tidy3d.ModeSource#

class tidy3d.ModeSource#

Injects current source to excite modal profile on finite extent plane.

Parameters
  • center (Tuple[float, float, float] = (0.0, 0.0, 0.0)) – [units = um]. Center of object in x, y, and z.

  • size (Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat] = None) – [units = um]. Size in x, y, and z directions.

  • source_time (Union[GaussianPulse, ContinuousWave] = None) – Specification of the source time-dependence.

  • name (Optional[str] = None) – Optional name for the source.

  • direction (Literal['+', '-'] = None) – Specifies propagation in the positive or negative direction of the injection axis.

  • mode_spec (ModeSpec = ModeSpec(num_modes=1, target_neff=None, num_pml=(0,, 0), sort_by='largest_neff', angle_theta=0.0, angle_phi=0.0, bend_radius=None, bend_axis=None, type='ModeSpec')) – Parameters to feed to mode solver which determine modes measured by monitor.

  • mode_index (NonNegativeInt = 0) – Index into the collection of modes returned by mode solver. Specifies which mode to inject using this source. If larger than mode_spec.num_modes, num_modes in the solver will be set to mode_index + 1.

Example

>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)
>>> mode_spec = ModeSpec(target_neff=2.)
>>> mode_source = ModeSource(
...     size=(10,10,0),
...     source_time=pulse,
...     mode_spec=mode_spec,
...     mode_index=1,
...     direction='-')

Show JSON schema
{
   "title": "ModeSource",
   "description": "Injects current source to excite modal profile on finite extent plane.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n    [units = um].  Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat] = None\n    [units = um].  Size in x, y, and z directions.\nsource_time : Union[GaussianPulse, ContinuousWave] = None\n    Specification of the source time-dependence.\nname : Optional[str] = None\n    Optional name for the source.\ndirection : Literal['+', '-'] = None\n    Specifies propagation in the positive or negative direction of the injection axis.\nmode_spec : ModeSpec = ModeSpec(num_modes=1, target_neff=None, num_pml=(0,, 0), sort_by='largest_neff', angle_theta=0.0, angle_phi=0.0, bend_radius=None, bend_axis=None, type='ModeSpec')\n    Parameters to feed to mode solver which determine modes measured by monitor.\nmode_index : NonNegativeInt = 0\n    Index into the collection of modes returned by mode solver.  Specifies which mode to inject using this source. If larger than ``mode_spec.num_modes``, ``num_modes`` in the solver will be set to ``mode_index + 1``.\n\nExample\n-------\n>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)\n>>> mode_spec = ModeSpec(target_neff=2.)\n>>> mode_source = ModeSource(\n...     size=(10,10,0),\n...     source_time=pulse,\n...     mode_spec=mode_spec,\n...     mode_index=1,\n...     direction='-')",
   "type": "object",
   "properties": {
      "center": {
         "title": "Center",
         "description": "Center of object in x, y, and z.",
         "default": [
            0.0,
            0.0,
            0.0
         ],
         "units": "um",
         "type": "array",
         "minItems": 3,
         "maxItems": 3,
         "items": [
            {
               "type": "number"
            },
            {
               "type": "number"
            },
            {
               "type": "number"
            }
         ]
      },
      "type": {
         "title": "Type",
         "default": "ModeSource",
         "enum": [
            "ModeSource"
         ],
         "type": "string"
      },
      "size": {
         "title": "Size",
         "description": "Size in x, y, and z directions.",
         "units": "um",
         "type": "array",
         "minItems": 3,
         "maxItems": 3,
         "items": [
            {
               "type": "number",
               "minimum": 0
            },
            {
               "type": "number",
               "minimum": 0
            },
            {
               "type": "number",
               "minimum": 0
            }
         ]
      },
      "source_time": {
         "title": "Source Time",
         "description": "Specification of the source time-dependence.",
         "anyOf": [
            {
               "$ref": "#/definitions/GaussianPulse"
            },
            {
               "$ref": "#/definitions/ContinuousWave"
            }
         ]
      },
      "name": {
         "title": "Name",
         "description": "Optional name for the source.",
         "type": "string"
      },
      "direction": {
         "title": "Direction",
         "description": "Specifies propagation in the positive or negative direction of the injection axis.",
         "enum": [
            "+",
            "-"
         ],
         "type": "string"
      },
      "mode_spec": {
         "title": "Mode Specification",
         "description": "Parameters to feed to mode solver which determine modes measured by monitor.",
         "default": {
            "num_modes": 1,
            "target_neff": null,
            "num_pml": [
               0,
               0
            ],
            "sort_by": "largest_neff",
            "angle_theta": 0.0,
            "angle_phi": 0.0,
            "bend_radius": null,
            "bend_axis": null,
            "type": "ModeSpec"
         },
         "allOf": [
            {
               "$ref": "#/definitions/ModeSpec"
            }
         ]
      },
      "mode_index": {
         "title": "Mode Index",
         "description": "Index into the collection of modes returned by mode solver.  Specifies which mode to inject using this source. If larger than ``mode_spec.num_modes``, ``num_modes`` in the solver will be set to ``mode_index + 1``.",
         "default": 0,
         "minimum": 0,
         "type": "integer"
      }
   },
   "required": [
      "size",
      "source_time",
      "direction"
   ],
   "additionalProperties": false,
   "definitions": {
      "GaussianPulse": {
         "title": "GaussianPulse",
         "description": "Source time dependence that describes a Gaussian pulse.\n\nParameters\n----------\namplitude : NonNegativeFloat = 1.0\n    Real-valued maximum amplitude of the time dependence.\nphase : float = 0.0\n    [units = rad].  Phase shift of the time dependence.\nfreq0 : PositiveFloat = None\n    [units = Hz].  Central frequency of the pulse.\nfwidth : PositiveFloat = None\n    [units = Hz].  Standard deviation of the frequency content of the pulse.\noffset : ConstrainedFloatValue = 5.0\n    Time delay of the maximum value of the pulse in units of 1 / ``fwidth``.\n\nExample\n-------\n>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)",
         "type": "object",
         "properties": {
            "amplitude": {
               "title": "Amplitude",
               "description": "Real-valued maximum amplitude of the time dependence.",
               "default": 1.0,
               "minimum": 0,
               "type": "number"
            },
            "phase": {
               "title": "Phase",
               "description": "Phase shift of the time dependence.",
               "default": 0.0,
               "units": "rad",
               "type": "number"
            },
            "type": {
               "title": "Type",
               "default": "GaussianPulse",
               "enum": [
                  "GaussianPulse"
               ],
               "type": "string"
            },
            "freq0": {
               "title": "Central Frequency",
               "description": "Central frequency of the pulse.",
               "units": "Hz",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "fwidth": {
               "title": "Fwidth",
               "description": "Standard deviation of the frequency content of the pulse.",
               "units": "Hz",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "offset": {
               "title": "Offset",
               "description": "Time delay of the maximum value of the pulse in units of 1 / ``fwidth``.",
               "default": 5.0,
               "minimum": 2.5,
               "type": "number"
            }
         },
         "required": [
            "freq0",
            "fwidth"
         ],
         "additionalProperties": false
      },
      "ContinuousWave": {
         "title": "ContinuousWave",
         "description": "Source time dependence that ramps up to continuous oscillation\nand holds until end of simulation.\n\nParameters\n----------\namplitude : NonNegativeFloat = 1.0\n    Real-valued maximum amplitude of the time dependence.\nphase : float = 0.0\n    [units = rad].  Phase shift of the time dependence.\nfreq0 : PositiveFloat = None\n    [units = Hz].  Central frequency of the pulse.\nfwidth : PositiveFloat = None\n    [units = Hz].  Standard deviation of the frequency content of the pulse.\noffset : ConstrainedFloatValue = 5.0\n    Time delay of the maximum value of the pulse in units of 1 / ``fwidth``.\n\nExample\n-------\n>>> cw = ContinuousWave(freq0=200e12, fwidth=20e12)",
         "type": "object",
         "properties": {
            "amplitude": {
               "title": "Amplitude",
               "description": "Real-valued maximum amplitude of the time dependence.",
               "default": 1.0,
               "minimum": 0,
               "type": "number"
            },
            "phase": {
               "title": "Phase",
               "description": "Phase shift of the time dependence.",
               "default": 0.0,
               "units": "rad",
               "type": "number"
            },
            "type": {
               "title": "Type",
               "default": "ContinuousWave",
               "enum": [
                  "ContinuousWave"
               ],
               "type": "string"
            },
            "freq0": {
               "title": "Central Frequency",
               "description": "Central frequency of the pulse.",
               "units": "Hz",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "fwidth": {
               "title": "Fwidth",
               "description": "Standard deviation of the frequency content of the pulse.",
               "units": "Hz",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "offset": {
               "title": "Offset",
               "description": "Time delay of the maximum value of the pulse in units of 1 / ``fwidth``.",
               "default": 5.0,
               "minimum": 2.5,
               "type": "number"
            }
         },
         "required": [
            "freq0",
            "fwidth"
         ],
         "additionalProperties": false
      },
      "ModeSpec": {
         "title": "ModeSpec",
         "description": "Stores specifications for the mode solver to find an electromagntic mode.\nNote, the planar axes are found by popping the injection axis from {x,y,z}.\nFor example, if injection axis is y, the planar axes are ordered {x,z}.\n\nParameters\n----------\nnum_modes : PositiveInt = 1\n    Number of modes returned by mode solver.\ntarget_neff : Optional[PositiveFloat] = None\n    Guess for effective index of the mode.\nnum_pml : Tuple[NonNegativeInt, NonNegativeInt] = (0, 0)\n    Number of standard pml layers to add in the two tangential axes.\nsort_by : Literal['largest_neff', 'te_fraction', 'tm_fraction'] = largest_neff\n    The solver will always compute the ``num_modes`` modes closest to the ``target_neff``, but they can be reordered by the largest ``te_fraction``, defined as the integral of the intensity of the E-field component parallel to the first plane axis normalized to the total in-plane E-field intensity. Similarly, ``tm_fraction`` uses the E field component parallel to the second plane axis.\nangle_theta : float = 0.0\n    [units = rad].  Polar angle of the propagation axis from the injection axis.\nangle_phi : float = 0.0\n    [units = rad].  Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.\nbend_radius : Optional[float] = None\n    [units = um].  A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.\nbend_axis : Optional[Literal[0, 1]] = None\n    Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if ``bend_radius`` is not ``None``. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, the ``bend_axis`` is always 1 (the global z axis).\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3, target_neff=1.5)",
         "type": "object",
         "properties": {
            "num_modes": {
               "title": "Number of modes",
               "description": "Number of modes returned by mode solver.",
               "default": 1,
               "exclusiveMinimum": 0,
               "type": "integer"
            },
            "target_neff": {
               "title": "Target effective index",
               "description": "Guess for effective index of the mode.",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "num_pml": {
               "title": "Number of PML layers",
               "description": "Number of standard pml layers to add in the two tangential axes.",
               "default": [
                  0,
                  0
               ],
               "type": "array",
               "minItems": 2,
               "maxItems": 2,
               "items": [
                  {
                     "type": "integer",
                     "minimum": 0
                  },
                  {
                     "type": "integer",
                     "minimum": 0
                  }
               ]
            },
            "sort_by": {
               "title": "Ordering of the returned modes",
               "description": "The solver will always compute the ``num_modes`` modes closest to the ``target_neff``, but they can be reordered by the largest ``te_fraction``, defined as the integral of the intensity of the E-field component parallel to the first plane axis normalized to the total in-plane E-field intensity. Similarly, ``tm_fraction`` uses the E field component parallel to the second plane axis.",
               "default": "largest_neff",
               "enum": [
                  "largest_neff",
                  "te_fraction",
                  "tm_fraction"
               ],
               "type": "string"
            },
            "angle_theta": {
               "title": "Polar Angle",
               "description": "Polar angle of the propagation axis from the injection axis.",
               "default": 0.0,
               "units": "rad",
               "type": "number"
            },
            "angle_phi": {
               "title": "Azimuth Angle",
               "description": "Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.",
               "default": 0.0,
               "units": "rad",
               "type": "number"
            },
            "bend_radius": {
               "title": "Bend radius",
               "description": "A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.",
               "units": "um",
               "type": "number"
            },
            "bend_axis": {
               "title": "Bend axis",
               "description": "Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if ``bend_radius`` is not ``None``. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, the ``bend_axis`` is always 1 (the global z axis).",
               "enum": [
                  0,
                  1
               ],
               "type": "integer"
            },
            "type": {
               "title": "Type",
               "default": "ModeSpec",
               "enum": [
                  "ModeSpec"
               ],
               "type": "string"
            }
         },
         "additionalProperties": false
      }
   }
}

Fields
  • mode_index (pydantic.types.NonNegativeInt)

  • mode_spec (tidy3d.components.mode.ModeSpec)

attribute mode_index: pydantic.types.NonNegativeInt = 0#

Index into the collection of modes returned by mode solver. Specifies which mode to inject using this source. If larger than mode_spec.num_modes, num_modes in the solver will be set to mode_index + 1.

Constraints
  • minimum = 0

attribute mode_spec: tidy3d.components.mode.ModeSpec = ModeSpec(num_modes=1, target_neff=None, num_pml=(0, 0), sort_by='largest_neff', angle_theta=0.0, angle_phi=0.0, bend_radius=None, bend_axis=None, type='ModeSpec')#

Parameters to feed to mode solver which determine modes measured by monitor.

property angle_phi#

Azimuth angle of propagation.

property angle_theta#

Polar angle of propagation.