logo

Table of Contents

  • 1. Quick Start
    • 1.1. Run CFD using Web UI: An example of ONERA M6 Wing
    • 1.2. Run CFD using Python API: An example of ONERA M6 Wing
    • 1.3. Run CFD using Automated Meshing and Web UI
    • 1.4. Run CFD using Automated Meshing and Python API
    • 1.5. Run CFD using Automated Meshing: An example of S809 Airfoil
    • 1.6. Run CFD on a propeller: An example XV-15 rotor geometry
  • 2. Capabilities
    • 2.1. Overview
    • 2.2. Feature Compatibility Matrix
    • 2.3. Blade Element Theory Model
    • 2.4. User Defined Dynamics
  • 3. Preprocessing
    • 3.1. Install Engineering Sketch Pad (ESP)
    • 3.2. Manual Meshing
    • 3.3. Automated Meshing
  • 4. Solver Configuration
  • 5. Postprocessing
  • 6. Python API Reference
  • 7. Frequently Asked Questions
  • 8. Case Studies
    • 8.1. NACA 0012 Low Speed Airfoil
    • 8.2. 2D NACA 4412 Airfoil Trailing Edge Separation
    • 8.3. 2D Backward Facing Step
    • 8.4. High Lift Common Research Model (HL-CRM)
    • 8.5. Drag Prediction of Common Research Model
    • 8.6. ONERA M6 Wing
    • 8.7. XV-15 Rotor Blade Analysis using the Blade Element Disk Method
  • 9. Tutorials
    • 9.1. Geometry Modeling and Preparation for Automated Meshing: An Example of the ONERA M6 Wing
    • 9.2. Non-Dimensionalization and Integrated Loads Post-Processing in Flow360
    • 9.3. RANS CFD on 2D High-Lift System Configuration Using the Flow360 Python Client
    • 9.4. Time-accurate RANS CFD on a propeller using a rotation interface: the XV-15 rotor geometry
  • 10. Conventions
  • 11. Publications
    • 11.1. Webinar
    • 11.2. Papers
  • 12. Release Notes
Theme by the Executable Book Project
  • .rst

Publications

11. Publications#

  • 11.1. Webinar
    • 11.1.1. Mesh and Run a High-Fidelity Aircraft Simulation in Minutes
  • 11.2. Papers
    • 11.2.1. An Analysis of Modeling Sensitivity Effects for High Lift Predictions using the Flow360 CFD Solver
    • 11.2.2. Impact of the Propulsion Modeling Approach on High-Lift Force Predictions of Propeller-Blown Wings
    • 11.2.3. Flexcompute Contribution to the VIIth AIAA Drag Prediction Workshop
    • 11.2.4. Rotor5: Rotor analysis under 5 hours using ultra-fast and high-fidelity CFD simulation and automatic meshing
    • 11.2.5. Assessment of Detached Eddy Simulation and Sliding Mesh Interface in Predicting Tiltrotor Performance in Helicopter and Airplane Modes
    • 11.2.6. Aerodynamic Risk Assessment using Parametric, Three-Dimensional Unstructured, High-Fidelity CFD and Adaptive Sampling

previous

10. Conventions

next

11.1. Webinar

By Flexcompute Inc
© Copyright 2022, Flexcompute Inc.