tidy3d.plugins.adjoint.JaxDataArray
tidy3d.plugins.adjoint.JaxDataArray#
- class tidy3d.plugins.adjoint.JaxDataArray(*, values: Any, coords: Dict[str, list], type: Literal['JaxDataArray'] = 'JaxDataArray')#
Bases:
tidy3d.components.base.Tidy3dBaseModelA
DataArray-like class that only wraps xarray for jax compability.- Parameters
values (Optional[Any]) – Nested list containing the raw values, which can be tracked by jax.
coords (Mapping[str, list]) – Dictionary storing the coordinates, namely
(direction, f, mode_index).
- __init__(**kwargs)#
Init method, includes post-init validators.
Methods
__init__(**kwargs)Init method, includes post-init validators.
Automatically place "type" field with model name in the model field dictionary.
assign_coords([coords])Assign new coordinates to this object.
conj()Complex conjugate of self.
construct([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy(**kwargs)Copy a Tidy3dBaseModel.
dict(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
dict_from_file(fname[, group_path])Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
dict_from_hdf5(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5 file.
dict_from_hdf5_gz(fname[, group_path, ...])Loads a dictionary containing the model contents from a .hdf5.gz file.
dict_from_json(fname)Load dictionary of the model from a .json file.
dict_from_yaml(fname)Load dictionary of the model from a .yaml file.
from_file(fname[, group_path])Loads a
Tidy3dBaseModelfrom .yaml, .json, .hdf5, or .hdf5.gz file.from_hdf5(fname, group_path)Load an DataArray from an hdf5 file with a given path to the group.
from_hdf5_gz(fname[, group_path, ...])Loads
Tidy3dBaseModelinstance to .hdf5.gz file.from_json(fname, **parse_obj_kwargs)Load a
Tidy3dBaseModelfrom .json file.from_orm(obj)from_yaml(fname, **parse_obj_kwargs)Loads
Tidy3dBaseModelfrom .yaml file.Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
get_coord_list(coord_name)Get a coordinate list by name.
get_sub_model(group_path, model_dict)Get the sub model for a given group path.
Return a dictionary of this object's sub-models indexed by their hash values.
get_tuple_group_name(index)Get the group name of a tuple element.
get_tuple_index(key_name)Get the index into the tuple based on its group name.
help([methods])Prints message describing the fields and methods of a
Tidy3dBaseModel.interp([kwargs, assume_sorted])Linearly interpolate into the
JaxDataArrayat values into coordinates.interp_single(key, val)Interpolate into a single dimension of self.
isel(**isel_kwargs)Select a value from the
JaxDataArrayby indexing into coordinates by index.isel_single(coord_name, coord_index)Select a value cooresponding to a single coordinate from the
JaxDataArray.json(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
multiply_at(value, coord_name, indices)Multiply self by value at indices into .
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])sel([indexers, method])Select a value from the
JaxDataArrayby indexing into coordinate values.squeeze([dim, drop])Remove any non-zero dims.
sum([dim])Sum (optionally along a single or multiple dimensions).
to_file(fname)Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 fileto_hdf5(fname, group_path)Save an xr.DataArray to the hdf5 file with a given path to the group.
to_hdf5_gz(fname[, custom_encoders])Exports
Tidy3dBaseModelinstance to .hdf5.gz file.to_json(fname)Exports
Tidy3dBaseModelinstance to .json fileto_yaml(fname)Exports
Tidy3dBaseModelinstance to .yaml file.Jax works on the values, stash the coords for reconstruction.
tree_unflatten(aux_data, children)How to unflatten the values and coords.
tuple_to_dict(tuple_values)How we generate a dictionary mapping new keys to tuple values for hdf5.
update_forward_refs(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
updated_copy(**kwargs)Make copy of a component instance with
**kwargsindicating updated field values.validate(value)Attributes
self.valuesas a jax array.self.valuesas a numpy array converted to a list.self.valuesas a numpy array.Imaginary part of self.
The value and coordinate associated with the only non-zero element of
self.values.Real part of self.
Shape of self.values.
valuescoords- class Config#
Bases:
objectSets config for all
Tidy3dBaseModelobjects.- allow_population_by_field_namebool = True
Allow properties to stand in for fields(?).
- arbitrary_types_allowedbool = True
Allow types like numpy arrays.
- extrastr = ‘forbid’
Forbid extra kwargs not specified in model.
- json_encodersDict[type, Callable]
Defines how to encode type in json file.
- validate_allbool = True
Validate default values just to be safe.
- validate_assignmentbool
Re-validate after re-assignment of field in model.
- __abs__() tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Absolute value of self’s values.
- __add__(other: tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Sum self with something else.
- __eq__(other) bool#
Check if two
JaxDataArrayinstances are equal.
- __ge__(other)#
define >= for getting unique indices based on hash.
- __gt__(other)#
define > for getting unique indices based on hash.
- __hash__() int#
Hash method.
- classmethod __init_subclass__() None#
Things that are done to each of the models.
- __iter__() TupleGenerator#
so dict(model) works
- __le__(other)#
define <= for getting unique indices based on hash.
- __lt__(other)#
define < for getting unique indices based on hash.
- __mul__(other: tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Multiply self with something else.
- __neg__() tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Negative of self.
- __pow__(power: int) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Values raised to a power.
- __pretty__(fmt: Callable[[Any], Any], **kwargs: Any) Generator[Any, None, None]#
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
- __radd__(other) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Sum self with something else.
- __repr_name__() str#
Name of the instance’s class, used in __repr__.
- __rich_repr__() RichReprResult#
Get fields for Rich library
- __rmul__(other) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Multiply self with something else.
- __sub__(other) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Subtraction
- classmethod __try_update_forward_refs__(**localns: Any) None#
Same as update_forward_refs but will not raise exception when forward references are not defined.
- classmethod add_type_field() None#
Automatically place “type” field with model name in the model field dictionary.
- property as_jnp_array: jax.Array#
self.valuesas a jax array.
- property as_list: list#
self.valuesas a numpy array converted to a list.
- property as_ndarray: numpy.ndarray#
self.valuesas a numpy array.
- assign_coords(coords: Optional[dict] = None, **coords_kwargs) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Assign new coordinates to this object.
- conj() tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Complex conjugate of self.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model#
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Copy a Tidy3dBaseModel. With
deep=Trueas default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny#
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict#
Loads a dictionary containing the model from a .yaml, .json, .hdf5, or .hdf5.gz file.
- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict#
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None) dict#
Loads a dictionary containing the model contents from a .hdf5.gz file.
- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5.gz')
- classmethod dict_from_json(fname: str) dict#
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict#
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads a
Tidy3dBaseModelfrom .yaml, .json, .hdf5, or .hdf5.gz file.- Parameters
fname (str) – Full path to the file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for hdf5 files. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_objfunction when loading model.
- Returns
An instance of the component class calling
load.- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Load an DataArray from an hdf5 file with a given path to the group.
- classmethod from_hdf5_gz(fname: str, group_path: str = '', custom_decoders: Optional[List[Callable]] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelinstance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to load the
Tidy3dBaseModelfrom.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
custom_decoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, model_dict: dict, key: str, value: Any) that store the value in the model dict after a custom decoding.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_hdf5_gz(fname='folder/sim.hdf5.gz')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Load a
Tidy3dBaseModelfrom .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModelfrom.- Returns
Tidy3dBaseModel– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel#
Loads
Tidy3dBaseModelfrom .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModelfrom.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_objmethod.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str#
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- get_coord_list(coord_name: str) list#
Get a coordinate list by name.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict#
Get the sub model for a given group path.
- get_submodels_by_hash() Dict[int, List[Union[str, Tuple[str, int]]]]#
Return a dictionary of this object’s sub-models indexed by their hash values.
- static get_tuple_group_name(index: int) str#
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int#
Get the index into the tuple based on its group name.
- help(methods: bool = False) None#
Prints message describing the fields and methods of a
Tidy3dBaseModel.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- property imag: numpy.ndarray#
Imaginary part of self.
- interp(kwargs=None, assume_sorted=None, **interp_kwargs) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Linearly interpolate into the
JaxDataArrayat values into coordinates.
- interp_single(key: str, val: float) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Interpolate into a single dimension of self.
Note: this interpolation works by finding the index of the value into the coords list. Instead of an integer value, we use interpolation to get a floating point index. The floor() of this value is the ‘minus’ index and the ceil() gives the ‘plus’ index. We then apply coefficients linearly based on how close to plus or minus we are. This is a workaround to jnp.interp not allowing multi-dimensional interpolation.
- isel(**isel_kwargs) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Select a value from the
JaxDataArrayby indexing into coordinates by index.
- isel_single(coord_name: str, coord_index: int) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Select a value cooresponding to a single coordinate from the
JaxDataArray.
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) str#
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- multiply_at(value: complex, coord_name: str, indices: List[int]) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Multiply self by value at indices into .
- property nonzero_val_coords: Tuple[List[complex], Dict[str, Any]]#
The value and coordinate associated with the only non-zero element of
self.values.
- property real: numpy.ndarray#
Real part of self.
- sel(indexers: Optional[dict] = None, method: str = 'nearest', **sel_kwargs) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Select a value from the
JaxDataArrayby indexing into coordinate values.
- property shape: tuple#
Shape of self.values.
- squeeze(dim: Optional[str] = None, drop: bool = True) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
Remove any non-zero dims.
- sum(dim: Optional[str] = None)#
Sum (optionally along a single or multiple dimensions).
- to_file(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str, group_path: str) None#
Save an xr.DataArray to the hdf5 file with a given path to the group.
- to_hdf5_gz(fname: str, custom_encoders: Optional[List[Callable]] = None) None#
Exports
Tidy3dBaseModelinstance to .hdf5.gz file.- Parameters
fname (str) – Full path to the .hdf5.gz file to save the
Tidy3dBaseModelto.custom_encoders (List[Callable]) – List of functions accepting (fname: str, group_path: str, value: Any) that take the
valuesupplied and write it to the hdf5fnameatgroup_path.
Example
>>> simulation.to_hdf5_gz(fname='folder/sim.hdf5.gz')
- to_json(fname: str) None#
Exports
Tidy3dBaseModelinstance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None#
Exports
Tidy3dBaseModelinstance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModelto.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- tree_flatten() Tuple[list, dict]#
Jax works on the values, stash the coords for reconstruction.
- classmethod tree_unflatten(aux_data, children) tidy3d.plugins.adjoint.components.data.data_array.JaxDataArray#
How to unflatten the values and coords.
- classmethod tuple_to_dict(tuple_values: tuple) dict#
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None#
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel#
Make copy of a component instance with
**kwargsindicating updated field values.