tidy3d.AnisotropicMedium#

class tidy3d.AnisotropicMedium#

Diagonally anisotropic medium.

Parameters

Note

Only diagonal anisotropy is currently supported.

Example

>>> medium_xx = Medium(permittivity=4.0)
>>> medium_yy = Medium(permittivity=4.1)
>>> medium_zz = Medium(permittivity=3.9)
>>> anisotropic_dielectric = AnisotropicMedium(xx=medium_xx, yy=medium_yy, zz=medium_zz)

Show JSON schema
{
   "title": "AnisotropicMedium",
   "description": "Diagonally anisotropic medium.\n\nParameters\n----------\nname : Optional[str] = None\n    Optional unique name for medium.\nfrequency_range : Optional[Tuple[float, float]] = None\n    [units = (Hz, Hz)].  Optional range of validity for the medium.\nxx : Union[Medium, PoleResidue, Sellmeier, Lorentz, Debye, Drude]\n    Medium describing the xx-component of the diagonal permittivity tensor.\nyy : Union[Medium, PoleResidue, Sellmeier, Lorentz, Debye, Drude]\n    Medium describing the yy-component of the diagonal permittivity tensor.\nzz : Union[Medium, PoleResidue, Sellmeier, Lorentz, Debye, Drude]\n    Medium describing the zz-component of the diagonal permittivity tensor.\n\nNote\n----\nOnly diagonal anisotropy is currently supported.\n\nExample\n-------\n>>> medium_xx = Medium(permittivity=4.0)\n>>> medium_yy = Medium(permittivity=4.1)\n>>> medium_zz = Medium(permittivity=3.9)\n>>> anisotropic_dielectric = AnisotropicMedium(xx=medium_xx, yy=medium_yy, zz=medium_zz)",
   "type": "object",
   "properties": {
      "name": {
         "title": "Name",
         "description": "Optional unique name for medium.",
         "type": "string"
      },
      "frequency_range": {
         "title": "Frequency Range",
         "description": "Optional range of validity for the medium.",
         "units": [
            "Hz",
            "Hz"
         ],
         "type": "array",
         "minItems": 2,
         "maxItems": 2,
         "items": [
            {
               "type": "number"
            },
            {
               "type": "number"
            }
         ]
      },
      "type": {
         "title": "Type",
         "default": "AnisotropicMedium",
         "enum": [
            "AnisotropicMedium"
         ],
         "type": "string"
      },
      "xx": {
         "title": "XX Component",
         "description": "Medium describing the xx-component of the diagonal permittivity tensor.",
         "discriminator": {
            "propertyName": "type",
            "mapping": {
               "Medium": "#/definitions/Medium",
               "PoleResidue": "#/definitions/PoleResidue",
               "Sellmeier": "#/definitions/Sellmeier",
               "Lorentz": "#/definitions/Lorentz",
               "Debye": "#/definitions/Debye",
               "Drude": "#/definitions/Drude"
            }
         },
         "oneOf": [
            {
               "$ref": "#/definitions/Medium"
            },
            {
               "$ref": "#/definitions/PoleResidue"
            },
            {
               "$ref": "#/definitions/Sellmeier"
            },
            {
               "$ref": "#/definitions/Lorentz"
            },
            {
               "$ref": "#/definitions/Debye"
            },
            {
               "$ref": "#/definitions/Drude"
            }
         ]
      },
      "yy": {
         "title": "YY Component",
         "description": "Medium describing the yy-component of the diagonal permittivity tensor.",
         "discriminator": {
            "propertyName": "type",
            "mapping": {
               "Medium": "#/definitions/Medium",
               "PoleResidue": "#/definitions/PoleResidue",
               "Sellmeier": "#/definitions/Sellmeier",
               "Lorentz": "#/definitions/Lorentz",
               "Debye": "#/definitions/Debye",
               "Drude": "#/definitions/Drude"
            }
         },
         "oneOf": [
            {
               "$ref": "#/definitions/Medium"
            },
            {
               "$ref": "#/definitions/PoleResidue"
            },
            {
               "$ref": "#/definitions/Sellmeier"
            },
            {
               "$ref": "#/definitions/Lorentz"
            },
            {
               "$ref": "#/definitions/Debye"
            },
            {
               "$ref": "#/definitions/Drude"
            }
         ]
      },
      "zz": {
         "title": "ZZ Component",
         "description": "Medium describing the zz-component of the diagonal permittivity tensor.",
         "discriminator": {
            "propertyName": "type",
            "mapping": {
               "Medium": "#/definitions/Medium",
               "PoleResidue": "#/definitions/PoleResidue",
               "Sellmeier": "#/definitions/Sellmeier",
               "Lorentz": "#/definitions/Lorentz",
               "Debye": "#/definitions/Debye",
               "Drude": "#/definitions/Drude"
            }
         },
         "oneOf": [
            {
               "$ref": "#/definitions/Medium"
            },
            {
               "$ref": "#/definitions/PoleResidue"
            },
            {
               "$ref": "#/definitions/Sellmeier"
            },
            {
               "$ref": "#/definitions/Lorentz"
            },
            {
               "$ref": "#/definitions/Debye"
            },
            {
               "$ref": "#/definitions/Drude"
            }
         ]
      }
   },
   "required": [
      "xx",
      "yy",
      "zz"
   ],
   "additionalProperties": false,
   "definitions": {
      "Medium": {
         "title": "Medium",
         "description": "Dispersionless medium.\n\nParameters\n----------\nname : Optional[str] = None\n    Optional unique name for medium.\nfrequency_range : Optional[Tuple[float, float]] = None\n    [units = (Hz, Hz)].  Optional range of validity for the medium.\npermittivity : ConstrainedFloatValue = 1.0\n    [units = None (relative permittivity)].  Relative permittivity.\nconductivity : ConstrainedFloatValue = 0.0\n    [units = S/um].  Electric conductivity.  Defined such that the imaginary part of the complex permittivity at angular frequency omega is given by conductivity/omega.\n\nExample\n-------\n>>> dielectric = Medium(permittivity=4.0, name='my_medium')\n>>> eps = dielectric.eps_model(200e12)",
         "type": "object",
         "properties": {
            "name": {
               "title": "Name",
               "description": "Optional unique name for medium.",
               "type": "string"
            },
            "frequency_range": {
               "title": "Frequency Range",
               "description": "Optional range of validity for the medium.",
               "units": [
                  "Hz",
                  "Hz"
               ],
               "type": "array",
               "minItems": 2,
               "maxItems": 2,
               "items": [
                  {
                     "type": "number"
                  },
                  {
                     "type": "number"
                  }
               ]
            },
            "type": {
               "title": "Type",
               "default": "Medium",
               "enum": [
                  "Medium"
               ],
               "type": "string"
            },
            "permittivity": {
               "title": "Permittivity",
               "description": "Relative permittivity.",
               "default": 1.0,
               "minimum": 1.0,
               "units": "None (relative permittivity)",
               "type": "number"
            },
            "conductivity": {
               "title": "Conductivity",
               "description": "Electric conductivity.  Defined such that the imaginary part of the complex permittivity at angular frequency omega is given by conductivity/omega.",
               "default": 0.0,
               "minimum": 0.0,
               "units": "S/um",
               "type": "number"
            }
         },
         "additionalProperties": false
      },
      "ComplexNumber": {
         "title": "ComplexNumber",
         "description": "Complex number with a well defined schema.",
         "type": "object",
         "properties": {
            "real": {
               "title": "Real",
               "type": "number"
            },
            "imag": {
               "title": "Imag",
               "type": "number"
            }
         },
         "required": [
            "real",
            "imag"
         ]
      },
      "PoleResidue": {
         "title": "PoleResidue",
         "description": "A dispersive medium described by the pole-residue pair model.\nThe frequency-dependence of the complex-valued permittivity is described by:\n\nParameters\n----------\nname : Optional[str] = None\n    Optional unique name for medium.\nfrequency_range : Optional[Tuple[float, float]] = None\n    [units = (Hz, Hz)].  Optional range of validity for the medium.\neps_inf : float = 1.0\n    [units = None (relative permittivity)].  Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).\npoles : Tuple[Tuple[Union[tidy3d.components.types.tidycomplex, tidy3d.components.types.ComplexNumber], Union[tidy3d.components.types.tidycomplex, tidy3d.components.types.ComplexNumber]], ...] = ()\n    [units = (rad/sec, rad/sec)].  Tuple of complex-valued (:math:`a_i, c_i`) poles for the model.\n\nNote\n----\n.. math::\n\n    \\epsilon(\\omega) = \\epsilon_\\infty - \\sum_i\n    \\left[\\frac{c_i}{j \\omega + a_i} +\n    \\frac{c_i^*}{j \\omega + a_i^*}\\right]\n\nExample\n-------\n>>> pole_res = PoleResidue(eps_inf=2.0, poles=[((1+2j), (3+4j)), ((5+6j), (7+8j))])\n>>> eps = pole_res.eps_model(200e12)",
         "type": "object",
         "properties": {
            "name": {
               "title": "Name",
               "description": "Optional unique name for medium.",
               "type": "string"
            },
            "frequency_range": {
               "title": "Frequency Range",
               "description": "Optional range of validity for the medium.",
               "units": [
                  "Hz",
                  "Hz"
               ],
               "type": "array",
               "minItems": 2,
               "maxItems": 2,
               "items": [
                  {
                     "type": "number"
                  },
                  {
                     "type": "number"
                  }
               ]
            },
            "type": {
               "title": "Type",
               "default": "PoleResidue",
               "enum": [
                  "PoleResidue"
               ],
               "type": "string"
            },
            "eps_inf": {
               "title": "Epsilon at Infinity",
               "description": "Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).",
               "default": 1.0,
               "units": "None (relative permittivity)",
               "type": "number"
            },
            "poles": {
               "title": "Poles",
               "description": "Tuple of complex-valued (:math:`a_i, c_i`) poles for the model.",
               "default": [],
               "units": [
                  "rad/sec",
                  "rad/sec"
               ],
               "type": "array",
               "items": {
                  "type": "array",
                  "minItems": 2,
                  "maxItems": 2,
                  "items": [
                     {
                        "anyOf": [
                           {
                              "title": "ComplexNumber",
                              "description": "Complex number with a well defined schema.",
                              "type": "object",
                              "properties": {
                                 "real": {
                                    "title": "Real",
                                    "type": "number"
                                 },
                                 "imag": {
                                    "title": "Imag",
                                    "type": "number"
                                 }
                              },
                              "required": [
                                 "real",
                                 "imag"
                              ]
                           },
                           {
                              "$ref": "#/definitions/ComplexNumber"
                           }
                        ]
                     },
                     {
                        "anyOf": [
                           {
                              "title": "ComplexNumber",
                              "description": "Complex number with a well defined schema.",
                              "type": "object",
                              "properties": {
                                 "real": {
                                    "title": "Real",
                                    "type": "number"
                                 },
                                 "imag": {
                                    "title": "Imag",
                                    "type": "number"
                                 }
                              },
                              "required": [
                                 "real",
                                 "imag"
                              ]
                           },
                           {
                              "$ref": "#/definitions/ComplexNumber"
                           }
                        ]
                     }
                  ]
               }
            }
         },
         "additionalProperties": false
      },
      "Sellmeier": {
         "title": "Sellmeier",
         "description": "A dispersive medium described by the Sellmeier model.\nThe frequency-dependence of the refractive index is described by:\n\nParameters\n----------\nname : Optional[str] = None\n    Optional unique name for medium.\nfrequency_range : Optional[Tuple[float, float]] = None\n    [units = (Hz, Hz)].  Optional range of validity for the medium.\ncoeffs : Tuple[Tuple[float, pydantic.types.PositiveFloat], ...]\n    [units = (None, um^2)].  List of Sellmeier (:math:`B_i, C_i`) coefficients.\n\nNote\n----\n.. math::\n\n    n(\\lambda)^2 = 1 + \\sum_i \\frac{B_i \\lambda^2}{\\lambda^2 - C_i}\n\nExample\n-------\n>>> sellmeier_medium = Sellmeier(coeffs=[(1,2), (3,4)])\n>>> eps = sellmeier_medium.eps_model(200e12)",
         "type": "object",
         "properties": {
            "name": {
               "title": "Name",
               "description": "Optional unique name for medium.",
               "type": "string"
            },
            "frequency_range": {
               "title": "Frequency Range",
               "description": "Optional range of validity for the medium.",
               "units": [
                  "Hz",
                  "Hz"
               ],
               "type": "array",
               "minItems": 2,
               "maxItems": 2,
               "items": [
                  {
                     "type": "number"
                  },
                  {
                     "type": "number"
                  }
               ]
            },
            "type": {
               "title": "Type",
               "default": "Sellmeier",
               "enum": [
                  "Sellmeier"
               ],
               "type": "string"
            },
            "coeffs": {
               "title": "Coefficients",
               "description": "List of Sellmeier (:math:`B_i, C_i`) coefficients.",
               "units": [
                  null,
                  "um^2"
               ],
               "type": "array",
               "items": {
                  "type": "array",
                  "minItems": 2,
                  "maxItems": 2,
                  "items": [
                     {
                        "type": "number"
                     },
                     {
                        "type": "number",
                        "exclusiveMinimum": 0
                     }
                  ]
               }
            }
         },
         "required": [
            "coeffs"
         ],
         "additionalProperties": false
      },
      "Lorentz": {
         "title": "Lorentz",
         "description": "A dispersive medium described by the Lorentz model.\nThe frequency-dependence of the complex-valued permittivity is described by:\n\nParameters\n----------\nname : Optional[str] = None\n    Optional unique name for medium.\nfrequency_range : Optional[Tuple[float, float]] = None\n    [units = (Hz, Hz)].  Optional range of validity for the medium.\neps_inf : float = 1.0\n    [units = None (relative permittivity)].  Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).\ncoeffs : Tuple[Tuple[float, float, float], ...]\n    [units = (None (relative permittivity), Hz, Hz)].  List of (:math:`\\Delta\\epsilon_i, f_i, \\delta_i`) values for model.\n\nNote\n----\n.. math::\n\n    \\epsilon(f) = \\epsilon_\\infty + \\sum_i\n    \\frac{\\Delta\\epsilon_i f_i^2}{f_i^2 - 2jf\\delta_i - f^2}\n\nExample\n-------\n>>> lorentz_medium = Lorentz(eps_inf=2.0, coeffs=[(1,2,3), (4,5,6)])\n>>> eps = lorentz_medium.eps_model(200e12)",
         "type": "object",
         "properties": {
            "name": {
               "title": "Name",
               "description": "Optional unique name for medium.",
               "type": "string"
            },
            "frequency_range": {
               "title": "Frequency Range",
               "description": "Optional range of validity for the medium.",
               "units": [
                  "Hz",
                  "Hz"
               ],
               "type": "array",
               "minItems": 2,
               "maxItems": 2,
               "items": [
                  {
                     "type": "number"
                  },
                  {
                     "type": "number"
                  }
               ]
            },
            "type": {
               "title": "Type",
               "default": "Lorentz",
               "enum": [
                  "Lorentz"
               ],
               "type": "string"
            },
            "eps_inf": {
               "title": "Epsilon at Infinity",
               "description": "Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).",
               "default": 1.0,
               "units": "None (relative permittivity)",
               "type": "number"
            },
            "coeffs": {
               "title": "Coefficients",
               "description": "List of (:math:`\\Delta\\epsilon_i, f_i, \\delta_i`) values for model.",
               "units": [
                  "None (relative permittivity)",
                  "Hz",
                  "Hz"
               ],
               "type": "array",
               "items": {
                  "type": "array",
                  "minItems": 3,
                  "maxItems": 3,
                  "items": [
                     {
                        "type": "number"
                     },
                     {
                        "type": "number"
                     },
                     {
                        "type": "number"
                     }
                  ]
               }
            }
         },
         "required": [
            "coeffs"
         ],
         "additionalProperties": false
      },
      "Debye": {
         "title": "Debye",
         "description": "A dispersive medium described by the Debye model.\nThe frequency-dependence of the complex-valued permittivity is described by:\n\nParameters\n----------\nname : Optional[str] = None\n    Optional unique name for medium.\nfrequency_range : Optional[Tuple[float, float]] = None\n    [units = (Hz, Hz)].  Optional range of validity for the medium.\neps_inf : float = 1.0\n    [units = None (relative permittivity)].  Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).\ncoeffs : Tuple[Tuple[float, pydantic.types.PositiveFloat], ...]\n    [units = (None (relative permittivity), sec)].  List of (:math:`\\Delta\\epsilon_i, \\tau_i`) values for model.\n\nNote\n----\n.. math::\n\n    \\epsilon(f) = \\epsilon_\\infty + \\sum_i\n    \\frac{\\Delta\\epsilon_i}{1 - jf\\tau_i}\n\nExample\n-------\n>>> debye_medium = Debye(eps_inf=2.0, coeffs=[(1,2),(3,4)])\n>>> eps = debye_medium.eps_model(200e12)",
         "type": "object",
         "properties": {
            "name": {
               "title": "Name",
               "description": "Optional unique name for medium.",
               "type": "string"
            },
            "frequency_range": {
               "title": "Frequency Range",
               "description": "Optional range of validity for the medium.",
               "units": [
                  "Hz",
                  "Hz"
               ],
               "type": "array",
               "minItems": 2,
               "maxItems": 2,
               "items": [
                  {
                     "type": "number"
                  },
                  {
                     "type": "number"
                  }
               ]
            },
            "type": {
               "title": "Type",
               "default": "Debye",
               "enum": [
                  "Debye"
               ],
               "type": "string"
            },
            "eps_inf": {
               "title": "Epsilon at Infinity",
               "description": "Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).",
               "default": 1.0,
               "units": "None (relative permittivity)",
               "type": "number"
            },
            "coeffs": {
               "title": "Coefficients",
               "description": "List of (:math:`\\Delta\\epsilon_i, \\tau_i`) values for model.",
               "units": [
                  "None (relative permittivity)",
                  "sec"
               ],
               "type": "array",
               "items": {
                  "type": "array",
                  "minItems": 2,
                  "maxItems": 2,
                  "items": [
                     {
                        "type": "number"
                     },
                     {
                        "type": "number",
                        "exclusiveMinimum": 0
                     }
                  ]
               }
            }
         },
         "required": [
            "coeffs"
         ],
         "additionalProperties": false
      },
      "Drude": {
         "title": "Drude",
         "description": "A dispersive medium described by the Drude model.\nThe frequency-dependence of the complex-valued permittivity is described by:\n\nParameters\n----------\nname : Optional[str] = None\n    Optional unique name for medium.\nfrequency_range : Optional[Tuple[float, float]] = None\n    [units = (Hz, Hz)].  Optional range of validity for the medium.\neps_inf : float = 1.0\n    [units = None (relative permittivity)].  Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).\ncoeffs : Tuple[Tuple[float, pydantic.types.PositiveFloat], ...]\n    [units = (Hz, Hz)].  List of (:math:`f_i, \\delta_i`) values for model.\n\nNote\n----\n.. math::\n\n    \\epsilon(f) = \\epsilon_\\infty - \\sum_i\n    \\frac{ f_i^2}{f^2 + jf\\delta_i}\n\nExample\n-------\n>>> drude_medium = Drude(eps_inf=2.0, coeffs=[(1,2), (3,4)])\n>>> eps = drude_medium.eps_model(200e12)",
         "type": "object",
         "properties": {
            "name": {
               "title": "Name",
               "description": "Optional unique name for medium.",
               "type": "string"
            },
            "frequency_range": {
               "title": "Frequency Range",
               "description": "Optional range of validity for the medium.",
               "units": [
                  "Hz",
                  "Hz"
               ],
               "type": "array",
               "minItems": 2,
               "maxItems": 2,
               "items": [
                  {
                     "type": "number"
                  },
                  {
                     "type": "number"
                  }
               ]
            },
            "type": {
               "title": "Type",
               "default": "Drude",
               "enum": [
                  "Drude"
               ],
               "type": "string"
            },
            "eps_inf": {
               "title": "Epsilon at Infinity",
               "description": "Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).",
               "default": 1.0,
               "units": "None (relative permittivity)",
               "type": "number"
            },
            "coeffs": {
               "title": "Coefficients",
               "description": "List of (:math:`f_i, \\delta_i`) values for model.",
               "units": [
                  "Hz",
                  "Hz"
               ],
               "type": "array",
               "items": {
                  "type": "array",
                  "minItems": 2,
                  "maxItems": 2,
                  "items": [
                     {
                        "type": "number"
                     },
                     {
                        "type": "number",
                        "exclusiveMinimum": 0
                     }
                  ]
               }
            }
         },
         "required": [
            "coeffs"
         ],
         "additionalProperties": false
      }
   }
}

attribute xx: Union[tidy3d.components.medium.Medium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude] [Required]#

Medium describing the xx-component of the diagonal permittivity tensor.

attribute yy: Union[tidy3d.components.medium.Medium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude] [Required]#

Medium describing the yy-component of the diagonal permittivity tensor.

attribute zz: Union[tidy3d.components.medium.Medium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude] [Required]#

Medium describing the zz-component of the diagonal permittivity tensor.

eps_diagonal(frequency: float) Tuple[complex, complex, complex]#

Main diagonal of the complex-valued permittivity tensor as a function of frequency.

eps_model(frequency: float) complex#

Complex-valued permittivity as a function of frequency.

plot(freqs: float, ax: matplotlib.axes._axes.Axes = None) matplotlib.axes._axes.Axes#

Plot n, k of a Medium as a function of frequency.