tidy3d.FieldProjector
tidy3d.FieldProjector#
- class tidy3d.FieldProjector(*, sim_data: tidy3d.components.data.sim_data.SimulationData, surfaces: Tuple[tidy3d.components.monitor.FieldProjectionSurface, ...], pts_per_wavelength: Optional[int] = 10, origin: Tuple[float, float, float] = None, type: Literal['FieldProjector'] = 'FieldProjector')#
Bases:
tidy3d.components.base.Tidy3dBaseModelProjection of near fields to points on a given observation grid.
- Parameters
sim_data (SimulationData) – Container for simulation data containing the near field monitors.
surfaces (Tuple[FieldProjectionSurface, ...]) – Tuple of each
FieldProjectionSurfaceto use as source of near field.pts_per_wavelength (Optional[int] = 10) – Number of points per wavelength in the background medium with which to discretize the surface monitors for the projection. If
None, fields will will not resampled, but will still be colocated.origin (Optional[Tuple[float, float, float]] = None) – [units = um]. Local origin used for defining observation points. If
None, uses the average of the centers of all surface monitors.
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
compute_surface_currents(sim_data, surface, ...)Returns resampled surface current densities associated with the surface monitor.
construct([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy(**kwargs)Copy a Tidy3dBaseModel.
dict(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json(fname)Load dictionary of the model from a .json file.
dict_from_yaml(fname)Load dictionary of the model from a .yaml file.
from_file(fname[, group_path])Loads a
Tidy3dBaseModelfrom .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5(fname[, group_path, custom_decoders])Loads
Tidy3dBaseModelinstance to .hdf5 file.from_hdf5_gz(fname[, group_path, ...])Loads
Tidy3dBaseModelinstance to .hdf5.gz file.from_json(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModelfrom .json file.from_near_field_monitors(sim_data, ...[, ...])Constructs
FieldProjectionfrom a list of surface monitors and their directions.from_orm(obj)from_yaml(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModelfrom .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_sub_model(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name(index)Get the group name of a tuple element.
get_tuple_index(key_name)Get the index into the tuple based on its group name.
help([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel.integrate_2d(function, phase, pts_u, pts_v)Trapezoidal integration in two dimensions.
json(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])project_fields(proj_monitor)Compute projected fields.
schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])set_origin(val, values)Sets .origin as the average of centers of all surface monitors if not provided.
to_file(fname)Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 fileto_hdf5(fname[, custom_encoders])Exports
Tidy3dBaseModelinstance to .hdf5 file.to_hdf5_gz(fname[, custom_encoders])Exports
Tidy3dBaseModelinstance to .hdf5.gz file.to_json(fname)Exports
Tidy3dBaseModelinstance to .json fileto_yaml(fname)Exports
Tidy3dBaseModelinstance to .yaml file.tuple_to_dict(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy(**kwargs)Make copy of a component instance with
**kwargsindicating updated field values.validate(value)Attributes
Sets the surface currents.
Return the list of frequencies associated with the field monitors.
Medium into which fields are to be projected.
sim_datasurfacespts_per_wavelengthorigin- class Config#
Bases:
objectSets config for all
Tidy3dBaseModelobjects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __eq__(other)#
Define == for two Tidy3DBaseModels.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int#
Hash method.
- classmethod __init_subclass__() None#
Things that are done to each of the models.
- __iter__() TupleGenerator#
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None]#
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __repr_name__() str#
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult#
Get fields for Rich library
- classmethod __try_update_forward_refs__(**localns: Any) None#
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None#
Automatically place “type” field with model name in the model field dictionary.
- static compute_surface_currents(sim_data: tidy3d.components.data.sim_data.SimulationData, surface: tidy3d.components.monitor.FieldProjectionSurface, medium: Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D], pts_per_wavelength: int = 10) xarray.core.dataset.Dataset#
Returns resampled surface current densities associated with the surface monitor.
- Parameters
sim_data (
SimulationData) – Container for simulation data containing the near field monitors.surface (
FieldProjectionSurface) –FieldProjectionSurfaceto use as source of near field.medium (
MediumType) – Background medium through which to project fields.pts_per_wavelength (int = 10) – Number of points per wavelength with which to discretize the surface monitors for the projection. If
None, fields will not be resampled, but will still be colocated.
- Returns
Colocated surface current densities for the given surface.
- Return type
xarray.Dataset
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Copy a Tidy3dBaseModel. With
deep=Trueas default.
- property currents#
Sets the surface currents.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny#
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict#
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict#
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict#
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict#
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict#
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- property frequencies: List[float]#
Return the list of frequencies associated with the field monitors.
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads a
Tidy3dBaseModelfrom .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_objfunction when loading model.
- Returns
An instance of the component class calling
load.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelinstance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_hdf5(fname='folder/sim.hdf5')
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelinstance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Load a
Tidy3dBaseModelfrom .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
Tidy3dBaseModel– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_near_field_monitors(sim_data: tidy3d.components.data.sim_data.SimulationData, near_monitors: List[tidy3d.components.monitor.FieldMonitor], normal_dirs: List[Literal['+', '-']], pts_per_wavelength: int = 10, origin: Optional[Tuple[float, float, float]] = None)#
Constructs
FieldProjectionfrom a list of surface monitors and their directions.- Parameters
sim_data (
SimulationData) – Container for simulation data containing the near field monitors.near_monitors (List[
FieldMonitor]) – Tuple ofFieldMonitorobjects on which near fields will be sampled.normal_dirs (List[
Direction]) – Tuple containing theDirectionof the normal to each surface monitor w.r.t. to the positive x, y or z unit vectors. Must have the same length as monitors.pts_per_wavelength (int = 10) – Number of points per wavelength with which to discretize the surface monitors for the projection. If
None, fields will not be resampled.origin (
Coordinate) – Local origin used for defining observation points. IfNone, uses the average of the centers of all surface monitors.
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelfrom .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str#
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict#
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]]#
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str#
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int#
Get the index into the tuple based on its group name.
- help(methods: bool = False) None#
Prints message describing the fields and methods of a
Tidy3dBaseModel.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- integrate_2d(function: numpy.ndarray, phase: numpy.ndarray, pts_u: numpy.ndarray, pts_v: numpy.ndarray)#
Trapezoidal integration in two dimensions.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- property medium: Union[tidy3d.components.medium.Medium, tidy3d.components.medium.AnisotropicMedium, tidy3d.components.medium.PECMedium, tidy3d.components.medium.PoleResidue, tidy3d.components.medium.Sellmeier, tidy3d.components.medium.Lorentz, tidy3d.components.medium.Debye, tidy3d.components.medium.Drude, tidy3d.components.medium.FullyAnisotropicMedium, tidy3d.components.medium.CustomMedium, tidy3d.components.medium.CustomPoleResidue, tidy3d.components.medium.CustomSellmeier, tidy3d.components.medium.CustomLorentz, tidy3d.components.medium.CustomDebye, tidy3d.components.medium.CustomDrude, tidy3d.components.medium.CustomAnisotropicMedium, tidy3d.components.medium.PerturbationMedium, tidy3d.components.medium.PerturbationPoleResidue, tidy3d.components.medium.Medium2D]#
Medium into which fields are to be projected.
- project_fields(proj_monitor: tidy3d.components.monitor.AbstractFieldProjectionMonitor) tidy3d.components.data.monitor_data.AbstractFieldProjectionData#
Compute projected fields.
- Parameters
proj_monitor (
AbstractFieldProjectionMonitor) – Instance ofAbstractFieldProjectionMonitordefining the projection observation grid.- Returns
Data structure with
Er,Etheta,Ephi,Hr,Htheta,Hphi.- Return type
AbstractFieldProjectionData
- classmethod set_origin(val, values)#
Sets .origin as the average of centers of all surface monitors if not provided.
- to_file(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, custom_encoders: Optional[List[Callable]] = None) None#
Exports
Tidy3dBaseModelinstance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModelto.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
valuesupplied and write it to the hdf5fnameatgroup_path.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None#
Exports
Tidy3dBaseModelinstance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModelto.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
valuesupplied and write it to the hdf5fnameatgroup_path.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None#
Exports
Tidy3dBaseModelinstance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict#
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Make copy of a component instance with
**kwargsindicating updated field values.