tidy3d.ModeSpec
tidy3d.ModeSpec#
- class tidy3d.ModeSpec(*, num_modes: pydantic.v1.types.PositiveInt = 1, target_neff: pydantic.v1.types.PositiveFloat = None, num_pml: Tuple[pydantic.v1.types.NonNegativeInt, pydantic.v1.types.NonNegativeInt] = (0, 0), filter_pol: Literal['te', 'tm'] = None, angle_theta: float = 0.0, angle_phi: float = 0.0, precision: Literal['single', 'double'] = 'single', bend_radius: float = None, bend_axis: Literal[0, 1] = None, track_freq: Optional[Literal['central', 'lowest', 'highest']] = 'central', group_index_step: Union[pydantic.v1.types.PositiveFloat, bool] = False, type: Literal['ModeSpec'] = 'ModeSpec')#
Bases:
tidy3d.components.base.Tidy3dBaseModelStores specifications for the mode solver to find an electromagntic mode. Note, the planar axes are found by popping the injection axis from {x,y,z}. For example, if injection axis is y, the planar axes are ordered {x,z}.
- Parameters
num_modes (PositiveInt = 1) – Number of modes returned by mode solver.
target_neff (Optional[PositiveFloat] = None) – Guess for effective index of the mode.
num_pml (Tuple[NonNegativeInt, NonNegativeInt] = (0, 0)) – Number of standard pml layers to add in the two tangential axes.
filter_pol (Optional[Literal['te', 'tm']] = None) – The solver always computes the
num_modesmodes closest to the giventarget_neff. Iffilter_pol==None, they are simply sorted in order of decresing effective index. If a polarization filter is selected, the modes are rearranged such that the firstn_polmodes in the list are the ones with the selected polarization fraction larger than or equal to 0.5, while the nextnum_modes - n_polmodes are the ones where it is smaller than 0.5 (i.e. the opposite polarization fraction is larger than 0.5). Within each polarization subset, the modes are still ordered by decreasing effective index.te-fraction is defined as the integrated intensity of the E-field component parallel to the first plane axis, normalized to the total in-plane E-field intensity. Conversely,tm-fraction uses the E field component parallel to the second plane axis.angle_theta (float = 0.0) – [units = rad]. Polar angle of the propagation axis from the injection axis.
angle_phi (float = 0.0) – [units = rad]. Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.
precision (Literal['single', 'double'] = single) – The solver will be faster and using less memory under single precision, but more accurate under double precision.
bend_radius (Optional[float] = None) – [units = um]. A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.
bend_axis (Optional[Literal[0, 1]] = None) – Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if
bend_radiusis notNone. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, thebend_axisis always 1 (the global z axis).track_freq (Optional[Literal['central', 'lowest', 'highest']] = central) – Parameter that turns on/off mode tracking based on their similarity. Can take values
'lowest','central', or'highest', which correspond to mode tracking based on the lowest, central, or highest frequency. IfNoneno mode tracking is performed.group_index_step (Union[PositiveFloat, bool] = False) – Control the computation of the group index alongside the effective index. If set to a positive value, it sets the fractional frequency step used in the numerical differentiation of the effective index to compute the group index. If set to True, the default of 0.005 is used.
Example
>>> mode_spec = ModeSpec(num_modes=3, target_neff=1.5)
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
Assign the default fractional frequency step value if not provided.
bend_axis_given(val, values)check that
bend_axisis provided ifbend_radiusis notNoneEnsure a reasonable group index step is used.
check_precision(values)Verify critical ModeSpec settings for group index calculation.
construct([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy(**kwargs)Copy a Tidy3dBaseModel.
dict(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json(fname)Load dictionary of the model from a .json file.
dict_from_yaml(fname)Load dictionary of the model from a .yaml file.
from_file(fname[, group_path])Loads a
Tidy3dBaseModelfrom .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModelinstance to .hdf5 file.from_hdf5_gz(fname[, group_path, ...])Loads
Tidy3dBaseModelinstance to .hdf5.gz file.from_json(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModelfrom .json file.from_orm(obj)from_yaml(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModelfrom .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name(index)Get the group name of a tuple element.
get_tuple_index(key_name)Get the index into the tuple based on its group name.
glancing_incidence(val)Warn if close to glancing incidence.
help([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel.json(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])to_file(fname)Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 fileto_hdf5(fname[, custom_encoders])Exports
Tidy3dBaseModelinstance to .hdf5 file.to_hdf5_gz(fname[, custom_encoders])Exports
Tidy3dBaseModelinstance to .hdf5.gz file.to_json(fname)Exports
Tidy3dBaseModelinstance to .json fileto_yaml(fname)Exports
Tidy3dBaseModelinstance to .yaml file.tuple_to_dict(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy(**kwargs)Make copy of a component instance with
**kwargsindicating updated field values.validate(value)Attributes
num_modestarget_neffnum_pmlfilter_polangle_thetaangle_phiprecisionbend_radiusbend_axistrack_freqgroup_index_step- class Config#
Bases:
objectSets config for all
Tidy3dBaseModelobjects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int#
Hash method.
- classmethod __init_subclass__() None#
Things that are done to each of the models.
- __iter__() TupleGenerator#
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None]#
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str#
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult#
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None#
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None#
Automatically place “type” field with model name in the model field dictionary.
- classmethod assign_default_on_true(val)#
Assign the default fractional frequency step value if not provided.
- classmethod bend_axis_given(val, values)#
check that
bend_axisis provided ifbend_radiusis notNone
- classmethod check_group_step_size(val)#
Ensure a reasonable group index step is used.
- classmethod check_precision(values)#
Verify critical ModeSpec settings for group index calculation.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Copy a Tidy3dBaseModel. With
deep=Trueas default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny#
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict#
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict#
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict#
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict#
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict#
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads a
Tidy3dBaseModelfrom .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_objfunction when loading model.
- Returns
An instance of the component class calling
load.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelinstance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelinstance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Load a
Tidy3dBaseModelfrom .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
Tidy3dBaseModel– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelfrom .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str#
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict#
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]]#
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str#
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int#
Get the index into the tuple based on its group name.
- classmethod glancing_incidence(val)#
Warn if close to glancing incidence.
- help(methods: bool = False) None#
Prints message describing the fields and methods of a
Tidy3dBaseModel.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- to_file(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None#
Exports
Tidy3dBaseModelinstance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModelto.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
valuesupplied and write it to the hdf5fnameatgroup_path.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None#
Exports
Tidy3dBaseModelinstance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModelto.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
valuesupplied and write it to the hdf5fnameatgroup_path.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None#
Exports
Tidy3dBaseModelinstance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict#
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Make copy of a component instance with
**kwargsindicating updated field values.