logo

Table of Contents

  • 1. Quick Start
    • 1.1. Introduction to Flow360
    • 1.2. ONERA M6 Wing with WebUI
    • 1.3. ONERA M6 Wing with Python API
    • 1.4. Automated Meshing with WebUI
    • 1.5. Automated Meshing with Python API
    • 1.6. NREL S809 Airfoil
    • 1.7. XV-15 Rotor
  • 2. Capabilities
    • 2.1. Overview
    • 2.2. Feature Compatibility Matrix
    • 2.3. Propeller Models and Rotational Volume Zones
    • 2.4. Aeroacoustics
    • 2.5. User Defined Dynamics
  • 3. Preprocessing
    • 3.1. Mesh Configuration File
    • 3.2. Engineering Sketch Pad
    • 3.3. Automated Meshing
  • 4. Solver Configuration
  • 5. Python API Reference
  • 6. Case Studies
    • 6.1. NACA 0012 Low Speed Airfoil
    • 6.2. 2D NACA 4412 Airfoil Trailing Edge Separation
    • 6.3. 2D Backward Facing Step
    • 6.4. Transition Modeling
    • 6.5. Wall Model
    • 6.6. High Lift Common Research Model (HL-CRM)
    • 6.7. Drag Prediction of Common Research Model
    • 6.8. ONERA M6 Wing
    • 6.9. XV-15 Rotor Blade Analysis using the Blade Element Disk Method
    • 6.10. DTU 10MW Wind Turbine
    • 6.11. Scale-Resolving Simulations Past a Circular Cylinder
    • 6.12. Aeroacoustics and Noise Simulation
  • 7. Tutorials
    • 7.1. Geometry Modeling and Preparation for Automated Meshing: An Example of the ONERA M6 Wing
    • 7.2. Non-Dimensionalization and Integrated Loads Post-Processing in Flow360
    • 7.3. RANS CFD on 2D High-Lift System Configuration Using the Flow360 Python Client
    • 7.4. Blade Element Theory using the XV-15 rotor
    • 7.5. Time-accurate RANS CFD on a propeller using a sliding interface: the XV-15 rotor geometry
    • 7.6. Calculating Dynamic Derivatives using Sliding Interfaces
    • 7.7. Automated Meshing for Internal Flow
    • 7.8. Conjugate Heat Transfer for Cooling Fins
    • 7.9. TU Berlin TurboLab Stator simulation using periodic boundary conditions
  • 8. Knowledge Base
    • 8.1. Preprocessing
      • 8.1.1. Meshing Recommendations
      • 8.1.2. Nondimensional Inputs
      • 8.1.3. Boundary Conditions
      • 8.1.4. BET Translators
      • 8.1.5. SectionalPolars Best Practices.
      • 8.1.6. CGNS Mesh Format and Multizone Interface Connectivity
    • 8.2. Simulation
      • 8.2.1. timeStepping
      • 8.2.2. BETDisks
      • 8.2.3. actuatorDisks
      • 8.2.4. navierStokesSolver
      • 8.2.5. turbulenceModelSolver
      • 8.2.6. transitionModelSolver
      • 8.2.7. heatEquationSolver
      • 8.2.8. volumeZones
      • 8.2.9. porousMedia
    • 8.3. Postprocessing
    • 8.4. Fixing Divergence Issues
    • 8.5. Frequently Asked Questions
  • 9. Publications
    • 9.1. Webinar
    • 9.2. Papers
  • 10. Release Notes
Theme by the Executable Book Project
  • .rst

Quick Start

1. Quick Start#

cover
1.1 Introduction to Flow360

WebUI

cover
1.2 ONERA M6 Wing

WebUI

cover
1.3 ONERA M6 Wing

python

cover
1.4 Automated Meshing

WebUI

cover
1.5 Automated Meshing

python

cover
1.6 NREL S809 Airfoil

python

cover
1.7 XV-15 Rotor

WebUI

../_images/08_case_description.png ../_images/OM6_UI_cover.png ../_images/AutoMesh_cover.png ../_images/Quasi3D_cover.png ../_images/Rotor_cover.png
  • 1.1. Introduction to Flow360
  • 1.2. ONERA M6 Wing with WebUI
  • 1.3. ONERA M6 Wing with Python API
  • 1.4. Automated Meshing with WebUI
  • 1.5. Automated Meshing with Python API
  • 1.6. NREL S809 Airfoil
  • 1.7. XV-15 Rotor

previous

Flow360 Documentation

next

1.1. Introduction to Flow360

By Flexcompute Inc
© Copyright 2023, Flexcompute Inc.