tidy3d.plugins.dispersion.StableDispersionFitter
tidy3d.plugins.dispersion.StableDispersionFitter#
- class tidy3d.plugins.dispersion.StableDispersionFitter#
Bases:
tidy3d.plugins.dispersion.fit.DispersionFitter
Stable fitter based on web service
- Parameters
wvl_um (Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]) – [units = um]. Wavelength data in micrometers.
n_data (Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]) – Real part of the complex index of refraction.
k_data (Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1] = None) – Imaginary part of the complex index of refraction.
wvl_range (Tuple[float, float] = (None, None)) – [units = um]. Truncate the wavelength-nk data to wavelength range [wvl_min,wvl_max] for fitting
Show JSON schema
{ "title": "StableDispersionFitter", "description": "Stable fitter based on web service\n\nParameters\n----------\nwvl_um : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = um]. Wavelength data in micrometers.\nn_data : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n Real part of the complex index of refraction.\nk_data : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1] = None\n Imaginary part of the complex index of refraction.\nwvl_range : Tuple[float, float] = (None, None)\n [units = um]. Truncate the wavelength-nk data to wavelength range [wvl_min,wvl_max] for fitting", "type": "object", "properties": { "wvl_um": { "title": "Wavelength data", "description": "Wavelength data in micrometers.", "units": "um", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "n_data": { "title": "Index of refraction data", "description": "Real part of the complex index of refraction.", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "k_data": { "title": "Extinction coefficient data", "description": "Imaginary part of the complex index of refraction.", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "wvl_range": { "title": "Wavelength range [wvl_min,wvl_max] for fitting", "description": "Truncate the wavelength-nk data to wavelength range [wvl_min,wvl_max] for fitting", "default": [ null, null ], "units": "um", "type": "array", "minItems": 2, "maxItems": 2, "items": [ { "type": "number" }, { "type": "number" } ] }, "type": { "title": "Type", "default": "StableDispersionFitter", "enum": [ "StableDispersionFitter" ], "type": "string" } }, "required": [ "wvl_um", "n_data" ], "additionalProperties": false }
- attribute k_data: Union[Tuple[float, ...], ArrayFloat1D] = None#
Imaginary part of the complex index of refraction.
- Validated by
_kdata_setup_and_length_match
- attribute n_data: Union[Tuple[float, ...], ArrayFloat1D] [Required]#
Real part of the complex index of refraction.
- Validated by
_ndata_length_match_wvl
- attribute wvl_range: Tuple[Optional[float], Optional[float]] = (None, None)#
Truncate the wavelength-nk data to wavelength range [wvl_min,wvl_max] for fitting
- attribute wvl_um: Union[Tuple[float, ...], ArrayFloat1D] [Required]#
Wavelength data in micrometers.
- Validated by
_setup_wvl
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, or .hdf5 file.
- Parameters
fname (str) – Full path to the .yaml or .json file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '') dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- fit(num_poles: pydantic.types.PositiveInt = 1, num_tries: pydantic.types.PositiveInt = 50, tolerance_rms: pydantic.types.NonNegativeFloat = 0.01, advanced_param: tidy3d.plugins.dispersion.fit_web.AdvancedFitterParam = AdvancedFitterParam(bound_amp=None, bound_f=None, bound_f_lower=0.0, bound_eps_inf=10.0, constraint='hard', nlopt_maxeval=5000, random_seed=0, type='AdvancedFitterParam')) Tuple[tidy3d.components.medium.PoleResidue, float] #
Fits data a number of times and returns best results.
- Parameters
num_poles (PositiveInt, optional) – Number of poles in the model.
num_tries (PositiveInt, optional) – Number of optimizations to run with random initial guess.
tolerance_rms (NonNegativeFloat, optional) – RMS error below which the fit is successful and the result is returned.
advanced_param (
AdvancedFitterParam
, optional) – Other advanced parameters.
- Returns
Best results of multiple fits: (dispersive medium, RMS error).
- Return type
Tuple[
PoleResidue
, float]
- classmethod from_file(fname: str, **loadtxt_kwargs)#
Loads
DispersionFitter
from file containing wavelength, n, k data.- Parameters
fname (str) – Path to file containing wavelength (um), n, k (optional) data in columns.
**loadtxt_kwargs – Kwargs passed to
np.loadtxt
, such asskiprows
,delimiter
.
Hint
The data file should be in this format (
delimiter
andskiprows
can be customized in**loadtxt_kwargs
):For lossless media:
wl n [float] [float] . . . . . .
For lossy media:
wl n k [float] [float] [float] . . . . . . . . .
- Returns
A
DispersionFitter
instance.- Return type
- classmethod from_hdf5(fname: str, group_path: str = '', **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_file(fname='folder/sim.hdf5')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_orm(obj: Any) Model #
- classmethod from_url(url_file: str, delimiter: str = ',', ignore_k: bool = False, **kwargs)#
loads
DispersionFitter
from url linked to a csv/txt file that contains wavelength (micron), n, and optionally k data. Preferred from refractiveindex.info.Hint
The data file from url should be in this format (delimiter not displayed here, and note that the strings such as “wl”, “n” need to be included in the file):
For lossless media:
wl n [float] [float] . . . . . .
For lossy media:
wl n [float] [float] . . . . . . wl k [float] [float] . . . . . .
- Parameters
url_file (str) – Url link to the data file. e.g. “https://refractiveindex.info/data_csv.php?datafile=data/main/Ag/Johnson.yml”
delimiter (str = ",") – E.g. in refractiveindex.info, it’ll be “,” for csv file, and “\t” for txt file.
ignore_k (bool = False) – Ignore the k data if they are present, so the fitted material is lossless.
- Returns
A
DispersionFitter
instance.- Return type
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- plot(medium: tidy3d.components.medium.PoleResidue = None, wvl_um: Tuple[float, ...] = None, ax: matplotlib.axes._axes.Axes = None) matplotlib.axes._axes.Axes #
Make plot of model vs data, at a set of wavelengths (if supplied).
- Parameters
medium (
PoleResidue
= None) – medium containing model to plot against datawvl_um (Tuple[float, ...] = None) – Wavelengths to evaluate model at for plot in micrometers.
ax (matplotlib.axes._subplots.Axes = None) – Axes to plot the data on, if None, a new one is created.
- Returns
Matplotlib axis corresponding to plot.
- Return type
matplotlib.axis.Axes
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.
- classmethod validate(value: Any) Model #
- property eps_data: complex#
Convert filtered input n(k) data into complex permittivity.
- Returns
Complex-valued relative permittivty.
- Return type
complex
- property freqs: Tuple[float, ...]#
Convert filtered input wavelength data to frequency.
- Returns
Frequency array converted from filtered input wavelength data
- Return type
Tuple[float, …]
- property frequency_range: Tuple[float, float]#
Frequency range of filtered input data
- Returns
The minimal frequency and the maximal frequency
- Return type
Tuple[float, float]
- property lossy: bool#
Find out if the medium is lossy or lossless based on the filtered input data.
- Returns
True for lossy medium; False for lossless medium
- Return type
bool