tidy3d.plugins.adjoint.JaxModeData
tidy3d.plugins.adjoint.JaxModeData#
- class tidy3d.plugins.adjoint.JaxModeData#
Bases:
tidy3d.plugins.adjoint.components.data.monitor_data.JaxMonitorData
,tidy3d.components.data.monitor_data.ModeData
A
ModeData
registered with jax.- Parameters
monitor (Union[FieldMonitor, FieldTimeMonitor, PermittivityMonitor, FluxMonitor, FluxTimeMonitor, ModeMonitor, ModeSolverMonitor, FieldProjectionAngleMonitor, FieldProjectionCartesianMonitor, FieldProjectionKSpaceMonitor, DiffractionMonitor]) – Monitor associated with the data.
amps (JaxDataArray) – Jax-compatible modal amplitude data associated with an output monitor.
n_complex (ModeIndexDataArray) – Complex-valued effective propagation constants associated with the mode.
Show JSON schema
{ "title": "JaxModeData", "description": "A :class:`.ModeData` registered with jax.\n\nParameters\n----------\nmonitor : Union[FieldMonitor, FieldTimeMonitor, PermittivityMonitor, FluxMonitor, FluxTimeMonitor, ModeMonitor, ModeSolverMonitor, FieldProjectionAngleMonitor, FieldProjectionCartesianMonitor, FieldProjectionKSpaceMonitor, DiffractionMonitor]\n Monitor associated with the data.\namps : JaxDataArray\n Jax-compatible modal amplitude data associated with an output monitor.\nn_complex : ModeIndexDataArray\n Complex-valued effective propagation constants associated with the mode.", "type": "object", "properties": { "type": { "title": "Type", "default": "JaxModeData", "enum": [ "JaxModeData" ], "type": "string" }, "monitor": { "title": "Monitor", "description": "Monitor associated with the data.", "discriminator": { "propertyName": "type", "mapping": { "FieldMonitor": "#/definitions/FieldMonitor", "FieldTimeMonitor": "#/definitions/FieldTimeMonitor", "PermittivityMonitor": "#/definitions/PermittivityMonitor", "FluxMonitor": "#/definitions/FluxMonitor", "FluxTimeMonitor": "#/definitions/FluxTimeMonitor", "ModeMonitor": "#/definitions/ModeMonitor", "ModeSolverMonitor": "#/definitions/ModeSolverMonitor", "FieldProjectionAngleMonitor": "#/definitions/FieldProjectionAngleMonitor", "FieldProjectionCartesianMonitor": "#/definitions/FieldProjectionCartesianMonitor", "FieldProjectionKSpaceMonitor": "#/definitions/FieldProjectionKSpaceMonitor", "DiffractionMonitor": "#/definitions/DiffractionMonitor" } }, "oneOf": [ { "$ref": "#/definitions/FieldMonitor" }, { "$ref": "#/definitions/FieldTimeMonitor" }, { "$ref": "#/definitions/PermittivityMonitor" }, { "$ref": "#/definitions/FluxMonitor" }, { "$ref": "#/definitions/FluxTimeMonitor" }, { "$ref": "#/definitions/ModeMonitor" }, { "$ref": "#/definitions/ModeSolverMonitor" }, { "$ref": "#/definitions/FieldProjectionAngleMonitor" }, { "$ref": "#/definitions/FieldProjectionCartesianMonitor" }, { "$ref": "#/definitions/FieldProjectionKSpaceMonitor" }, { "$ref": "#/definitions/DiffractionMonitor" } ] }, "amps": { "title": "Amplitudes", "description": "Jax-compatible modal amplitude data associated with an output monitor.", "jax_field": true, "allOf": [ { "$ref": "#/definitions/JaxDataArray" } ] }, "n_complex": { "title": "DataArray", "description": "Complex-valued effective propagation constants associated with the mode.", "type": "xr.DataArray", "properties": { "_dims": { "title": "_dims", "type": "Tuple[str, ...]" } }, "required": [ "_dims" ] } }, "required": [ "monitor", "amps", "n_complex" ], "additionalProperties": false, "definitions": { "ApodizationSpec": { "title": "ApodizationSpec", "description": "Stores specifications for the apodizaton of frequency-domain monitors.\n\nParameters\n----------\nstart : Optional[NonNegativeFloat] = None\n [units = sec]. Defines the time at which the start apodization ends.\nend : Optional[NonNegativeFloat] = None\n [units = sec]. Defines the time at which the end apodization begins.\nwidth : Optional[PositiveFloat] = None\n [units = sec]. Characteristic decay length of the apodization function.\n\nExample\n-------\n>>> apod_spec = ApodizationSpec(start=1, end=2, width=0.5)", "type": "object", "properties": { "start": { "title": "Start Interval", "description": "Defines the time at which the start apodization ends.", "units": "sec", "minimum": 0, "type": "number" }, "end": { "title": "End Interval", "description": "Defines the time at which the end apodization begins.", "units": "sec", "minimum": 0, "type": "number" }, "width": { "title": "Apodization Width", "description": "Characteristic decay length of the apodization function.", "units": "sec", "exclusiveMinimum": 0, "type": "number" }, "type": { "title": "Type", "default": "ApodizationSpec", "enum": [ "ApodizationSpec" ], "type": "string" } }, "additionalProperties": false }, "FieldMonitor": { "title": "FieldMonitor", "description": ":class:`Monitor` that records electromagnetic fields in the frequency domain.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nfields : Tuple[Literal['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz'], ...] = ['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz']\n Collection of field components to store in the monitor.\ninterval_space : Tuple[PositiveInt, PositiveInt, PositiveInt] = (1, 1, 1)\n Number of grid step intervals between monitor recordings. If equal to 1, there will be no downsampling. If greater than 1, fields will be downsampled and automatically colocated.\ncolocate : Optional[bool] = None\n Toggle whether fields should be colocated to grid cell centers. Default: ``False`` if ``interval_space`` is 1 in each direction, ``True`` if ``interval_space`` is greater than one in any direction.\n\nExample\n-------\n>>> monitor = FieldMonitor(\n... center=(1,2,3),\n... size=(2,2,2),\n... fields=['Hx'],\n... freqs=[250e12, 300e12],\n... name='steady_state_monitor')", "type": "object", "properties": { "type": { "title": "Type", "default": "FieldMonitor", "enum": [ "FieldMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "fields": { "title": "Field Components", "description": "Collection of field components to store in the monitor.", "default": [ "Ex", "Ey", "Ez", "Hx", "Hy", "Hz" ], "type": "array", "items": { "enum": [ "Ex", "Ey", "Ez", "Hx", "Hy", "Hz" ], "type": "string" } }, "interval_space": { "title": "Spatial interval", "description": "Number of grid step intervals between monitor recordings. If equal to 1, there will be no downsampling. If greater than 1, fields will be downsampled and automatically colocated.", "default": [ 1, 1, 1 ], "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "integer", "exclusiveMinimum": 0 }, { "type": "integer", "exclusiveMinimum": 0 }, { "type": "integer", "exclusiveMinimum": 0 } ] }, "colocate": { "title": "Colocate fields", "description": "Toggle whether fields should be colocated to grid cell centers. Default: ``False`` if ``interval_space`` is 1 in each direction, ``True`` if ``interval_space`` is greater than one in any direction.", "type": "boolean" } }, "required": [ "size", "name", "freqs" ], "additionalProperties": false }, "FieldTimeMonitor": { "title": "FieldTimeMonitor", "description": ":class:`Monitor` that records electromagnetic fields in the time domain.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nstart : NonNegativeFloat = 0.0\n [units = sec]. Time at which to start monitor recording.\nstop : Optional[NonNegativeFloat] = None\n [units = sec]. Time at which to stop monitor recording. If not specified, record until end of simulation.\ninterval : PositiveInt = 1\n Number of time step intervals between monitor recordings.\nfields : Tuple[Literal['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz'], ...] = ['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz']\n Collection of field components to store in the monitor.\ninterval_space : Tuple[PositiveInt, PositiveInt, PositiveInt] = (1, 1, 1)\n Number of grid step intervals between monitor recordings. If equal to 1, there will be no downsampling. If greater than 1, fields will be downsampled and automatically colocated.\ncolocate : Optional[bool] = None\n Toggle whether fields should be colocated to grid cell centers. Default: ``False`` if ``interval_space`` is 1 in each direction, ``True`` if ``interval_space`` is greater than one in any direction.\n\nExample\n-------\n>>> monitor = FieldTimeMonitor(\n... center=(1,2,3),\n... size=(2,2,2),\n... fields=['Hx'],\n... start=1e-13,\n... stop=5e-13,\n... interval=2,\n... name='movie_monitor')", "type": "object", "properties": { "type": { "title": "Type", "default": "FieldTimeMonitor", "enum": [ "FieldTimeMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "start": { "title": "Start time", "description": "Time at which to start monitor recording.", "default": 0.0, "units": "sec", "minimum": 0, "type": "number" }, "stop": { "title": "Stop time", "description": "Time at which to stop monitor recording. If not specified, record until end of simulation.", "units": "sec", "minimum": 0, "type": "number" }, "interval": { "title": "Time interval", "description": "Number of time step intervals between monitor recordings.", "default": 1, "exclusiveMinimum": 0, "type": "integer" }, "fields": { "title": "Field Components", "description": "Collection of field components to store in the monitor.", "default": [ "Ex", "Ey", "Ez", "Hx", "Hy", "Hz" ], "type": "array", "items": { "enum": [ "Ex", "Ey", "Ez", "Hx", "Hy", "Hz" ], "type": "string" } }, "interval_space": { "title": "Spatial interval", "description": "Number of grid step intervals between monitor recordings. If equal to 1, there will be no downsampling. If greater than 1, fields will be downsampled and automatically colocated.", "default": [ 1, 1, 1 ], "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "integer", "exclusiveMinimum": 0 }, { "type": "integer", "exclusiveMinimum": 0 }, { "type": "integer", "exclusiveMinimum": 0 } ] }, "colocate": { "title": "Colocate fields", "description": "Toggle whether fields should be colocated to grid cell centers. Default: ``False`` if ``interval_space`` is 1 in each direction, ``True`` if ``interval_space`` is greater than one in any direction.", "type": "boolean" } }, "required": [ "size", "name" ], "additionalProperties": false }, "PermittivityMonitor": { "title": "PermittivityMonitor", "description": ":class:`Monitor` that records the diagonal components of the complex-valued relative\npermittivity tensor in the frequency domain. The recorded data has the same shape as a\n:class:`.FieldMonitor` of the same geometry: the permittivity values are saved at the\nYee grid locations, and can be interpolated to any point inside the monitor.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\n\nNote\n----\nIf 2D materials are present, then the permittivity values correspond to the\nvolumetric equivalent of the 2D materials.\n\nExample\n-------\n>>> monitor = PermittivityMonitor(\n... center=(1,2,3),\n... size=(2,2,2),\n... freqs=[250e12, 300e12],\n... name='eps_monitor')", "type": "object", "properties": { "type": { "title": "Type", "default": "PermittivityMonitor", "enum": [ "PermittivityMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] } }, "required": [ "size", "name", "freqs" ], "additionalProperties": false }, "FluxMonitor": { "title": "FluxMonitor", "description": ":class:`Monitor` that records power flux in the frequency domain.\nIf the monitor geometry is a 2D box, the total flux through this plane is returned, with a\npositive sign corresponding to power flow in the positive direction along the axis normal to\nthe plane. If the geometry is a 3D box, the total power coming out of the box is returned by\nintegrating the flux over all box surfaces (excpet the ones defined in ``exclude_surfaces``).\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nnormal_dir : Optional[Literal['+', '-']] = None\n Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.\nexclude_surfaces : Optional[Tuple[Literal['x-', 'x+', 'y-', 'y+', 'z-', 'z+'], ...]] = None\n Surfaces to exclude in the integration, if a volume monitor.\n\nExample\n-------\n>>> monitor = FluxMonitor(\n... center=(1,2,3),\n... size=(2,2,0),\n... freqs=[200e12, 210e12],\n... name='flux_monitor')", "type": "object", "properties": { "type": { "title": "Type", "default": "FluxMonitor", "enum": [ "FluxMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "normal_dir": { "title": "Normal vector orientation", "description": "Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.", "enum": [ "+", "-" ], "type": "string" }, "exclude_surfaces": { "title": "Excluded surfaces", "description": "Surfaces to exclude in the integration, if a volume monitor.", "type": "array", "items": { "enum": [ "x-", "x+", "y-", "y+", "z-", "z+" ], "type": "string" } } }, "required": [ "size", "name", "freqs" ], "additionalProperties": false }, "FluxTimeMonitor": { "title": "FluxTimeMonitor", "description": ":class:`Monitor` that records power flux in the time domain.\nIf the monitor geometry is a 2D box, the total flux through this plane is returned, with a\npositive sign corresponding to power flow in the positive direction along the axis normal to\nthe plane. If the geometry is a 3D box, the total power coming out of the box is returned by\nintegrating the flux over all box surfaces (excpet the ones defined in ``exclude_surfaces``).\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nstart : NonNegativeFloat = 0.0\n [units = sec]. Time at which to start monitor recording.\nstop : Optional[NonNegativeFloat] = None\n [units = sec]. Time at which to stop monitor recording. If not specified, record until end of simulation.\ninterval : PositiveInt = 1\n Number of time step intervals between monitor recordings.\nnormal_dir : Optional[Literal['+', '-']] = None\n Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.\nexclude_surfaces : Optional[Tuple[Literal['x-', 'x+', 'y-', 'y+', 'z-', 'z+'], ...]] = None\n Surfaces to exclude in the integration, if a volume monitor.\n\nExample\n-------\n>>> monitor = FluxTimeMonitor(\n... center=(1,2,3),\n... size=(2,2,0),\n... start=1e-13,\n... stop=5e-13,\n... interval=2,\n... name='flux_vs_time')", "type": "object", "properties": { "type": { "title": "Type", "default": "FluxTimeMonitor", "enum": [ "FluxTimeMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "start": { "title": "Start time", "description": "Time at which to start monitor recording.", "default": 0.0, "units": "sec", "minimum": 0, "type": "number" }, "stop": { "title": "Stop time", "description": "Time at which to stop monitor recording. If not specified, record until end of simulation.", "units": "sec", "minimum": 0, "type": "number" }, "interval": { "title": "Time interval", "description": "Number of time step intervals between monitor recordings.", "default": 1, "exclusiveMinimum": 0, "type": "integer" }, "normal_dir": { "title": "Normal vector orientation", "description": "Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.", "enum": [ "+", "-" ], "type": "string" }, "exclude_surfaces": { "title": "Excluded surfaces", "description": "Surfaces to exclude in the integration, if a volume monitor.", "type": "array", "items": { "enum": [ "x-", "x+", "y-", "y+", "z-", "z+" ], "type": "string" } } }, "required": [ "size", "name" ], "additionalProperties": false }, "ModeSpec": { "title": "ModeSpec", "description": "Stores specifications for the mode solver to find an electromagntic mode.\nNote, the planar axes are found by popping the injection axis from {x,y,z}.\nFor example, if injection axis is y, the planar axes are ordered {x,z}.\n\nParameters\n----------\nnum_modes : PositiveInt = 1\n Number of modes returned by mode solver.\ntarget_neff : Optional[PositiveFloat] = None\n Guess for effective index of the mode.\nnum_pml : Tuple[NonNegativeInt, NonNegativeInt] = (0, 0)\n Number of standard pml layers to add in the two tangential axes.\nfilter_pol : Optional[Literal['te', 'tm']] = None\n The solver always computes the ``num_modes`` modes closest to the given ``target_neff``. If ``filter_pol==None``, they are simply sorted in order of decresing effective index. If a polarization filter is selected, the modes are rearranged such that the first ``n_pol`` modes in the list are the ones with the selected polarization fraction larger than or equal to 0.5, while the next ``num_modes - n_pol`` modes are the ones where it is smaller than 0.5 (i.e. the opposite polarization fraction is larger than 0.5). Within each polarization subset, the modes are still ordered by decreasing effective index. ``te``-fraction is defined as the integrated intensity of the E-field component parallel to the first plane axis, normalized to the total in-plane E-field intensity. Conversely, ``tm``-fraction uses the E field component parallel to the second plane axis.\nangle_theta : float = 0.0\n [units = rad]. Polar angle of the propagation axis from the injection axis.\nangle_phi : float = 0.0\n [units = rad]. Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.\nprecision : Literal['single', 'double'] = single\n The solver will be faster and using less memory under single precision, but more accurate under double precision.\nbend_radius : Optional[float] = None\n [units = um]. A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.\nbend_axis : Optional[Literal[0, 1]] = None\n Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if ``bend_radius`` is not ``None``. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, the ``bend_axis`` is always 1 (the global z axis).\ntrack_freq : Optional[Literal['central', 'lowest', 'highest']] = central\n Parameter that turns on/off mode tracking based on their similarity. Can take values ``'lowest'``, ``'central'``, or ``'highest'``, which correspond to mode tracking based on the lowest, central, or highest frequency. If ``None`` no mode tracking is performed.\ngroup_index_step : Union[bool, PositiveFloat] = False\n Control the computation of the group index alongside the effective index. If set to a positive value, it sets the fractional frequency step used in the numerical differentiation of the effective index to compute the group index. If set to `True`, the default of 0.005 is used.\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3, target_neff=1.5)", "type": "object", "properties": { "num_modes": { "title": "Number of modes", "description": "Number of modes returned by mode solver.", "default": 1, "exclusiveMinimum": 0, "type": "integer" }, "target_neff": { "title": "Target effective index", "description": "Guess for effective index of the mode.", "exclusiveMinimum": 0, "type": "number" }, "num_pml": { "title": "Number of PML layers", "description": "Number of standard pml layers to add in the two tangential axes.", "default": [ 0, 0 ], "type": "array", "minItems": 2, "maxItems": 2, "items": [ { "type": "integer", "minimum": 0 }, { "type": "integer", "minimum": 0 } ] }, "filter_pol": { "title": "Polarization filtering", "description": "The solver always computes the ``num_modes`` modes closest to the given ``target_neff``. If ``filter_pol==None``, they are simply sorted in order of decresing effective index. If a polarization filter is selected, the modes are rearranged such that the first ``n_pol`` modes in the list are the ones with the selected polarization fraction larger than or equal to 0.5, while the next ``num_modes - n_pol`` modes are the ones where it is smaller than 0.5 (i.e. the opposite polarization fraction is larger than 0.5). Within each polarization subset, the modes are still ordered by decreasing effective index. ``te``-fraction is defined as the integrated intensity of the E-field component parallel to the first plane axis, normalized to the total in-plane E-field intensity. Conversely, ``tm``-fraction uses the E field component parallel to the second plane axis.", "enum": [ "te", "tm" ], "type": "string" }, "angle_theta": { "title": "Polar Angle", "description": "Polar angle of the propagation axis from the injection axis.", "default": 0.0, "units": "rad", "type": "number" }, "angle_phi": { "title": "Azimuth Angle", "description": "Azimuth angle of the propagation axis in the plane orthogonal to the injection axis.", "default": 0.0, "units": "rad", "type": "number" }, "precision": { "title": "single or double precision in mode solver", "description": "The solver will be faster and using less memory under single precision, but more accurate under double precision.", "default": "single", "enum": [ "single", "double" ], "type": "string" }, "bend_radius": { "title": "Bend radius", "description": "A curvature radius for simulation of waveguide bends. Can be negative, in which case the mode plane center has a smaller value than the curvature center along the tangential axis perpendicular to the bend axis.", "units": "um", "type": "number" }, "bend_axis": { "title": "Bend axis", "description": "Index into the two tangential axes defining the normal to the plane in which the bend lies. This must be provided if ``bend_radius`` is not ``None``. For example, for a ring in the global xy-plane, and a mode plane in either the xz or the yz plane, the ``bend_axis`` is always 1 (the global z axis).", "enum": [ 0, 1 ], "type": "integer" }, "track_freq": { "title": "Mode Tracking Frequency", "description": "Parameter that turns on/off mode tracking based on their similarity. Can take values ``'lowest'``, ``'central'``, or ``'highest'``, which correspond to mode tracking based on the lowest, central, or highest frequency. If ``None`` no mode tracking is performed.", "default": "central", "enum": [ "central", "lowest", "highest" ], "type": "string" }, "group_index_step": { "title": "Frequency step for group index computation", "description": "Control the computation of the group index alongside the effective index. If set to a positive value, it sets the fractional frequency step used in the numerical differentiation of the effective index to compute the group index. If set to `True`, the default of 0.005 is used.", "default": false, "anyOf": [ { "type": "boolean" }, { "type": "number", "exclusiveMinimum": 0 } ] }, "type": { "title": "Type", "default": "ModeSpec", "enum": [ "ModeSpec" ], "type": "string" } }, "additionalProperties": false }, "ModeMonitor": { "title": "ModeMonitor", "description": ":class:`Monitor` that records amplitudes from modal decomposition of fields on plane.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nmode_spec : ModeSpec\n Parameters to feed to mode solver which determine modes measured by monitor.\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3)\n>>> monitor = ModeMonitor(\n... center=(1,2,3),\n... size=(2,2,0),\n... freqs=[200e12, 210e12],\n... mode_spec=mode_spec,\n... name='mode_monitor')", "type": "object", "properties": { "type": { "title": "Type", "default": "ModeMonitor", "enum": [ "ModeMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "mode_spec": { "title": "Mode Specification", "description": "Parameters to feed to mode solver which determine modes measured by monitor.", "allOf": [ { "$ref": "#/definitions/ModeSpec" } ] } }, "required": [ "size", "name", "freqs", "mode_spec" ], "additionalProperties": false }, "ModeSolverMonitor": { "title": "ModeSolverMonitor", "description": ":class:`Monitor` that stores the mode field profiles returned by the mode solver in the\nmonitor plane.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nmode_spec : ModeSpec\n Parameters to feed to mode solver which determine modes measured by monitor.\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3)\n>>> monitor = ModeSolverMonitor(\n... center=(1,2,3),\n... size=(2,2,0),\n... freqs=[200e12, 210e12],\n... mode_spec=mode_spec,\n... name='mode_monitor')", "type": "object", "properties": { "type": { "title": "Type", "default": "ModeSolverMonitor", "enum": [ "ModeSolverMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "mode_spec": { "title": "Mode Specification", "description": "Parameters to feed to mode solver which determine modes measured by monitor.", "allOf": [ { "$ref": "#/definitions/ModeSpec" } ] } }, "required": [ "size", "name", "freqs", "mode_spec" ], "additionalProperties": false }, "FieldProjectionAngleMonitor": { "title": "FieldProjectionAngleMonitor", "description": ":class:`Monitor` that samples electromagnetic near fields in the frequency domain\nand projects them at given observation angles.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nnormal_dir : Optional[Literal['+', '-']] = None\n Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.\nexclude_surfaces : Optional[Tuple[Literal['x-', 'x+', 'y-', 'y+', 'z-', 'z+'], ...]] = None\n Surfaces to exclude in the integration, if a volume monitor.\ncustom_origin : Optional[Tuple[float, float, float]] = None\n [units = um]. Local origin used for defining observation points. If ``None``, uses the monitor's center.\nfar_field_approx : bool = True\n Whether to enable the far field approximation when projecting fields.\nproj_distance : float = 1000000.0\n [units = um]. Radial distance of the projection points from ``local_origin``.\ntheta : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = rad]. Polar angles with respect to the global z axis, relative to the location of ``local_origin``, at which to project fields.\nphi : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = rad]. Azimuth angles with respect to the global z axis, relative to the location of ``local_origin``, at which to project fields.\n\nExample\n-------\n>>> monitor = FieldProjectionAngleMonitor(\n... center=(1,2,3),\n... size=(2,2,2),\n... freqs=[250e12, 300e12],\n... name='n2f_monitor',\n... custom_origin=(1,2,3),\n... phi=[0, np.pi/2],\n... theta=np.linspace(-np.pi/2, np.pi/2, 100)\n... )", "type": "object", "properties": { "type": { "title": "Type", "default": "FieldProjectionAngleMonitor", "enum": [ "FieldProjectionAngleMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "normal_dir": { "title": "Normal vector orientation", "description": "Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.", "enum": [ "+", "-" ], "type": "string" }, "exclude_surfaces": { "title": "Excluded surfaces", "description": "Surfaces to exclude in the integration, if a volume monitor.", "type": "array", "items": { "enum": [ "x-", "x+", "y-", "y+", "z-", "z+" ], "type": "string" } }, "custom_origin": { "title": "Local origin", "description": "Local origin used for defining observation points. If ``None``, uses the monitor's center.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "far_field_approx": { "title": "Far field approximation", "description": "Whether to enable the far field approximation when projecting fields.", "default": true, "type": "boolean" }, "proj_distance": { "title": "Projection distance", "description": "Radial distance of the projection points from ``local_origin``.", "default": 1000000.0, "units": "um", "type": "number" }, "theta": { "title": "Polar angles", "description": "Polar angles with respect to the global z axis, relative to the location of ``local_origin``, at which to project fields.", "units": "rad", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "phi": { "title": "Azimuth angles", "description": "Azimuth angles with respect to the global z axis, relative to the location of ``local_origin``, at which to project fields.", "units": "rad", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] } }, "required": [ "size", "name", "freqs", "theta", "phi" ], "additionalProperties": false }, "FieldProjectionCartesianMonitor": { "title": "FieldProjectionCartesianMonitor", "description": ":class:`Monitor` that samples electromagnetic near fields in the frequency domain\nand projects them on a Cartesian observation plane.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nnormal_dir : Optional[Literal['+', '-']] = None\n Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.\nexclude_surfaces : Optional[Tuple[Literal['x-', 'x+', 'y-', 'y+', 'z-', 'z+'], ...]] = None\n Surfaces to exclude in the integration, if a volume monitor.\ncustom_origin : Optional[Tuple[float, float, float]] = None\n [units = um]. Local origin used for defining observation points. If ``None``, uses the monitor's center.\nfar_field_approx : bool = True\n Whether to enable the far field approximation when projecting fields.\nproj_axis : Literal[0, 1, 2]\n Axis along which the observation plane is oriented.\nproj_distance : float = 1000000.0\n [units = um]. Signed distance of the projection plane along ``proj_axis``. from the plane containing ``local_origin``.\nx : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = um]. Local x observation coordinates w.r.t. ``local_origin`` and ``proj_axis``. When ``proj_axis`` is 0, this corresponds to the global y axis. When ``proj_axis`` is 1, this corresponds to the global x axis. When ``proj_axis`` is 2, this corresponds to the global x axis. \ny : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = um]. Local y observation coordinates w.r.t. ``local_origin`` and ``proj_axis``. When ``proj_axis`` is 0, this corresponds to the global z axis. When ``proj_axis`` is 1, this corresponds to the global z axis. When ``proj_axis`` is 2, this corresponds to the global y axis. \n\nExample\n-------\n>>> monitor = FieldProjectionCartesianMonitor(\n... center=(1,2,3),\n... size=(2,2,2),\n... freqs=[250e12, 300e12],\n... name='n2f_monitor',\n... custom_origin=(1,2,3),\n... x=[-1, 0, 1],\n... y=[-2, -1, 0, 1, 2],\n... proj_axis=2,\n... proj_distance=5\n... )", "type": "object", "properties": { "type": { "title": "Type", "default": "FieldProjectionCartesianMonitor", "enum": [ "FieldProjectionCartesianMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "normal_dir": { "title": "Normal vector orientation", "description": "Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.", "enum": [ "+", "-" ], "type": "string" }, "exclude_surfaces": { "title": "Excluded surfaces", "description": "Surfaces to exclude in the integration, if a volume monitor.", "type": "array", "items": { "enum": [ "x-", "x+", "y-", "y+", "z-", "z+" ], "type": "string" } }, "custom_origin": { "title": "Local origin", "description": "Local origin used for defining observation points. If ``None``, uses the monitor's center.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "far_field_approx": { "title": "Far field approximation", "description": "Whether to enable the far field approximation when projecting fields.", "default": true, "type": "boolean" }, "proj_axis": { "title": "Projection plane axis", "description": "Axis along which the observation plane is oriented.", "enum": [ 0, 1, 2 ], "type": "integer" }, "proj_distance": { "title": "Projection distance", "description": "Signed distance of the projection plane along ``proj_axis``. from the plane containing ``local_origin``.", "default": 1000000.0, "units": "um", "type": "number" }, "x": { "title": "Local x observation coordinates", "description": "Local x observation coordinates w.r.t. ``local_origin`` and ``proj_axis``. When ``proj_axis`` is 0, this corresponds to the global y axis. When ``proj_axis`` is 1, this corresponds to the global x axis. When ``proj_axis`` is 2, this corresponds to the global x axis. ", "units": "um", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "y": { "title": "Local y observation coordinates", "description": "Local y observation coordinates w.r.t. ``local_origin`` and ``proj_axis``. When ``proj_axis`` is 0, this corresponds to the global z axis. When ``proj_axis`` is 1, this corresponds to the global z axis. When ``proj_axis`` is 2, this corresponds to the global y axis. ", "units": "um", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] } }, "required": [ "size", "name", "freqs", "proj_axis", "x", "y" ], "additionalProperties": false }, "FieldProjectionKSpaceMonitor": { "title": "FieldProjectionKSpaceMonitor", "description": ":class:`Monitor` that samples electromagnetic near fields in the frequency domain\nand projects them on an observation plane defined in k-space.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nnormal_dir : Optional[Literal['+', '-']] = None\n Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.\nexclude_surfaces : Optional[Tuple[Literal['x-', 'x+', 'y-', 'y+', 'z-', 'z+'], ...]] = None\n Surfaces to exclude in the integration, if a volume monitor.\ncustom_origin : Optional[Tuple[float, float, float]] = None\n [units = um]. Local origin used for defining observation points. If ``None``, uses the monitor's center.\nfar_field_approx : bool = True\n Whether to enable the far field approximation when projecting fields.\nproj_axis : Literal[0, 1, 2]\n Axis along which the observation plane is oriented.\nproj_distance : float = 1000000.0\n [units = um]. Radial distance of the projection points from ``local_origin``.\nux : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n Local x component of wave vectors on the observation plane, relative to ``local_origin`` and oriented with respect to ``proj_axis``, normalized by (2*pi/lambda) where lambda is the wavelength associated with the background medium. Must be in the range [-1, 1].\nuy : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n Local y component of wave vectors on the observation plane, relative to ``local_origin`` and oriented with respect to ``proj_axis``, normalized by (2*pi/lambda) where lambda is the wavelength associated with the background medium. Must be in the range [-1, 1].\n\nExample\n-------\n>>> monitor = FieldProjectionKSpaceMonitor(\n... center=(1,2,3),\n... size=(2,2,2),\n... freqs=[250e12, 300e12],\n... name='n2f_monitor',\n... custom_origin=(1,2,3),\n... proj_axis=2,\n... ux=[0.1,0.2],\n... uy=[0.3,0.4,0.5]\n... )", "type": "object", "properties": { "type": { "title": "Type", "default": "FieldProjectionKSpaceMonitor", "enum": [ "FieldProjectionKSpaceMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "normal_dir": { "title": "Normal vector orientation", "description": "Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Applies to surface monitors only, and defaults to ``'+'`` if not provided.", "enum": [ "+", "-" ], "type": "string" }, "exclude_surfaces": { "title": "Excluded surfaces", "description": "Surfaces to exclude in the integration, if a volume monitor.", "type": "array", "items": { "enum": [ "x-", "x+", "y-", "y+", "z-", "z+" ], "type": "string" } }, "custom_origin": { "title": "Local origin", "description": "Local origin used for defining observation points. If ``None``, uses the monitor's center.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "far_field_approx": { "title": "Far field approximation", "description": "Whether to enable the far field approximation when projecting fields.", "default": true, "type": "boolean" }, "proj_axis": { "title": "Projection plane axis", "description": "Axis along which the observation plane is oriented.", "enum": [ 0, 1, 2 ], "type": "integer" }, "proj_distance": { "title": "Projection distance", "description": "Radial distance of the projection points from ``local_origin``.", "default": 1000000.0, "units": "um", "type": "number" }, "ux": { "title": "Normalized kx", "description": "Local x component of wave vectors on the observation plane, relative to ``local_origin`` and oriented with respect to ``proj_axis``, normalized by (2*pi/lambda) where lambda is the wavelength associated with the background medium. Must be in the range [-1, 1].", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "uy": { "title": "Normalized ky", "description": "Local y component of wave vectors on the observation plane, relative to ``local_origin`` and oriented with respect to ``proj_axis``, normalized by (2*pi/lambda) where lambda is the wavelength associated with the background medium. Must be in the range [-1, 1].", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] } }, "required": [ "size", "name", "freqs", "proj_axis", "ux", "uy" ], "additionalProperties": false }, "DiffractionMonitor": { "title": "DiffractionMonitor", "description": ":class:`Monitor` that uses a 2D Fourier transform to compute the\ndiffraction amplitudes and efficiency for allowed diffraction orders.\n\nParameters\n----------\ncenter : Tuple[float, float, float] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Tuple[NonNegativeFloat, NonNegativeFloat, NonNegativeFloat]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\nfreqs : Union[Tuple[float, ...], ArrayLike_dtype=<class 'float'>_ndim=1]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nnormal_dir : Literal['+', '-'] = +\n Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Defaults to ``'+'`` if not provided.\n\nExample\n-------\n>>> monitor = DiffractionMonitor(\n... center=(1,2,3),\n... size=(inf,inf,0),\n... freqs=[250e12, 300e12],\n... name='diffraction_monitor',\n... normal_dir='+',\n... )", "type": "object", "properties": { "type": { "title": "Type", "default": "DiffractionMonitor", "enum": [ "DiffractionMonitor" ], "type": "string" }, "center": { "title": "Center", "description": "Center of object in x, y, and z.", "default": [ 0.0, 0.0, 0.0 ], "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number" }, { "type": "number" }, { "type": "number" } ] }, "size": { "title": "Size", "description": "Size in x, y, and z directions.", "units": "um", "type": "array", "minItems": 3, "maxItems": 3, "items": [ { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 }, { "type": "number", "minimum": 0 } ] }, "name": { "title": "Name", "description": "Unique name for monitor.", "minLength": 1, "type": "string" }, "freqs": { "title": "Frequencies", "description": "Array or list of frequencies stored by the field monitor.", "units": "Hz", "anyOf": [ { "type": "array", "items": { "type": "number" } }, { "title": "ArrayLike", "type": "ArrayLike" } ] }, "apodization": { "title": "Apodization Specification", "description": "Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.", "default": { "start": null, "end": null, "width": null, "type": "ApodizationSpec" }, "allOf": [ { "$ref": "#/definitions/ApodizationSpec" } ] }, "normal_dir": { "title": "Normal vector orientation", "description": "Direction of the surface monitor's normal vector w.r.t. the positive x, y or z unit vectors. Must be one of ``'+'`` or ``'-'``. Defaults to ``'+'`` if not provided.", "default": "+", "enum": [ "+", "-" ], "type": "string" } }, "required": [ "size", "name", "freqs" ], "additionalProperties": false }, "JaxDataArray": { "title": "JaxDataArray", "description": "A :class:`.DataArray`-like class that only wraps xarray for jax compability.\n\nParameters\n----------\nvalues : Optional[Any]\n Nested list containing the raw values, which can be tracked by jax.\ncoords : Mapping[str, list]\n Dictionary storing the coordinates, namely ``(direction, f, mode_index)``.", "type": "object", "properties": { "values": { "title": "Values", "description": "Nested list containing the raw values, which can be tracked by jax.", "jax_field": true }, "coords": { "title": "Coords", "description": "Dictionary storing the coordinates, namely ``(direction, f, mode_index)``.", "type": "object", "additionalProperties": { "type": "array", "items": {} } }, "type": { "title": "Type", "default": "JaxDataArray", "enum": [ "JaxDataArray" ], "type": "string" } }, "required": [ "values", "coords" ], "additionalProperties": false } } }
- attribute amps: JaxDataArray [Required]#
Jax-compatible modal amplitude data associated with an output monitor.
- attribute monitor: ModeMonitor [Required]#
Monitor associated with the data.
- attribute n_complex: ModeIndexDataArray [Required]#
Complex-valued effective propagation constants associated with the mode.
- Constraints
title = DataArray
type = xr.DataArray
properties = {‘_dims’: {‘title’: ‘_dims’, ‘type’: ‘Tuple[str, …]’}}
required = [‘_dims’]
- classmethod add_type_field() None #
Automatically place “type” field with model name in the model field dictionary.
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Copy a Tidy3dBaseModel. With
deep=True
as default.
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod dict_from_file(fname: str, group_path: Optional[str] = None) dict #
Loads a dictionary containing the model from a .yaml, .json, or .hdf5 file.
- Parameters
fname (str) – Full path to the .yaml or .json file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level.
- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod dict_from_hdf5(fname: str, group_path: str = '') dict #
Loads a dictionary containing the model contents from a .hdf5 file.
- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only.
- Returns
Dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_hdf5(fname='folder/sim.hdf5')
- classmethod dict_from_json(fname: str) dict #
Load dictionary of the model from a .json file.
- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_json(fname='folder/sim.json')
- classmethod dict_from_yaml(fname: str) dict #
Load dictionary of the model from a .yaml file.
- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.- Returns
A dictionary containing the model.
- Return type
dict
Example
>>> sim_dict = Simulation.dict_from_yaml(fname='folder/sim.yaml')
- static flip_direction(direction: str) str #
Flip a direction string (‘+’ or ‘-’) to its opposite value.
- classmethod from_file(fname: str, group_path: Optional[str] = None, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads a
Tidy3dBaseModel
from .yaml, .json, or .hdf5 file.- Parameters
fname (str) – Full path to the .yaml or .json file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to use as the base level. Only for
.hdf5
files. Starting / is optional.**parse_obj_kwargs – Keyword arguments passed to either pydantic’s
parse_obj
function when loading model.
- Returns
An instance of the component class calling load.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_file(fname='folder/sim.json')
- classmethod from_hdf5(fname: str, group_path: str = '', **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to load the
Tidy3dBaseModel
from.group_path (str, optional) – Path to a group inside the file to selectively load a sub-element of the model only. Starting / is optional.
**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_file(fname='folder/sim.hdf5')
- classmethod from_json(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Load a
Tidy3dBaseModel
from .json file.- Parameters
fname (str) – Full path to the .json file to load the
Tidy3dBaseModel
from.- Returns
Tidy3dBaseModel
– An instance of the component class calling load.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
Example
>>> simulation = Simulation.from_json(fname='folder/sim.json')
- classmethod from_monitor_data(mnt_data: tidy3d.components.data.monitor_data.MonitorData) tidy3d.plugins.adjoint.components.data.monitor_data.JaxMonitorData #
Construct a
JaxMonitorData
instance from aMonitorData
.
- classmethod from_orm(obj: Any) Model #
- classmethod from_tidy3d(tidy3d_obj: tidy3d.components.base.Tidy3dBaseModel) tidy3d.plugins.adjoint.components.base.JaxObject #
Convert
Tidy3dBaseModel
instance toJaxObject
.
- classmethod from_yaml(fname: str, **parse_obj_kwargs) tidy3d.components.base.Tidy3dBaseModel #
Loads
Tidy3dBaseModel
from .yaml file.- Parameters
fname (str) – Full path to the .yaml file to load the
Tidy3dBaseModel
from.**parse_obj_kwargs – Keyword arguments passed to pydantic’s
parse_obj
method.
- Returns
An instance of the component class calling from_yaml.
- Return type
Tidy3dBaseModel
Example
>>> simulation = Simulation.from_yaml(fname='folder/sim.yaml')
- classmethod generate_docstring() str #
Generates a docstring for a Tidy3D mode and saves it to the __doc__ of the class.
- classmethod get_jax_field_names() List[str] #
Returns list of field names that have a
jax_field_type
.
- classmethod get_sub_model(group_path: str, model_dict: dict | list) dict #
Get the sub model for a given group path.
- static get_tuple_group_name(index: int) str #
Get the group name of a tuple element.
- static get_tuple_index(key_name: str) int #
Get the index into the tuple based on its group name.
- help(methods: bool = False) None #
Prints message describing the fields and methods of a
Tidy3dBaseModel
.- Parameters
methods (bool = False) – Whether to also print out information about object’s methods.
Example
>>> simulation.help(methods=True)
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- static make_source_time(amp_complex: complex, freq: float, fwidth: float) tidy3d.components.source.GaussianPulse #
Create a
SourceTime
for the adjoint source given an amplitude and freq.
- normalize(source_spectrum_fn) tidy3d.components.data.monitor_data.ModeData #
Return copy of self after normalization is applied using source spectrum function.
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_adjoint_sources(fwidth: float) List[tidy3d.components.source.ModeSource] #
Converts a
ModeData
to a list of adjointModeSource
.
- to_file(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml, .json, or .hdf5 file- Parameters
fname (str) – Full path to the .yaml or .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_file(fname='folder/sim.json')
- to_hdf5(fname: str) None #
Exports
Tidy3dBaseModel
instance to .hdf5 file.- Parameters
fname (str) – Full path to the .hdf5 file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_hdf5(fname='folder/sim.hdf5')
- to_json(fname: str) None #
Exports
Tidy3dBaseModel
instance to .json file- Parameters
fname (str) – Full path to the .json file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_json(fname='folder/sim.json')
- to_yaml(fname: str) None #
Exports
Tidy3dBaseModel
instance to .yaml file.- Parameters
fname (str) – Full path to the .yaml file to save the
Tidy3dBaseModel
to.
Example
>>> simulation.to_yaml(fname='folder/sim.yaml')
- tree_flatten() Tuple[list, dict] #
How to flatten a
JaxObject
instance into a pytree.
- classmethod tree_unflatten(aux_data: dict, children: list) tidy3d.plugins.adjoint.components.base.JaxObject #
How to unflatten a pytree into a
JaxObject
instance.
- classmethod tuple_to_dict(tuple_values: tuple) dict #
How we generate a dictionary mapping new keys to tuple values for hdf5.
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- updated_copy(**kwargs) tidy3d.components.base.Tidy3dBaseModel #
Make copy of a component instance with
**kwargs
indicating updated field values.
- classmethod validate(value: Any) Model #
- property k_eff#
Imaginary part of the propagation index.
- property n_eff#
Real part of the propagation index.
- property symmetry_expanded_copy: tidy3d.components.data.monitor_data.MonitorData#
Return copy of self with symmetry applied.