Material Library#

The material library is a dictionary containing various dispersive models from real world materials.

>>> from tidy3d import material_library

The first key of the dictionary is the material name, the second key is the “variant” name, for example which reference the data came from.

To import a material “mat” with variant “var” as a tidy3d medium:

>>> medium = material_library['mat']['var']

For example, for silver as measured by A. D. Rakic et al. (1998), one can load the medium as:

>>> silver = material_library['Ag']['Rakic1998']

In the materials below, the material name is in parentheses in the header and the variant names are in the table.

Note: it is often very useful to see the list of variants for a given medium, which can be done as:

>>> print(material_library['Ag'].keys())

Silver (“Ag”)#

Variant

Valid for:

Lossy?

Complexity

'Rakic1998' (default)

0.1-5eV

Yes

6 poles

'RakicLorentzDrude1998'

0.1-5eV

Yes

8 poles

'JohnsonChristy1972'

0.64-6.6eV

Yes

4 poles

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

      1. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972).

Aluminum (“Al”)#

Variant

Valid for:

Lossy?

Complexity

'Rakic1998' (default)

0.1-10eV

Yes

5 poles

'RakicLorentzDrude1998'

0.005-20eV

Yes

7 poles

      1. Rakic. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt. 34, 4755-4767 (1995).

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

Alumina (“Al2O3”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.6-6eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Aluminum arsenide (“AlAs”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0-3eV

Yes

1 pole

'FernOnton1971'

0.56-2.2um

No

2 poles

  • R.E. Fern and A. Onton, J. Applied Physics, 42, 3499-500 (1971).

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Aluminum gallium nitride (“AlGaN”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.6-4eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Aluminum nitride (“AlN”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.75-4.75eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Aluminum oxide (“AlxOy”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.6-6eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Amino acid (“Aminoacid”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-5eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Gold (“Au”)#

Variant

Valid for:

Lossy?

Complexity

'JohnsonChristy1972' (default)

0.64-6.6eV

Yes

6 poles

'RakicLorentzDrude1998'

0.2-5eV

Yes

7 poles

      1. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972).

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

N-BK7 borosilicate glass (“BK7”)#

Variant

Valid for:

Lossy?

Complexity

'Zemax' (default)

0.3-2.5um

No

3 poles

Beryllium (“Be”)#

Variant

Valid for:

Lossy?

Complexity

'Rakic1998' (default)

0.02-5eV

Yes

4 poles

'RakicLorentzDrude1998'

0.02-5eV

Yes

8 poles

      1. Rakic. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt. 34, 4755-4767 (1995).

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

Calcium fluoride (“CaF2”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.75-4.75eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Cellulose. (“Cellulose”)#

Variant

Valid for:

Lossy?

Complexity

'Sultanova2009' (default)

0.44-1.1um

No

1 pole

    1. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009).

Chromium (“Cr”)#

Variant

Valid for:

Lossy?

Complexity

'Rakic1998' (default)

0.1-10eV

Yes

4 poles

'RakicLorentzDrude1998'

0.02-5eV

Yes

8 poles

      1. Rakic. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, Appl. Opt. 34, 4755-4767 (1995).

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

Copper (“Cu”)#

Variant

Valid for:

Lossy?

Complexity

'JohnsonChristy1972' (default)

0.64-6.6eV

Yes

5 poles

'RakicLorentzDrude1998'

0.1-6eV

Yes

6 poles

      1. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972)

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

Fused silica (“FusedSilica”)#

Variant

Valid for:

Lossy?

Complexity

'Zemax' (default)

0.21-6.7um

No

3 poles

      1. Malitson. Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205-1208 (1965).

      1. Tan. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids 223, 158-163 (1998).

Gallium arsenide (“GaAs”)#

Variant

Valid for:

Lossy?

Complexity

'Skauli2003' (default)

0.97-17um

No

3 poles

    1. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier. Improved dispersion relations for GaAs and applications to nonlinear optics, J. Appl. Phys. + 946447-6455 (2003).

Germanium (“Ge”)#

Variant

Valid for:

Lossy?

Complexity

'Icenogle1976' (default)

2.5-12um

No

2 poles

  • Icenogle et al.. Refractive indexes and temperature coefficients of germanium and silicon Appl. Opt. 15 2348-2351 (1976).

      1. Barnes and M. S. Piltch. Temperature-dependent Sellmeier coefficients and nonlinear optics average power limit for germanium J. Opt. Soc. Am. 69 178-180 (1979).

Germanium oxide (“GeOx”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.6-4eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Water (“H2O”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-6eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Hexamethyldisilazane, or Bis(trimethylsilyl)amine (“HMDS”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-6.5eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Hafnium oxide (“HfO2”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-6eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Indium tin oxide (“ITO”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-6eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Indium Phosphide (“InP”)#

Variant

Valid for:

Lossy?

Complexity

'Pettit1965' (default)

0.95-10um

No

2 poles

  • Handbook of Optics, 2nd edition, Vol. 2. McGraw-Hill 1994.

      1. Pettit and W. J. Turner. Refractive index of InP, J. Appl. Phys. 36, 2081 (1965).

      1. Pikhtin and A. D. Yaskov. Disperson of the refractive index of semiconductors with diamond and zinc-blende structures, Sov. Phys. Semicond. 12, 622-626 (1978).

Magnesium fluoride (“MgF2”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.8-3.8eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Magnesium oxide (“MgO”)#

Variant

Valid for:

Lossy?

Complexity

'StephensMalitson1952' (default)

0.36um-5.4um

Yes

3 poles

      1. Stephens and I. H. Malitson. Index of refraction of magnesium oxide, J. Res. Natl. Bur. Stand. 49 249-252 (1952).

Nickel (“Ni”)#

Variant

Valid for:

Lossy?

Complexity

'JohnsonChristy1972' (default)

0.64-6.6eV

Yes

5 poles

      1. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972).

Polyetherimide (“PEI”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.75-4.75eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Polyethylene naphthalate (“PEN”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-3.2eV

Yes

1 pole

Refs:

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Polyethylene terephthalate (“PET”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

(not specified)

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Poly(methyl methacrylate) (“PMMA”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba'

0.75-4.55eV

Yes

1 pole

'Sultanova2009' (default)

0.44-1.1um

No

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

    1. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009).

Polytetrafluoroethylene, or Teflon (“PTFE”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-6.5eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Polyvinyl chloride (“PVC”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-4.75eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Palladium (“Pd”)#

Variant

Valid for:

Lossy?

Complexity

'JohnsonChristy1972' (default)

0.64-6.6eV

Yes

5 poles

'RakicLorentzDrude1998'

0.1-5eV

Yes

7 poles

      1. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972).

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

Polycarbonate. (“Polycarbonate”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba'

1.5-4eV

Yes

1 pole

'Sultanova2009' (default)

0.44-1.1um

No

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

    1. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009).

Polystyrene. (“Polystyrene”)#

Variant

Valid for:

Lossy?

Complexity

'Sultanova2009' (default)

0.44-1.1um

No

1 pole

    1. Sultanova, S. Kasarova and I. Nikolov. Dispersion properties of optical polymers, Acta Physica Polonica A 116, 585-587 (2009).

Platinum (“Pt”)#

Variant

Valid for:

Lossy?

Complexity

'Werner2009' (default)

0.1-2.48um

Yes

5 poles

'RakicLorentzDrude1998'

0.1-5eV

Yes

6 poles

        1. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009).

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

Sapphire. (“Sapphire”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-5.5eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Silicon nitride (“Si3N4”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-5.5eV

Yes

1 pole

'Luke2015'

0.31-5.504um

No

1 pole

'Philipp1973'

0.207-1.24um

No

1 pole

    1. Baak. Silicon oxynitride; a material for GRIN optics, Appl. Optics 21, 1069-1072 (1982).

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

    1. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, Opt. Lett. 40, 4823-4826 (2015).

      1. Philipp. Optical properties of silicon nitride, J. Electrochim. Soc. 120, 295-300 (1973).

Silicon carbide (“SiC”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.6-4eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Silicon mononitride (“SiN”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.6-6eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Silicon dioxide (“SiO2”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.7-5eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Silicon oxynitride (“SiON”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.75-3eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Tantalum pentoxide (“Ta2O5”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.75-4eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Titanium (“Ti”)#

Variant

Valid for:

Lossy?

Complexity

'Werner2009' (default)

0.1-2.48um

Yes

5 poles

'RakicLorentzDrude1998'

0.04-5eV

Yes

7 poles

        1. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009).

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

Titanium oxide (“TiOx”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

0.6-3eV

No

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Tungsten (“W”)#

Variant

Valid for:

Lossy?

Complexity

'Werner2009' (default)

0.1-2.48um

Yes

5 poles

'RakicLorentzDrude1998'

0.1-5eV

Yes

6 poles

        1. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals, J. Phys Chem Ref. Data 38, 1013-1092 (2009).

      1. Rakic et al., Applied Optics, 37, 5271-5283 (1998).

Yttrium oxide (“Y2O3”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.55-4eV

Yes

1 pole

'Nigara1968'

0.25-9.6um

No

2 poles

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

    1. Nigara. Measurement of the optical constants of yttrium oxide, Jpn. J. Appl. Phys. 7, 404-408 (1968).

Yttrium aluminium garnet (“YAG”)#

Variant

Valid for:

Lossy?

Complexity

'Zelmon1998' (default)

0.4-5um

No

2 poles

      1. Zelmon, D. L. Small and R. Page. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 um, Appl. Opt. 37, 4933-4935 (1998).

Zirconium oxide (“ZrO2”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-3eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Amorphous silicon (“aSi”)#

Variant

Valid for:

Lossy?

Complexity

'Horiba' (default)

1.5-6eV

Yes

1 pole

  • Horiba Technical Note 08: Lorentz Dispersion Model [pdf].

Crystalline silicon. (“cSi”)#

Variant

Valid for:

Lossy?

Complexity

'SalzbergVilla1957' (default)

1.36-11um

No

1 pole

'Li1993_293K'

1.2-14um

No

2 poles

'Green2008'

0.25-1.45um

Yes

4 poles

      1. Green. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients, Sol. Energ. Mat. Sol. Cells 92, 1305–1310 (2008).

      1. Green and M. Keevers, Optical properties of intrinsic silicon at 300 K, Progress in Photovoltaics, 3, 189-92 (1995).

      1. Li. Refractive index of silicon and germanium and its wavelength and temperature derivatives, J. Phys. Chem. Ref. Data 9, 561-658 (1993).

      1. Salzberg and J. J. Villa. Infrared Refractive Indexes of Silicon, Germanium and Modified Selenium Glass, J. Opt. Soc. Am., 47, 244-246 (1957).

    1. Tatian. Fitting refractive-index data with the Sellmeier dispersion formula, Appl. Opt. 23, 4477-4485 (1984).