tidy3d.GaussianBeam#

class tidy3d.GaussianBeam#

Guassian distribution on finite extent plane.

Parameters
  • center (Tuple[float, float, float] = (0.0, 0.0, 0.0)) – [units = um]. Center of object in x, y, and z.

  • size (Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat] = None) – [units = um]. Size in x, y, and z directions.

  • source_time (Union[GaussianPulse, ContinuousWave] = None) – Specification of the source time-dependence.

  • name (Optional[str] = None) – Optional name for the source.

  • direction (Literal['+', '-'] = None) – Specifies propagation in the positive or negative direction of the injection axis.

  • angle_theta (float = 0.0) – [units = rad]. Polar angle of the propagation axis from the injection axis.

  • angle_phi (float = 0.0) – [units = rad]. Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.

  • pol_angle (float = 0) – [units = rad]. Specifies the angle between the electric field polarization of the source and the plane defined by the injection axis and the propagation axis (rad). pol_angle=0 (default) specifies P polarization, while pol_angle=np.pi/2 specifies S polarization. At normal incidence when S and P are undefined, pol_angle=0 defines: - Ey polarization for propagation along x.- Ex polarization for propagation along y.- Ex polarization for propagation along z.

  • waist_radius (PositiveFloat = 1.0) – [units = um]. Radius of the beam at the waist.

  • waist_distance (float = 0.0) – [units = um]. Distance from the beam waist along the propagation direction.

Example

>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)
>>> gauss = GaussianBeam(
...     size=(0,3,3),
...     source_time=pulse,
...     pol_angle=np.pi / 2,
...     direction='+',
...     waist_radius=1.0)

Show JSON schema
{
   "title": "GaussianBeam",
   "description": "Guassian distribution on finite extent plane.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n    [units = um].  Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat] = None\n    [units = um].  Size in x, y, and z directions.\nsource_time : Union[GaussianPulse, ContinuousWave] = None\n    Specification of the source time-dependence.\nname : Optional[str] = None\n    Optional name for the source.\ndirection : Literal['+', '-'] = None\n    Specifies propagation in the positive or negative direction of the injection axis.\nangle_theta : float = 0.0\n    [units = rad].  Polar angle of the propagation axis from the injection axis.\nangle_phi : float = 0.0\n    [units = rad].  Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.\npol_angle : float = 0\n    [units = rad].  Specifies the angle between the electric field polarization of the source and the plane defined by the injection axis and the propagation axis (rad). ``pol_angle=0`` (default) specifies P polarization, while ``pol_angle=np.pi/2`` specifies S polarization. At normal incidence when S and P are undefined, ``pol_angle=0`` defines: - ``Ey`` polarization for propagation along ``x``.- ``Ex`` polarization for propagation along ``y``.- ``Ex`` polarization for propagation along ``z``.\nwaist_radius : PositiveFloat = 1.0\n    [units = um].  Radius of the beam at the waist.\nwaist_distance : float = 0.0\n    [units = um].  Distance from the beam waist along the propagation direction.\n\nExample\n-------\n>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)\n>>> gauss = GaussianBeam(\n...     size=(0,3,3),\n...     source_time=pulse,\n...     pol_angle=np.pi / 2,\n...     direction='+',\n...     waist_radius=1.0)",
   "type": "object",
   "properties": {
      "center": {
         "title": "Center",
         "description": "Center of object in x, y, and z.",
         "default": [
            0.0,
            0.0,
            0.0
         ],
         "units": "um",
         "type": "array",
         "minItems": 3,
         "maxItems": 3,
         "items": [
            {
               "type": "number"
            },
            {
               "type": "number"
            },
            {
               "type": "number"
            }
         ]
      },
      "type": {
         "title": "Type",
         "default": "GaussianBeam",
         "enum": [
            "GaussianBeam"
         ],
         "type": "string"
      },
      "size": {
         "title": "Size",
         "description": "Size in x, y, and z directions.",
         "units": "um",
         "type": "array",
         "minItems": 3,
         "maxItems": 3,
         "items": [
            {
               "type": "number",
               "minimum": 0
            },
            {
               "type": "number",
               "minimum": 0
            },
            {
               "type": "number",
               "minimum": 0
            }
         ]
      },
      "source_time": {
         "title": "Source Time",
         "description": "Specification of the source time-dependence.",
         "anyOf": [
            {
               "$ref": "#/definitions/GaussianPulse"
            },
            {
               "$ref": "#/definitions/ContinuousWave"
            }
         ]
      },
      "name": {
         "title": "Name",
         "description": "Optional name for the source.",
         "type": "string"
      },
      "direction": {
         "title": "Direction",
         "description": "Specifies propagation in the positive or negative direction of the injection axis.",
         "enum": [
            "+",
            "-"
         ],
         "type": "string"
      },
      "angle_theta": {
         "title": "Polar Angle",
         "description": "Polar angle of the propagation axis from the injection axis.",
         "default": 0.0,
         "units": "rad",
         "type": "number"
      },
      "angle_phi": {
         "title": "Azimuth Angle",
         "description": "Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.",
         "default": 0.0,
         "units": "rad",
         "type": "number"
      },
      "pol_angle": {
         "title": "Polarization Angle",
         "description": "Specifies the angle between the electric field polarization of the source and the plane defined by the injection axis and the propagation axis (rad). ``pol_angle=0`` (default) specifies P polarization, while ``pol_angle=np.pi/2`` specifies S polarization. At normal incidence when S and P are undefined, ``pol_angle=0`` defines: - ``Ey`` polarization for propagation along ``x``.- ``Ex`` polarization for propagation along ``y``.- ``Ex`` polarization for propagation along ``z``.",
         "default": 0,
         "units": "rad",
         "type": "number"
      },
      "waist_radius": {
         "title": "Waist Radius",
         "description": "Radius of the beam at the waist.",
         "default": 1.0,
         "units": "um",
         "exclusiveMinimum": 0,
         "type": "number"
      },
      "waist_distance": {
         "title": "Waist Distance",
         "description": "Distance from the beam waist along the propagation direction.",
         "default": 0.0,
         "units": "um",
         "type": "number"
      }
   },
   "required": [
      "size",
      "source_time",
      "direction"
   ],
   "additionalProperties": false,
   "definitions": {
      "GaussianPulse": {
         "title": "GaussianPulse",
         "description": "Source time dependence that describes a Gaussian pulse.\n\nParameters\n----------\namplitude : NonNegativeFloat = 1.0\n    Real-valued maximum amplitude of the time dependence.\nphase : float = 0.0\n    [units = rad].  Phase shift of the time dependence.\nfreq0 : PositiveFloat = None\n    [units = Hz].  Central frequency of the pulse.\nfwidth : PositiveFloat = None\n    [units = Hz].  Standard deviation of the frequency content of the pulse.\noffset : ConstrainedFloatValue = 5.0\n    Time delay of the maximum value of the pulse in units of 1 / ``fwidth``.\n\nExample\n-------\n>>> pulse = GaussianPulse(freq0=200e12, fwidth=20e12)",
         "type": "object",
         "properties": {
            "amplitude": {
               "title": "Amplitude",
               "description": "Real-valued maximum amplitude of the time dependence.",
               "default": 1.0,
               "minimum": 0,
               "type": "number"
            },
            "phase": {
               "title": "Phase",
               "description": "Phase shift of the time dependence.",
               "default": 0.0,
               "units": "rad",
               "type": "number"
            },
            "type": {
               "title": "Type",
               "default": "GaussianPulse",
               "enum": [
                  "GaussianPulse"
               ],
               "type": "string"
            },
            "freq0": {
               "title": "Central Frequency",
               "description": "Central frequency of the pulse.",
               "units": "Hz",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "fwidth": {
               "title": "Fwidth",
               "description": "Standard deviation of the frequency content of the pulse.",
               "units": "Hz",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "offset": {
               "title": "Offset",
               "description": "Time delay of the maximum value of the pulse in units of 1 / ``fwidth``.",
               "default": 5.0,
               "minimum": 2.5,
               "type": "number"
            }
         },
         "required": [
            "freq0",
            "fwidth"
         ],
         "additionalProperties": false
      },
      "ContinuousWave": {
         "title": "ContinuousWave",
         "description": "Source time dependence that ramps up to continuous oscillation\nand holds until end of simulation.\n\nParameters\n----------\namplitude : NonNegativeFloat = 1.0\n    Real-valued maximum amplitude of the time dependence.\nphase : float = 0.0\n    [units = rad].  Phase shift of the time dependence.\nfreq0 : PositiveFloat = None\n    [units = Hz].  Central frequency of the pulse.\nfwidth : PositiveFloat = None\n    [units = Hz].  Standard deviation of the frequency content of the pulse.\noffset : ConstrainedFloatValue = 5.0\n    Time delay of the maximum value of the pulse in units of 1 / ``fwidth``.\n\nExample\n-------\n>>> cw = ContinuousWave(freq0=200e12, fwidth=20e12)",
         "type": "object",
         "properties": {
            "amplitude": {
               "title": "Amplitude",
               "description": "Real-valued maximum amplitude of the time dependence.",
               "default": 1.0,
               "minimum": 0,
               "type": "number"
            },
            "phase": {
               "title": "Phase",
               "description": "Phase shift of the time dependence.",
               "default": 0.0,
               "units": "rad",
               "type": "number"
            },
            "type": {
               "title": "Type",
               "default": "ContinuousWave",
               "enum": [
                  "ContinuousWave"
               ],
               "type": "string"
            },
            "freq0": {
               "title": "Central Frequency",
               "description": "Central frequency of the pulse.",
               "units": "Hz",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "fwidth": {
               "title": "Fwidth",
               "description": "Standard deviation of the frequency content of the pulse.",
               "units": "Hz",
               "exclusiveMinimum": 0,
               "type": "number"
            },
            "offset": {
               "title": "Offset",
               "description": "Time delay of the maximum value of the pulse in units of 1 / ``fwidth``.",
               "default": 5.0,
               "minimum": 2.5,
               "type": "number"
            }
         },
         "required": [
            "freq0",
            "fwidth"
         ],
         "additionalProperties": false
      }
   }
}

Fields
  • waist_distance (float)

  • waist_radius (pydantic.types.PositiveFloat)

attribute waist_distance: float = 0.0#

Distance from the beam waist along the propagation direction.

attribute waist_radius: pydantic.types.PositiveFloat = 1.0#

Radius of the beam at the waist.

Constraints
  • exclusiveMinimum = 0