flow360.TurbulenceQuantities#
- TurbulenceQuantities(viscosity_ratio=None, modified_viscosity_ratio=None, modified_viscosity=None, specific_dissipation_rate=None, turbulent_kinetic_energy=None, turbulent_length_scale=None, turbulent_intensity=None)[source]#
TurbulenceQuantities()function specifies turbulence conditions for theInfloworFreestreamat boundaries. The turbulence properties that can be specified are listed below. All values are dimensional. For valid specifications as well as the default values, please see the Notes section below.- Parameters:
viscosity_ratio (>= 0) – The ratio between the turbulent viscosity and freestream laminar viscosity. Applicable to both
KOmegaSSTandSpalartAllmaras. Its value will be converted tomodifiedTurbulentViscosityRatiowhen using SpalartAllmaras model.modified_viscosity_ratio (>= 0) – The ratio between the modified turbulent viscosity (in SA model) and freestream laminar viscosity. Applicable to
SpalartAllmaras.modified_viscosity (>=0) – The modified turbulent viscosity, aka nuHat. Applicable to
SpalartAllmaras.specific_dissipation_rate (>= 0) – The turbulent specific dissipation rate. Applicable to
KOmegaSST.turbulent_kinetic_energy (>=0) – The turbulent kinetic energy. Applicable to
KOmegaSST.turbulent_length_scale (> 0) – The turbulent length scale is an estimation of the size of the eddies that are modeled/not resolved. Applicable to
KOmegaSST.turbulent_intensity (>= 0) – The turbulent intensity is related to the turbulent kinetic energy by \(k = 1.5(U_{ref} * I)^2\) where \(k\) is the dimensional turbulent kinetic energy, \(U_{ref}\) is the reference velocity and \(I\) is the turbulent intensity. The value represents the actual magnitude of intensity instead of percentage. Applicable to
KOmegaSST.
- Return type:
A matching tubulence specification object.
- Raises:
ValueError – If the TurbulenceQuantities inputs do not represent a valid specification.
Notes
- Default Behavior
The default turbulence depends on the turbulence model. For SA model without transition model this is equivalent to set
modified_viscosity_ratio = 3.0(or effectivelyviscosity_ratio = 0.210438). For SA model with transition model,modified_viscosity_ratio = 0.1(or effectivelyviscosity_ratio = 2.794e-7). For SST model the default turbulence isviscosity_ratio = 0.01with defaultspecific_dissipation_rate= \(MachRef/L_{box}\) where \(L_{box} \triangleq exp\left(\displaystyle\sum_{i=1}^{3}log(x_{i,max}-x_{i,min}\right)\). \(x_{i,max},x_{i,min}\) is the bounding box dimension for wall boundaries.
Valid Parameter Combinations
The following table shows which parameter combinations are valid for each turbulence model:
Turbulence Quantity Compatibility# Parameter Combination
SA Model
SST Model
(default - no parameters)
✓ (default)
✓ (default)
viscosity_ratioalone✓ (converted to
modified_viscosity_ratio)✓ (overrides default, keeps default
specific_dissipation_rate)modified_viscosityalone✓
✗
modified_viscosity_ratioalone✓
✗
turbulent_kinetic_energyalone✗
✓ (
specific_dissipation_rateset to default)turbulent_intensityalone✗
✓ (
specific_dissipation_rateset to default)turbulent_length_scalealone✗
✓ (
specific_dissipation_rateset to default)turbulent_kinetic_energy+specific_dissipation_rate✗
✓
turbulent_intensity+specific_dissipation_rate✗
✓
turbulent_kinetic_energy+viscosity_ratio✗
✓
turbulent_intensity+viscosity_ratio✗
✓
turbulent_kinetic_energy+turbulent_length_scale✗
✓
turbulent_intensity+turbulent_length_scale✗
✓
specific_dissipation_rate+viscosity_ratio✗
✓
specific_dissipation_rate+turbulent_length_scale✗
✓
viscosity_ratio+turbulent_length_scale✗
✓
Example
Apply modified turbulent viscosity ratio for SA model.
>>> fl.TurbulenceQuantities(modified_viscosity_ratio=10)
Apply turbulent kinetic energy and specific dissipation rate for SST model.
>>> fl.TurbulenceQuantities( turbulent_kinetic_energy=0.2 * fl.u.m**2 / fl.u.s**2, specific_dissipation_rate=100 / fl.u.s)
Apply specific dissipation rate and turbulent viscosity ratio for SST model.
>>> fl.TurbulenceQuantities(specific_dissipation_rate=150 / fl.u.s, viscosity_ratio=1000)