Material Library#

The material library is a dictionary containing various dispersive models from real world materials. To use the materials in the library, import it first by:

>>> from tidy3d import material_library

The first key of the dictionary is the material name (abbreviated), the second key is the “variant” name, which indicates the data source. In the material library below, the material names (abbreviated) are in parentheses in the header and the variant names are in the table.

To import a material “mat” of variant “var” as a tidy3d medium:

>>> medium = material_library['mat']['var']

For example, silver measured by A. D. Rakic et al. (1998) can be loaded as:

>>> silver = material_library['Ag']['Rakic1998BB']

You can also import the default variant of a material by:

>>> medium = material_library['mat'].medium

Note: it is often useful to see the full list of variants for a given medium:

>>> print(material_library['mat'].variants.keys())

To access the details of a variant, including material model, references and tabulated data, use the following command:

>>> material_library['mat'].variants['var']

Alumina (“Al2O3”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 2.07 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['Al2O3']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Aluminum (“Al”)#

Variant

Valid for

Model Info

Reference

'Rakic1995' (default)

0.02 - 1.97 \({\mu}m\)

5-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.06 - 247.97 \({\mu}m\)

7-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Al']['Rakic1995']
>>> medium = material_library['Al']['RakicLorentzDrude1998']

References:

  1. A. D. Rakic. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt. 34, 4755-4767 (1995) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Aluminum Arsenide (“AlAs”)#

Variant

Valid for

Model Info

Reference

'FernOnton1971'

0.56 - 2.2 \({\mu}m\)

2-pole, lossless

[1] [data]

'Horiba' (default)

0.41 - \({\mu}m\)

1-pole, lossy

[2]

Examples:

>>> medium = material_library['AlAs']['FernOnton1971']
>>> medium = material_library['AlAs']['Horiba']

References:

  1. R. E. Fern and A. Onton. Refractive index of AlAs, J. Appl. Phys. 42, 3499-3500 (1971) [doi]

  2. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Aluminum Gallium Nitride (“AlGaN”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 2.07 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['AlGaN']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Aluminum Nitride (“AlN”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.26 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['AlN']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Aluminum Oxide (“AlxOy”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 2.07 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['AlxOy']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Amino Acid (“Aminoacid”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.25 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['Aminoacid']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Amorphous Silicon (“aSi”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['aSi']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Beryllium (“Be”)#

Variant

Valid for

Model Info

Reference

'Rakic1998BB' (default)

0.25 - 61.99 \({\mu}m\)

4-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.25 - 61.99 \({\mu}m\)

8-pole, lossy

[1] [data]

Examples:

>>> medium = material_library['Be']['Rakic1998BB']
>>> medium = material_library['Be']['RakicLorentzDrude1998']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Calcium Fluoride (“CaF2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.26 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['CaF2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Cellulose (“Cellulose”)#

Variant

Valid for

Model Info

Reference

'Sultanova2009' (default)

0.44 - 1.05 \({\mu}m\)

1-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['Cellulose']['Sultanova2009']

References:

  1. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009) [doi]

Chromium (“Cr”)#

Variant

Valid for

Model Info

Reference

'Rakic1998BB' (default)

0.25 - 62.0 \({\mu}m\)

4-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.25 - 61.99 \({\mu}m\)

8-pole, lossy

[1] [data]

Examples:

>>> medium = material_library['Cr']['Rakic1998BB']
>>> medium = material_library['Cr']['RakicLorentzDrude1998']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Copper (“Cu”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972' (default)

0.03 - 0.31 \({\mu}m\)

5-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.21 - 12.4 \({\mu}m\)

6-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Cu']['JohnsonChristy1972']
>>> medium = material_library['Cu']['RakicLorentzDrude1998']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Crystalline Silicon (“cSi”)#

Variant

Valid for

Model Info

Reference

'Green2008'

0.25 - 1.45 \({\mu}m\)

4-pole, lossy

[1] [data]

'Li1993_293K'

1.2 - 14.0 \({\mu}m\)

1-pole, lossless

[2] [data]

'SalzbergVilla1957' (default)

1.36 - 11.0 \({\mu}m\)

1-pole, lossless

[3][4] [data]

Examples:

>>> medium = material_library['cSi']['Green2008']
>>> medium = material_library['cSi']['Li1993_293K']
>>> medium = material_library['cSi']['SalzbergVilla1957']

References:

  1. M. A. Green. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients, Sol. Energ. Mat. Sol. Cells 92, 1305–1310 (2008) [doi]

  2. H. H. Li. Refractive index of silicon and germanium and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 9, 561-658 (1993) [doi]

  3. C. D. Salzberg and J. J. Villa. Infrared Refractive Indexes of Silicon, Germanium and Modified Selenium Glass, J. Opt. Soc. Am., 47, 244-246 (1957) [doi]

  4. B. Tatian. Fitting refractive-index data with the Sellmeier dispersion formula, Appl. Opt. 23, 4477-4485 (1984) [doi]

Fused Silica (“FusedSilica”)#

Variant

Valid for

Model Info

Reference

'ZemaxPMLStable' (default)

0.41 - 1.99 \({\mu}m\)

1-pole, lossless

[1][2] [data]

'ZemaxSellmeier'

0.21 - 6.7 \({\mu}m\)

3-pole, lossless

[1][2] [data]

'ZemaxVisiblePMLStable'

0.41 - 0.78 \({\mu}m\)

1-pole, lossless

[1][2] [data]

Examples:

>>> medium = material_library['FusedSilica']['ZemaxPMLStable']
>>> medium = material_library['FusedSilica']['ZemaxSellmeier']
>>> medium = material_library['FusedSilica']['ZemaxVisiblePMLStable']

References:

  1. I. H. Malitson. Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205-1208 (1965) [doi]

  2. C. Z. Tan. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids 223, 158-163 (1998) [doi]

Gallium Arsenide (“GaAs”)#

Variant

Valid for

Model Info

Reference

'Skauli2003' (default)

0.97 - 17.0 \({\mu}m\)

3-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['GaAs']['Skauli2003']

References:

  1. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier. Improved dispersion relations for GaAs and applications to nonlinear optics, J. Appl. Phys., 94, 6447-6455 (2003) [doi]

Germanium (“Ge”)#

Variant

Valid for

Model Info

Reference

'Icenogle1976' (default)

2.5 - 12.0 \({\mu}m\)

2-pole, lossless

[1][2] [data]

Examples:

>>> medium = material_library['Ge']['Icenogle1976']

References:

  1. H. W. Icenogle, Ben C. Platt, and William L. Wolfe. Refractive indexes and temperature coefficients of germanium and silicon Appl. Opt. 15 2348-2351 (1976) [doi]

  2. N. P. Barnes and M. S. Piltch. Temperature-dependent Sellmeier coefficients and nonlinear optics average power limit for germanium J. Opt. Soc. Am. 69 178-180 (1979) [doi]

Germanium Oxide (“GeOx”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 2.07 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['GeOx']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Gold (“Au”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972'

0.19 - 1.94 \({\mu}m\)

6-pole, lossy

[1] [data]

'Olmon2012Drude'

1.24 - 24.93 \({\mu}m\)

2-pole, lossy

[2] [data]

'Olmon2012crystal'

0.3 - 24.93 \({\mu}m\)

3-pole, lossy

[2] [data]

'Olmon2012evaporated' (default)

0.3 - 24.93 \({\mu}m\)

3-pole, lossy

[2] [data]

'Olmon2012stripped'

0.3 - 24.93 \({\mu}m\)

3-pole, lossy

[2] [data]

'RakicLorentzDrude1998'

0.25 - 6.2 \({\mu}m\)

7-pole, lossy

[3] [data]

Examples:

>>> medium = material_library['Au']['JohnsonChristy1972']
>>> medium = material_library['Au']['Olmon2012Drude']
>>> medium = material_library['Au']['Olmon2012crystal']
>>> medium = material_library['Au']['Olmon2012evaporated']
>>> medium = material_library['Au']['Olmon2012stripped']
>>> medium = material_library['Au']['RakicLorentzDrude1998']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke. Optical dielectric function of gold, Phys. Rev. B 86, 235147 (2012) [doi]

  3. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Hafnium Oxide (“HfO2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['HfO2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Hexamethyldisilazane, or Bis(trimethylsilyl)amine (“HMDS”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.19 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['HMDS']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Indium Phosphide (“InP”)#

Variant

Valid for

Model Info

Reference

'Pettit1965' (default)

0.95 - 10.0 \({\mu}m\)

2-pole, lossless

[1][2][3] [data]

Examples:

>>> medium = material_library['InP']['Pettit1965']

References:

  1. G. D. Pettit and W. J. Turner. Refractive index of InP, J. Appl. Phys. 36, 2081 (1965) [doi]

  2. A. N. Pikhtin and A. D. Yas’kov. Disperson of the refractive index of semiconductors with diamond and zinc-blende structures, Sov. Phys. Semicond. 12, 622-626 (1978)

  3. Handbook of Optics, 2nd edition, Vol. 2. McGraw-Hill 1994 (ISBN 9780070479746)

Indium Tin Oxide (“ITO”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['ITO']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Magnesium Fluoride (“MgF2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.33 - 1.55 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['MgF2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Magnesium Oxide (“MgO”)#

Variant

Valid for

Model Info

Reference

'StephensMalitson1952' (default)

0.36 - 5.4 \({\mu}m\)

3-pole, lossy

[1] [data]

Examples:

>>> medium = material_library['MgO']['StephensMalitson1952']

References:

  1. R. E. Stephens and I. H. Malitson. Index of refraction of magnesium oxide, J. Res. Natl. Bur. Stand. 49 249-252 (1952) [doi]

N-BK7 Borosilicate Glass (“BK7”)#

Variant

Valid for

Model Info

Reference

'Zemax' (default)

0.3 - 2.5 \({\mu}m\)

3-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['BK7']['Zemax']

References:

  1. SCHOTT Zemax catalog 2017-01-20b [url]

Nickel (“Ni”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972' (default)

0.19 - 1.94 \({\mu}m\)

5-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.25 - 6.2 \({\mu}m\)

8-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Ni']['JohnsonChristy1972']
>>> medium = material_library['Ni']['RakicLorentzDrude1998']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Palladium (“Pd”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972' (default)

0.19 - 1.94 \({\mu}m\)

5-pole, lossy

[1] [data]

'RakicLorentzDrude1998'

0.25 - 12.4 \({\mu}m\)

7-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Pd']['JohnsonChristy1972']
>>> medium = material_library['Pd']['RakicLorentzDrude1998']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

Platinum (“Pt”)#

Variant

Valid for

Model Info

Reference

'RakicLorentzDrude1998'

0.25 - 12.4 \({\mu}m\)

6-pole, lossy

[1] [data]

'Werner2009' (default)

0.1 - 2.48 \({\mu}m\)

5-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Pt']['RakicLorentzDrude1998']
>>> medium = material_library['Pt']['Werner2009']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009) [doi]

Poly(methyl Methacrylate) (“PMMA”)#

Variant

Valid for

Model Info

Reference

'Horiba'

0.27 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

'Sultanova2009' (default)

0.44 - 1.05 \({\mu}m\)

1-pole, lossless

[2] [data]

Examples:

>>> medium = material_library['PMMA']['Horiba']
>>> medium = material_library['PMMA']['Sultanova2009']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009) [doi]

Polycarbonate (“Polycarbonate”)#

Variant

Valid for

Model Info

Reference

'Horiba'

0.31 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

'Sultanova2009' (default)

0.44 - 1.05 \({\mu}m\)

1-pole, lossless

[2] [data]

Examples:

>>> medium = material_library['Polycarbonate']['Horiba']
>>> medium = material_library['Polycarbonate']['Sultanova2009']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009) [doi]

Polyetherimide (“PEI”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.26 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PEI']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Polyethylene Naphthalate (“PEN”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.39 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PEN']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Polyethylene Terephthalate (“PET”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

Not specified

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PET']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Polystyrene (“Polystyrene”)#

Variant

Valid for

Model Info

Reference

'Sultanova2009' (default)

0.44 - 1.05 \({\mu}m\)

1-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['Polystyrene']['Sultanova2009']

References:

  1. N. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009) [doi]

Polytetrafluoroethylene, or Teflon (“PTFE”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.19 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PTFE']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Polyvinyl Chloride (“PVC”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.26 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['PVC']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Sapphire (“Sapphire”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.23 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['Sapphire']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silicon Carbide (“SiC”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 2.07 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['SiC']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silicon Dioxide (“SiO2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.25 - 1.77 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['SiO2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silicon Mononitride (“SiN”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 2.07 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['SiN']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silicon Nitride (“Si3N4”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.23 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

'Luke2015PMLStable'

0.41 - 1.97 \({\mu}m\)

2-pole, lossless

[2] [data]

'Luke2015Sellmeier'

0.31 - 5.5 \({\mu}m\)

2-pole, lossless

[2] [data]

'Philipp1973Sellmeier'

0.21 - 1.24 \({\mu}m\)

1-pole, lossless

[3][4] [data]

Examples:

>>> medium = material_library['Si3N4']['Horiba']
>>> medium = material_library['Si3N4']['Luke2015PMLStable']
>>> medium = material_library['Si3N4']['Luke2015Sellmeier']
>>> medium = material_library['Si3N4']['Philipp1973Sellmeier']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, Opt. Lett. 40, 4823-4826 (2015) [doi]

  3. H. R. Philipp. Optical properties of silicon nitride, J. Electrochim. Soc. 120, 295-300 (1973) [doi]

  4. T. Baak. Silicon oxynitride; a material for GRIN optics, Appl. Optics 21, 1069-1072 (1982) [doi]

Silicon Oxynitride (“SiON”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.41 - 1.65 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['SiON']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Silver (“Ag”)#

Variant

Valid for

Model Info

Reference

'JohnsonChristy1972'

0.19 - 1.94 \({\mu}m\)

3-pole, lossy

[1] [data]

'Rakic1998BB' (default)

0.25 - 12.4 \({\mu}m\)

6-pole, lossy

[2] [data]

'RakicLorentzDrude1998'

0.25 - 12.4 \({\mu}m\)

8-pole, lossy

[2] [data]

'Yang2015Drude'

0.19 - 1.94 \({\mu}m\)

2-pole, lossy

[3] [data]

Examples:

>>> medium = material_library['Ag']['JohnsonChristy1972']
>>> medium = material_library['Ag']['Rakic1998BB']
>>> medium = material_library['Ag']['RakicLorentzDrude1998']
>>> medium = material_library['Ag']['Yang2015Drude']

References:

  1. P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972) [doi]

  2. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

  3. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, M. B. Raschke. Optical dielectric function of silver, Phys. Rev. B 91, 235137 (2015) [doi]

Tantalum Pentoxide (“Ta2O5”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 1.65 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['Ta2O5']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Titanium (“Ti”)#

Variant

Valid for

Model Info

Reference

'RakicLorentzDrude1998'

0.25 - 31.0 \({\mu}m\)

7-pole, lossy

[1] [data]

'Werner2009' (default)

0.1 - 2.48 \({\mu}m\)

5-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['Ti']['RakicLorentzDrude1998']
>>> medium = material_library['Ti']['Werner2009']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009) [doi]

Titanium Oxide (“TiOx”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.41 - 2.07 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['TiOx']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Tungsten (“W”)#

Variant

Valid for

Model Info

Reference

'RakicLorentzDrude1998'

0.25 - 12.4 \({\mu}m\)

6-pole, lossy

[1] [data]

'Werner2009' (default)

0.1 - 2.48 \({\mu}m\)

5-pole, lossy

[2] [data]

Examples:

>>> medium = material_library['W']['RakicLorentzDrude1998']
>>> medium = material_library['W']['Werner2009']

References:

  1. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998) [doi]

  2. W. S. M. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009) [doi]

Water (“H2O”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.21 - 0.83 \({\mu}m\)

1-pole, lossless

[1]

Examples:

>>> medium = material_library['H2O']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

Yttrium Aluminium Garnet (“YAG”)#

Variant

Valid for

Model Info

Reference

'Zelmon1998' (default)

0.4 - 5.0 \({\mu}m\)

2-pole, lossless

[1] [data]

Examples:

>>> medium = material_library['YAG']['Zelmon1998']

References:

  1. D. E. Zelmon, D. L. Small and R. Page. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm, Appl. Opt. 37, 4933-4935 (1998) [doi]

Yttrium Oxide (“Y2O3”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.31 - 0.8 \({\mu}m\)

1-pole, lossless

[1]

'Nigara1968'

0.25 - 9.6 \({\mu}m\)

2-pole, lossless

[2] [data]

Examples:

>>> medium = material_library['Y2O3']['Horiba']
>>> medium = material_library['Y2O3']['Nigara1968']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]

  2. Y. Nigara. Measurement of the optical constants of yttrium oxide, Jpn. J. Appl. Phys. 7, 404-408 (1968) [doi]

Zirconium Oxide (“ZrO2”)#

Variant

Valid for

Model Info

Reference

'Horiba' (default)

0.41 - 0.83 \({\mu}m\)

1-pole, lossy

[1]

Examples:

>>> medium = material_library['ZrO2']['Horiba']

References:

  1. Horiba Technical Note 08: Lorentz Dispersion Model [url]