tidy3d.plugins.waveguide.RectangularDielectric
tidy3d.plugins.waveguide.RectangularDielectric#
- class tidy3d.plugins.waveguide.RectangularDielectric(*, wavelength: typing.Union[float, tidy3d.components.types.ArrayLike[dtype=float, ndim=1]], core_width: typing.Union[pydantic.v1.types.NonNegativeFloat, tidy3d.components.types.ArrayLike[dtype=float, ndim=1]], core_thickness: pydantic.v1.types.NonNegativeFloat, core_medium: typing.Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D], clad_medium: typing.Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D], box_medium: typing.Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D] = None, slab_thickness: pydantic.v1.types.NonNegativeFloat = 0.0, clad_thickness: pydantic.v1.types.NonNegativeFloat = None, box_thickness: pydantic.v1.types.NonNegativeFloat = None, side_margin: pydantic.v1.types.NonNegativeFloat = None, sidewall_angle: float = 0.0, gap: typing.Union[float, tidy3d.components.types.ArrayLike[dtype=float, ndim=1]] = 0.0, sidewall_thickness: pydantic.v1.types.NonNegativeFloat = 0.0, sidewall_medium: typing.Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D] = None, surface_thickness: pydantic.v1.types.NonNegativeFloat = 0.0, surface_medium: typing.Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D] = None, origin: typing.Tuple[float, float, float] = (0, 0, 0), length: pydantic.v1.types.NonNegativeFloat = 1e+30, propagation_axis: typing.Literal[0, 1, 2] = 0, normal_axis: typing.Literal[0, 1, 2] = 2, mode_spec: tidy3d.components.mode.ModeSpec = ModeSpec(num_modes=2, target_neff=None, num_pml=(0, 0), filter_pol=None, angle_theta=0.0, angle_phi=0.0, precision='single', bend_radius=None, bend_axis=None, track_freq='central', group_index_step=False, type='ModeSpec'), grid_resolution: int = 15, max_grid_scaling: float = 1.2, type: typing.Literal['RectangularDielectric'] = 'RectangularDielectric')#
Bases:
tidy3d.components.base.Tidy3dBaseModelGeneral rectangular dielectric waveguide
- Parameters
wavelength (Union[float, ArrayLike[dtype=float, ndim=1]]) – [units = um]. Wavelength(s) at which to calculate modes (in μm).
core_width (Union[NonNegativeFloat, ArrayLike[dtype=float, ndim=1]]) – [units = um]. Core width at the top of the waveguide. If set to an array, defines the widths of adjacent waveguides.
core_thickness (NonNegativeFloat) – [units = um]. Thickness of the core layer.
core_medium (Union[Medium, AnisotropicMedium, PECMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue, Medium2D]) – Medium associated with the core layer.
clad_medium (Union[Medium, AnisotropicMedium, PECMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue, Medium2D]) – Medium associated with the upper cladding layer.
box_medium (Union[Medium, AnisotropicMedium, PECMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue, Medium2D] = None) – Medium associated with the lower cladding layer.
slab_thickness (NonNegativeFloat = 0.0) – [units = um]. Thickness of the slab for rib geometry.
clad_thickness (Optional[NonNegativeFloat] = None) – [units = um]. Domain size above the core layer.
box_thickness (Optional[NonNegativeFloat] = None) – [units = um]. Domain size below the core layer.
side_margin (Optional[NonNegativeFloat] = None) – [units = um]. Domain size to the sides of the waveguide core.
sidewall_angle (float = 0.0) – [units = rad]. Angle of the core sidewalls measured from the vertical direction (in radians). Positive (negative) values create waveguides with bases wider (narrower) than their tops.
gap (Union[float, ArrayLike[dtype=float, ndim=1]] = 0.0) – [units = um]. Distance between adjacent waveguides, measured at the top core edges. An array can be used to define one gap per pair of adjacent waveguides.
sidewall_thickness (NonNegativeFloat = 0.0) – [units = um]. Sidewall layer thickness (within core).
sidewall_medium (Union[Medium, AnisotropicMedium, PECMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue, Medium2D] = None) – Medium associated with the sidewall layer to model sidewall losses.
surface_thickness (NonNegativeFloat = 0.0) – [units = um]. Thickness of the surface layers defined on the top of the waveguide and slab regions (if any).
surface_medium (Union[Medium, AnisotropicMedium, PECMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue, Medium2D] = None) – Medium associated with the surface layer to model surface losses.
origin (Tuple[float, float, float] = (0, 0, 0)) – [units = um]. Center of the waveguide geometry. This coordinate represents the base of the waveguides (substrate surface) in the normal axis, and center of the geometry in the remaining axes.
length (NonNegativeFloat = 1e+30) – [units = um]. Length of the waveguides in the propagation direction
propagation_axis (Literal[0, 1, 2] = 0) – Axis of propagation of the waveguide
normal_axis (Literal[0, 1, 2] = 2) – Axis normal to the substrate surface
mode_spec (ModeSpec = ModeSpec(num_modes=2, target_neff=None, num_pml=(0,, 0), filter_pol=None, angle_theta=0.0, angle_phi=0.0, precision='single', bend_radius=None, bend_axis=None, track_freq='central', group_index_step=False, type='ModeSpec')) –
ModeSpecdefining waveguide mode properties.grid_resolution (int = 15) – Solver grid resolution per wavelength.
max_grid_scaling (float = 1.2) – Maximal size increase between adjacent grid boundaries.
Supports –
geometries (- Strip and rib) –
sidewalls (- Angled) –
bends (- Modes in waveguide) –
models (- Surface and sidewall loss) –
waveguides (- Coupled) –
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
construct([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy(**kwargs)Copy a Tidy3dBaseModel.
dict(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json(fname)Load dictionary of the model from a .json file.
dict_from_yaml(fname)Load dictionary of the model from a .yaml file.
from_file(fname[, group_path])Loads a
Tidy3dBaseModelfrom .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModelinstance to .hdf5 file.from_hdf5_gz(fname[, group_path, ...])Loads
Tidy3dBaseModelinstance to .hdf5.gz file.from_json(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModelfrom .json file.from_orm(obj)from_yaml(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModelfrom .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name(index)Get the group name of a tuple element.
get_tuple_index(key_name)Get the index into the tuple based on its group name.
help([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel.json(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])plot([x, y, z, ax, source_alpha, monitor_alpha])Plot each of simulation's components on a plane defined by one nonzero x,y,z coordinate.
plot_eps([x, y, z, freq, alpha, ...])Plot each of simulation's components on a plane defined by one nonzero x,y,z coordinate.
plot_field(field_name[, val, eps_alpha, ...])Plot the field for a
ModeSolverDatawithSimulationplot overlayed.plot_grid([x, y, z, ax])Plot the cell boundaries as lines on a plane defined by one nonzero x,y,z coordinate.
plot_structures([x, y, z, ax])Plot each of simulation's structures on a plane defined by one nonzero x,y,z coordinate.
plot_structures_eps([x, y, z, freq, alpha, ...])Plot each of simulation's structures on a plane defined by one nonzero x,y,z coordinate.
schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])to_file(fname)Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 fileto_hdf5(fname[, custom_encoders])Exports
Tidy3dBaseModelinstance to .hdf5 file.to_hdf5_gz(fname[, custom_encoders])Exports
Tidy3dBaseModelinstance to .hdf5.gz file.to_json(fname)Exports
Tidy3dBaseModelinstance to .json fileto_yaml(fname)Exports
Tidy3dBaseModelinstance to .yaml file.tuple_to_dict(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy(**kwargs)Make copy of a component instance with
**kwargsindicating updated field values.validate(value)Attributes
Waveguide grid specification with overriding geometry.
Domain height (size in the normal direction).
Lateral direction axis.
Calculate the effective mode area.
Create a mode solver based on this waveguide structure
Calculate the complex effective index.
Calculate the effective index.
Calculate the group index.
Waveguide structures for simulation, including the core(s), slabs (if any), and bottom cladding, if different from the top.
Domain width (size in the lateral direction).
wavelengthcore_widthcore_thicknesscore_mediumclad_mediumbox_mediumslab_thicknessclad_thicknessbox_thicknessside_marginsidewall_anglegapsidewall_thicknesssidewall_mediumsurface_thicknesssurface_mediumoriginlengthpropagation_axisnormal_axismode_specgrid_resolutionmax_grid_scaling- class Config#
Bases:
objectSets config for all
Tidy3dBaseModelobjects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int#
Hash method.
- classmethod __init_subclass__() None#
Things that are done to each of the models.
- __iter__() TupleGenerator#
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None]#
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str#
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult#
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None#
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None#
Automatically place “type” field with model name in the model field dictionary.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Copy a Tidy3dBaseModel. With
deep=Trueas default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny#
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict#
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict#
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict#
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict#
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict#
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads a
Tidy3dBaseModelfrom .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_objfunction when loading model.
- Returns
An instance of the component class calling
load.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelinstance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelinstance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Load a
Tidy3dBaseModelfrom .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
Tidy3dBaseModel– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelfrom .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str#
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict#
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]]#
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str#
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int#
Get the index into the tuple based on its group name.
- property grid_spec: tidy3d.components.grid.grid_spec.GridSpec#
Waveguide grid specification with overriding geometry.
- property height: pydantic.v1.types.NonNegativeFloat#
Domain height (size in the normal direction).
- help(methods: bool = False) None#
Prints message describing the fields and methods of a
Tidy3dBaseModel.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- property lateral_axis: Literal[0, 1, 2]#
Lateral direction axis.
- property mode_area: tidy3d.components.data.data_array.FreqModeDataArray#
Calculate the effective mode area.
- property mode_solver: tidy3d.plugins.mode.mode_solver.ModeSolver#
Create a mode solver based on this waveguide structure
- Return type
ModeSolver
Example
>>> wg = waveguide.RectangularDielectric( ... wavelength=1.55, ... core_width=0.5, ... core_thickness=0.22, ... core_medium=Medium(permittivity=3.48**2), ... clad_medium=Medium(permittivity=1.45**2), ... num_modes=2, ... ) >>> mode_data = wg.mode_solver.solve() >>> mode_data.n_eff.values array([[2.4536054 1.7850305]], dtype=float32)
- property n_complex: tidy3d.components.data.data_array.ModeIndexDataArray#
Calculate the complex effective index.
- property n_eff: tidy3d.components.data.data_array.ModeIndexDataArray#
Calculate the effective index.
- property n_group: tidy3d.components.data.data_array.ModeIndexDataArray#
Calculate the group index.
- plot(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None, source_alpha: Optional[float] = None, monitor_alpha: Optional[float] = None, **patch_kwargs) matplotlib.axes._axes.Axes#
Plot each of simulation’s components on a plane defined by one nonzero x,y,z coordinate.
- Parameters
x (float = None) – position of plane in x direction, only one of x, y, z must be specified to define plane.
y (float = None) – position of plane in y direction, only one of x, y, z must be specified to define plane.
z (float = None) – position of plane in z direction, only one of x, y, z must be specified to define plane.
source_alpha (float = None) – Opacity of the sources. If
None, uses Tidy3d default.monitor_alpha (float = None) – Opacity of the monitors. If
None, uses Tidy3d default.ax (matplotlib.axes._subplots.Axes = None) – Matplotlib axes to plot on, if not specified, one is created.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- plot_eps(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, freq: Optional[float] = None, alpha: Optional[float] = None, source_alpha: Optional[float] = None, monitor_alpha: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None) matplotlib.axes._axes.Axes#
Plot each of simulation’s components on a plane defined by one nonzero x,y,z coordinate. The permittivity is plotted in grayscale based on its value at the specified frequency.
- Parameters
x (float = None) – position of plane in x direction, only one of x, y, z must be specified to define plane.
y (float = None) – position of plane in y direction, only one of x, y, z must be specified to define plane.
z (float = None) – position of plane in z direction, only one of x, y, z must be specified to define plane.
freq (float = None) – Frequency to evaluate the relative permittivity of all mediums. If not specified, evaluates at infinite frequency.
alpha (float = None) – Opacity of the structures being plotted. Defaults to the structure default alpha.
source_alpha (float = None) – Opacity of the sources. If
None, uses Tidy3d default.monitor_alpha (float = None) – Opacity of the monitors. If
None, uses Tidy3d default.ax (matplotlib.axes._subplots.Axes = None) – Matplotlib axes to plot on, if not specified, one is created.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- plot_field(field_name: str, val: Literal['real', 'imag', 'abs'] = 'real', eps_alpha: float = 0.2, robust: bool = True, vmin: Optional[float] = None, vmax: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None, **sel_kwargs) matplotlib.axes._axes.Axes#
Plot the field for a
ModeSolverDatawithSimulationplot overlayed.- Parameters
field_name (str) – Name of field component to plot (eg. ‘Ex’). Also accepts ‘E’ and ‘H’ to plot the vector magnitudes of the electric and magnetic fields, and ‘S’ for the Poynting vector.
val (Literal['real', 'imag', 'abs', 'abs^2', 'dB'] = 'real') – Which part of the field to plot.
eps_alpha (float = 0.2) – Opacity of the structure permittivity. Must be between 0 and 1 (inclusive).
robust (bool = True) – If True and vmin or vmax are absent, uses the 2nd and 98th percentiles of the data to compute the color limits. This helps in visualizing the field patterns especially in the presence of a source.
vmin (float = None) – The lower bound of data range that the colormap covers. If
None, they are inferred from the data and other keyword arguments.vmax (float = None) – The upper bound of data range that the colormap covers. If
None, they are inferred from the data and other keyword arguments.ax (matplotlib.axes._subplots.Axes = None) – matplotlib axes to plot on, if not specified, one is created.
sel_kwargs (keyword arguments used to perform
.sel()selection in the monitor data.) – These kwargs can select over the spatial dimensions (x,y,z), frequency or time dimensions (f,t) or mode_index, if applicable. For the plotting to work appropriately, the resulting data after selection must contain only two coordinates with len > 1. Furthermore, these should be spatial coordinates (x,y, orz).
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- plot_grid(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None, **kwargs) matplotlib.axes._axes.Axes#
Plot the cell boundaries as lines on a plane defined by one nonzero x,y,z coordinate.
- Parameters
x (float = None) – position of plane in x direction, only one of x, y, z must be specified to define plane.
y (float = None) – position of plane in y direction, only one of x, y, z must be specified to define plane.
z (float = None) – position of plane in z direction, only one of x, y, z must be specified to define plane.
ax (matplotlib.axes._subplots.Axes = None) – Matplotlib axes to plot on, if not specified, one is created.
**kwargs – Optional keyword arguments passed to the matplotlib
LineCollection. For details on accepted values, refer to Matplotlib’s documentation.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- plot_structures(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, ax: Optional[matplotlib.axes._axes.Axes] = None) matplotlib.axes._axes.Axes#
Plot each of simulation’s structures on a plane defined by one nonzero x,y,z coordinate.
- Parameters
x (float = None) – position of plane in x direction, only one of x, y, z must be specified to define plane.
y (float = None) – position of plane in y direction, only one of x, y, z must be specified to define plane.
z (float = None) – position of plane in z direction, only one of x, y, z must be specified to define plane.
ax (matplotlib.axes._subplots.Axes = None) – Matplotlib axes to plot on, if not specified, one is created.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- plot_structures_eps(x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, freq: Optional[float] = None, alpha: Optional[float] = None, cbar: bool = True, reverse: bool = False, ax: Optional[matplotlib.axes._axes.Axes] = None) matplotlib.axes._axes.Axes#
Plot each of simulation’s structures on a plane defined by one nonzero x,y,z coordinate. The permittivity is plotted in grayscale based on its value at the specified frequency.
- Parameters
x (float = None) – position of plane in x direction, only one of x, y, z must be specified to define plane.
y (float = None) – position of plane in y direction, only one of x, y, z must be specified to define plane.
z (float = None) – position of plane in z direction, only one of x, y, z must be specified to define plane.
freq (float = None) – Frequency to evaluate the relative permittivity of all mediums. If not specified, evaluates at infinite frequency.
reverse (bool = False) – If
False, the highest permittivity is plotted in black. IfTrue, it is plotteed in white (suitable for black backgrounds).cbar (bool = True) – Whether to plot a colorbar for the relative permittivity.
alpha (float = None) – Opacity of the structures being plotted. Defaults to the structure default alpha.
ax (matplotlib.axes._subplots.Axes = None) – Matplotlib axes to plot on, if not specified, one is created.
- Returns
The supplied or created matplotlib axes.
- Return type
matplotlib.axes._subplots.Axes
- property structures: List[tidy3d.components.structure.Structure]#
Waveguide structures for simulation, including the core(s), slabs (if any), and bottom cladding, if different from the top. For bend modes, the structure is a 270 degree bend regardless of
length.
- to_file(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None#
Exports
Tidy3dBaseModelinstance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModelto.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
valuesupplied and write it to the hdf5fnameatgroup_path.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None#
Exports
Tidy3dBaseModelinstance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModelto.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
valuesupplied and write it to the hdf5fnameatgroup_path.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None#
Exports
Tidy3dBaseModelinstance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict#
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Make copy of a component instance with
**kwargsindicating updated field values.
- property width: pydantic.v1.types.NonNegativeFloat#
Domain width (size in the lateral direction).