logo

Table of Contents

  • 1. Quick Start
    • 1.1. Run CFD using Web UI: An example of ONERA M6 Wing
    • 1.2. Run CFD using Python API: An example of ONERA M6 Wing
    • 1.3. Run CFD using Automated Meshing and Web UI
    • 1.4. Run CFD using Automated Meshing and Python API
    • 1.5. Run CFD using Automated Meshing: An example of S809 Airfoil
    • 1.6. Run CFD on a propeller: An example XV-15 rotor geometry
  • 2. Capabilities
    • 2.1. Overview
    • 2.2. Feature Compatibility Matrix
    • 2.3. Blade Element Theory Model
    • 2.4. User Defined Dynamics
  • 3. Preprocessing
    • 3.1. Install Engineering Sketch Pad (ESP)
    • 3.2. Manual Meshing
    • 3.3. Automated Meshing
  • 4. Solver Configuration
  • 5. Postprocessing
  • 6. Python API Reference
  • 7. Frequently Asked Questions
  • 8. Case Studies
    • 8.1. NACA 0012 Low Speed Airfoil
    • 8.2. 2D NACA 4412 Airfoil Trailing Edge Separation
    • 8.3. 2D Backward Facing Step
    • 8.4. High Lift Common Research Model (HL-CRM)
    • 8.5. Drag Prediction of Common Research Model
    • 8.6. ONERA M6 Wing
    • 8.7. XV-15 Rotor Blade Analysis using the Blade Element Disk Method
  • 9. Tutorials
    • 9.1. Geometry Modeling and Preparation for Automated Meshing: An Example of the ONERA M6 Wing
    • 9.2. Non-Dimensionalization and Integrated Loads Post-Processing in Flow360
    • 9.3. RANS CFD on 2D High-Lift System Configuration Using the Flow360 Python Client
    • 9.4. Time-accurate RANS CFD on a propeller using a rotation interface: the XV-15 rotor geometry
  • 10. Conventions
  • 11. Publications
    • 11.1. Webinar
    • 11.2. Papers
  • 12. Release Notes
Theme by the Executable Book Project
  • .rst

Capabilities

2. Capabilities#

  • 2.1. Overview
    • 2.1.1. Meshing
    • 2.1.2. Equations
    • 2.1.3. Turbulence Models
    • 2.1.4. Boundary Conditions
  • 2.2. Feature Compatibility Matrix
  • 2.3. Blade Element Theory Model
    • 2.3.1. Overview
    • 2.3.2. BET input
    • 2.3.3. BET Loading Output
    • 2.3.4. BET Visualization
  • 2.4. User Defined Dynamics
    • 2.4.1. PI controller for angle of attack to control lift coefficient
    • 2.4.2. Dynamic grid rotation using structural aerodynamic load

previous

1.6. Run CFD on a propeller: An example XV-15 rotor geometry

next

2.1. Overview

By Flexcompute Inc
© Copyright 2022, Flexcompute Inc.