidue, ...]) – Tuple of complex-valued (
a_i, c_i
) poles for the model.
- property is_pec#
Whether the medium is a PEC.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- static lo_to_eps_model(poles: Tuple[Tuple[float, float, float, float], ...], eps_inf: pydantic.v1.types.PositiveFloat, frequency: float) complex #
Complex permittivity as a function of frequency for a given set of LO-TO coefficients. See
from_lo_to
inPoleResidue
for the detailed form of the model and a reference paper.- Parameters
poles (Tuple[Tuple[float, float, float, float], ...]) – The LO-TO poles, given as list of tuples of the form (omega_LO, gamma_LO, omega_TO, gamma_TO).
eps_inf (pd.PositiveFloat) – The relative permittivity at infinite frequency.
frequency (float) – Frequency at which to evaluate the permittivity.
- Returns
The complex permittivity of the given LO-TO model at the given frequency.
- Return type
complex
- property loss_upper_bound: float#
Upper bound of Im[eps] in frequency_range
- property n_cfl#
This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn’t take material factor into account is multiplied by
n_cfl
.For PoleResidue model, it equals
sqrt(eps_inf)
[https://ieeexplore.ieee.org/document/9082879].
- nk_model(frequency: float) Tuple[float, float] #
Real and imaginary parts of the refactive index as a function of frequency.
- Parameters
frequency (float) – Frequency to evaluate permittivity at (Hz).
- Returns
Real part (n) and imaginary part (k) of refractive index of medium.
- Return type
Tuple[float, float]
- static nk_to_eps_complex(n: float, k: float = 0.0) complex #
Convert n, k to complex permittivity.
- Parameters
n (float) – Real part of refractive index.
k (float = 0.0) – Imaginary part of refrative index.
- Returns
Complex-valued relative permittivity.
- Return type
complex
- static nk_to_eps_sigma(n: float, k: float, freq: float) Tuple[float, float] #
Convert
n
,k
at frequencyfreq
to permittivity and conductivity values.- Parameters
n (float) – Real part of refractive index.
k (float = 0.0) – Imaginary part of refrative index.
frequency (float) – Frequency to evaluate permittivity at (Hz).
- Returns
Real part of relative permittivity & electric conductivity.
- Return type
Tuple[float, float]
- plot(freqs: float, ax: matplotlib.axes._axes.Axes = None) matplotlib.axes._axes.Axes #
Plot n, k of a
Medium
as a function of frequency.- Parameters
freqs (float) – Frequencies (Hz) to evaluate the medium properties at.
ax (matplotlib.axes._subplots.Axes = None) – Matplotlib axes to plot on, if not specified, one is created.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- property pole_residue#
Representation of Medium as a pole-residue model.
- sigma_model(freq: float) complex #
Complex-valued conductivity as a function of frequency.
- Parameters
freq (float) – Frequency to evaluate conductivity at (Hz).
- Returns
Complex conductivity at this frequency.
- Return type
complex
- property time_modulated: bool#
Whether any component of the medium is time modulated.
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None #
Exports
Tidy3dBaseModel
instance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModel
to.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
value
supplied and write it to the hdf5fname
atgroup_path
.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_medium() tidy3d.components.medium.Medium #
Convert to a
Medium
. Requires the pole residue model to only have a pole at 0 frequency, corresponding to a constant conductivity term.- Returns
The non-dispersive equivalent with constant permittivity and conductivity.
- Return type
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- static tuple_to_complex(value: Tuple[float, float]) complex #
Convert a tuple of real and imaginary parts to complex number.
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.