Source code for tidy3d.components.medium

"""Defines properties of the medium / materials"""

from __future__ import annotations

import functools
from abc import ABC, abstractmethod
from math import isclose
from typing import Callable, Literal, Optional, Union

import autograd.numpy as np

# TODO: it's hard to figure out which functions need this, for now all get it
import numpy as npo
import pydantic.v1 as pd
import xarray as xr
from autograd.differential_operators import tensor_jacobian_product

from tidy3d.components.autograd.utils import pack_complex_vec
from tidy3d.components.material.tcad.heat import ThermalSpecType
from tidy3d.constants import (
    C_0,
    CONDUCTIVITY,
    EPSILON_0,
    ETA_0,
    HBAR,
    HERTZ,
    LARGEST_FP_NUMBER,
    MICROMETER,
    MU_0,
    PERMITTIVITY,
    RADPERSEC,
    SECOND,
    VOLT,
    WATT,
    fp_eps,
    pec_val,
)
from tidy3d.exceptions import SetupError, ValidationError
from tidy3d.log import log

from .autograd.derivative_utils import DerivativeInfo, integrate_within_bounds
from .autograd.types import AutogradFieldMap, TracedFloat, TracedPoleAndResidue, TracedPositiveFloat
from .base import Tidy3dBaseModel, cached_property, skip_if_fields_missing
from .data.data_array import DATA_ARRAY_MAP, ScalarFieldDataArray, SpatialDataArray
from .data.dataset import (
    ElectromagneticFieldDataset,
    PermittivityDataset,
)
from .data.unstructured.base import UnstructuredGridDataset
from .data.utils import (
    CustomSpatialDataType,
    CustomSpatialDataTypeAnnotated,
    _check_same_coordinates,
    _get_numpy_array,
    _ones_like,
    _zeros_like,
)
from .data.validators import validate_no_nans
from .dispersion_fitter import (
    LOSS_CHECK_MAX,
    LOSS_CHECK_MIN,
    LOSS_CHECK_NUM,
    fit,
    imag_resp_extrema_locs,
)
from .geometry.base import Geometry
from .grid.grid import Coords, Grid
from .parameter_perturbation import (
    IndexPerturbation,
    ParameterPerturbation,
    PermittivityPerturbation,
)
from .time_modulation import ModulationSpec
from .transformation import RotationType
from .types import (
    TYPE_TAG_STR,
    ArrayComplex1D,
    ArrayComplex3D,
    ArrayFloat1D,
    Ax,
    Axis,
    Bound,
    Complex,
    FreqBound,
    InterpMethod,
    PermittivityComponent,
    PoleAndResidue,
    TensorReal,
)
from .validators import _warn_potential_error, validate_name_str, validate_parameter_perturbation
from .viz import VisualizationSpec, add_ax_if_none

# evaluate frequency as this number (Hz) if inf
FREQ_EVAL_INF = 1e50

# extrapolation option in custom medium
FILL_VALUE = "extrapolate"

# cap on number of nonlinear iterations
NONLINEAR_MAX_NUM_ITERS = 100
NONLINEAR_DEFAULT_NUM_ITERS = 5

# Lossy metal
LOSSY_METAL_DEFAULT_SAMPLING_FREQUENCY = 20
LOSSY_METAL_SCALED_REAL_PART = 10.0
LOSSY_METAL_DEFAULT_MAX_POLES = 5
LOSSY_METAL_DEFAULT_TOLERANCE_RMS = 1e-3


def ensure_freq_in_range(eps_model: Callable[[float], complex]) -> Callable[[float], complex]:
    """Decorate ``eps_model`` to log warning if frequency supplied is out of bounds."""

    @functools.wraps(eps_model)
    def _eps_model(self, frequency: float) -> complex:
        """New eps_model function."""
        # evaluate infs and None as FREQ_EVAL_INF
        is_inf_scalar = isinstance(frequency, float) and np.isinf(frequency)
        if frequency is None or is_inf_scalar:
            frequency = FREQ_EVAL_INF

        if isinstance(frequency, np.ndarray):
            frequency = frequency.astype(float)
            frequency[np.where(np.isinf(frequency))] = FREQ_EVAL_INF

        # if frequency range not present just return original function
        if self.frequency_range is None:
            return eps_model(self, frequency)

        fmin, fmax = self.frequency_range
        # don't warn for evaluating infinite frequency
        if is_inf_scalar:
            return eps_model(self, frequency)

        outside_lower = np.zeros_like(frequency, dtype=bool)
        outside_upper = np.zeros_like(frequency, dtype=bool)

        if fmin > 0:
            outside_lower = frequency / fmin < 1 - fp_eps
        elif fmin == 0:
            outside_lower = frequency < 0

        if fmax > 0:
            outside_upper = frequency / fmax > 1 + fp_eps

        if np.any(outside_lower | outside_upper):
            log.warning(
                "frequency passed to 'Medium.eps_model()'"
                f"is outside of 'Medium.frequency_range' = {self.frequency_range}",
                capture=False,
            )
        return eps_model(self, frequency)

    return _eps_model


""" Medium Definitions """


[docs] class NonlinearModel(ABC, Tidy3dBaseModel): """Abstract model for a nonlinear material response. Used as part of a :class:`.NonlinearSpec`.""" def _validate_medium_type(self, medium: AbstractMedium): """Check that the model is compatible with the medium.""" if isinstance(medium, AbstractCustomMedium): raise ValidationError( f"'NonlinearModel' of class '{type(self).__name__}' is not currently supported " f"for medium class '{type(medium).__name__}'." ) if medium.is_time_modulated: raise ValidationError( f"'NonlinearModel' of class '{type(self).__name__}' is not currently supported " f"for time-modulated medium class '{type(medium).__name__}'." ) if not isinstance(medium, (Medium, DispersiveMedium)): raise ValidationError( f"'NonlinearModel' of class '{type(self).__name__}' is not currently supported " f"for medium class '{type(medium).__name__}'." ) def _validate_medium(self, medium: AbstractMedium): """Any additional validation that depends on the medium""" def _validate_medium_freqs(self, medium: AbstractMedium, freqs: list[pd.PositiveFloat]) -> None: """Any additional validation that depends on the central frequencies of the sources.""" def _hardcode_medium_freqs( self, medium: AbstractMedium, freqs: list[pd.PositiveFloat] ) -> NonlinearSpec: """Update the nonlinear model to hardcode information on medium and freqs.""" return self def _get_freq0(self, freq0, freqs: list[pd.PositiveFloat]) -> float: """Get a single value for freq0.""" # freq0 is not specified; need to calculate it if freq0 is None: if not len(freqs): raise SetupError( f"Class '{type(self).__name__}' cannot determine 'freq0' in the absence of " f"sources. Please either specify 'freq0' in '{type(self).__name__}' " "or add sources to the simulation." ) if not all(np.isclose(freq, freqs[0]) for freq in freqs): raise SetupError( f"Class '{type(self).__name__}' cannot determine 'freq0' because the source " f"frequencies '{freqs}' are not all equal. " f"Please specify 'freq0' in '{type(self).__name__}' " "to match the desired source central frequency." ) return freqs[0] # now, freq0 is specified; we use it, but warn if it might be inconsistent if not all(np.isclose(freq, freq0) for freq in freqs): log.warning( f"Class '{type(self).__name__}' given 'freq0={freq0}' which is different from " f"the source central frequencies '{freqs}'. In order " "to obtain correct nonlinearity parameters, the provided frequency " "should agree with the source central frequencies. The provided value of 'freq0' " "is being used; the resulting nonlinearity parameters " "may be incorrect for those sources whose central frequency " "is different from this value." ) return freq0 def _get_n0( self, n0: complex, medium: AbstractMedium, freqs: list[pd.PositiveFloat], ) -> complex: """Get a single value for n0.""" if freqs is None: freqs = [] freqs = np.array(freqs, dtype=float) ns, ks = medium.nk_model(freqs) nks = ns + 1j * ks # n0 not specified; need to calculate it if n0 is None: if not len(nks): raise SetupError( f"Class '{type(self).__name__}' cannot determine 'n0' in the absence of " f"sources. Please either specify 'n0' in '{type(self).__name__}' " "or add sources to the simulation." ) if not all(np.isclose(nk, nks[0]) for nk in nks): raise SetupError( f"Class '{type(self).__name__}' cannot determine 'n0' because at the source " f"frequencies '{freqs}' the complex refractive indices '{nks}' of the medium " f"are not all equal. Please specify 'n0' in '{type(self).__name__}' " "to match the complex refractive index of the medium at the desired " "source central frequency." ) return nks[0] # now, n0 is specified; we use it, but warn if it might be inconsistent if not all(np.isclose(nk, n0) for nk in nks): log.warning( f"Class '{type(self).__name__}' given 'n0={n0}'. At the source frequencies " f"'{freqs}' the medium has complex refractive indices '{nks}'. In order " "to obtain correct nonlinearity parameters, the provided refractive index " "should agree with the complex refractive index at the source frequencies. " "The provided value of 'n0' is being used; the resulting nonlinearity parameters " "may be incorrect for those sources where the complex refractive index of the " "medium is different from this value." ) return n0 @property def complex_fields(self) -> bool: """Whether the model uses complex fields.""" return False @property def aux_fields(self) -> list[str]: """List of available aux fields in this model.""" return []
[docs] class NonlinearSusceptibility(NonlinearModel): """Model for an instantaneous nonlinear chi3 susceptibility. The expression for the instantaneous nonlinear polarization is given below. Notes ----- This model uses real time-domain fields, so :math:`\\chi_3` must be real. .. math:: P_{NL} = \\varepsilon_0 \\chi_3 |E|^2 E The nonlinear constitutive relation is solved iteratively; it may not converge for strong nonlinearities. Increasing :attr:`tidy3d.NonlinearSpec.num_iters` can help with convergence. For complex fields (e.g. when using Bloch boundary conditions), the nonlinearity is applied separately to the real and imaginary parts, so that the above equation holds when both :math:`E` and :math:`P_{NL}` are replaced by their real or imaginary parts. The nonlinearity is only applied to the real-valued fields since they are the physical fields. Different field components do not interact nonlinearly. For example, when calculating :math:`P_{NL, x}`, we approximate :math:`|E|^2 \\approx |E_x|^2`. This approximation is valid when the :math:`E` field is predominantly polarized along one of the ``x``, ``y``, or ``z`` axes. .. TODO add links to notebooks here. Example ------- >>> nonlinear_susceptibility = NonlinearSusceptibility(chi3=1) """ chi3: float = pd.Field( 0, title="Chi3", description=":math:`\\chi_3` nonlinear susceptibility.", units=f"{MICROMETER}^2 / {VOLT}^2", ) numiters: pd.PositiveInt = pd.Field( None, title="Number of iterations", description="Deprecated. The old usage ``nonlinear_spec=model`` with ``model.numiters`` " "is deprecated and will be removed in a future release. The new usage is " "``nonlinear_spec=NonlinearSpec(models=[model], num_iters=num_iters)``. Under the new " "usage, this parameter is ignored, and ``NonlinearSpec.num_iters`` is used instead.", ) @pd.validator("numiters", always=True) def _validate_numiters(cls, val): """Check that numiters is not too large.""" if val is None: return val if val > NONLINEAR_MAX_NUM_ITERS: raise ValidationError( "'NonlinearSusceptibility.numiters' must be less than " f"{NONLINEAR_MAX_NUM_ITERS}, currently {val}." ) return val
[docs] class TwoPhotonAbsorption(NonlinearModel): """Model for two-photon absorption (TPA) nonlinearity which gives an intensity-dependent absorption of the form :math:`\\alpha = \\alpha_0 + \\beta I`. Also includes free-carrier absorption (FCA) and free-carrier plasma dispersion (FCPD) effects. The expression for the nonlinear polarization is given below. Notes ----- This model uses real time-domain fields, so :math:`\\beta` must be real. .. math:: P_{NL} = P_{TPA} + P_{FCA} + P_{FCPD} \\\\ P_{TPA} = -\\frac{4}{3}\\frac{c_0^2 \\varepsilon_0^2 n_0^2 \\beta}{2 i \\omega} |E|^2 E \\\\ P_{FCA} = -\\frac{c_0 \\varepsilon_0 n_0 \\sigma N_f}{i \\omega} E \\\\ \\frac{dN_f}{dt} = \\frac{8}{3}\\frac{c_0^2 \\varepsilon_0^2 n_0^2 \\beta}{8 q_e \\hbar \\omega} |E|^4 - \\frac{N_f}{\\tau} \\\\ N_e = N_h = N_f \\\\ P_{FCPD} = \\varepsilon_0 2 n_0 \\Delta n (N_f) E \\\\ \\Delta n (N_f) = (c_e N_e^{e_e} + c_h N_h^{e_h}) In these equations, :math:`n_0` means the real part of the linear refractive index of the medium. The nonlinear constitutive relation is solved iteratively; it may not converge for strong nonlinearities. Increasing :attr:`tidy3d.NonlinearSpec.num_iters` can help with convergence. For complex fields (e.g. when using Bloch boundary conditions), the nonlinearity is applied separately to the real and imaginary parts, so that the above equation holds when both :math:`E` and :math:`P_{NL}` are replaced by their real or imaginary parts. The nonlinearity is only applied to the real-valued fields since they are the physical fields. Different field components do not interact nonlinearly. For example, when calculating :math:`P_{NL, x}`, we approximate :math:`|E|^2 \\approx |E_x|^2`. This approximation is valid when the :math:`E` field is predominantly polarized along one of the ``x``, ``y``, or ``z`` axes. The implementation is described in:: N. Suzuki, "FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides," J. Light. Technol. 25, 9 (2007). .. TODO add links to notebooks here. Example ------- >>> tpa_model = TwoPhotonAbsorption(beta=1) """ use_complex_fields: bool = pd.Field( False, title="Use complex fields", description="Whether to use the old deprecated complex-fields implementation. " "The default real-field implementation is more physical and is always " "recommended; this option is only available for backwards compatibility " "with Tidy3D version < 2.8 and may be removed in a future release.", ) beta: Union[float, Complex] = pd.Field( 0, title="TPA coefficient", description="Coefficient for two-photon absorption (TPA).", units=f"{MICROMETER} / {WATT}", ) tau: pd.NonNegativeFloat = pd.Field( 0, title="Carrier lifetime", description="Lifetime for the free carriers created by two-photon absorption (TPA).", units=f"{SECOND}", ) sigma: pd.NonNegativeFloat = pd.Field( 0, title="FCA cross section", description="Total cross section for free-carrier absorption (FCA). " "Contains contributions from electrons and from holes.", units=f"{MICROMETER}^2", ) e_e: pd.NonNegativeFloat = pd.Field( 1, title="Electron exponent", description="Exponent for the free electron refractive index shift in the free-carrier plasma dispersion (FCPD).", ) e_h: pd.NonNegativeFloat = pd.Field( 1, title="Hole exponent", description="Exponent for the free hole refractive index shift in the free-carrier plasma dispersion (FCPD).", ) c_e: float = pd.Field( 0, title="Electron coefficient", description="Coefficient for the free electron refractive index shift in the free-carrier plasma dispersion (FCPD).", units=f"{MICROMETER}^(3 e_e)", ) c_h: float = pd.Field( 0, title="Hole coefficient", description="Coefficient for the free hole refractive index shift in the free-carrier plasma dispersion (FCPD).", units=f"{MICROMETER}^(3 e_h)", ) n0: Optional[Complex] = pd.Field( None, title="Complex linear refractive index", description="Complex linear refractive index of the medium, computed for instance using " "'medium.nk_model'. If not provided, it is calculated automatically using the central " "frequencies of the simulation sources (as long as these are all equal).", ) freq0: Optional[pd.PositiveFloat] = pd.Field( None, title="Central frequency", description="Central frequency, used to calculate the energy of the free-carriers " "excited by two-photon absorption. If not provided, it is obtained automatically " "from the simulation sources (as long as these are all equal).", ) @pd.validator("beta", always=True) def _validate_beta_real(cls, val, values): """Check that beta is real and give a useful error if it is not.""" use_complex_fields = values.get("use_complex_fields") if use_complex_fields: return val if not np.isreal(val): raise SetupError( "Complex values of 'beta' in 'TwoPhotonAbsorption' are not " "supported; the implementation uses the " "physical real-valued fields." ) return val def _validate_medium_freqs(self, medium: AbstractMedium, freqs: list[pd.PositiveFloat]) -> None: """Any validation that depends on knowing the central frequencies of the sources. This includes passivity checking, if necessary.""" n0 = self._get_n0(self.n0, medium, freqs) if freqs is not None: _ = self._get_freq0(self.freq0, freqs) beta = self.beta if not medium.allow_gain: chi_imag = np.real(beta * n0 * np.real(n0)) if chi_imag < 0: raise ValidationError( "For passive medium, 'beta' in 'TwoPhotonAbsorption' must satisfy " f"'Re(beta * n0 * Re(n0)) >= 0'. Currently, this quantity equals '{chi_imag}', " f"and the linear index is 'n0={n0}'. To simulate gain medium, please set " "'allow_gain=True' in the medium class. Caution: simulations containing " "gain medium are unstable, and are likely to diverge." ) def _hardcode_medium_freqs( self, medium: AbstractMedium, freqs: list[pd.PositiveFloat] ) -> TwoPhotonAbsorption: """Update the nonlinear model to hardcode information on medium and freqs.""" n0 = self._get_n0(n0=self.n0, medium=medium, freqs=freqs) freq0 = self._get_freq0(freq0=self.freq0, freqs=freqs) return self.updated_copy(n0=n0, freq0=freq0) def _validate_medium(self, medium: AbstractMedium): """Check that the model is compatible with the medium.""" # if n0 is specified, we can go ahead and validate passivity if self.n0 is not None: self._validate_medium_freqs(medium, None) @property def complex_fields(self) -> bool: """Whether the model uses complex fields.""" return self.use_complex_fields @property def aux_fields(self) -> list[str]: """List of available aux fields in this model.""" if self.tau == 0: return [] return ["Nfx", "Nfy", "Nfz"]
[docs] class KerrNonlinearity(NonlinearModel): """Model for Kerr nonlinearity which gives an intensity-dependent refractive index of the form :math:`n = n_0 + n_2 I`. The expression for the nonlinear polarization is given below. Notes ----- This model uses real time-domain fields, so :math:`\\n_2` must be real. This model is equivalent to a :class:`.NonlinearSusceptibility`; the relation between the parameters is given below. .. math:: P_{NL} = \\varepsilon_0 \\chi_3 |E|^2 E \\\\ n_2 = \\frac{3}{4 n_0^2 \\varepsilon_0 c_0} \\chi_3 In these equations, :math:`n_0` means the real part of the linear refractive index of the medium. To simulate nonlinear loss, consider instead using a :class:`.TwoPhotonAbsorption` model, which implements a more physical dispersive loss of the form :math:`\\chi_{TPA} = i \\frac{c_0 n_0 \\beta}{\\omega} I`. The nonlinear constitutive relation is solved iteratively; it may not converge for strong nonlinearities. Increasing :attr:`tidy3d.NonlinearSpec.num_iters` can help with convergence. For complex fields (e.g. when using Bloch boundary conditions), the nonlinearity is applied separately to the real and imaginary parts, so that the above equation holds when both :math:`E` and :math:`P_{NL}` are replaced by their real or imaginary parts. The nonlinearity is only applied to the real-valued fields since they are the physical fields. Different field components do not interact nonlinearly. For example, when calculating :math:`P_{NL, x}`, we approximate :math:`|E|^2 \\approx |E_x|^2`. This approximation is valid when the :math:`E` field is predominantly polarized along one of the ``x``, ``y``, or ``z`` axes. .. TODO add links to notebooks here. Example ------- >>> kerr_model = KerrNonlinearity(n2=1) """ use_complex_fields: bool = pd.Field( False, title="Use complex fields", description="Whether to use the old deprecated complex-fields implementation. " "The default real-field implementation is more physical and is always " "recommended; this option is only available for backwards compatibility " "with Tidy3D version < 2.8 and may be removed in a future release.", ) n2: Complex = pd.Field( 0, title="Nonlinear refractive index", description="Nonlinear refractive index in the Kerr nonlinearity.", units=f"{MICROMETER}^2 / {WATT}", ) n0: Optional[Complex] = pd.Field( None, title="Complex linear refractive index", description="Complex linear refractive index of the medium, computed for instance using " "'medium.nk_model'. If not provided, it is calculated automatically using the central " "frequencies of the simulation sources (as long as these are all equal).", ) @pd.validator("n2", always=True) def _validate_n2_real(cls, val, values): """Check that n2 is real and give a useful error if it is not.""" use_complex_fields = values.get("use_complex_fields") if use_complex_fields: return val if not np.isreal(val): raise SetupError( "Complex values of 'n2' in 'KerrNonlinearity' are not " "supported; the implementation uses the " "physical real-valued fields. " "To simulate nonlinear loss, consider instead using a " "'TwoPhotonAbsorption' model, which implements a " "more physical dispersive loss of the form " "'chi_{TPA} = i (c_0 n_0 beta / omega) I'." ) return val def _validate_medium_freqs(self, medium: AbstractMedium, freqs: list[pd.PositiveFloat]) -> None: """Any validation that depends on knowing the central frequencies of the sources. This includes passivity checking, if necessary.""" n0 = self._get_n0(self.n0, medium, freqs) n2 = self.n2 if not self.use_complex_fields: return if not medium.allow_gain: chi_imag = np.imag(n2 * n0 * np.real(n0)) if chi_imag < 0: raise ValidationError( "For passive medium, 'n2' in 'KerrNonlinearity' must satisfy " f"'Im(n2 * n0 * Re(n0)) >= 0'. Currently, this quantity equals '{chi_imag}', " f"and the linear index is 'n0={n0}'. To simulate gain medium, please set " "'allow_gain=True' in the medium class. Caution: simulations containing " "gain medium are unstable, and are likely to diverge." ) def _validate_medium(self, medium: AbstractMedium): """Check that the model is compatible with the medium.""" # if n0 is specified, we can go ahead and validate passivity if self.n0 is not None: self._validate_medium_freqs(medium, []) def _hardcode_medium_freqs( self, medium: AbstractMedium, freqs: list[pd.PositiveFloat] ) -> KerrNonlinearity: """Update the nonlinear model to hardcode information on medium and freqs.""" n0 = self._get_n0(n0=self.n0, medium=medium, freqs=freqs) return self.updated_copy(n0=n0) @property def complex_fields(self) -> bool: """Whether the model uses complex fields.""" return self.use_complex_fields
NonlinearModelType = Union[NonlinearSusceptibility, TwoPhotonAbsorption, KerrNonlinearity]
[docs] class NonlinearSpec(ABC, Tidy3dBaseModel): """Abstract specification for adding nonlinearities to a medium. Note ---- The nonlinear constitutive relation is solved iteratively; it may not converge for strong nonlinearities. Increasing ``num_iters`` can help with convergence. Example ------- >>> nonlinear_susceptibility = NonlinearSusceptibility(chi3=1) >>> nonlinear_spec = NonlinearSpec(models=[nonlinear_susceptibility]) >>> medium = Medium(permittivity=2, nonlinear_spec=nonlinear_spec) """ models: tuple[NonlinearModelType, ...] = pd.Field( (), title="Nonlinear models", description="The nonlinear models present in this nonlinear spec. " "Nonlinear models of different types are additive. " "Multiple nonlinear models of the same type are not allowed.", ) num_iters: pd.PositiveInt = pd.Field( NONLINEAR_DEFAULT_NUM_ITERS, title="Number of iterations", description="Number of iterations for solving nonlinear constitutive relation.", ) @pd.validator("models", always=True) def _no_duplicate_models(cls, val): """Ensure each type of model appears at most once.""" if val is None: return val models = [model.__class__ for model in val] models_unique = set(models) if len(models) != len(models_unique): raise ValidationError( "Multiple 'NonlinearModels' of the same type " "were found in a single 'NonlinearSpec'. Please ensure that " "each type of 'NonlinearModel' appears at most once in a single 'NonlinearSpec'." ) return val @pd.validator("models", always=True) def _consistent_old_complex_fields(cls, val): """Ensure that old complex fields implementation is used consistently.""" if val is None: return val use_complex_fields = False for model in val: if isinstance(model, (KerrNonlinearity, TwoPhotonAbsorption)): if model.use_complex_fields: use_complex_fields = True elif use_complex_fields: # if one model uses complex fields, they all should raise SetupError( "Some of the nonlinear models have " "'use_complex_fields=True' and some have " "'use_complex_fields=False'. This option " "is only available for backwards compatibility " "with Tidy3D version < 2.8 " "and it must be consistent across the nonlinear " "models in a given 'NonlinearSpec'." ) return val @pd.validator("num_iters", always=True) def _validate_num_iters(cls, val, values): """Check that num_iters is not too large.""" if val > NONLINEAR_MAX_NUM_ITERS: raise ValidationError( "'NonlinearSpec.num_iters' must be less than " f"{NONLINEAR_MAX_NUM_ITERS}, currently {val}." ) return val def _hardcode_medium_freqs( self, medium: AbstractMedium, freqs: list[pd.PositiveFloat] ) -> NonlinearSpec: """Update the nonlinear spec to hardcode information on medium and freqs.""" new_models = [] for model in self.models: new_model = model._hardcode_medium_freqs(medium=medium, freqs=freqs) new_models.append(new_model) return self.updated_copy(models=new_models) @property def aux_fields(self) -> list[str]: """List of available aux fields in all present models.""" fields = [] for model in self.models: fields += model.aux_fields return fields
[docs] class AbstractMedium(ABC, Tidy3dBaseModel): """A medium within which electromagnetic waves propagate.""" name: str = pd.Field(None, title="Name", description="Optional unique name for medium.") frequency_range: FreqBound = pd.Field( None, title="Frequency Range", description="Optional range of validity for the medium.", units=(HERTZ, HERTZ), ) allow_gain: bool = pd.Field( False, title="Allow gain medium", description="Allow the medium to be active. Caution: " "simulations with a gain medium are unstable, and are likely to diverge." "Simulations where ``allow_gain`` is set to ``True`` will still be charged even if " "diverged. Monitor data up to the divergence point will still be returned and can be " "useful in some cases.", ) nonlinear_spec: Union[NonlinearSpec, NonlinearSusceptibility] = pd.Field( None, title="Nonlinear Spec", description="Nonlinear spec applied on top of the base medium properties.", ) modulation_spec: ModulationSpec = pd.Field( None, title="Modulation Spec", description="Modulation spec applied on top of the base medium properties.", ) viz_spec: Optional[VisualizationSpec] = pd.Field( None, title="Visualization Specification", description="Plotting specification for visualizing medium.", ) @cached_property def _nonlinear_models(self) -> list: """The nonlinear models in the nonlinear_spec.""" if self.nonlinear_spec is None: return [] if isinstance(self.nonlinear_spec, NonlinearModel): return [self.nonlinear_spec] if self.nonlinear_spec.models is None: return [] return list(self.nonlinear_spec.models) @cached_property def _nonlinear_num_iters(self) -> pd.PositiveInt: """The num_iters of the nonlinear_spec.""" if self.nonlinear_spec is None: return 0 if isinstance(self.nonlinear_spec, NonlinearModel): if self.nonlinear_spec.numiters is None: return 1 # old default value for backwards compatibility return self.nonlinear_spec.numiters return self.nonlinear_spec.num_iters def _post_init_validators(self) -> None: """Call validators taking ``self`` that get run after init.""" self._validate_nonlinear_spec() self._validate_modulation_spec_post_init() def _validate_nonlinear_spec(self): """Check compatibility with nonlinear_spec.""" if self.__class__.__name__ == "AnisotropicMedium" and any( comp.nonlinear_spec is not None for comp in [self.xx, self.yy, self.zz] ): raise ValidationError( "Nonlinearities are not currently supported for the components " "of an anisotropic medium." ) if self.__class__.__name__ == "Medium2D" and any( comp.nonlinear_spec is not None for comp in [self.ss, self.tt] ): raise ValidationError( "Nonlinearities are not currently supported for the components of a 2D medium." ) if self.nonlinear_spec is None: return if isinstance(self.nonlinear_spec, NonlinearModel): log.warning( "The API for 'nonlinear_spec' has changed. " "The old usage 'nonlinear_spec=model' is deprecated and will be removed " "in a future release. The new usage is " r"'nonlinear_spec=NonlinearSpec(models=\[model])'." ) for model in self._nonlinear_models: model._validate_medium_type(self) model._validate_medium(self) if ( isinstance(self.nonlinear_spec, NonlinearSpec) and isinstance(model, NonlinearSusceptibility) and model.numiters is not None ): raise ValidationError( "'NonlinearSusceptibility.numiters' is deprecated. " "Please use 'NonlinearSpec.num_iters' instead." ) def _validate_modulation_spec_post_init(self): """Check compatibility with nonlinear_spec.""" if self.__class__.__name__ == "Medium2D" and any( comp.modulation_spec is not None for comp in [self.ss, self.tt] ): raise ValidationError( "Time modulation is not currently supported for the components of a 2D medium." ) heat_spec: Optional[ThermalSpecType] = pd.Field( None, title="Heat Specification", description="DEPRECATED: Use :class:`MultiPhysicsMedium`. Specification of the medium heat properties. They are " "used for solving the heat equation via the :class:`HeatSimulation` interface. Such simulations can be" "used for investigating the influence of heat propagation on the properties of optical systems. " "Once the temperature distribution in the system is found using :class:`HeatSimulation` object, " "``Simulation.perturbed_mediums_copy()`` can be used to convert mediums with perturbation " "models defined into spatially dependent custom mediums. " "Otherwise, the ``heat_spec`` does not directly affect the running of an optical " "``Simulation``.", discriminator=TYPE_TAG_STR, ) @property def charge(self): return None @property def electrical(self): return None @property def heat(self): return self.heat_spec @property def optical(self): return None @pd.validator("modulation_spec", always=True) @skip_if_fields_missing(["nonlinear_spec"]) def _validate_modulation_spec(cls, val, values): """Check compatibility with modulation_spec.""" nonlinear_spec = values.get("nonlinear_spec") if val is not None and nonlinear_spec is not None: raise ValidationError( f"For medium class {cls.__name__}, 'modulation_spec' of class {type(val)} and " f"'nonlinear_spec' of class {type(nonlinear_spec)} are " "not simultaneously supported." ) return val _name_validator = validate_name_str() @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" return True @cached_property def is_time_modulated(self) -> bool: """Whether any component of the medium is time modulated.""" return self.modulation_spec is not None and self.modulation_spec.applied_modulation @cached_property def is_nonlinear(self) -> bool: """Whether the medium is nonlinear.""" return self.nonlinear_spec is not None @cached_property def is_custom(self) -> bool: """Whether the medium is custom.""" return isinstance(self, AbstractCustomMedium) @cached_property def is_fully_anisotropic(self) -> bool: """Whether the medium is fully anisotropic.""" return isinstance(self, FullyAnisotropicMedium) @cached_property def _incompatible_material_types(self) -> list[str]: """A list of material properties present which may lead to incompatibilities.""" properties = [ self.is_time_modulated, self.is_nonlinear, self.is_custom, self.is_fully_anisotropic, ] names = ["time modulated", "nonlinear", "custom", "fully anisotropic"] types = [name for name, prop in zip(names, properties) if prop] return types @cached_property def _has_incompatibilities(self) -> bool: """Whether the medium has incompatibilities. Certain medium types are incompatible with certain others, and such pairs are not allowed to intersect in a simulation.""" return len(self._incompatible_material_types) > 0 def _compatible_with(self, other: AbstractMedium) -> bool: """Whether these two media are compatible if in structures that intersect.""" if not (self._has_incompatibilities and other._has_incompatibilities): return True for med1, med2 in [(self, other), (other, self)]: if med1.is_custom: # custom and fully_anisotropic is OK if med2.is_nonlinear or med2.is_time_modulated: return False if med1.is_fully_anisotropic: if med2.is_nonlinear or med2.is_time_modulated: return False if med1.is_nonlinear: if med2.is_time_modulated: return False return True
[docs] @abstractmethod def eps_model(self, frequency: float) -> complex: # TODO this should be moved out of here into FDTD Simulation Mediums? """Complex-valued permittivity as a function of frequency. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- complex Complex-valued relative permittivity evaluated at ``frequency``. """
[docs] def nk_model(self, frequency: float) -> tuple[float, float]: """Real and imaginary parts of the refactive index as a function of frequency. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[float, float] Real part (n) and imaginary part (k) of refractive index of medium. """ eps_complex = self.eps_model(frequency=frequency) return self.eps_complex_to_nk(eps_complex)
[docs] def loss_tangent_model(self, frequency: float) -> tuple[float, float]: """Permittivity and loss tangent as a function of frequency. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[float, float] Real part of permittivity and loss tangent. """ eps_complex = self.eps_model(frequency=frequency) return self.eps_complex_to_eps_loss_tangent(eps_complex)
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor as a function of frequency. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[complex, complex, complex] The diagonal elements of the relative permittivity tensor evaluated at ``frequency``. """ # This only needs to be overwritten for anisotropic materials eps = self.eps_model(frequency) return (eps, eps, eps)
[docs] def eps_diagonal_numerical(self, frequency: float) -> tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor for numerical considerations such as meshing and runtime estimation. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[complex, complex, complex] The diagonal elements of relative permittivity tensor relevant for numerical considerations evaluated at ``frequency``. """ if self.is_pec: # also 1 for lossy metal and Medium2D, but let's handle them in the subclass. return (1.0 + 0j,) * 3 return self.eps_diagonal(frequency)
[docs] def eps_comp(self, row: Axis, col: Axis, frequency: float) -> complex: """Single component of the complex-valued permittivity tensor as a function of frequency. Parameters ---------- row : int Component's row in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). col : int Component's column in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- complex Element of the relative permittivity tensor evaluated at ``frequency``. """ # This only needs to be overwritten for anisotropic materials if row == col: return self.eps_model(frequency) return 0j
def _eps_plot( self, frequency: float, eps_component: Optional[PermittivityComponent] = None ) -> float: """Returns real part of epsilon for plotting. A specific component of the epsilon tensor can be selected for anisotropic medium. Parameters ---------- frequency : float Frequency to evaluate permittivity at. eps_component : PermittivityComponent Component of the permittivity tensor to plot e.g. ``"xx"``, ``"yy"``, ``"zz"``, ``"xy"``, ``"yz"``, ... Defaults to ``None``, which returns the average of the diagonal values. Returns ------- float Element ``eps_component`` of the relative permittivity tensor evaluated at ``frequency``. """ # Assumes the material is isotropic # Will need to be overridden for anisotropic materials return self.eps_model(frequency).real @cached_property @abstractmethod def n_cfl(self): # TODO this should be moved out of here into FDTD Simulation Mediums? """To ensure a stable FDTD simulation, it is essential to select an appropriate time step size in accordance with the CFL condition. The maximal time step size is inversely proportional to the speed of light in the medium, and thus proportional to the index of refraction. However, for dispersive medium, anisotropic medium, and other more complicated media, there are complications in deciding on the choice of the index of refraction. This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. """
[docs] @add_ax_if_none def plot(self, freqs: float, ax: Ax = None) -> Ax: """Plot n, k of a :class:`.Medium` as a function of frequency. Parameters ---------- freqs: float Frequencies (Hz) to evaluate the medium properties at. ax : matplotlib.axes._subplots.Axes = None Matplotlib axes to plot on, if not specified, one is created. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """ freqs = np.array(freqs) eps_complex = np.array([self.eps_model(freq) for freq in freqs]) n, k = AbstractMedium.eps_complex_to_nk(eps_complex) freqs_thz = freqs / 1e12 ax.plot(freqs_thz, n, label="n") ax.plot(freqs_thz, k, label="k") ax.set_xlabel("frequency (THz)") ax.set_title("medium dispersion") ax.legend() ax.set_aspect("auto") return ax
""" Conversion helper functions """
[docs] @staticmethod def nk_to_eps_complex(n: float, k: float = 0.0) -> complex: """Convert n, k to complex permittivity. Parameters ---------- n : float Real part of refractive index. k : float = 0.0 Imaginary part of refrative index. Returns ------- complex Complex-valued relative permittivity. """ eps_real = n**2 - k**2 eps_imag = 2 * n * k return eps_real + 1j * eps_imag
[docs] @staticmethod def eps_complex_to_nk(eps_c: complex) -> tuple[float, float]: """Convert complex permittivity to n, k values. Parameters ---------- eps_c : complex Complex-valued relative permittivity. Returns ------- Tuple[float, float] Real and imaginary parts of refractive index (n & k). """ eps_c = np.array(eps_c) ref_index = np.sqrt(eps_c) return np.real(ref_index), np.imag(ref_index)
[docs] @staticmethod def nk_to_eps_sigma(n: float, k: float, freq: float) -> tuple[float, float]: """Convert ``n``, ``k`` at frequency ``freq`` to permittivity and conductivity values. Parameters ---------- n : float Real part of refractive index. k : float = 0.0 Imaginary part of refrative index. frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[float, float] Real part of relative permittivity & electric conductivity. """ eps_complex = AbstractMedium.nk_to_eps_complex(n, k) eps_real, eps_imag = eps_complex.real, eps_complex.imag omega = 2 * np.pi * freq sigma = omega * eps_imag * EPSILON_0 return eps_real, sigma
[docs] @staticmethod def eps_sigma_to_eps_complex(eps_real: float, sigma: float, freq: float) -> complex: """convert permittivity and conductivity to complex permittivity at freq Parameters ---------- eps_real : float Real-valued relative permittivity. sigma : float Conductivity. freq : float Frequency to evaluate permittivity at (Hz). If not supplied, returns real part of permittivity (limit as frequency -> infinity.) Returns ------- complex Complex-valued relative permittivity. """ if freq is None: return eps_real omega = 2 * np.pi * freq return eps_real + 1j * sigma / omega / EPSILON_0
[docs] @staticmethod def eps_complex_to_eps_sigma(eps_complex: complex, freq: float) -> tuple[float, float]: """Convert complex permittivity at frequency ``freq`` to permittivity and conductivity values. Parameters ---------- eps_complex : complex Complex-valued relative permittivity. freq : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[float, float] Real part of relative permittivity & electric conductivity. """ eps_real, eps_imag = eps_complex.real, eps_complex.imag omega = 2 * np.pi * freq sigma = omega * eps_imag * EPSILON_0 return eps_real, sigma
[docs] @staticmethod def eps_complex_to_eps_loss_tangent(eps_complex: complex) -> tuple[float, float]: """Convert complex permittivity to permittivity and loss tangent. Parameters ---------- eps_complex : complex Complex-valued relative permittivity. Returns ------- Tuple[float, float] Real part of relative permittivity & loss tangent """ eps_real, eps_imag = eps_complex.real, eps_complex.imag return eps_real, eps_imag / eps_real
[docs] @staticmethod def eps_loss_tangent_to_eps_complex(eps_real: float, loss_tangent: float) -> complex: """Convert permittivity and loss tangent to complex permittivity. Parameters ---------- eps_real : float Real part of relative permittivity loss_tangent : float Loss tangent Returns ------- eps_complex : complex Complex-valued relative permittivity. """ return eps_real * (1 + 1j * loss_tangent)
[docs] @staticmethod def eV_to_angular_freq(f_eV: float): """Convert frequency in unit of eV to rad/s. Parameters ---------- f_eV : float Frequency in unit of eV """ return f_eV / HBAR
[docs] @staticmethod def angular_freq_to_eV(f_rad: float): """Convert frequency in unit of rad/s to eV. Parameters ---------- f_rad : float Frequency in unit of rad/s """ return f_rad * HBAR
[docs] @staticmethod def angular_freq_to_Hz(f_rad: float): """Convert frequency in unit of rad/s to Hz. Parameters ---------- f_rad : float Frequency in unit of rad/s """ return f_rad / 2 / np.pi
[docs] @staticmethod def Hz_to_angular_freq(f_hz: float): """Convert frequency in unit of Hz to rad/s. Parameters ---------- f_hz : float Frequency in unit of Hz """ return f_hz * 2 * np.pi
[docs] @ensure_freq_in_range def sigma_model(self, freq: float) -> complex: """Complex-valued conductivity as a function of frequency. Parameters ---------- freq: float Frequency to evaluate conductivity at (Hz). Returns ------- complex Complex conductivity at this frequency. """ omega = freq * 2 * np.pi eps_complex = self.eps_model(freq) eps_inf = self.eps_model(np.inf) sigma = (eps_inf - eps_complex) * 1j * omega * EPSILON_0 return sigma
@cached_property def is_pec(self): """Whether the medium is a PEC.""" return False @cached_property def is_pmc(self): """Whether the medium is a PMC.""" return False
[docs] def sel_inside(self, bounds: Bound) -> AbstractMedium: """Return a new medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- AbstractMedium Medium with reduced data. """ if self.modulation_spec is not None: modulation_reduced = self.modulation_spec.sel_inside(bounds) return self.updated_copy(modulation_spec=modulation_reduced) return self
""" Autograd code """ def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" raise NotImplementedError(f"Can't compute derivative for 'Medium': '{type(self)}'.") def _derivative_eps_sigma_volume( self, E_der_map: ElectromagneticFieldDataset, bounds: Bound ) -> dict[str, xr.DataArray]: """Get the derivative w.r.t permittivity and conductivity in the volume.""" vjp_eps_complex = self._derivative_eps_complex_volume(E_der_map=E_der_map, bounds=bounds) values = vjp_eps_complex.values # compute directly with frequency dimension freqs = vjp_eps_complex.coords["f"].values omegas = 2 * np.pi * freqs eps_vjp = np.real(values) sigma_vjp = -np.imag(values) / omegas / EPSILON_0 eps_vjp = np.sum(eps_vjp) sigma_vjp = np.sum(sigma_vjp) return {"permittivity": eps_vjp, "conductivity": sigma_vjp} def _derivative_eps_complex_volume( self, E_der_map: ElectromagneticFieldDataset, bounds: Bound ) -> xr.DataArray: """Get the derivative w.r.t complex-valued permittivity in the volume.""" vjp_value = None for field_name in ("Ex", "Ey", "Ez"): fld = E_der_map[field_name] vjp_value_fld = integrate_within_bounds( arr=fld, dims=("x", "y", "z"), bounds=bounds, ) if vjp_value is None: vjp_value = vjp_value_fld else: vjp_value += vjp_value_fld return vjp_value
[docs] def __repr__(self): """If the medium has a name, use it as the representation. Otherwise, use the default representation.""" if self.name: return self.name return super().__repr__()
[docs] class AbstractCustomMedium(AbstractMedium, ABC): """A spatially varying medium.""" interp_method: InterpMethod = pd.Field( "nearest", title="Interpolation method", description="Interpolation method to obtain permittivity values " "that are not supplied at the Yee grids; For grids outside the range " "of the supplied data, extrapolation will be applied. When the extrapolated " "value is smaller (greater) than the minimal (maximal) of the supplied data, " "the extrapolated value will take the minimal (maximal) of the supplied data.", ) subpixel: bool = pd.Field( False, title="Subpixel averaging", description="If ``True``, apply the subpixel averaging method specified by " "``Simulation``'s field ``subpixel`` for this type of material on the " "interface of the structure, including exterior boundary and " "intersection interfaces with other structures.", ) @cached_property @abstractmethod def is_isotropic(self) -> bool: """The medium is isotropic or anisotropic.""" def _interp_method(self, comp: Axis) -> InterpMethod: """Interpolation method applied to comp.""" return self.interp_method
[docs] @abstractmethod def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], ] The permittivity evaluated at ``frequency``. """
[docs] def eps_diagonal_on_grid( self, frequency: float, coords: Coords, ) -> tuple[ArrayComplex3D, ArrayComplex3D, ArrayComplex3D]: """Spatial profile of main diagonal of the complex-valued permittivity at ``frequency`` interpolated at the supplied coordinates. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). coords : :class:`.Coords` The grid point coordinates over which interpolation is performed. Returns ------- Tuple[ArrayComplex3D, ArrayComplex3D, ArrayComplex3D] The complex-valued permittivity tensor at ``frequency`` interpolated at the supplied coordinate. """ eps_spatial = self.eps_dataarray_freq(frequency) if self.is_isotropic: eps_interp = _get_numpy_array( coords.spatial_interp(eps_spatial[0], self._interp_method(0)) ) return (eps_interp, eps_interp, eps_interp) return tuple( _get_numpy_array(coords.spatial_interp(eps_comp, self._interp_method(comp))) for comp, eps_comp in enumerate(eps_spatial) )
[docs] def eps_comp_on_grid( self, row: Axis, col: Axis, frequency: float, coords: Coords, ) -> ArrayComplex3D: """Spatial profile of a single component of the complex-valued permittivity tensor at ``frequency`` interpolated at the supplied coordinates. Parameters ---------- row : int Component's row in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). col : int Component's column in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). frequency : float Frequency to evaluate permittivity at (Hz). coords : :class:`.Coords` The grid point coordinates over which interpolation is performed. Returns ------- ArrayComplex3D Single component of the complex-valued permittivity tensor at ``frequency`` interpolated at the supplied coordinates. """ if row == col: return self.eps_diagonal_on_grid(frequency, coords)[row] return 0j
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued spatially averaged permittivity as a function of frequency.""" if self.is_isotropic: return np.mean(_get_numpy_array(self.eps_dataarray_freq(frequency)[0])) return np.mean( [np.mean(_get_numpy_array(eps_comp)) for eps_comp in self.eps_dataarray_freq(frequency)] )
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor at ``frequency``. Spatially, we take max{||eps||}, so that autoMesh generation works appropriately. """ eps_spatial = self.eps_dataarray_freq(frequency) if self.is_isotropic: eps_comp = _get_numpy_array(eps_spatial[0]).ravel() eps = eps_comp[np.argmax(np.abs(eps_comp))] return (eps, eps, eps) eps_spatial_array = (_get_numpy_array(eps_comp).ravel() for eps_comp in eps_spatial) return tuple(eps_comp[np.argmax(np.abs(eps_comp))] for eps_comp in eps_spatial_array)
def _get_real_vals(self, x: np.ndarray) -> np.ndarray: """Grab the real part of the values in array. Used for _eps_bounds() """ return _get_numpy_array(np.real(x)).ravel() def _eps_bounds( self, frequency: Optional[float] = None, eps_component: Optional[PermittivityComponent] = None, ) -> tuple[float, float]: """Returns permittivity bounds for setting the color bounds when plotting. Parameters ---------- frequency : float = None Frequency to evaluate the relative permittivity of all mediums. If not specified, evaluates at infinite frequency. eps_component : Optional[PermittivityComponent] = None Component of the permittivity tensor to plot for anisotropic materials, e.g. ``"xx"``, ``"yy"``, ``"zz"``, ``"xy"``, ``"yz"``, ... Defaults to ``None``, which returns the average of the diagonal values. Returns ------- Tuple[float, float] The min and max values of the permittivity for the selected component and evaluated at ``frequency``. """ eps_dataarray = self.eps_dataarray_freq(frequency) all_eps = np.concatenate(self._get_real_vals(eps_comp) for eps_comp in eps_dataarray) return (np.min(all_eps), np.max(all_eps)) @staticmethod def _validate_isreal_dataarray(dataarray: CustomSpatialDataType) -> bool: """Validate that the dataarray is real""" return np.all(np.isreal(_get_numpy_array(dataarray))) @staticmethod def _validate_isreal_dataarray_tuple( dataarray_tuple: tuple[CustomSpatialDataType, ...], ) -> bool: """Validate that the dataarray is real""" return np.all([AbstractCustomMedium._validate_isreal_dataarray(f) for f in dataarray_tuple]) @abstractmethod def _sel_custom_data_inside(self, bounds: Bound): """Return a new medium that contains the minimal amount custom data necessary to cover a spatial region defined by ``bounds``."""
[docs] def sel_inside(self, bounds: Bound) -> AbstractCustomMedium: """Return a new medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- AbstractMedium Medium with reduced data. """ self_mod_data_reduced = super().sel_inside(bounds) return self_mod_data_reduced._sel_custom_data_inside(bounds)
@staticmethod def _not_loaded(field): """Check whether data was not loaded.""" if isinstance(field, str) and field in DATA_ARRAY_MAP: return True # attempting to construct an UnstructuredGridDataset from a dict if isinstance(field, dict) and field.get("type") in ( "TriangularGridDataset", "TetrahedralGridDataset", ): return any( isinstance(subfield, str) and subfield in DATA_ARRAY_MAP for subfield in [field["points"], field["cells"], field["values"]] ) # attempting to pass an UnstructuredGridDataset with zero points if isinstance(field, UnstructuredGridDataset): return any(len(subfield) == 0 for subfield in [field.points, field.cells, field.values]) def _derivative_field_cmp( self, E_der_map: ElectromagneticFieldDataset, spatial_data: PermittivityDataset, dim: str, ) -> np.ndarray: coords_interp = {key: val for key, val in spatial_data.coords.items() if len(val) > 1} dims_sum = {dim for dim in spatial_data.coords.keys() if dim not in coords_interp} eps_coordinate_shape = [ len(spatial_data.coords[dim]) for dim in spatial_data.dims if dim in "xyz" ] # compute sizes along each of the interpolation dimensions sizes_list = [] for _, coords in coords_interp.items(): num_coords = len(coords) coords = np.array(coords) # compute distances between midpoints for all internal coords mid_points = (coords[1:] + coords[:-1]) / 2.0 dists = np.diff(mid_points) sizes = np.zeros(num_coords) sizes[1:-1] = dists # estimate the sizes on the edges using 2 x the midpoint distance sizes[0] = 2 * abs(mid_points[0] - coords[0]) sizes[-1] = 2 * abs(coords[-1] - mid_points[-1]) sizes_list.append(sizes) # turn this into a volume element, should be re-sizeable to the gradient shape if sizes_list: d_vol = functools.reduce(np.outer, sizes_list) else: # if sizes_list is empty, then reduce() fails d_vol = np.array(1.0) # TODO: probably this could be more robust. eg if the DataArray has weird edge cases E_der_dim = E_der_map[f"E{dim}"] E_der_dim_interp = ( E_der_dim.interp(**coords_interp, assume_sorted=True).fillna(0.0).sum(dims_sum).sum("f") ) vjp_array = np.array(E_der_dim_interp.values).astype(complex) vjp_array = vjp_array.reshape(eps_coordinate_shape) # multiply by volume elements (if possible, being defensive here..) try: vjp_array *= d_vol.reshape(vjp_array.shape) except ValueError: log.warning( "Skipping volume element normalization of 'CustomMedium' gradients. " f"Could not reshape the volume elements of shape {d_vol.shape} " f"to the shape of the gradient {vjp_array.shape}. " "If you encounter this warning, gradient direction will be accurate but the norm " "will be inaccurate. Please raise an issue on the tidy3d front end with this " "message and some information about your simulation setup and we will investigate. " ) return vjp_array
""" Dispersionless Medium """ # PEC keyword
[docs] class PECMedium(AbstractMedium): """Perfect electrical conductor class. Note ---- To avoid confusion from duplicate PECs, must import ``tidy3d.PEC`` instance directly. """ @pd.validator("modulation_spec", always=True) def _validate_modulation_spec(cls, val): """Check compatibility with modulation_spec.""" if val is not None: raise ValidationError( f"A 'modulation_spec' of class {type(val)} is not " f"currently supported for medium class {cls.__name__}." ) return val
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: # return something like frequency with value of pec_val + 0j return 0j * frequency + pec_val
@cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. """ return 1.0 @cached_property def is_pec(self): """Whether the medium is a PEC.""" return True
# PEC builtin instance PEC = PECMedium(name="PEC") # PMC keyword
[docs] class PMCMedium(AbstractMedium): """Perfect magnetic conductor class. Note ---- To avoid confusion from duplicate PMCs, must import ``tidy3d.PMC`` instance directly. """ @pd.validator("modulation_spec", always=True) def _validate_modulation_spec(cls, val): """Check compatibility with modulation_spec.""" if val is not None: raise ValidationError( f"A 'modulation_spec' of class {type(val)} is not " f"currently supported for medium class {cls.__name__}." ) return val
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: # permittivity of a PMC. return 1.0 + 0j
@cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. """ return 1.0 @cached_property def is_pmc(self): """Whether the medium is a PMC.""" return True
# PEC builtin instance PMC = PMCMedium(name="PMC")
[docs] class Medium(AbstractMedium): """Dispersionless medium. Mediums define the optical properties of the materials within the simulation. Notes ----- In a dispersion-less medium, the displacement field :math:`D(t)` reacts instantaneously to the applied electric field :math:`E(t)`. .. math:: D(t) = \\epsilon E(t) Example ------- >>> dielectric = Medium(permittivity=4.0, name='my_medium') >>> eps = dielectric.eps_model(200e12) See Also -------- **Notebooks** * `Introduction on Tidy3D working principles <../../notebooks/Primer.html#Mediums>`_ * `Index <../../notebooks/docs/features/medium.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ **GUI** * `Mediums <https://www.flexcompute.com/tidy3d/learning-center/tidy3d-gui/Lecture-2-Mediums/>`_ """ permittivity: TracedFloat = pd.Field( 1.0, ge=1.0, title="Permittivity", description="Relative permittivity.", units=PERMITTIVITY ) conductivity: TracedFloat = pd.Field( 0.0, title="Conductivity", description="Electric conductivity. Defined such that the imaginary part of the complex " "permittivity at angular frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, ) @pd.validator("conductivity", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" if not values.get("allow_gain") and val < 0: raise ValidationError( "For passive medium, 'conductivity' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, and are likely to diverge." ) return val @pd.validator("permittivity", always=True) @skip_if_fields_missing(["modulation_spec"]) def _permittivity_modulation_validation(cls, val, values): """Assert modulated permittivity cannot be <= 0.""" modulation = values.get("modulation_spec") if modulation is None or modulation.permittivity is None: return val min_eps_inf = np.min(_get_numpy_array(val)) if min_eps_inf - modulation.permittivity.max_modulation <= 0: raise ValidationError( "The minimum permittivity value with modulation applied was found to be negative." ) return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["modulation_spec", "allow_gain"]) def _passivity_modulation_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" modulation = values.get("modulation_spec") if modulation is None or modulation.conductivity is None: return val min_sigma = np.min(_get_numpy_array(val)) if not values.get("allow_gain") and min_sigma - modulation.conductivity.max_modulation < 0: raise ValidationError( "For passive medium, 'conductivity' must be non-negative at any time." "With conductivity modulation, this medium can sometimes be active. " "Please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For dispersiveless medium, it equals ``sqrt(permittivity)``. """ permittivity = self.permittivity if self.modulation_spec is not None and self.modulation_spec.permittivity is not None: permittivity -= self.modulation_spec.permittivity.max_modulation n, _ = self.eps_complex_to_nk(permittivity) return n @staticmethod def _eps_model(permittivity: float, conductivity: float, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return AbstractMedium.eps_sigma_to_eps_complex(permittivity, conductivity, frequency)
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return self._eps_model(self.permittivity, self.conductivity, frequency)
[docs] @classmethod def from_nk(cls, n: float, k: float, freq: float, **kwargs): """Convert ``n`` and ``k`` values at frequency ``freq`` to :class:`.Medium`. Parameters ---------- n : float Real part of refractive index. k : float = 0 Imaginary part of refrative index. freq : float Frequency to evaluate permittivity at (Hz). kwargs: dict Keyword arguments passed to the medium construction. Returns ------- :class:`.Medium` medium containing the corresponding ``permittivity`` and ``conductivity``. """ eps, sigma = AbstractMedium.nk_to_eps_sigma(n, k, freq) if eps < 1: raise ValidationError( "Dispersiveless medium must have 'permittivity>=1`. " "Please use 'Lorentz.from_nk()' to covert to a Lorentz medium, or the utility " "function 'td.medium_from_nk()' to automatically return the proper medium type." ) return cls(permittivity=eps, conductivity=sigma, **kwargs)
def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" # get vjps w.r.t. permittivity and conductivity of the bulk vjps_volume = self._derivative_eps_sigma_volume( E_der_map=derivative_info.E_der_map, bounds=derivative_info.bounds ) # store the fields asked for by ``field_paths`` derivative_map = {} for field_path in derivative_info.paths: field_name, *_ = field_path if field_name in vjps_volume: derivative_map[field_path] = vjps_volume[field_name] return derivative_map def _derivative_eps_sigma_volume( self, E_der_map: ElectromagneticFieldDataset, bounds: Bound ) -> dict[str, xr.DataArray]: """Get the derivative w.r.t permittivity and conductivity in the volume.""" vjp_eps_complex = self._derivative_eps_complex_volume(E_der_map=E_der_map, bounds=bounds) values = vjp_eps_complex.values # vjp of eps_complex_to_eps_sigma omegas = 2 * np.pi * vjp_eps_complex.coords["f"].values eps_vjp = np.real(values) sigma_vjp = -np.imag(values) / omegas / EPSILON_0 eps_vjp = np.sum(eps_vjp) sigma_vjp = np.sum(sigma_vjp) return {"permittivity": eps_vjp, "conductivity": sigma_vjp} def _derivative_eps_complex_volume( self, E_der_map: ElectromagneticFieldDataset, bounds: Bound ) -> xr.DataArray: """Get the derivative w.r.t complex-valued permittivity in the volume.""" vjp_value = None for field_name in ("Ex", "Ey", "Ez"): fld = E_der_map[field_name] vjp_value_fld = integrate_within_bounds( arr=fld, dims=("x", "y", "z"), bounds=bounds, ) if vjp_value is None: vjp_value = vjp_value_fld else: vjp_value += vjp_value_fld return vjp_value
class CustomIsotropicMedium(AbstractCustomMedium, Medium): """:class:`.Medium` with user-supplied permittivity distribution. (This class is for internal use in v2.0; it will be renamed as `CustomMedium` in v3.0.) Example ------- >>> Nx, Ny, Nz = 10, 9, 8 >>> X = np.linspace(-1, 1, Nx) >>> Y = np.linspace(-1, 1, Ny) >>> Z = np.linspace(-1, 1, Nz) >>> coords = dict(x=X, y=Y, z=Z) >>> permittivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> conductivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> dielectric = CustomIsotropicMedium(permittivity=permittivity, conductivity=conductivity) >>> eps = dielectric.eps_model(200e12) """ permittivity: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Permittivity", description="Relative permittivity.", units=PERMITTIVITY, ) conductivity: Optional[CustomSpatialDataTypeAnnotated] = pd.Field( None, title="Conductivity", description="Electric conductivity. Defined such that the imaginary part of the complex " "permittivity at angular frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, ) _no_nans_eps = validate_no_nans("permittivity") _no_nans_sigma = validate_no_nans("conductivity") @pd.validator("permittivity", always=True) def _eps_inf_greater_no_less_than_one(cls, val): """Assert any eps_inf must be >=1""" if not CustomIsotropicMedium._validate_isreal_dataarray(val): raise SetupError("'permittivity' must be real.") if np.any(_get_numpy_array(val) < 1): raise SetupError("'permittivity' must be no less than one.") return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["permittivity"]) def _conductivity_real_and_correct_shape(cls, val, values): """Assert conductivity is real and of right shape.""" if val is None: return val if not CustomIsotropicMedium._validate_isreal_dataarray(val): raise SetupError("'conductivity' must be real.") if not _check_same_coordinates(values["permittivity"], val): raise SetupError("'permittivity' and 'conductivity' must have the same coordinates.") return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" if val is None: return val if not values.get("allow_gain") and np.any(_get_numpy_array(val) < 0): raise ValidationError( "For passive medium, 'conductivity' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, and are likely to diverge." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if self.conductivity is None: return self.permittivity.is_uniform return self.permittivity.is_uniform and self.conductivity.is_uniform @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For dispersiveless medium, it equals ``sqrt(permittivity)``. """ permittivity = np.min(_get_numpy_array(self.permittivity)) if self.modulation_spec is not None and self.modulation_spec.permittivity is not None: permittivity -= self.modulation_spec.permittivity.max_modulation n, _ = self.eps_complex_to_nk(permittivity) return n @cached_property def is_isotropic(self): """Whether the medium is isotropic.""" return True def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset` ], ] The permittivity evaluated at ``frequency``. """ conductivity = self.conductivity if conductivity is None: conductivity = _zeros_like(self.permittivity) eps = self.eps_sigma_to_eps_complex(self.permittivity, conductivity, frequency) return (eps, eps, eps) def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomMedium CustomMedium with reduced data. """ if not self.permittivity.does_cover(bounds=bounds): log.warning( "Permittivity spatial data array does not fully cover the requested region." ) perm_reduced = self.permittivity.sel_inside(bounds=bounds) cond_reduced = None if self.conductivity is not None: if not self.conductivity.does_cover(bounds=bounds): log.warning( "Conductivity spatial data array does not fully cover the requested region." ) cond_reduced = self.conductivity.sel_inside(bounds=bounds) return self.updated_copy( permittivity=perm_reduced, conductivity=cond_reduced, )
[docs] class CustomMedium(AbstractCustomMedium): """:class:`.Medium` with user-supplied permittivity distribution. Example ------- >>> Nx, Ny, Nz = 10, 9, 8 >>> X = np.linspace(-1, 1, Nx) >>> Y = np.linspace(-1, 1, Ny) >>> Z = np.linspace(-1, 1, Nz) >>> coords = dict(x=X, y=Y, z=Z) >>> permittivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> conductivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> dielectric = CustomMedium(permittivity=permittivity, conductivity=conductivity) >>> eps = dielectric.eps_model(200e12) """ eps_dataset: Optional[PermittivityDataset] = pd.Field( None, title="Permittivity Dataset", description="[To be deprecated] User-supplied dataset containing complex-valued " "permittivity as a function of space. Permittivity distribution over the Yee-grid " "will be interpolated based on ``interp_method``.", ) permittivity: Optional[CustomSpatialDataTypeAnnotated] = pd.Field( None, title="Permittivity", description="Spatial profile of relative permittivity.", units=PERMITTIVITY, ) conductivity: Optional[CustomSpatialDataTypeAnnotated] = pd.Field( None, title="Conductivity", description="Spatial profile Electric conductivity. Defined such " "that the imaginary part of the complex permittivity at angular " "frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, ) _no_nans_eps_dataset = validate_no_nans("eps_dataset") _no_nans_permittivity = validate_no_nans("permittivity") _no_nans_sigma = validate_no_nans("conductivity") @pd.root_validator(pre=True) def _warn_if_none(cls, values): """Warn if the data array fails to load, and return a vacuum medium.""" eps_dataset = values.get("eps_dataset") permittivity = values.get("permittivity") conductivity = values.get("conductivity") fail_load = False if cls._not_loaded(permittivity): log.warning( "Loading 'permittivity' without data; constructing a vacuum medium instead." ) fail_load = True if cls._not_loaded(conductivity): log.warning( "Loading 'conductivity' without data; constructing a vacuum medium instead." ) fail_load = True if isinstance(eps_dataset, dict): if any((v in DATA_ARRAY_MAP for _, v in eps_dataset.items() if isinstance(v, str))): log.warning( "Loading 'eps_dataset' without data; constructing a vacuum medium instead." ) fail_load = True if fail_load: eps_real = SpatialDataArray(np.ones((1, 1, 1)), coords={"x": [0], "y": [0], "z": [0]}) return {"permittivity": eps_real} return values @pd.root_validator(pre=True) def _deprecation_dataset(cls, values): """Raise deprecation warning if dataset supplied and convert to dataset.""" eps_dataset = values.get("eps_dataset") permittivity = values.get("permittivity") conductivity = values.get("conductivity") # Incomplete custom medium definition. if eps_dataset is None and permittivity is None and conductivity is None: raise SetupError("Missing spatial profiles of 'permittivity' or 'eps_dataset'.") if eps_dataset is None and permittivity is None: raise SetupError("Missing spatial profiles of 'permittivity'.") # Definition racing if eps_dataset is not None and (permittivity is not None or conductivity is not None): raise SetupError( "Please either define 'permittivity' and 'conductivity', or 'eps_dataset', " "but not both simultaneously." ) if eps_dataset is None: return values # TODO: sometime before 3.0, uncomment these lines to warn users to start using new API # if isinstance(eps_dataset, dict): # eps_components = [eps_dataset[f"eps_{dim}{dim}"] for dim in "xyz"] # else: # eps_components = [eps_dataset.eps_xx, eps_dataset.eps_yy, eps_dataset.eps_zz] # is_isotropic = eps_components[0] == eps_components[1] == eps_components[2] # if is_isotropic: # # deprecation warning for isotropic custom medium # log.warning( # "For spatially varying isotropic medium, the 'eps_dataset' field " # "is being replaced by 'permittivity' and 'conductivity' in v3.0. " # "We recommend you change your scripts to be compatible with the new API." # ) # else: # # deprecation warning for anisotropic custom medium # log.warning( # "For spatially varying anisotropic medium, this class is being replaced " # "by 'CustomAnisotropicMedium' in v3.0. " # "We recommend you change your scripts to be compatible with the new API." # ) return values @pd.validator("eps_dataset", always=True) def _eps_dataset_single_frequency(cls, val): """Assert only one frequency supplied.""" if val is None: return val for name, eps_dataset_component in val.field_components.items(): freqs = eps_dataset_component.f if len(freqs) != 1: raise SetupError( f"'eps_dataset.{name}' must have a single frequency, " f"but it contains {len(freqs)} frequencies." ) return val @pd.validator("eps_dataset", always=True) @skip_if_fields_missing(["modulation_spec", "allow_gain"]) def _eps_dataset_eps_inf_greater_no_less_than_one_sigma_positive(cls, val, values): """Assert any eps_inf must be >=1""" if val is None: return val modulation = values.get("modulation_spec") for comp in ["eps_xx", "eps_yy", "eps_zz"]: eps_real, sigma = CustomMedium.eps_complex_to_eps_sigma( val.field_components[comp], val.field_components[comp].f ) if np.any(_get_numpy_array(eps_real) < 1): raise SetupError( "Permittivity at infinite frequency at any spatial point " "must be no less than one." ) if modulation is not None and modulation.permittivity is not None: if np.any(_get_numpy_array(eps_real) - modulation.permittivity.max_modulation <= 0): raise ValidationError( "The minimum permittivity value with modulation applied " "was found to be negative." ) if not values.get("allow_gain") and np.any(_get_numpy_array(sigma) < 0): raise ValidationError( "For passive medium, imaginary part of permittivity must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) if ( not values.get("allow_gain") and modulation is not None and modulation.conductivity is not None and np.any(_get_numpy_array(sigma) - modulation.conductivity.max_modulation <= 0) ): raise ValidationError( "For passive medium, imaginary part of permittivity must be non-negative " "at any time. " "With conductivity modulation, this medium can sometimes be active. " "Please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @pd.validator("permittivity", always=True) @skip_if_fields_missing(["modulation_spec"]) def _eps_inf_greater_no_less_than_one(cls, val, values): """Assert any eps_inf must be >=1""" if val is None: return val if not CustomMedium._validate_isreal_dataarray(val): raise SetupError("'permittivity' must be real.") if np.any(_get_numpy_array(val) < 1): raise SetupError("'permittivity' must be no less than one.") modulation = values.get("modulation_spec") if modulation is None or modulation.permittivity is None: return val if np.any(_get_numpy_array(val) - modulation.permittivity.max_modulation <= 0): raise ValidationError( "The minimum permittivity value with modulation applied was found to be negative." ) return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["permittivity", "allow_gain"]) def _conductivity_non_negative_correct_shape(cls, val, values): """Assert conductivity>=0""" if val is None: return val if not CustomMedium._validate_isreal_dataarray(val): raise SetupError("'conductivity' must be real.") if not values.get("allow_gain") and np.any(_get_numpy_array(val) < 0): raise ValidationError( "For passive medium, 'conductivity' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) if not _check_same_coordinates(values["permittivity"], val): raise SetupError("'permittivity' and 'conductivity' must have the same coordinates.") return val @pd.validator("conductivity", always=True) @skip_if_fields_missing(["eps_dataset", "modulation_spec", "allow_gain"]) def _passivity_modulation_validation(cls, val, values): """Assert passive medium at any time during modulation if ``allow_gain`` is False.""" # validated already when the data is supplied through `eps_dataset` if values.get("eps_dataset"): return val # permittivity defined with ``permittivity`` and ``conductivity`` modulation = values.get("modulation_spec") if values.get("allow_gain") or modulation is None or modulation.conductivity is None: return val if val is None or np.any( _get_numpy_array(val) - modulation.conductivity.max_modulation < 0 ): raise ValidationError( "For passive medium, 'conductivity' must be non-negative at any time. " "With conductivity modulation, this medium can sometimes be active. " "Please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @pd.validator("permittivity", "conductivity", always=True) def _check_permittivity_conductivity_interpolate(cls, val, values, field): """Check that the custom medium 'SpatialDataArrays' can be interpolated.""" if isinstance(val, SpatialDataArray): val._interp_validator(field.name) return val @cached_property def is_isotropic(self) -> bool: """Check if the medium is isotropic or anisotropic.""" if self.eps_dataset is None: return True if self.eps_dataset.eps_xx == self.eps_dataset.eps_yy == self.eps_dataset.eps_zz: return True return False @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" return self._medium.is_spatially_uniform @cached_property def freqs(self) -> np.ndarray: """float array of frequencies. This field is to be deprecated in v3.0. """ # return dummy values in this case if self.eps_dataset is None: return np.array([0, 0, 0]) return np.array( [ self.eps_dataset.eps_xx.coords["f"], self.eps_dataset.eps_yy.coords["f"], self.eps_dataset.eps_zz.coords["f"], ] ) @cached_property def _medium(self): """Internal representation in the form of either `CustomIsotropicMedium` or `CustomAnisotropicMedium`. """ self_dict = self.dict(exclude={"type", "eps_dataset"}) # isotropic if self.eps_dataset is None: self_dict.update({"permittivity": self.permittivity, "conductivity": self.conductivity}) return CustomIsotropicMedium.parse_obj(self_dict) def get_eps_sigma(eps_complex: SpatialDataArray, freq: float) -> tuple: """Convert a complex permittivity to real permittivity and conductivity.""" eps_values = np.array(eps_complex.values) eps_real, sigma = CustomMedium.eps_complex_to_eps_sigma(eps_values, freq) coords = eps_complex.coords eps_real = ScalarFieldDataArray(eps_real, coords=coords) sigma = ScalarFieldDataArray(sigma, coords=coords) eps_real = SpatialDataArray(eps_real.squeeze(dim="f", drop=True)) sigma = SpatialDataArray(sigma.squeeze(dim="f", drop=True)) return eps_real, sigma # isotropic, but with `eps_dataset` if self.is_isotropic: eps_complex = self.eps_dataset.eps_xx eps_real, sigma = get_eps_sigma(eps_complex, freq=self.freqs[0]) self_dict.update({"permittivity": eps_real, "conductivity": sigma}) return CustomIsotropicMedium.parse_obj(self_dict) # anisotropic mat_comp = {"interp_method": self.interp_method} for freq, comp in zip(self.freqs, ["xx", "yy", "zz"]): eps_complex = self.eps_dataset.field_components["eps_" + comp] eps_real, sigma = get_eps_sigma(eps_complex, freq=freq) comp_dict = self_dict.copy() comp_dict.update({"permittivity": eps_real, "conductivity": sigma}) mat_comp.update({comp: CustomIsotropicMedium.parse_obj(comp_dict)}) return CustomAnisotropicMediumInternal(**mat_comp) def _interp_method(self, comp: Axis) -> InterpMethod: """Interpolation method applied to comp.""" return self._medium._interp_method(comp) @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl```. For dispersiveless custom medium, it equals ``min[sqrt(eps_inf)]``, where ``min`` is performed over all components and spatial points. """ return self._medium.n_cfl
[docs] def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. () Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ return self._medium.eps_dataarray_freq(frequency)
[docs] def eps_diagonal_on_grid( self, frequency: float, coords: Coords, ) -> tuple[ArrayComplex3D, ArrayComplex3D, ArrayComplex3D]: """Spatial profile of main diagonal of the complex-valued permittivity at ``frequency`` interpolated at the supplied coordinates. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). coords : :class:`.Coords` The grid point coordinates over which interpolation is performed. Returns ------- Tuple[ArrayComplex3D, ArrayComplex3D, ArrayComplex3D] The complex-valued permittivity tensor at ``frequency`` interpolated at the supplied coordinate. """ return self._medium.eps_diagonal_on_grid(frequency, coords)
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor at ``frequency``. Spatially, we take max{|eps|}, so that autoMesh generation works appropriately. """ return self._medium.eps_diagonal(frequency)
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Spatial and polarizaiton average of complex-valued permittivity as a function of frequency. """ return self._medium.eps_model(frequency)
[docs] @classmethod def from_eps_raw( cls, eps: Union[ScalarFieldDataArray, CustomSpatialDataType], freq: Optional[float] = None, interp_method: InterpMethod = "nearest", **kwargs, ) -> CustomMedium: """Construct a :class:`.CustomMedium` from datasets containing raw permittivity values. Parameters ---------- eps : Union[ :class:`.SpatialDataArray`, :class:`.ScalarFieldDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] Dataset containing complex-valued permittivity as a function of space. freq : float, optional Frequency at which ``eps`` are defined. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain permittivity values that are not supplied at the Yee grids. Notes ----- For lossy medium that has a complex-valued ``eps``, if ``eps`` is supplied through :class:`.SpatialDataArray`, which doesn't contain frequency information, the ``freq`` kwarg will be used to evaluate the permittivity and conductivity. Alternatively, ``eps`` can be supplied through :class:`.ScalarFieldDataArray`, which contains a frequency coordinate. In this case, leave ``freq`` kwarg as the default of ``None``. Returns ------- :class:`.CustomMedium` Medium containing the spatially varying permittivity data. """ if isinstance(eps, CustomSpatialDataType.__args__): # purely real, not need to know `freq` if CustomMedium._validate_isreal_dataarray(eps): return cls(permittivity=eps, interp_method=interp_method, **kwargs) # complex permittivity, needs to know `freq` if freq is None: raise SetupError( "For a complex 'eps', 'freq' at which 'eps' is defined must be supplied", ) eps_real, sigma = CustomMedium.eps_complex_to_eps_sigma(eps, freq) return cls( permittivity=eps_real, conductivity=sigma, interp_method=interp_method, **kwargs ) # eps is ScalarFieldDataArray # contradictory definition of frequency freq_data = eps.coords["f"].data[0] if freq is not None and not isclose(freq, freq_data): raise SetupError( "'freq' value is inconsistent with the coordinate 'f'" "in 'eps' DataArray. It's unclear at which frequency 'eps' " "is defined. Please leave 'freq=None' to use the frequency " "value in the DataArray." ) eps_real, sigma = CustomMedium.eps_complex_to_eps_sigma(eps, freq_data) eps_real = SpatialDataArray(eps_real.squeeze(dim="f", drop=True)) sigma = SpatialDataArray(sigma.squeeze(dim="f", drop=True)) return cls(permittivity=eps_real, conductivity=sigma, interp_method=interp_method, **kwargs)
[docs] @classmethod def from_nk( cls, n: Union[ScalarFieldDataArray, CustomSpatialDataType], k: Optional[Union[ScalarFieldDataArray, CustomSpatialDataType]] = None, freq: Optional[float] = None, interp_method: InterpMethod = "nearest", **kwargs, ) -> CustomMedium: """Construct a :class:`.CustomMedium` from datasets containing n and k values. Parameters ---------- n : Union[ :class:`.SpatialDataArray`, :class:`.ScalarFieldDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] Real part of refractive index. k : Union[ :class:`.SpatialDataArray`, :class:`.ScalarFieldDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], optional Imaginary part of refrative index for lossy medium. freq : float, optional Frequency at which ``n`` and ``k`` are defined. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain permittivity values that are not supplied at the Yee grids. kwargs: dict Keyword arguments passed to the medium construction. Note ---- For lossy medium, if both ``n`` and ``k`` are supplied through :class:`.SpatialDataArray`, which doesn't contain frequency information, the ``freq`` kwarg will be used to evaluate the permittivity and conductivity. Alternatively, ``n`` and ``k`` can be supplied through :class:`.ScalarFieldDataArray`, which contains a frequency coordinate. In this case, leave ``freq`` kwarg as the default of ``None``. Returns ------- :class:`.CustomMedium` Medium containing the spatially varying permittivity data. """ # lossless if k is None: if isinstance(n, ScalarFieldDataArray): n = SpatialDataArray(n.squeeze(dim="f", drop=True)) freq = 0 # dummy value eps_real, _ = CustomMedium.nk_to_eps_sigma(n, 0 * n, freq) return cls(permittivity=eps_real, interp_method=interp_method, **kwargs) # lossy case if not _check_same_coordinates(n, k): raise SetupError("'n' and 'k' must be of the same type and must have same coordinates.") # k is a SpatialDataArray if isinstance(k, CustomSpatialDataType.__args__): if freq is None: raise SetupError( "For a lossy medium, must supply 'freq' at which to convert 'n' " "and 'k' to a complex valued permittivity." ) eps_real, sigma = CustomMedium.nk_to_eps_sigma(n, k, freq) return cls( permittivity=eps_real, conductivity=sigma, interp_method=interp_method, **kwargs ) # k is a ScalarFieldDataArray freq_data = k.coords["f"].data[0] if freq is not None and not isclose(freq, freq_data): raise SetupError( "'freq' value is inconsistent with the coordinate 'f'" "in 'k' DataArray. It's unclear at which frequency 'k' " "is defined. Please leave 'freq=None' to use the frequency " "value in the DataArray." ) eps_real, sigma = CustomMedium.nk_to_eps_sigma(n, k, freq_data) eps_real = SpatialDataArray(eps_real.squeeze(dim="f", drop=True)) sigma = SpatialDataArray(sigma.squeeze(dim="f", drop=True)) return cls(permittivity=eps_real, conductivity=sigma, interp_method=interp_method, **kwargs)
[docs] def grids(self, bounds: Bound) -> dict[str, Grid]: """Make a :class:`.Grid` corresponding to the data in each ``eps_ii`` component. The min and max coordinates along each dimension are bounded by ``bounds``.""" rmin, rmax = bounds pt_mins = dict(zip("xyz", rmin)) pt_maxs = dict(zip("xyz", rmax)) def make_grid(scalar_field: Union[ScalarFieldDataArray, SpatialDataArray]) -> Grid: """Make a grid for a single dataset.""" def make_bound_coords(coords: np.ndarray, pt_min: float, pt_max: float) -> list[float]: """Convert user supplied coords into boundary coords to use in :class:`.Grid`.""" # get coordinates of the bondaries halfway between user-supplied data coord_bounds = (coords[1:] + coords[:-1]) / 2.0 # res-set coord boundaries that lie outside geometry bounds to the boundary (0 vol.) coord_bounds[coord_bounds <= pt_min] = pt_min coord_bounds[coord_bounds >= pt_max] = pt_max # add the geometry bounds in explicitly return [pt_min, *coord_bounds.tolist(), pt_max] # grab user supplied data long this dimension coords = {key: np.array(val) for key, val in scalar_field.coords.items()} spatial_coords = {key: coords[key] for key in "xyz"} # convert each spatial coord to boundary coords bound_coords = {} for key, coords in spatial_coords.items(): pt_min = pt_mins[key] pt_max = pt_maxs[key] bound_coords[key] = make_bound_coords(coords=coords, pt_min=pt_min, pt_max=pt_max) # construct grid boundaries = Coords(**bound_coords) return Grid(boundaries=boundaries) grids = {} for field_name in ("eps_xx", "eps_yy", "eps_zz"): # grab user supplied data long this dimension scalar_field = self.eps_dataset.field_components[field_name] # feed it to make_grid grids[field_name] = make_grid(scalar_field) return grids
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomMedium CustomMedium with reduced data. """ perm_reduced = None if self.permittivity is not None: if not self.permittivity.does_cover(bounds=bounds): log.warning( "Permittivity spatial data array does not fully cover the requested region." ) perm_reduced = self.permittivity.sel_inside(bounds=bounds) cond_reduced = None if self.conductivity is not None: if not self.conductivity.does_cover(bounds=bounds): log.warning( "Conductivity spatial data array does not fully cover the requested region." ) cond_reduced = self.conductivity.sel_inside(bounds=bounds) eps_reduced = None if self.eps_dataset is not None: eps_reduced_dict = {} for key, comp in self.eps_dataset.field_components.items(): if not comp.does_cover(bounds=bounds): log.warning( f"{key} spatial data array does not fully cover the requested region." ) eps_reduced_dict[key] = comp.sel_inside(bounds=bounds) eps_reduced = PermittivityDataset(**eps_reduced_dict) return self.updated_copy( permittivity=perm_reduced, conductivity=cond_reduced, eps_dataset=eps_reduced, ) def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" vjps = {} for field_path in derivative_info.paths: if field_path[0] == "permittivity": vjp_array = 0.0 for dim in "xyz": vjp_array += self._derivative_field_cmp( E_der_map=derivative_info.E_der_map, spatial_data=self.permittivity, dim=dim, freqs=derivative_info.frequencies, component="real", ) vjps[field_path] = vjp_array elif field_path[0] == "conductivity": vjp_array = 0.0 for dim in "xyz": vjp_array += self._derivative_field_cmp( E_der_map=derivative_info.E_der_map, spatial_data=self.conductivity, dim=dim, freqs=derivative_info.frequencies, component="sigma", ) vjps[field_path] = vjp_array elif field_path[0] == "eps_dataset": key = field_path[1] dim = key[-1] vjps[field_path] = self._derivative_field_cmp( E_der_map=derivative_info.E_der_map, spatial_data=self.eps_dataset.field_components[key], dim=dim, freqs=derivative_info.frequencies, component="complex", ) else: raise NotImplementedError( f"No derivative defined for 'CustomMedium' field: {field_path}." ) return vjps def _derivative_field_cmp( self, E_der_map: ElectromagneticFieldDataset, spatial_data: CustomSpatialDataTypeAnnotated, dim: str, freqs: np.ndarray, component: str = "real", ) -> np.ndarray: """Compute the derivative with respect to a material property component.""" coords_interp = {key: spatial_data.coords[key] for key in "xyz"} coords_interp = {key: val for key, val in coords_interp.items() if len(val) > 1} eps_coordinate_shape = [ len(spatial_data.coords[dim]) for dim in spatial_data.dims if dim in "xyz" ] E_der_dim_interp = E_der_map[f"E{dim}"] for dim_ in "xyz": if dim_ not in coords_interp: bound_max = np.max(E_der_dim_interp.coords[dim_]) bound_min = np.min(E_der_dim_interp.coords[dim_]) dimension_size = bound_max - bound_min if dimension_size > 0.0: E_der_dim_interp = E_der_dim_interp.integrate(dim_) # compute sizes along each of the interpolation dimensions sizes_list = [] for _, coords in coords_interp.items(): num_coords = len(coords) coords = np.array(coords) # compute distances between midpoints for all internal coords mid_points = (coords[1:] + coords[:-1]) / 2.0 dists = np.diff(mid_points) sizes = np.zeros(num_coords) sizes[1:-1] = dists # estimate the sizes on the edges using 2 x the midpoint distance sizes[0] = 2 * abs(mid_points[0] - coords[0]) sizes[-1] = 2 * abs(coords[-1] - mid_points[-1]) sizes_list.append(sizes) # turn this into a volume element, should be re-sizeable to the gradient shape if sizes_list: d_vol = functools.reduce(np.outer, sizes_list) else: # if sizes_list is empty, then reduce() fails d_vol = np.array(1.0) E_der_dim_interp_complex = E_der_dim_interp.interp( **coords_interp, assume_sorted=True ).fillna(0.0) if component == "sigma": # compute conductivity gradient from imaginary-permittivity gradient # apply per-frequency scaling before summing over frequencies # d eps_imag / d sigma = 1 / (2 * pi * f * EPSILON_0) E_der_dim_interp = E_der_dim_interp_complex.imag freqs_da = E_der_dim_interp_complex.coords["f"] scale = -1.0 / (2.0 * np.pi * freqs_da * EPSILON_0) E_der_dim_interp *= scale elif component == "complex": # for complex permittivity in eps_dataset, return the full complex derivative E_der_dim_interp = E_der_dim_interp_complex elif component == "imag": # pure imaginary component (no conductivity conversion) E_der_dim_interp = E_der_dim_interp_complex.imag else: E_der_dim_interp = E_der_dim_interp_complex.real E_der_dim_interp = E_der_dim_interp.sum("f") try: E_der_dim_interp = E_der_dim_interp * d_vol.reshape(E_der_dim_interp.shape) except ValueError: log.warning( "Skipping volume element normalization of 'CustomMedium' gradients. " f"Could not reshape the volume elements of shape {d_vol.shape} " f"to the shape of the fields {E_der_dim_interp.shape}. " "If you encounter this warning, gradient direction will be accurate but the norm " "will be inaccurate. Please raise an issue on the tidy3d front end with this " "message and some information about your simulation setup and we will investigate. " ) vjp_array = E_der_dim_interp.values vjp_array = vjp_array.reshape(eps_coordinate_shape) return vjp_array
""" Dispersive Media """
[docs] class DispersiveMedium(AbstractMedium, ABC): """ A Medium with dispersion: field propagation characteristics depend on frequency. Notes ----- In dispersive mediums, the displacement field :math:`D(t)` depends on the previous electric field :math:`E( t')` and time-dependent permittivity :math:`\\epsilon` changes. .. math:: D(t) = \\int \\epsilon(t - t') E(t') \\delta t' Dispersive mediums can be defined in three ways: - Imported from our `material library <../material_library.html>`_. - Defined directly by specifying the parameters in the `various supplied dispersive models <../mediums.html>`_. - Fitted to optical n-k data using the `dispersion fitting tool plugin <../plugins/dispersion.html>`_. It is important to keep in mind that dispersive materials are inevitably slower to simulate than their dispersion-less counterparts, with complexity increasing with the number of poles included in the dispersion model. For simulations with a narrow range of frequencies of interest, it may sometimes be faster to define the material through its real and imaginary refractive index at the center frequency. See Also -------- :class:`CustomPoleResidue`: A spatially varying dispersive medium described by the pole-residue pair model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ @staticmethod def _permittivity_modulation_validation(): """Assert modulated permittivity cannot be <= 0 at any time.""" @pd.validator("eps_inf", allow_reuse=True, always=True) @skip_if_fields_missing(["modulation_spec"]) def _validate_permittivity_modulation(cls, val, values): """Assert modulated permittivity cannot be <= 0.""" modulation = values.get("modulation_spec") if modulation is None or modulation.permittivity is None: return val min_eps_inf = np.min(_get_numpy_array(val)) if min_eps_inf - modulation.permittivity.max_modulation <= 0: raise ValidationError( "The minimum permittivity value with modulation applied was found to be negative." ) return val return _validate_permittivity_modulation @staticmethod def _conductivity_modulation_validation(): """Assert passive medium at any time if not ``allow_gain``.""" @pd.validator("modulation_spec", allow_reuse=True, always=True) @skip_if_fields_missing(["allow_gain"]) def _validate_conductivity_modulation(cls, val, values): """With conductivity modulation, the medium can exhibit gain during the cycle. So `allow_gain` must be True when the conductivity is modulated. """ if val is None or val.conductivity is None: return val if not values.get("allow_gain"): raise ValidationError( "For passive medium, 'conductivity' must be non-negative at any time. " "With conductivity modulation, this medium can sometimes be active. " "Please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, and are likely to diverge." ) return val return _validate_conductivity_modulation @abstractmethod def _pole_residue_dict(self) -> dict: """Dict representation of Medium as a pole-residue model.""" @cached_property def pole_residue(self): """Representation of Medium as a pole-residue model.""" return PoleResidue(**self._pole_residue_dict(), allow_gain=self.allow_gain) @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For PoleResidue model, it equals ``sqrt(eps_inf)`` [https://ieeexplore.ieee.org/document/9082879]. """ permittivity = self.pole_residue.eps_inf if self.modulation_spec is not None and self.modulation_spec.permittivity is not None: permittivity -= self.modulation_spec.permittivity.max_modulation n, _ = self.eps_complex_to_nk(permittivity) return n
[docs] @staticmethod def tuple_to_complex(value: tuple[float, float]) -> complex: """Convert a tuple of real and imaginary parts to complex number.""" val_r, val_i = value return val_r + 1j * val_i
[docs] @staticmethod def complex_to_tuple(value: complex) -> tuple[float, float]: """Convert a complex number to a tuple of real and imaginary parts.""" return (value.real, value.imag)
# --- shared autograd helpers for dispersive models --- def _tjp_inputs(self, derivative_info): """Prepare shared inputs for TJP: frequencies and packed adjoint vector.""" dJ = self._derivative_eps_complex_volume( E_der_map=derivative_info.E_der_map, bounds=derivative_info.bounds ) freqs = np.asarray(derivative_info.frequencies, float) dJv = np.asarray(getattr(dJ, "values", dJ)) return freqs, pack_complex_vec(dJv) @staticmethod def _tjp_grad(theta0, eps_vec_fn, vec): """Run a tensor-Jacobian-product to get J^T @ vec.""" return tensor_jacobian_product(eps_vec_fn)(theta0, vec) @staticmethod def _map_grad_real(g, paths, mapping): """Map flat gradient to model paths, taking the real part.""" out = {} for k, idx in mapping: if k in paths: out[k] = np.real(g[idx]) return out
[docs] class CustomDispersiveMedium(AbstractCustomMedium, DispersiveMedium, ABC): """A spatially varying dispersive medium.""" @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For PoleResidue model, it equals ``sqrt(eps_inf)`` [https://ieeexplore.ieee.org/document/9082879]. """ permittivity = np.min(_get_numpy_array(self.pole_residue.eps_inf)) if self.modulation_spec is not None and self.modulation_spec.permittivity is not None: permittivity -= self.modulation_spec.permittivity.max_modulation n, _ = self.eps_complex_to_nk(permittivity) return n @cached_property def is_isotropic(self): """Whether the medium is isotropic.""" return True @cached_property def pole_residue(self): """Representation of Medium as a pole-residue model.""" return CustomPoleResidue( **self._pole_residue_dict(), interp_method=self.interp_method, allow_gain=self.allow_gain, subpixel=self.subpixel, ) @staticmethod def _warn_if_data_none(nested_tuple_field: str): """Warn if any of `eps_inf` and nested_tuple_field are not loaded, and return a vacuum with eps_inf = 1. """ @pd.root_validator(pre=True, allow_reuse=True) def _warn_if_none(cls, values): """Warn if any of `eps_inf` and nested_tuple_field are not load.""" eps_inf = values.get("eps_inf") coeffs = values.get(nested_tuple_field) fail_load = False if AbstractCustomMedium._not_loaded(eps_inf): log.warning("Loading 'eps_inf' without data; constructing a vacuum medium instead.") fail_load = True for coeff in coeffs: if fail_load: break for coeff_i in coeff: if AbstractCustomMedium._not_loaded(coeff_i): log.warning( f"Loading '{nested_tuple_field}' without data; " "constructing a vacuum medium instead." ) fail_load = True break if fail_load and eps_inf is None: return {nested_tuple_field: ()} if fail_load: eps_inf = SpatialDataArray( np.ones((1, 1, 1)), coords={"x": [0], "y": [0], "z": [0]} ) return {"eps_inf": eps_inf, nested_tuple_field: ()} return values return _warn_if_none # --- helpers for custom dispersive adjoints --- def _sum_complex_eps_sensitivity( self, derivative_info: DerivativeInfo, spatial_ref: PermittivityDataset, ) -> np.ndarray: """Sum complex permittivity sensitivities over xyz on the given spatial grid. Parameters ---------- derivative_info : DerivativeInfo Info bundle carrying field maps and frequencies. spatial_ref : PermittivityDataset Spatial dataset to define the grid/coords for interpolation and summation. Returns ------- np.ndarray Complex-valued aggregated dJ array with the same spatial shape as ``spatial_ref``. """ dJ = 0.0 + 0.0j for dim in "xyz": dJ += self._derivative_field_cmp( E_der_map=derivative_info.E_der_map, spatial_data=spatial_ref, dim=dim, ) return dJ @staticmethod def _accum_real_inner(dJ: np.ndarray, weight: np.ndarray) -> np.ndarray: """Compute Re(dJ * conj(weight)) with proper broadcasting.""" return np.real(dJ * np.conj(weight)) def _sum_over_freqs( self, freqs: list[float] | np.ndarray, dJ: np.ndarray, weight_fn ) -> np.ndarray: """Accumulate gradient contributions over frequencies using provided weight function. Parameters ---------- freqs : array-like Frequencies to accumulate over. dJ : np.ndarray Complex dataset sensitivity with spatial shape. weight_fn : Callable[[float], np.ndarray] Function mapping frequency to weight array broadcastable to dJ. Returns ------- np.ndarray Real-valued gradient array matching dJ's broadcasted shape. """ g = 0.0 for f in freqs: g = g + self._accum_real_inner(dJ, weight_fn(f)) return g
[docs] class PoleResidue(DispersiveMedium): """A dispersive medium described by the pole-residue pair model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(\\omega) = \\epsilon_\\infty - \\sum_i \\left[\\frac{c_i}{j \\omega + a_i} + \\frac{c_i^*}{j \\omega + a_i^*}\\right] Example ------- >>> pole_res = PoleResidue(eps_inf=2.0, poles=[((-1+2j), (3+4j)), ((-5+6j), (7+8j))]) >>> eps = pole_res.eps_model(200e12) See Also -------- :class:`CustomPoleResidue`: A spatially varying dispersive medium described by the pole-residue pair model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: TracedPositiveFloat = pd.Field( 1.0, title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) poles: tuple[TracedPoleAndResidue, ...] = pd.Field( (), title="Poles", description="Tuple of complex-valued (:math:`a_i, c_i`) poles for the model.", units=(RADPERSEC, RADPERSEC), ) @pd.validator("poles", always=True) def _causality_validation(cls, val): """Assert causal medium.""" for a, _ in val: if np.any(np.real(_get_numpy_array(a)) > 0): raise SetupError("For stable medium, 'Re(a_i)' must be non-positive.") return val @pd.validator("poles", always=True) def _poles_largest_value(cls, val): """Assert pole parameters are not too large.""" for a, c in val: if np.any(abs(_get_numpy_array(a)) > LARGEST_FP_NUMBER): raise ValidationError( "The value of some 'a_i' is too large. They are unlikely to contribute to material dispersion." ) if np.any(abs(_get_numpy_array(c)) > LARGEST_FP_NUMBER): raise ValidationError("The value of some 'c_i' is too large.") return val _validate_permittivity_modulation = DispersiveMedium._permittivity_modulation_validation() _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation() @staticmethod def _eps_model( eps_inf: pd.PositiveFloat, poles: tuple[PoleAndResidue, ...], frequency: float ) -> complex: """Complex-valued permittivity as a function of frequency.""" omega = 2 * np.pi * frequency eps = eps_inf + 0 * frequency + 0.0j for a, c in poles: a_cc = np.conj(a) c_cc = np.conj(c) eps = eps - c / (1j * omega + a) eps = eps - c_cc / (1j * omega + a_cc) return eps
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return self._eps_model(eps_inf=self.eps_inf, poles=self.poles, frequency=frequency)
def _pole_residue_dict(self) -> dict: """Dict representation of Medium as a pole-residue model.""" return { "eps_inf": self.eps_inf, "poles": self.poles, "frequency_range": self.frequency_range, "name": self.name, }
[docs] def __str__(self): """string representation""" return ( f"td.PoleResidue(" f"\n\teps_inf={self.eps_inf}, " f"\n\tpoles={self.poles}, " f"\n\tfrequency_range={self.frequency_range})" )
[docs] @classmethod def from_medium(cls, medium: Medium) -> PoleResidue: """Convert a :class:`.Medium` to a pole residue model. Parameters ---------- medium: :class:`.Medium` The medium with permittivity and conductivity to convert. Returns ------- :class:`.PoleResidue` The pole residue equivalent. """ poles = [(0, medium.conductivity / (2 * EPSILON_0))] return PoleResidue( eps_inf=medium.permittivity, poles=poles, frequency_range=medium.frequency_range )
[docs] def to_medium(self) -> Medium: """Convert to a :class:`.Medium`. Requires the pole residue model to only have a pole at 0 frequency, corresponding to a constant conductivity term. Returns ------- :class:`.Medium` The non-dispersive equivalent with constant permittivity and conductivity. """ res = 0 for a, c in self.poles: if abs(a) > fp_eps: raise ValidationError("Cannot convert dispersive 'PoleResidue' to 'Medium'.") res = res + (c + np.conj(c)) / 2 sigma = res * 2 * EPSILON_0 return Medium( permittivity=self.eps_inf, conductivity=np.real(sigma), frequency_range=self.frequency_range, )
[docs] @staticmethod def lo_to_eps_model( poles: tuple[tuple[float, float, float, float], ...], eps_inf: pd.PositiveFloat, frequency: float, ) -> complex: """Complex permittivity as a function of frequency for a given set of LO-TO coefficients. See ``from_lo_to`` in :class:`.PoleResidue` for the detailed form of the model and a reference paper. Parameters ---------- poles : Tuple[Tuple[float, float, float, float], ...] The LO-TO poles, given as list of tuples of the form (omega_LO, gamma_LO, omega_TO, gamma_TO). eps_inf: pd.PositiveFloat The relative permittivity at infinite frequency. frequency: float Frequency at which to evaluate the permittivity. Returns ------- complex The complex permittivity of the given LO-TO model at the given frequency. """ omega = 2 * np.pi * frequency eps = eps_inf for omega_lo, gamma_lo, omega_to, gamma_to in poles: eps *= omega_lo**2 - omega**2 - 1j * omega * gamma_lo eps /= omega_to**2 - omega**2 - 1j * omega * gamma_to return eps
[docs] @classmethod def from_lo_to( cls, poles: tuple[tuple[float, float, float, float], ...], eps_inf: pd.PositiveFloat = 1 ) -> PoleResidue: """Construct a pole residue model from the LO-TO form (longitudinal and transverse optical modes). The LO-TO form is :math:`\\epsilon_\\infty \\prod_{i=1}^l \\frac{\\omega_{LO, i}^2 - \\omega^2 - i \\omega \\gamma_{LO, i}}{\\omega_{TO, i}^2 - \\omega^2 - i \\omega \\gamma_{TO, i}}` as given in the paper: M. Schubert, T. E. Tiwald, and C. M. Herzinger, "Infrared dielectric anisotropy and phonon modes of sapphire," Phys. Rev. B 61, 8187 (2000). Parameters ---------- poles : Tuple[Tuple[float, float, float, float], ...] The LO-TO poles, given as list of tuples of the form (omega_LO, gamma_LO, omega_TO, gamma_TO). eps_inf: pd.PositiveFloat The relative permittivity at infinite frequency. Returns ------- :class:`.PoleResidue` The pole residue equivalent of the LO-TO form provided. """ omegas_lo, gammas_lo, omegas_to, gammas_to = map(np.array, zip(*poles)) # discriminants of quadratic factors of denominator discs = 2 * npo.emath.sqrt((gammas_to / 2) ** 2 - omegas_to**2) # require nondegenerate TO poles if len({(omega_to, gamma_to) for (_, _, omega_to, gamma_to) in poles}) != len(poles) or any( disc == 0 for disc in discs ): raise ValidationError( "Unable to construct a pole residue model " "from an LO-TO form with degenerate TO poles. Consider adding a " "perturbation to split the poles, or using " "'PoleResidue.lo_to_eps_model' and fitting with the 'FastDispersionFitter'." ) # roots of denominator, in pairs roots = [] for gamma_to, disc in zip(gammas_to, discs): roots.append(-gamma_to / 2 + disc / 2) roots.append(-gamma_to / 2 - disc / 2) # interpolants interpolants = eps_inf * np.ones(len(roots), dtype=complex) for i, a in enumerate(roots): for omega_lo, gamma_lo in zip(omegas_lo, gammas_lo): interpolants[i] *= omega_lo**2 + a**2 + a * gamma_lo for j, a2 in enumerate(roots): if j != i: interpolants[i] /= a - a2 a_coeffs = [] c_coeffs = [] for i in range(0, len(roots), 2): if not np.isreal(roots[i]): a_coeffs.append(roots[i]) c_coeffs.append(interpolants[i]) else: a_coeffs.append(roots[i]) a_coeffs.append(roots[i + 1]) # factor of two from adding conjugate pole of real pole c_coeffs.append(interpolants[i] / 2) c_coeffs.append(interpolants[i + 1] / 2) return PoleResidue(eps_inf=eps_inf, poles=list(zip(a_coeffs, c_coeffs)))
[docs] @staticmethod def imag_ep_extrema(poles: tuple[PoleAndResidue, ...]) -> ArrayFloat1D: """Extrema of Im[eps] in the same unit as poles. Parameters ---------- poles: Tuple[PoleAndResidue, ...] Tuple of complex-valued (``a_i, c_i``) poles for the model. """ poles_a = [a for (a, _) in poles] poles_c = [c for (_, c) in poles] return imag_resp_extrema_locs(poles=poles_a, residues=poles_c)
def _imag_ep_extrema_with_samples(self) -> ArrayFloat1D: """Provide a list of frequencies (in unit of rad/s) to probe the possible lower and upper bound of Im[eps] within the ``frequency_range``. If ``frequency_range`` is None, it checks the entire frequency range. The returned frequencies include not only extrema, but also a list of sampled frequencies. """ # extrema frequencies: in the intermediate stage, convert to the unit eV for # better numerical handling, since those quantities will be ~ 1 in photonics extrema_freq = self.imag_ep_extrema(self.angular_freq_to_eV(np.array(self.poles))) extrema_freq = self.eV_to_angular_freq(extrema_freq) # let's check a big range in addition to the imag_extrema if self.frequency_range is None: range_ev = np.logspace(LOSS_CHECK_MIN, LOSS_CHECK_MAX, LOSS_CHECK_NUM) range_omega = self.eV_to_angular_freq(range_ev) else: fmin, fmax = self.frequency_range fmin = max(fmin, fp_eps) range_freq = np.logspace(np.log10(fmin), np.log10(fmax), LOSS_CHECK_NUM) range_omega = self.Hz_to_angular_freq(range_freq) extrema_freq = extrema_freq[ np.logical_and(extrema_freq > range_omega[0], extrema_freq < range_omega[-1]) ] return np.concatenate((range_omega, extrema_freq)) @cached_property def loss_upper_bound(self) -> float: """Upper bound of Im[eps] in `frequency_range`""" freq_list = self.angular_freq_to_Hz(self._imag_ep_extrema_with_samples()) ep = self.eps_model(freq_list) # filter `NAN` in case some of freq_list are exactly at the pole frequency # of Sellmeier-type poles. ep = ep[~np.isnan(ep)] return max(ep.imag) @staticmethod def _get_vjps_from_params( dJ_deps_complex: Union[complex, np.ndarray], poles_vals: list[tuple[Union[complex, np.ndarray], Union[complex, np.ndarray]]], omega: float, requested_paths: list[tuple], project_real: bool = False, ) -> AutogradFieldMap: """ Static helper to compute VJPs from parameters using the analytical chain rule. Parameters - dJ_deps_complex: Complex adjoint sensitivity w.r.t. epsilon at a single frequency. - poles_vals: Sequence of (a_i, c_i) pole parameters to differentiate with respect to. - omega: Angular frequency for this VJP evaluation. - requested_paths: Paths requested by the caller; used to filter outputs. - project_real: If True, project pole-parameter VJPs to their real part. Use True for uniform PoleResidue to match real-valued objectives; use False for CustomPoleResidue where parameters are complex and complex VJPs are required. """ jw = 1j * omega vjps = {} if ("eps_inf",) in requested_paths: vjps[("eps_inf",)] = np.real(dJ_deps_complex) for i, (a_val, c_val) in enumerate(poles_vals): if any(path[1] == i for path in requested_paths if path[0] == "poles"): if ("poles", i, 0) in requested_paths: deps_da = c_val / (jw + a_val) ** 2 dJ_da = dJ_deps_complex * deps_da vjps[("poles", i, 0)] = np.real(dJ_da) if project_real else dJ_da if ("poles", i, 1) in requested_paths: deps_dc = -1 / (jw + a_val) dJ_dc = dJ_deps_complex * deps_dc vjps[("poles", i, 1)] = np.real(dJ_dc) if project_real else dJ_dc return vjps def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute adjoint derivatives by preparing scalar data and calling the static helper.""" dJ_deps_complex = self._derivative_eps_complex_volume( E_der_map=derivative_info.E_der_map, bounds=derivative_info.bounds, ) poles_vals = [(complex(a), complex(c)) for a, c in self.poles] freqs = dJ_deps_complex.coords["f"].values vjps_total = {} for freq in freqs: dJ_deps_complex_f = dJ_deps_complex.sel(f=freq) vjps_f = self._get_vjps_from_params( dJ_deps_complex=complex(dJ_deps_complex_f), poles_vals=poles_vals, omega=2 * np.pi * freq, requested_paths=derivative_info.paths, project_real=True, ) for path, vjp in vjps_f.items(): if path not in vjps_total: vjps_total[path] = vjp else: vjps_total[path] += vjp return vjps_total @classmethod def _real_partial_fraction_decomposition( cls, a: np.ndarray, b: np.ndarray, tol: pd.PositiveFloat = 1e-2 ) -> tuple[list[tuple[Complex, Complex]], np.ndarray]: """Computes the complex conjugate pole residue pairs given a rational expression with real coefficients. Parameters ---------- a : np.ndarray Coefficients of the numerator polynomial in increasing monomial order. b : np.ndarray Coefficients of the denominator polynomial in increasing monomial order. tol : pd.PositiveFloat Tolerance for pole finding. Two poles are considered equal, if their spacing is less than ``tol``. Returns ------- tuple[list[tuple[Complex, Complex]], np.ndarray] The list of complex conjugate poles and their associated residues. The second element of the ``tuple`` is an array of coefficients representing any direct polynomial term. """ from scipy import signal if a.ndim != 1 or np.any(np.iscomplex(a)): raise ValidationError( "Numerator coefficients must be a one-dimensional array of real numbers." ) if b.ndim != 1 or np.any(np.iscomplex(b)): raise ValidationError( "Denominator coefficients must be a one-dimensional array of real numbers." ) # Compute residues and poles using scipy (r, p, k) = signal.residue(np.flip(a), np.flip(b), tol=tol, rtype="avg") # Assuming real coefficients for the polynomials, the poles should be real or come as # complex conjugate pairs r_filtered = [] p_filtered = [] for res, (idx, pole) in zip(list(r), enumerate(list(p))): # Residue equal to zero interpreted as rational expression was not # in simplest form. So skip this pole. if res == 0: continue # Causal and stability check if np.real(pole) > 0: raise ValidationError("Transfer function is invalid. It is non-causal.") # Check for higher order pole, which come in consecutive order if idx > 0 and p[idx - 1] == pole: raise ValidationError( "Transfer function is invalid. A higher order pole was detected. Try reducing ``tol``, " "or ensure that the rational expression does not have repeated poles. " ) if np.imag(pole) == 0: r_filtered.append(res / 2) p_filtered.append(pole) else: pair_found = len(np.argwhere(np.array(p) == np.conj(pole))) == 1 if not pair_found: raise ValueError( "Failed to find complex-conjugate of pole in poles computed by SciPy." ) previously_added = len(np.argwhere(np.array(p_filtered) == np.conj(pole))) == 1 if not previously_added: r_filtered.append(res) p_filtered.append(pole) poles_residues = list(zip(p_filtered, r_filtered)) k_increasing_order = np.flip(k) return (poles_residues, k_increasing_order)
[docs] @classmethod def from_admittance_coeffs( cls, a: np.ndarray, b: np.ndarray, eps_inf: pd.PositiveFloat = 1, pole_tol: pd.PositiveFloat = 1e-2, ) -> PoleResidue: """Construct a :class:`.PoleResidue` model from an admittance function defining the relationship between the electric field and the polarization current density in the Laplace domain. Parameters ---------- a : np.ndarray Coefficients of the numerator polynomial in increasing monomial order. b : np.ndarray Coefficients of the denominator polynomial in increasing monomial order. eps_inf: pd.PositiveFloat The relative permittivity at infinite frequency. pole_tol: pd.PositiveFloat Tolerance for the pole finding algorithm in Hertz. Two poles are considered equal, if their spacing is closer than ``pole_tol`. Returns ------- :class:`.PoleResidue` The pole residue equivalent. Notes ----- The supplied admittance function relates the electric field to the polarization current density in the Laplace domain and is equivalent to a frequency-dependent complex conductivity :math:`\\sigma(\\omega)`. .. math:: J_p(s) = Y(s)E(s) .. math:: Y(s) = \\frac{a_0 + a_1 s + \\dots + a_M s^M}{b_0 + b_1 s + \\dots + b_N s^N} An equivalent :class:`.PoleResidue` medium is constructed using an equivalent frequency-dependent complex permittivity defined as .. math:: \\epsilon(s) = \\epsilon_\\infty - \\frac{1}{\\epsilon_0 s} \\frac{a_0 + a_1 s + \\dots + a_M s^M}{b_0 + b_1 s + \\dots + b_N s^N}. """ if a.ndim != 1 or np.any(np.logical_or(np.iscomplex(a), a < 0)): raise ValidationError( "Numerator coefficients must be a one-dimensional array of non-negative real numbers." ) if b.ndim != 1 or np.any(np.logical_or(np.iscomplex(b), b < 0)): raise ValidationError( "Denominator coefficients must be a one-dimensional array of non-negative real numbers." ) # Trim any trailing zeros, so that length corresponds with polynomial order a = np.trim_zeros(a, "b") b = np.trim_zeros(b, "b") # Validate that transfer function will result in a proper transfer function, once converted to # the complex permittivity version # Let q equal the order of the numerator polynomial, and p equal the order # of the denominator polynomal. Then, q < p is strictly proper rational transfer function (RTF) # q <= p is a proper RTF, and q > p is an improper RTF. q = len(a) - 1 p = len(b) - 1 if q > p + 1: raise ValidationError( "Transfer function is improper, the order of the numerator polynomial must be at most " "one greater than the order of the denominator polynomial." ) # Modify the transfer function defining a complex conductivity to match the complex # frequency-dependent portion of the pole residue model # Meaning divide by -j*omega*epsilon (s*epsilon) b = np.concatenate(([0], b * EPSILON_0)) poles_and_residues, k = cls._real_partial_fraction_decomposition( a=a, b=b, tol=pole_tol * 2 * np.pi ) # A direct polynomial term of zeroth order is interpreted as an additional contribution to eps_inf. # So we only handle that special case. if len(k) == 1: if np.iscomplex(k[0]) or k[0] < 0: raise ValidationError( "Transfer function is invalid. Direct polynomial term must be real and positive for " "conversion to an equivalent 'PoleResidue' medium." ) # A pure capacitance will translate to an increased permittivity at infinite frequency. eps_inf = eps_inf + k[0] pole_residue_from_transfer = PoleResidue(eps_inf=eps_inf, poles=poles_and_residues) # Check passivity ang_freqs = PoleResidue._imag_ep_extrema_with_samples(pole_residue_from_transfer) freq_list = PoleResidue.angular_freq_to_Hz(ang_freqs) ep = pole_residue_from_transfer.eps_model(freq_list) # filter `NAN` in case some of freq_list are exactly at the pole frequency ep = ep[~np.isnan(ep)] if np.any(np.imag(ep) < -fp_eps): log.warning( "Generated 'PoleResidue' medium is not passive. Please raise an issue on the " "Tidy3d frontend with this message and some information about your " "simulation setup and we will investigate." ) return pole_residue_from_transfer
[docs] class CustomPoleResidue(CustomDispersiveMedium, PoleResidue): """A spatially varying dispersive medium described by the pole-residue pair model. Notes ----- In this method, the frequency-dependent permittivity :math:`\\epsilon(\\omega)` is expressed as a sum of resonant material poles _`[1]`. .. math:: \\epsilon(\\omega) = \\epsilon_\\infty - \\sum_i \\left[\\frac{c_i}{j \\omega + a_i} + \\frac{c_i^*}{j \\omega + a_i^*}\\right] For each of these resonant poles identified by the index :math:`i`, an auxiliary differential equation is used to relate the auxiliary current :math:`J_i(t)` to the applied electric field :math:`E(t)`. The sum of all these auxiliary current contributions describes the total dielectric response of the material. .. math:: \\frac{d}{dt} J_i (t) - a_i J_i (t) = \\epsilon_0 c_i \\frac{d}{dt} E (t) Hence, the computational cost increases with the number of poles. **References** .. [1] M. Han, R.W. Dutton and S. Fan, IEEE Microwave and Wireless Component Letters, 16, 119 (2006). .. TODO add links to notebooks using this. Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(np.ones((5, 6, 7)), coords=coords) >>> a1 = SpatialDataArray(-np.random.random((5, 6, 7)), coords=coords) >>> c1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> a2 = SpatialDataArray(-np.random.random((5, 6, 7)), coords=coords) >>> c2 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> pole_res = CustomPoleResidue(eps_inf=eps_inf, poles=[(a1, c1), (a2, c2)]) >>> eps = pole_res.eps_model(200e12) See Also -------- **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) poles: tuple[tuple[CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated], ...] = ( pd.Field( (), title="Poles", description="Tuple of complex-valued (:math:`a_i, c_i`) poles for the model.", units=(RADPERSEC, RADPERSEC), ) ) _no_nans_eps_inf = validate_no_nans("eps_inf") _no_nans_poles = validate_no_nans("poles") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("poles") @pd.validator("eps_inf", always=True) def _eps_inf_positive(cls, val): """eps_inf must be positive""" if not CustomDispersiveMedium._validate_isreal_dataarray(val): raise SetupError("'eps_inf' must be real.") if np.any(_get_numpy_array(val) < 0): raise SetupError("'eps_inf' must be positive.") return val @pd.validator("poles", always=True) @skip_if_fields_missing(["eps_inf"]) def _poles_correct_shape(cls, val, values): """poles must have the same shape.""" for coeffs in val: for coeff in coeffs: if not _check_same_coordinates(coeff, values["eps_inf"]): raise SetupError( "All pole coefficients 'a' and 'c' must have the same coordinates; " "The coordinates must also be consistent with 'eps_inf'." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if not self.eps_inf.is_uniform: return False for coeffs in self.poles: for coeff in coeffs: if not coeff.is_uniform: return False return True
[docs] def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = PoleResidue.eps_model(self, frequency) return (eps, eps, eps)
[docs] def poles_on_grid(self, coords: Coords) -> tuple[tuple[ArrayComplex3D, ArrayComplex3D], ...]: """Spatial profile of poles interpolated at the supplied coordinates. Parameters ---------- coords : :class:`.Coords` The grid point coordinates over which interpolation is performed. Returns ------- Tuple[Tuple[ArrayComplex3D, ArrayComplex3D], ...] The poles interpolated at the supplied coordinate. """ def fun_interp(input_data: SpatialDataArray) -> ArrayComplex3D: return _get_numpy_array(coords.spatial_interp(input_data, self.interp_method)) return tuple((fun_interp(a), fun_interp(c)) for (a, c) in self.poles)
[docs] @classmethod def from_medium(cls, medium: CustomMedium) -> CustomPoleResidue: """Convert a :class:`.CustomMedium` to a pole residue model. Parameters ---------- medium: :class:`.CustomMedium` The medium with permittivity and conductivity to convert. Returns ------- :class:`.CustomPoleResidue` The pole residue equivalent. """ poles = [(_zeros_like(medium.conductivity), medium.conductivity / (2 * EPSILON_0))] medium_dict = medium.dict(exclude={"type", "eps_dataset", "permittivity", "conductivity"}) medium_dict.update({"eps_inf": medium.permittivity, "poles": poles}) return CustomPoleResidue.parse_obj(medium_dict)
[docs] def to_medium(self) -> CustomMedium: """Convert to a :class:`.CustomMedium`. Requires the pole residue model to only have a pole at 0 frequency, corresponding to a constant conductivity term. Returns ------- :class:`.CustomMedium` The non-dispersive equivalent with constant permittivity and conductivity. """ res = 0 for a, c in self.poles: if np.any(abs(_get_numpy_array(a)) > fp_eps): raise ValidationError( "Cannot convert dispersive 'CustomPoleResidue' to 'CustomMedium'." ) res = res + (c + np.conj(c)) / 2 sigma = res * 2 * EPSILON_0 self_dict = self.dict(exclude={"type", "eps_inf", "poles"}) self_dict.update({"permittivity": self.eps_inf, "conductivity": np.real(sigma)}) return CustomMedium.parse_obj(self_dict)
@cached_property def loss_upper_bound(self) -> float: """Not implemented yet.""" raise SetupError("To be implemented.") def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomPoleResidue CustomPoleResidue with reduced data. """ if not self.eps_inf.does_cover(bounds=bounds): log.warning("eps_inf spatial data array does not fully cover the requested region.") eps_inf_reduced = self.eps_inf.sel_inside(bounds=bounds) poles_reduced = [] for pole, residue in self.poles: if not pole.does_cover(bounds=bounds): log.warning("Pole spatial data array does not fully cover the requested region.") if not residue.does_cover(bounds=bounds): log.warning("Residue spatial data array does not fully cover the requested region.") poles_reduced.append((pole.sel_inside(bounds), residue.sel_inside(bounds))) return self.updated_copy(eps_inf=eps_inf_reduced, poles=poles_reduced) def _derivative_field_cmp( self, E_der_map: ElectromagneticFieldDataset, spatial_data: CustomSpatialDataTypeAnnotated, dim: str, freqs=None, component: str = "complex", ) -> np.ndarray: """Compatibility wrapper for derivative computation. Accepts the extended signature used by other custom media ( e.g., `CustomMedium._derivative_field_cmp`) while delegating the actual computation to the base implementation that only depends on `E_der_map`, `spatial_data`, and `dim`. Parameters `freqs` and `component` are ignored for this model since the derivative is taken with respect to the complex permittivity directly. """ return super()._derivative_field_cmp( E_der_map=E_der_map, spatial_data=spatial_data, dim=dim ) def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute adjoint derivatives by preparing array data and calling the static helper.""" # accumulate complex-valued derivatives across xyz; start as complex to avoid casting issues dJ_deps_complex = 0.0 + 0.0j for dim in "xyz": dJ_deps_complex += self._derivative_field_cmp( E_der_map=derivative_info.E_der_map, spatial_data=self.eps_inf, dim=dim, freqs=derivative_info.frequencies, component="complex", ) poles_vals = [ (np.array(a.values, dtype=complex), np.array(c.values, dtype=complex)) for a, c in self.poles ] vjps_total = {} for freq in derivative_info.frequencies: vjps_f = PoleResidue._get_vjps_from_params( dJ_deps_complex=dJ_deps_complex, poles_vals=poles_vals, omega=2 * np.pi * freq, requested_paths=derivative_info.paths, project_real=False, ) for path, vjp in vjps_f.items(): if path not in vjps_total: vjps_total[path] = vjp else: vjps_total[path] += vjp return vjps_total
[docs] class Sellmeier(DispersiveMedium): """A dispersive medium described by the Sellmeier model. Notes ----- The frequency-dependence of the refractive index is described by: .. math:: n(\\lambda)^2 = 1 + \\sum_i \\frac{B_i \\lambda^2}{\\lambda^2 - C_i} For lossless, weakly dispersive materials, the best way to incorporate the dispersion without doing complicated fits and without slowing the simulation down significantly is to provide the value of the refractive index dispersion :math:`\\frac{dn}{d\\lambda}` in :meth:`tidy3d.Sellmeier.from_dispersion`. The value is assumed to be at the central frequency or wavelength (whichever is provided), and a one-pole model for the material is generated. Example ------- >>> sellmeier_medium = Sellmeier(coeffs=[(1,2), (3,4)]) >>> eps = sellmeier_medium.eps_model(200e12) See Also -------- :class:`CustomSellmeier` A spatially varying dispersive medium described by the Sellmeier model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ coeffs: tuple[tuple[float, pd.PositiveFloat], ...] = pd.Field( title="Coefficients", description="List of Sellmeier (:math:`B_i, C_i`) coefficients.", units=(None, MICROMETER + "^2"), ) @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if `allow_gain` is False.""" if values.get("allow_gain"): return val for B, _ in val: if B < 0: raise ValidationError( "For passive medium, 'B_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @pd.validator("modulation_spec", always=True) def _validate_permittivity_modulation(cls, val): """Assert modulated permittivity cannot be <= 0.""" if val is None or val.permittivity is None: return val min_eps_inf = 1.0 if min_eps_inf - val.permittivity.max_modulation <= 0: raise ValidationError( "The minimum permittivity value with modulation applied was found to be negative." ) return val _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation() def _n_model(self, frequency: float) -> complex: """Complex-valued refractive index as a function of frequency.""" wvl = C_0 / np.array(frequency) wvl2 = wvl**2 n_squared = 1.0 for B, C in self.coeffs: n_squared = n_squared + B * wvl2 / (wvl2 - C) return np.sqrt(n_squared + 0j)
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" n = self._n_model(frequency) return AbstractMedium.nk_to_eps_complex(n)
def _pole_residue_dict(self) -> dict: """Dict representation of Medium as a pole-residue model""" poles = [] eps_inf = _ones_like(self.coeffs[0][0]) for B, C in self.coeffs: # for small C, it's equivalent to modifying eps_inf if np.any(np.isclose(_get_numpy_array(C), 0)): eps_inf += B else: beta = 2 * np.pi * C_0 / np.sqrt(C) alpha = -0.5 * beta * B a = 1j * beta c = 1j * alpha poles.append((a, c)) return { "eps_inf": eps_inf, "poles": poles, "frequency_range": self.frequency_range, "name": self.name, } @staticmethod def _from_dispersion_to_coeffs(n: float, freq: float, dn_dwvl: float): """Compute Sellmeier coefficients from dispersion.""" wvl = C_0 / np.array(freq) nsqm1 = n**2 - 1 c_coeff = -(wvl**3) * n * dn_dwvl / (nsqm1 - wvl * n * dn_dwvl) b_coeff = (wvl**2 - c_coeff) / wvl**2 * nsqm1 return [(b_coeff, c_coeff)]
[docs] @classmethod def from_dispersion(cls, n: float, freq: float, dn_dwvl: float = 0, **kwargs): """Convert ``n`` and wavelength dispersion ``dn_dwvl`` values at frequency ``freq`` to a single-pole :class:`Sellmeier` medium. Parameters ---------- n : float Real part of refractive index. Must be larger than or equal to one. dn_dwvl : float = 0 Derivative of the refractive index with wavelength (1/um). Must be negative. freq : float Frequency at which ``n`` and ``dn_dwvl`` are sampled. Returns ------- :class:`Sellmeier` Single-pole Sellmeier medium with the prvoided refractive index and index dispersion valuesat at the prvoided frequency. """ if dn_dwvl >= 0: raise ValidationError("Dispersion ``dn_dwvl`` must be smaller than zero.") if n < 1: raise ValidationError("Refractive index ``n`` cannot be smaller than one.") return cls(coeffs=cls._from_dispersion_to_coeffs(n, freq, dn_dwvl), **kwargs)
def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Adjoint derivatives for Sellmeier params via TJP through eps_model().""" freqs, vec = self._tjp_inputs(derivative_info) N = len(self.coeffs) if N == 0: return {} # pack parameters into flat vector [B..., C...] B0 = np.array([float(b) for (b, _c) in self.coeffs]) C0 = np.array([float(c) for (_b, c) in self.coeffs]) theta0 = np.concatenate([B0, C0]) def _eps_vec(theta): B = theta[:N] C = theta[N : 2 * N] coeffs = tuple((B[i], C[i]) for i in range(N)) eps = self.updated_copy(coeffs=coeffs, validate=False).eps_model(freqs) return pack_complex_vec(eps) g = self._tjp_grad(theta0, _eps_vec, vec) mapping = [] mapping += [(("coeffs", i, 0), i) for i in range(N)] mapping += [(("coeffs", i, 1), N + i) for i in range(N)] return self._map_grad_real(g, derivative_info.paths, mapping) @staticmethod def _lam2(freq): return (C_0 / freq) ** 2 @staticmethod def _sellmeier_den(lam2, C): return lam2 - C # frequency weights for custom Sellmeier @staticmethod def _w_B(freq, C): lam2 = Sellmeier._lam2(freq) return lam2 / Sellmeier._sellmeier_den(lam2, C) @staticmethod def _w_C(freq, B, C): lam2 = Sellmeier._lam2(freq) den = Sellmeier._sellmeier_den(lam2, C) return B * lam2 / (den**2)
[docs] class CustomSellmeier(CustomDispersiveMedium, Sellmeier): """A spatially varying dispersive medium described by the Sellmeier model. Notes ----- The frequency-dependence of the refractive index is described by: .. math:: n(\\lambda)^2 = 1 + \\sum_i \\frac{B_i \\lambda^2}{\\lambda^2 - C_i} Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> b1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> c1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> sellmeier_medium = CustomSellmeier(coeffs=[(b1,c1),]) >>> eps = sellmeier_medium.eps_model(200e12) See Also -------- :class:`Sellmeier` A dispersive medium described by the Sellmeier model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ coeffs: tuple[tuple[CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated], ...] = ( pd.Field( ..., title="Coefficients", description="List of Sellmeier (:math:`B_i, C_i`) coefficients.", units=(None, MICROMETER + "^2"), ) ) _no_nans = validate_no_nans("coeffs") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("coeffs") @pd.validator("coeffs", always=True) def _correct_shape_and_sign(cls, val): """every term in coeffs must have the same shape, and B>=0 and C>0.""" if len(val) == 0: return val for B, C in val: if not _check_same_coordinates(B, val[0][0]) or not _check_same_coordinates( C, val[0][0] ): raise SetupError("Every term in 'coeffs' must have the same coordinates.") if not CustomDispersiveMedium._validate_isreal_dataarray_tuple((B, C)): raise SetupError("'B' and 'C' must be real.") if np.any(_get_numpy_array(C) <= 0): raise SetupError("'C' must be positive.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if `allow_gain` is False.""" if values.get("allow_gain"): return val for B, _ in val: if np.any(_get_numpy_array(B) < 0): raise ValidationError( "For passive medium, 'B_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @pd.validator("coeffs", always=True) def _coeffs_C_all_near_zero_or_much_greater(cls, val): """We restrict either all C~=0, or very different from 0.""" for _, C in val: c_array_near_zero = np.isclose(_get_numpy_array(C), 0) if np.any(c_array_near_zero) and not np.all(c_array_near_zero): raise SetupError( "Coefficients 'C_i' are restricted to be " "either all near zero or much greater than 0." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" for coeffs in self.coeffs: for coeff in coeffs: if not coeff.is_uniform: return False return True def _pole_residue_dict(self) -> dict: """Dict representation of Medium as a pole-residue model.""" poles_dict = Sellmeier._pole_residue_dict(self) if len(self.coeffs) > 0: poles_dict.update({"eps_inf": _ones_like(self.coeffs[0][0])}) return poles_dict
[docs] def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = Sellmeier.eps_model(self, frequency) # if `eps` is simply a float, convert it to a SpatialDataArray ; this is possible when # `coeffs` is empty. if isinstance(eps, (int, float, complex)): eps = SpatialDataArray(eps * np.ones((1, 1, 1)), coords={"x": [0], "y": [0], "z": [0]}) return (eps, eps, eps)
[docs] @classmethod def from_dispersion( cls, n: CustomSpatialDataType, freq: float, dn_dwvl: CustomSpatialDataType, interp_method="nearest", **kwargs, ): """Convert ``n`` and wavelength dispersion ``dn_dwvl`` values at frequency ``freq`` to a single-pole :class:`CustomSellmeier` medium. Parameters ---------- n : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] Real part of refractive index. Must be larger than or equal to one. dn_dwvl : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] Derivative of the refractive index with wavelength (1/um). Must be negative. freq : float Frequency at which ``n`` and ``dn_dwvl`` are sampled. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain permittivity values that are not supplied at the Yee grids. Returns ------- :class:`.CustomSellmeier` Single-pole Sellmeier medium with the prvoided refractive index and index dispersion valuesat at the prvoided frequency. """ if not _check_same_coordinates(n, dn_dwvl): raise ValidationError("'n' and'dn_dwvl' must have the same dimension.") if np.any(_get_numpy_array(dn_dwvl) >= 0): raise ValidationError("Dispersion ``dn_dwvl`` must be smaller than zero.") if np.any(_get_numpy_array(n) < 1): raise ValidationError("Refractive index ``n`` cannot be smaller than one.") return cls( coeffs=cls._from_dispersion_to_coeffs(n, freq, dn_dwvl), interp_method=interp_method, **kwargs, )
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomSellmeier CustomSellmeier with reduced data. """ coeffs_reduced = [] for b_coeff, c_coeff in self.coeffs: if not b_coeff.does_cover(bounds=bounds): log.warning( "Sellmeier B coeff spatial data array does not fully cover the requested region." ) if not c_coeff.does_cover(bounds=bounds): log.warning( "Sellmeier C coeff spatial data array does not fully cover the requested region." ) coeffs_reduced.append((b_coeff.sel_inside(bounds), c_coeff.sel_inside(bounds))) return self.updated_copy(coeffs=coeffs_reduced) def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Adjoint derivatives for CustomSellmeier via analytic chain rule. Uses the complex permittivity derivative aggregated over spatial dims and applies frequency-dependent weights per Sellmeier term. """ if len(self.coeffs) == 0: return {} # accumulate complex-valued sensitivity across xyz using B's grid as reference ref = self.coeffs[0][0] dJ = self._sum_complex_eps_sensitivity(derivative_info, spatial_ref=ref) # prepare gradients map grads: AutogradFieldMap = {} # iterate coefficients and requested paths for i, (B_da, C_da) in enumerate(self.coeffs): need_B = ("coeffs", i, 0) in derivative_info.paths need_C = ("coeffs", i, 1) in derivative_info.paths if not (need_B or need_C): continue Bv = np.array(B_da.values, dtype=float) Cv = np.array(C_da.values, dtype=float) gB = 0.0 if not need_B else np.zeros_like(Bv, dtype=float) gC = 0.0 if not need_C else np.zeros_like(Cv, dtype=float) if need_B: gB = gB + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, Cv=Cv: Sellmeier._w_B(f, Cv), ) if need_C: gC = gC + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, Bv=Bv, Cv=Cv: Sellmeier._w_C(f, Bv, Cv), ) if need_B: grads[("coeffs", i, 0)] = gB if need_C: grads[("coeffs", i, 1)] = gC return grads
[docs] class Lorentz(DispersiveMedium): """A dispersive medium described by the Lorentz model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty + \\sum_i \\frac{\\Delta\\epsilon_i f_i^2}{f_i^2 - 2jf\\delta_i - f^2} Example ------- >>> lorentz_medium = Lorentz(eps_inf=2.0, coeffs=[(1,2,3), (4,5,6)]) >>> eps = lorentz_medium.eps_model(200e12) See Also -------- **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: pd.PositiveFloat = pd.Field( 1.0, title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: tuple[tuple[float, float, pd.NonNegativeFloat], ...] = pd.Field( ..., title="Coefficients", description="List of (:math:`\\Delta\\epsilon_i, f_i, \\delta_i`) values for model.", units=(PERMITTIVITY, HERTZ, HERTZ), ) @pd.validator("coeffs", always=True) def _coeffs_unequal_f_delta(cls, val): """f**2 and delta**2 cannot be exactly the same.""" for _, f, delta in val: if f**2 == delta**2: raise SetupError("'f' and 'delta' cannot take equal values.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" if values.get("allow_gain"): return val for del_ep, _, _ in val: if del_ep < 0: raise ValidationError( "For passive medium, 'Delta epsilon_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val _validate_permittivity_modulation = DispersiveMedium._permittivity_modulation_validation() _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation()
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" eps = self.eps_inf + 0.0j for de, f, delta in self.coeffs: eps = eps + (de * f**2) / (f**2 - 2j * frequency * delta - frequency**2) return eps
def _pole_residue_dict(self) -> dict: """Dict representation of Medium as a pole-residue model.""" poles = [] for de, f, delta in self.coeffs: w = 2 * np.pi * f d = 2 * np.pi * delta if self._all_larger(d**2, w**2): r = np.sqrt(d * d - w * w) + 0j a0 = -d + r c0 = de * w**2 / 4 / r a1 = -d - r c1 = -c0 poles.extend(((a0, c0), (a1, c1))) else: r = np.sqrt(w * w - d * d) a = -d - 1j * r c = 1j * de * w**2 / 2 / r poles.append((a, c)) return { "eps_inf": self.eps_inf, "poles": poles, "frequency_range": self.frequency_range, "name": self.name, } @staticmethod def _all_larger(coeff_a, coeff_b) -> bool: """``coeff_a`` and ``coeff_b`` can be either float or SpatialDataArray.""" if isinstance(coeff_a, CustomSpatialDataType.__args__): return np.all(_get_numpy_array(coeff_a) > _get_numpy_array(coeff_b)) return coeff_a > coeff_b
[docs] @classmethod def from_nk(cls, n: float, k: float, freq: float, **kwargs): """Convert ``n`` and ``k`` values at frequency ``freq`` to a single-pole Lorentz medium. Parameters ---------- n : float Real part of refractive index. k : float = 0 Imaginary part of refrative index. freq : float Frequency to evaluate permittivity at (Hz). kwargs: dict Keyword arguments passed to the medium construction. Returns ------- :class:`Lorentz` Lorentz medium having refractive index n+ik at frequency ``freq``. """ eps_complex = AbstractMedium.nk_to_eps_complex(n, k) eps_r, eps_i = eps_complex.real, eps_complex.imag if eps_r >= 1: log.warning( "For 'permittivity>=1', it is more computationally efficient to " "use a dispersiveless medium constructed from 'Medium.from_nk()'." ) # first, lossless medium if isclose(eps_i, 0): if eps_r < 1: fp = np.sqrt((eps_r - 1) / (eps_r - 2)) * freq return cls( eps_inf=1, coeffs=[ (1, fp, 0), ], ) return cls( eps_inf=1, coeffs=[ ((eps_r - 1) / 2, np.sqrt(2) * freq, 0), ], ) # lossy medium alpha = (eps_r - 1) / eps_i delta_p = freq / 2 / (alpha**2 - alpha + 1) fp = np.sqrt((alpha**2 + 1) / (alpha**2 - alpha + 1)) * freq return cls( eps_inf=1, coeffs=[ (eps_i, fp, delta_p), ], **kwargs, )
def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Adjoint derivatives for Lorentz params via TJP through eps_model().""" f, vec = self._tjp_inputs(derivative_info) N = len(self.coeffs) if N == 0 and ("eps_inf",) not in derivative_info.paths: return {} # pack into flat [eps_inf, de..., f0..., delta...] eps_inf0 = float(self.eps_inf) de0 = np.array([float(de) for (de, _f, _d) in self.coeffs]) if N else np.array([]) f0 = np.array([float(fi) for (_de, fi, _d) in self.coeffs]) if N else np.array([]) d0 = np.array([float(dd) for (_de, _f, dd) in self.coeffs]) if N else np.array([]) theta0 = np.concatenate([np.array([eps_inf0]), de0, f0, d0]) def _eps_vec(theta): eps_inf = theta[0] de = theta[1 : 1 + N] fi = theta[1 + N : 1 + 2 * N] dd = theta[1 + 2 * N : 1 + 3 * N] coeffs = tuple((de[i], fi[i], dd[i]) for i in range(N)) eps = self.updated_copy(eps_inf=eps_inf, coeffs=coeffs, validate=False).eps_model(f) return pack_complex_vec(eps) g = self._tjp_grad(theta0, _eps_vec, vec) mapping = [(("eps_inf",), 0)] base = 1 mapping += [(("coeffs", i, 0), base + i) for i in range(N)] mapping += [(("coeffs", i, 1), base + N + i) for i in range(N)] mapping += [(("coeffs", i, 2), base + 2 * N + i) for i in range(N)] return self._map_grad_real(g, derivative_info.paths, mapping) @staticmethod def _den(freq, f0, delta): return (f0**2) - 2j * (freq * delta) - (freq**2) # frequency weights for custom Lorentz @staticmethod def _w_de(freq, f0, delta): return (f0**2) / Lorentz._den(freq, f0, delta) @staticmethod def _w_f0(freq, de, f0, delta): den = Lorentz._den(freq, f0, delta) return (2.0 * de * f0 * (den - f0**2)) / (den**2) @staticmethod def _w_delta(freq, de, f0, delta): den = Lorentz._den(freq, f0, delta) return (2j * freq * de * (f0**2)) / (den**2)
[docs] class CustomLorentz(CustomDispersiveMedium, Lorentz): """A spatially varying dispersive medium described by the Lorentz model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty + \\sum_i \\frac{\\Delta\\epsilon_i f_i^2}{f_i^2 - 2jf\\delta_i - f^2} Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(np.ones((5, 6, 7)), coords=coords) >>> d_epsilon = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> f = SpatialDataArray(1+np.random.random((5, 6, 7)), coords=coords) >>> delta = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> lorentz_medium = CustomLorentz(eps_inf=eps_inf, coeffs=[(d_epsilon,f,delta),]) >>> eps = lorentz_medium.eps_model(200e12) See Also -------- :class:`CustomPoleResidue`: A spatially varying dispersive medium described by the pole-residue pair model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: tuple[ tuple[ CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated, ], ..., ] = pd.Field( ..., title="Coefficients", description="List of (:math:`\\Delta\\epsilon_i, f_i, \\delta_i`) values for model.", units=(PERMITTIVITY, HERTZ, HERTZ), ) _no_nans_eps_inf = validate_no_nans("eps_inf") _no_nans_coeffs = validate_no_nans("coeffs") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("coeffs") @pd.validator("eps_inf", always=True) def _eps_inf_positive(cls, val): """eps_inf must be positive""" if not CustomDispersiveMedium._validate_isreal_dataarray(val): raise SetupError("'eps_inf' must be real.") if np.any(_get_numpy_array(val) < 0): raise SetupError("'eps_inf' must be positive.") return val @pd.validator("coeffs", always=True) def _coeffs_unequal_f_delta(cls, val): """f and delta cannot be exactly the same. Not needed for now because we have a more strict validator `_coeffs_delta_all_smaller_or_larger_than_fi`. """ return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["eps_inf"]) def _coeffs_correct_shape(cls, val, values): """coeffs must have consistent shape.""" for de, f, delta in val: if ( not _check_same_coordinates(de, values["eps_inf"]) or not _check_same_coordinates(f, values["eps_inf"]) or not _check_same_coordinates(delta, values["eps_inf"]) ): raise SetupError( "All terms in 'coeffs' must have the same coordinates; " "The coordinates must also be consistent with 'eps_inf'." ) if not CustomDispersiveMedium._validate_isreal_dataarray_tuple((de, f, delta)): raise SetupError("All terms in 'coeffs' must be real.") return val @pd.validator("coeffs", always=True) def _coeffs_delta_all_smaller_or_larger_than_fi(cls, val): """We restrict either all f**2>delta**2 or all f**2<delta**2 for now.""" for _, f, delta in val: f2 = f**2 delta2 = delta**2 if not (Lorentz._all_larger(f2, delta2) or Lorentz._all_larger(delta2, f2)): raise SetupError( "Coefficients in 'coeffs' are restricted to have " "either all 'delta**2'<'f**2' or all 'delta**2'>'f**2'." ) return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" allow_gain = values.get("allow_gain") for del_ep, _, delta in val: if np.any(_get_numpy_array(delta) < 0): raise ValidationError("For stable medium, 'delta_i' must be non-negative.") if not allow_gain and np.any(_get_numpy_array(del_ep) < 0): raise ValidationError( "For passive medium, 'Delta epsilon_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if not self.eps_inf.is_uniform: return False for coeffs in self.coeffs: for coeff in coeffs: if not coeff.is_uniform: return False return True
[docs] def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = Lorentz.eps_model(self, frequency) return (eps, eps, eps)
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomLorentz CustomLorentz with reduced data. """ if not self.eps_inf.does_cover(bounds=bounds): log.warning("Eps inf spatial data array does not fully cover the requested region.") eps_inf_reduced = self.eps_inf.sel_inside(bounds=bounds) coeffs_reduced = [] for de, f, delta in self.coeffs: if not de.does_cover(bounds=bounds): log.warning( "Lorentz 'de' spatial data array does not fully cover the requested region." ) if not f.does_cover(bounds=bounds): log.warning( "Lorentz 'f' spatial data array does not fully cover the requested region." ) if not delta.does_cover(bounds=bounds): log.warning( "Lorentz 'delta' spatial data array does not fully cover the requested region." ) coeffs_reduced.append( (de.sel_inside(bounds), f.sel_inside(bounds), delta.sel_inside(bounds)) ) return self.updated_copy(eps_inf=eps_inf_reduced, coeffs=coeffs_reduced) def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Adjoint derivatives for CustomLorentz via analytic chain rule.""" # complex epsilon sensitivity over xyz aligned to eps_inf grid dJ = self._sum_complex_eps_sensitivity(derivative_info, spatial_ref=self.eps_inf) grads: AutogradFieldMap = {} # eps_inf path if ("eps_inf",) in derivative_info.paths: grads[("eps_inf",)] = np.real(dJ) # per-coefficient contributions for i, (de_da, f0_da, dl_da) in enumerate(self.coeffs): need_de = ("coeffs", i, 0) in derivative_info.paths need_f0 = ("coeffs", i, 1) in derivative_info.paths need_dl = ("coeffs", i, 2) in derivative_info.paths if not (need_de or need_f0 or need_dl): continue de = np.array(de_da.values, dtype=float) f0 = np.array(f0_da.values, dtype=float) dl = np.array(dl_da.values, dtype=float) g_de = 0.0 if not need_de else np.zeros_like(de, dtype=float) g_f0 = 0.0 if not need_f0 else np.zeros_like(f0, dtype=float) g_dl = 0.0 if not need_dl else np.zeros_like(dl, dtype=float) def _den(f, f0=f0, dl=dl): return Lorentz._den(f, f0, dl) if need_de: g_de = g_de + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, f0=f0, dl=dl: Lorentz._w_de(f, f0, dl), ) if need_f0: # d/d f0 of (de f0^2 / den) = (2 de f0 (den - f0^2)) / den^2 g_f0 = g_f0 + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, de=de, f0=f0, dl=dl: Lorentz._w_f0(f, de, f0, dl), ) if need_dl: # d/d delta of (de f0^2 / den) = (2 j f de f0^2) / den^2 g_dl = g_dl + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, de=de, f0=f0, dl=dl: Lorentz._w_delta(f, de, f0, dl), ) if need_de: grads[("coeffs", i, 0)] = g_de if need_f0: grads[("coeffs", i, 1)] = g_f0 if need_dl: grads[("coeffs", i, 2)] = g_dl return grads
[docs] class Drude(DispersiveMedium): """A dispersive medium described by the Drude model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty - \\sum_i \\frac{ f_i^2}{f^2 + jf\\delta_i} Example ------- >>> drude_medium = Drude(eps_inf=2.0, coeffs=[(1,2), (3,4)]) >>> eps = drude_medium.eps_model(200e12) See Also -------- :class:`CustomDrude`: A spatially varying dispersive medium described by the Drude model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: pd.PositiveFloat = pd.Field( 1.0, title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: tuple[tuple[float, pd.PositiveFloat], ...] = pd.Field( ..., title="Coefficients", description="List of (:math:`f_i, \\delta_i`) values for model.", units=(HERTZ, HERTZ), ) _validate_permittivity_modulation = DispersiveMedium._permittivity_modulation_validation() _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation()
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" eps = self.eps_inf + 0.0j for f, delta in self.coeffs: eps = eps - (f**2) / (frequency**2 + 1j * frequency * delta) return eps
# --- unified helpers for autograd + tests --- def _pole_residue_dict(self) -> dict: """Dict representation of Medium as a pole-residue model.""" poles = [] for f, delta in self.coeffs: w = 2 * np.pi * f d = 2 * np.pi * delta c0 = (w**2) / 2 / d + 0j c1 = -c0 a1 = -d + 0j if isinstance(c0, complex): a0 = 0j else: a0 = 0 * c0 poles.extend(((a0, c0), (a1, c1))) return { "eps_inf": self.eps_inf, "poles": poles, "frequency_range": self.frequency_range, "name": self.name, } def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Adjoint derivatives for Drude params via TJP through eps_model().""" f, vec = self._tjp_inputs(derivative_info) N = len(self.coeffs) if N == 0 and ("eps_inf",) not in derivative_info.paths: return {} # pack into flat [eps_inf, fp..., delta...] eps_inf0 = float(self.eps_inf) fp0 = np.array([float(fp) for (fp, _d) in self.coeffs]) if N else np.array([]) d0 = np.array([float(dd) for (_fp, dd) in self.coeffs]) if N else np.array([]) theta0 = np.concatenate([np.array([eps_inf0]), fp0, d0]) def _eps_vec(theta): eps_inf = theta[0] fp = theta[1 : 1 + N] dd = theta[1 + N : 1 + 2 * N] coeffs = tuple((fp[i], dd[i]) for i in range(N)) eps = self.updated_copy(eps_inf=eps_inf, coeffs=coeffs, validate=False).eps_model(f) return pack_complex_vec(eps) g = self._tjp_grad(theta0, _eps_vec, vec) mapping = [(("eps_inf",), 0)] base = 1 mapping += [(("coeffs", i, 0), base + i) for i in range(N)] mapping += [(("coeffs", i, 1), base + N + i) for i in range(N)] return self._map_grad_real(g, derivative_info.paths, mapping) @staticmethod def _den(freq, delta): return (freq**2) + 1j * (freq * delta) # frequency weights for custom Drude @staticmethod def _w_fp(freq, fp, delta): return -(2.0 * fp) / Drude._den(freq, delta) @staticmethod def _w_delta(freq, fp, delta): den = Drude._den(freq, delta) return (1j * freq * (fp**2)) / (den**2)
[docs] class CustomDrude(CustomDispersiveMedium, Drude): """A spatially varying dispersive medium described by the Drude model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty - \\sum_i \\frac{ f_i^2}{f^2 + jf\\delta_i} Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(np.ones((5, 6, 7)), coords=coords) >>> f1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> delta1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> drude_medium = CustomDrude(eps_inf=eps_inf, coeffs=[(f1,delta1),]) >>> eps = drude_medium.eps_model(200e12) See Also -------- :class:`Drude`: A dispersive medium described by the Drude model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: tuple[tuple[CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated], ...] = ( pd.Field( ..., title="Coefficients", description="List of (:math:`f_i, \\delta_i`) values for model.", units=(HERTZ, HERTZ), ) ) _no_nans_eps_inf = validate_no_nans("eps_inf") _no_nans_coeffs = validate_no_nans("coeffs") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("coeffs") @pd.validator("eps_inf", always=True) def _eps_inf_positive(cls, val): """eps_inf must be positive""" if not CustomDispersiveMedium._validate_isreal_dataarray(val): raise SetupError("'eps_inf' must be real.") if np.any(_get_numpy_array(val) < 0): raise SetupError("'eps_inf' must be positive.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["eps_inf"]) def _coeffs_correct_shape_and_sign(cls, val, values): """coeffs must have consistent shape and sign.""" for f, delta in val: if not _check_same_coordinates(f, values["eps_inf"]) or not _check_same_coordinates( delta, values["eps_inf"] ): raise SetupError( "All terms in 'coeffs' must have the same coordinates; " "The coordinates must also be consistent with 'eps_inf'." ) if not CustomDispersiveMedium._validate_isreal_dataarray_tuple((f, delta)): raise SetupError("All terms in 'coeffs' must be real.") if np.any(_get_numpy_array(delta) <= 0): raise SetupError("For stable medium, 'delta' must be positive.") return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if not self.eps_inf.is_uniform: return False for coeffs in self.coeffs: for coeff in coeffs: if not coeff.is_uniform: return False return True
[docs] def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = Drude.eps_model(self, frequency) return (eps, eps, eps)
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomDrude CustomDrude with reduced data. """ if not self.eps_inf.does_cover(bounds=bounds): log.warning("Eps inf spatial data array does not fully cover the requested region.") eps_inf_reduced = self.eps_inf.sel_inside(bounds=bounds) coeffs_reduced = [] for f, delta in self.coeffs: if not f.does_cover(bounds=bounds): log.warning( "Drude 'f' spatial data array does not fully cover the requested region." ) if not delta.does_cover(bounds=bounds): log.warning( "Drude 'delta' spatial data array does not fully cover the requested region." ) coeffs_reduced.append((f.sel_inside(bounds), delta.sel_inside(bounds))) return self.updated_copy(eps_inf=eps_inf_reduced, coeffs=coeffs_reduced) def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Adjoint derivatives for CustomDrude via analytic chain rule.""" dJ = self._sum_complex_eps_sensitivity(derivative_info, spatial_ref=self.eps_inf) grads: AutogradFieldMap = {} if ("eps_inf",) in derivative_info.paths: grads[("eps_inf",)] = np.real(dJ) for i, (fp_da, dl_da) in enumerate(self.coeffs): need_fp = ("coeffs", i, 0) in derivative_info.paths need_dl = ("coeffs", i, 1) in derivative_info.paths if not (need_fp or need_dl): continue fp = np.array(fp_da.values, dtype=float) dl = np.array(dl_da.values, dtype=float) g_fp = 0.0 if not need_fp else np.zeros_like(fp, dtype=float) g_dl = 0.0 if not need_dl else np.zeros_like(dl, dtype=float) if need_fp: g_fp = g_fp + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, fp=fp, dl=dl: Drude._w_fp(f, fp, dl), ) if need_dl: g_dl = g_dl + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, fp=fp, dl=dl: Drude._w_delta(f, fp, dl), ) if need_fp: grads[("coeffs", i, 0)] = g_fp if need_dl: grads[("coeffs", i, 1)] = g_dl return grads
[docs] class Debye(DispersiveMedium): """A dispersive medium described by the Debye model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty + \\sum_i \\frac{\\Delta\\epsilon_i}{1 - jf\\tau_i} Example ------- >>> debye_medium = Debye(eps_inf=2.0, coeffs=[(1,2),(3,4)]) >>> eps = debye_medium.eps_model(200e12) See Also -------- :class:`CustomDebye` A spatially varying dispersive medium described by the Debye model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: pd.PositiveFloat = pd.Field( 1.0, title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: tuple[tuple[float, pd.PositiveFloat], ...] = pd.Field( ..., title="Coefficients", description="List of (:math:`\\Delta\\epsilon_i, \\tau_i`) values for model.", units=(PERMITTIVITY, SECOND), ) @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if `allow_gain` is False.""" if values.get("allow_gain"): return val for del_ep, _ in val: if del_ep < 0: raise ValidationError( "For passive medium, 'Delta epsilon_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val _validate_permittivity_modulation = DispersiveMedium._permittivity_modulation_validation() _validate_conductivity_modulation = DispersiveMedium._conductivity_modulation_validation()
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" eps = self.eps_inf + 0.0j for de, tau in self.coeffs: eps = eps + de / (1 - 1j * frequency * tau) return eps
# --- unified helpers for autograd + tests --- def _pole_residue_dict(self): """Dict representation of Medium as a pole-residue model.""" poles = [] eps_inf = self.eps_inf for de, tau in self.coeffs: # for |tau| close to 0, it's equivalent to modifying eps_inf if np.any(abs(_get_numpy_array(tau)) < 1 / 2 / np.pi / LARGEST_FP_NUMBER): eps_inf = eps_inf + de else: a = -2 * np.pi / tau + 0j c = -0.5 * de * a poles.append((a, c)) return { "eps_inf": eps_inf, "poles": poles, "frequency_range": self.frequency_range, "name": self.name, } def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Adjoint derivatives for Debye params via TJP through eps_model().""" f, vec = self._tjp_inputs(derivative_info) N = len(self.coeffs) if N == 0 and ("eps_inf",) not in derivative_info.paths: return {} # pack into flat [eps_inf, de..., tau...] eps_inf0 = float(self.eps_inf) de0 = np.array([float(de) for (de, _t) in self.coeffs]) if N else np.array([]) tau0 = np.array([float(t) for (_de, t) in self.coeffs]) if N else np.array([]) theta0 = np.concatenate([np.array([eps_inf0]), de0, tau0]) def _eps_vec(theta): eps_inf = theta[0] de = theta[1 : 1 + N] tau = theta[1 + N : 1 + 2 * N] coeffs = tuple((de[i], tau[i]) for i in range(N)) eps = self.updated_copy(eps_inf=eps_inf, coeffs=coeffs, validate=False).eps_model(f) return pack_complex_vec(eps) g = self._tjp_grad(theta0, _eps_vec, vec) mapping = [(("eps_inf",), 0)] base = 1 mapping += [(("coeffs", i, 0), base + i) for i in range(N)] mapping += [(("coeffs", i, 1), base + N + i) for i in range(N)] return self._map_grad_real(g, derivative_info.paths, mapping) @staticmethod def _den(freq, tau): return 1 - 1j * (freq * tau) # frequency weights for custom Debye @staticmethod def _w_de(freq, tau): return 1.0 / Debye._den(freq, tau) @staticmethod def _w_tau(freq, de, tau): den = Debye._den(freq, tau) return (1j * freq * de) / (den**2)
[docs] class CustomDebye(CustomDispersiveMedium, Debye): """A spatially varying dispersive medium described by the Debye model. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(f) = \\epsilon_\\infty + \\sum_i \\frac{\\Delta\\epsilon_i}{1 - jf\\tau_i} Example ------- >>> x = np.linspace(-1, 1, 5) >>> y = np.linspace(-1, 1, 6) >>> z = np.linspace(-1, 1, 7) >>> coords = dict(x=x, y=y, z=z) >>> eps_inf = SpatialDataArray(1+np.random.random((5, 6, 7)), coords=coords) >>> eps1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> tau1 = SpatialDataArray(np.random.random((5, 6, 7)), coords=coords) >>> debye_medium = CustomDebye(eps_inf=eps_inf, coeffs=[(eps1,tau1),]) >>> eps = debye_medium.eps_model(200e12) See Also -------- :class:`Debye` A dispersive medium described by the Debye model. **Notebooks** * `Fitting dispersive material models <../../notebooks/Fitting.html>`_ **Lectures** * `Modeling dispersive material in FDTD <https://www.flexcompute.com/fdtd101/Lecture-5-Modeling-dispersive-material-in-FDTD/>`_ """ eps_inf: CustomSpatialDataTypeAnnotated = pd.Field( ..., title="Epsilon at Infinity", description="Relative permittivity at infinite frequency (:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) coeffs: tuple[tuple[CustomSpatialDataTypeAnnotated, CustomSpatialDataTypeAnnotated], ...] = ( pd.Field( ..., title="Coefficients", description="List of (:math:`\\Delta\\epsilon_i, \\tau_i`) values for model.", units=(PERMITTIVITY, SECOND), ) ) _no_nans_eps_inf = validate_no_nans("eps_inf") _no_nans_coeffs = validate_no_nans("coeffs") _warn_if_none = CustomDispersiveMedium._warn_if_data_none("coeffs") @pd.validator("eps_inf", always=True) def _eps_inf_positive(cls, val): """eps_inf must be positive""" if not CustomDispersiveMedium._validate_isreal_dataarray(val): raise SetupError("'eps_inf' must be real.") if np.any(_get_numpy_array(val) < 0): raise SetupError("'eps_inf' must be positive.") return val @pd.validator("coeffs", always=True) @skip_if_fields_missing(["eps_inf"]) def _coeffs_correct_shape(cls, val, values): """coeffs must have consistent shape.""" for de, tau in val: if not _check_same_coordinates(de, values["eps_inf"]) or not _check_same_coordinates( tau, values["eps_inf"] ): raise SetupError( "All terms in 'coeffs' must have the same coordinates; " "The coordinates must also be consistent with 'eps_inf'." ) if not CustomDispersiveMedium._validate_isreal_dataarray_tuple((de, tau)): raise SetupError("All terms in 'coeffs' must be real.") return val @pd.validator("coeffs", always=True) def _coeffs_tau_all_sufficient_positive(cls, val): """We restrict either all tau is sufficently greater than 0.""" for _, tau in val: if np.any(_get_numpy_array(tau) < 1 / 2 / np.pi / LARGEST_FP_NUMBER): raise SetupError( "Coefficients 'tau_i' are restricted to be sufficiently greater than 0." ) return val def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Adjoint derivatives for CustomDebye via analytic chain rule.""" dJ = self._sum_complex_eps_sensitivity(derivative_info, spatial_ref=self.eps_inf) grads: AutogradFieldMap = {} if ("eps_inf",) in derivative_info.paths: grads[("eps_inf",)] = np.real(dJ) for i, (de_da, tau_da) in enumerate(self.coeffs): need_de = ("coeffs", i, 0) in derivative_info.paths need_tau = ("coeffs", i, 1) in derivative_info.paths if not (need_de or need_tau): continue de = np.array(de_da.values, dtype=float) tau = np.array(tau_da.values, dtype=float) g_de = 0.0 if not need_de else np.zeros_like(de, dtype=float) g_tau = 0.0 if not need_tau else np.zeros_like(tau, dtype=float) if need_de: g_de = g_de + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, tau=tau: Debye._w_de(f, tau), ) if need_tau: g_tau = g_tau + self._sum_over_freqs( derivative_info.frequencies, dJ, weight_fn=lambda f, de=de, tau=tau: Debye._w_tau(f, de, tau), ) if need_de: grads[("coeffs", i, 0)] = g_de if need_tau: grads[("coeffs", i, 1)] = g_tau return grads @pd.validator("coeffs", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" allow_gain = values.get("allow_gain") for del_ep, tau in val: if np.any(_get_numpy_array(tau) <= 0): raise SetupError("For stable medium, 'tau_i' must be positive.") if not allow_gain and np.any(_get_numpy_array(del_ep) < 0): raise ValidationError( "For passive medium, 'Delta epsilon_i' must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, " "and are likely to diverge." ) return val @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" if not self.eps_inf.is_uniform: return False for coeffs in self.coeffs: for coeff in coeffs: if not coeff.is_uniform: return False return True
[docs] def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ eps = Debye.eps_model(self, frequency) return (eps, eps, eps)
def _sel_custom_data_inside(self, bounds: Bound): """Return a new custom medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- CustomDebye CustomDebye with reduced data. """ if not self.eps_inf.does_cover(bounds=bounds): log.warning("Eps inf spatial data array does not fully cover the requested region.") eps_inf_reduced = self.eps_inf.sel_inside(bounds=bounds) coeffs_reduced = [] for de, tau in self.coeffs: if not de.does_cover(bounds=bounds): log.warning( "Debye 'f' spatial data array does not fully cover the requested region." ) if not tau.does_cover(bounds=bounds): log.warning( "Debye 'tau' spatial data array does not fully cover the requested region." ) coeffs_reduced.append((de.sel_inside(bounds), tau.sel_inside(bounds))) return self.updated_copy(eps_inf=eps_inf_reduced, coeffs=coeffs_reduced)
[docs] class SurfaceImpedanceFitterParam(Tidy3dBaseModel): """Advanced parameters for fitting surface impedance of a :class:`.LossyMetalMedium`. Internally, the quantity to be fitted is surface impedance divided by ``-1j * \\omega``. """ max_num_poles: pd.PositiveInt = pd.Field( LOSSY_METAL_DEFAULT_MAX_POLES, title="Maximal Number Of Poles", description="Maximal number of poles in complex-conjugate pole residue model for " "fitting surface impedance.", ) tolerance_rms: pd.NonNegativeFloat = pd.Field( LOSSY_METAL_DEFAULT_TOLERANCE_RMS, title="Tolerance In Fitting", description="Tolerance in fitting.", ) frequency_sampling_points: pd.PositiveInt = pd.Field( LOSSY_METAL_DEFAULT_SAMPLING_FREQUENCY, title="Number Of Sampling Frequencies", description="Number of sampling frequencies used in fitting.", ) log_sampling: bool = pd.Field( True, title="Frequencies Sampling In Log Scale", description="Whether to sample frequencies logarithmically (``True``), " "or linearly (``False``).", )
class AbstractSurfaceRoughness(Tidy3dBaseModel): """Abstract class for modeling surface roughness of lossy metal.""" @abstractmethod def roughness_correction_factor( self, frequency: ArrayFloat1D, skin_depths: ArrayFloat1D ) -> ArrayComplex1D: """Complex-valued roughness correction factor applied to surface impedance. Notes ----- The roughness correction factor should be causal. It is multiplied to the surface impedance of the lossy metal to account for the effects of surface roughness. Parameters ---------- frequency : ArrayFloat1D Frequency to evaluate roughness correction factor at (Hz). skin_depths : ArrayFloat1D Skin depths of the lossy metal that is frequency-dependent. Returns ------- ArrayComplex1D The causal roughness correction factor evaluated at ``frequency``. """
[docs] class HammerstadSurfaceRoughness(AbstractSurfaceRoughness): """Modified Hammerstad surface roughness model. It's a popular model that works well under 5 GHz for surface roughness below 2 micrometer RMS. Note ---- The power loss compared to smooth surface is described by: .. math:: 1 + (RF-1) \\frac{2}{\\pi}\\arctan(1.4\\frac{R_q^2}{\\delta^2}) where :math:`\\delta` is skin depth, :math:`R_q` the RMS peak-to-vally height, and RF roughness factor. Note ---- This model is based on: Y. Shlepnev, C. Nwachukwu, "Roughness characterization for interconnect analysis", 2011 IEEE International Symposium on Electromagnetic Compatibility, (DOI: 10.1109/ISEMC.2011.6038367), 2011. V. Dmitriev-Zdorov, B. Simonovich, I. Kochikov, "A Causal Conductor Roughness Model and its Effect on Transmission Line Characteristics", Signal Integrity Journal, 2018. """ rq: pd.PositiveFloat = pd.Field( ..., title="RMS Peak-to-Valley Height", description="RMS peak-to-valley height (Rq) of the surface roughness.", units=MICROMETER, ) roughness_factor: float = pd.Field( 2.0, title="Roughness Factor", description="Expected maximal increase in conductor losses due to roughness effect. " "Value 2 gives the classic Hammerstad equation.", gt=1.0, )
[docs] def roughness_correction_factor( self, frequency: ArrayFloat1D, skin_depths: ArrayFloat1D ) -> ArrayComplex1D: """Complex-valued roughness correction factor applied to surface impedance. Notes ----- The roughness correction factor should be causal. It is multiplied to the surface impedance of the lossy metal to account for the effects of surface roughness. Parameters ---------- frequency : ArrayFloat1D Frequency to evaluate roughness correction factor at (Hz). skin_depths : ArrayFloat1D Skin depths of the lossy metal that is frequency-dependent. Returns ------- ArrayComplex1D The causal roughness correction factor evaluated at ``frequency``. """ normalized_laplace = -1.4j * (self.rq / skin_depths) ** 2 sqrt_normalized_laplace = np.sqrt(normalized_laplace) causal_response = np.log( 1 + 2 * sqrt_normalized_laplace / (1 + normalized_laplace) ) + 2 * np.arctan(sqrt_normalized_laplace) return 1 + (self.roughness_factor - 1) / np.pi * causal_response
[docs] class HuraySurfaceRoughness(AbstractSurfaceRoughness): """Huray surface roughness model. Note ---- The power loss compared to smooth surface is described by: .. math:: \\frac{A_{matte}}{A_{flat}} + \\frac{3}{2}\\sum_i f_i/[1+\\frac{\\delta}{r_i}+\\frac{\\delta^2}{2r_i^2}] where :math:`\\delta` is skin depth, :math:`r_i` the radius of sphere, :math:`\\frac{A_{matte}}{A_{flat}}` the relative area of the matte compared to flat surface, and :math:`f_i=N_i4\\pi r_i^2/A_{flat}` the ratio of total sphere surface area (number of spheres :math:`N_i` times the individual sphere surface area) to the flat surface area. Note ---- This model is based on: J. Eric Bracken, "A Causal Huray Model for Surface Roughness", DesignCon, 2012. """ relative_area: pd.PositiveFloat = pd.Field( 1, title="Relative Area", description="Relative area of the matte base compared to a flat surface", ) coeffs: tuple[tuple[pd.PositiveFloat, pd.PositiveFloat], ...] = pd.Field( ..., title="Coefficients for surface ratio and sphere radius", description="List of (:math:`f_i, r_i`) values for model, where :math:`f_i` is " "the ratio of total sphere surface area to the flat surface area, and :math:`r_i` " "the radius of the sphere.", units=(None, MICROMETER), )
[docs] @classmethod def from_cannonball_huray(cls, radius: float) -> HuraySurfaceRoughness: """Construct a Cannonball-Huray model. Note ---- The power loss compared to smooth surface is described by: .. math:: 1 + \\frac{7\\pi}{3} \\frac{1}{1+\\frac{\\delta}{r}+\\frac{\\delta^2}{2r^2}} Parameters ---------- radius : float Radius of the sphere. Returns ------- HuraySurfaceRoughness The Huray surface roughness model. """ return cls(relative_area=1, coeffs=[(14.0 / 9 * np.pi, radius)])
[docs] def roughness_correction_factor( self, frequency: ArrayFloat1D, skin_depths: ArrayFloat1D ) -> ArrayComplex1D: """Complex-valued roughness correction factor applied to surface impedance. Notes ----- The roughness correction factor should be causal. It is multiplied to the surface impedance of the lossy metal to account for the effects of surface roughness. Parameters ---------- frequency : ArrayFloat1D Frequency to evaluate roughness correction factor at (Hz). skin_depths : ArrayFloat1D Skin depths of the lossy metal that is frequency-dependent. Returns ------- ArrayComplex1D The causal roughness correction factor evaluated at ``frequency``. """ correction = self.relative_area for f, r in self.coeffs: normalized_laplace = -2j * (r / skin_depths) ** 2 sqrt_normalized_laplace = np.sqrt(normalized_laplace) correction += 1.5 * f / (1 + 1 / sqrt_normalized_laplace) return correction
SurfaceRoughnessType = Union[HammerstadSurfaceRoughness, HuraySurfaceRoughness]
[docs] class LossyMetalMedium(Medium): """Lossy metal that can be modeled with a surface impedance boundary condition (SIBC). Notes ----- SIBC is most accurate when the skin depth is much smaller than the structure feature size. If not the case, please use a regular medium instead, or set ``simulation.subpixel.lossy_metal`` to ``td.VolumetricAveraging()`` or ``td.Staircasing()``. Example ------- >>> lossy_metal = LossyMetalMedium(conductivity=10, frequency_range=(9e9, 10e9)) """ allow_gain: Literal[False] = pd.Field( False, title="Allow gain medium", description="Allow the medium to be active. Caution: " "simulations with a gain medium are unstable, and are likely to diverge." "Simulations where ``allow_gain`` is set to ``True`` will still be charged even if " "diverged. Monitor data up to the divergence point will still be returned and can be " "useful in some cases.", ) permittivity: Literal[1] = pd.Field( 1.0, title="Permittivity", description="Relative permittivity.", units=PERMITTIVITY ) roughness: SurfaceRoughnessType = pd.Field( None, title="Surface Roughness Model", description="Surface roughness model that applies a frequency-dependent scaling " "factor to surface impedance.", discriminator=TYPE_TAG_STR, ) thickness: pd.PositiveFloat = pd.Field( None, title="Conductor Thickness", description="When the thickness of the conductor is not much greater than skin depth, " "1D transmission line model is applied to compute the surface impedance of the thin conductor.", units=MICROMETER, ) frequency_range: FreqBound = pd.Field( ..., title="Frequency Range", description="Frequency range of validity for the medium.", units=(HERTZ, HERTZ), ) fit_param: SurfaceImpedanceFitterParam = pd.Field( SurfaceImpedanceFitterParam(), title="Fitting Parameters For Surface Impedance", description="Parameters for fitting surface impedance divided by (-1j * omega) over " "the frequency range using pole-residue pair model.", ) @pd.validator("frequency_range") def _validate_frequency_range(cls, val): """Validate that frequency range is finite and non-zero.""" for freq in val: if not np.isfinite(freq): raise ValidationError("Values in 'frequency_range' must be finite.") if freq <= 0: raise ValidationError("Values in 'frequency_range' must be positive.") return val @pd.validator("conductivity", always=True) def _positive_conductivity(cls, val): """Assert conductivity>0.""" if val <= 0: raise ValidationError("For lossy metal, 'conductivity' must be positive. ") return val @cached_property def _fitting_result(self) -> tuple[PoleResidue, float]: """Fitted scaled surface impedance and residue.""" omega_data = self.Hz_to_angular_freq(self.sampling_frequencies) surface_impedance = self.surface_impedance(self.sampling_frequencies) scaled_impedance = surface_impedance / (-1j * omega_data) # let's use scaled quantity in fitting: minimal real part equals ``SCALED_REAL_PART`` min_real = np.min(scaled_impedance.real) if min_real <= 0: raise SetupError( "The real part of scaled surface impedance must be positive. " "Please create a github issue so that the problem can be investigated. " "In the meantime, make sure the material is passive." ) scaling_factor = LOSSY_METAL_SCALED_REAL_PART / min_real scaled_impedance *= scaling_factor (res_inf, poles, residues), error = fit( omega_data=omega_data, resp_data=scaled_impedance, min_num_poles=0, max_num_poles=self.fit_param.max_num_poles, resp_inf=None, tolerance_rms=self.fit_param.tolerance_rms, scale_factor=1.0 / np.max(omega_data), ) res_inf /= scaling_factor residues /= scaling_factor return PoleResidue(eps_inf=res_inf, poles=list(zip(poles, residues))), error @cached_property def scaled_surface_impedance_model(self) -> PoleResidue: """Fitted surface impedance divided by (-j \\omega) using pole-residue pair model within ``frequency_range``.""" return self._fitting_result[0] @cached_property def num_poles(self) -> int: """Number of poles in the fitted model.""" return len(self.scaled_surface_impedance_model.poles)
[docs] def surface_impedance(self, frequencies: ArrayFloat1D): """Computing surface impedance including surface roughness effects.""" # compute complex-valued skin depth n, k = self.nk_model(frequencies) # with surface roughness effects correction = 1.0 if self.roughness is not None: skin_depths = 1 / np.sqrt(np.pi * frequencies * MU_0 * self.conductivity) correction = self.roughness.roughness_correction_factor(frequencies, skin_depths) if self.thickness is not None: k_wave = self.Hz_to_angular_freq(frequencies) / C_0 * (n + 1j * k) correction /= -np.tanh(1j * k_wave * self.thickness) return correction * ETA_0 / (n + 1j * k)
@cached_property def sampling_frequencies(self) -> ArrayFloat1D: """Sampling frequencies used in fitting.""" if self.fit_param.frequency_sampling_points < 2: return np.array([np.mean(self.frequency_range)]) if self.fit_param.log_sampling: return np.logspace( np.log10(self.frequency_range[0]), np.log10(self.frequency_range[1]), self.fit_param.frequency_sampling_points, ) return np.linspace( self.frequency_range[0], self.frequency_range[1], self.fit_param.frequency_sampling_points, )
[docs] def eps_diagonal_numerical(self, frequency: float) -> tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor for numerical considerations such as meshing and runtime estimation. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[complex, complex, complex] The diagonal elements of relative permittivity tensor relevant for numerical considerations evaluated at ``frequency``. """ return (1.0 + 0j,) * 3
[docs] @add_ax_if_none def plot( self, ax: Ax = None, ) -> Ax: """Make plot of complex-valued surface imepdance model vs fitted model, at sampling frequencies. Parameters ---------- ax : matplotlib.axes._subplots.Axes = None Axes to plot the data on, if None, a new one is created. Returns ------- matplotlib.axis.Axes Matplotlib axis corresponding to plot. """ frequencies = self.sampling_frequencies surface_impedance = self.surface_impedance(frequencies) ax.plot(frequencies, surface_impedance.real, "x", label="Real") ax.plot(frequencies, surface_impedance.imag, "+", label="Imag") surface_impedance_model = ( -1j * self.Hz_to_angular_freq(frequencies) * self.scaled_surface_impedance_model.eps_model(frequencies) ) ax.plot(frequencies, surface_impedance_model.real, label="Real (model)") ax.plot(frequencies, surface_impedance_model.imag, label="Imag (model)") ax.set_ylabel(r"Surface impedance ($\Omega$)") ax.set_xlabel("Frequency (Hz)") ax.legend() return ax
IsotropicUniformMediumFor2DType = Union[ Medium, LossyMetalMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, PECMedium ] IsotropicUniformMediumType = Union[IsotropicUniformMediumFor2DType, PMCMedium] IsotropicCustomMediumType = Union[ CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, ] IsotropicCustomMediumInternalType = Union[IsotropicCustomMediumType, CustomIsotropicMedium] IsotropicMediumType = Union[IsotropicCustomMediumType, IsotropicUniformMediumType]
[docs] class AnisotropicMedium(AbstractMedium): """Diagonally anisotropic medium. Notes ----- Only diagonal anisotropy is currently supported. Example ------- >>> medium_xx = Medium(permittivity=4.0) >>> medium_yy = Medium(permittivity=4.1) >>> medium_zz = Medium(permittivity=3.9) >>> anisotropic_dielectric = AnisotropicMedium(xx=medium_xx, yy=medium_yy, zz=medium_zz) See Also -------- :class:`CustomAnisotropicMedium` Diagonally anisotropic medium with spatially varying permittivity in each component. :class:`FullyAnisotropicMedium` Fully anisotropic medium including all 9 components of the permittivity and conductivity tensors. **Notebooks** * `Broadband polarizer assisted by anisotropic metamaterial <../../notebooks/SWGBroadbandPolarizer.html>`_ * `Thin film lithium niobate adiabatic waveguide coupler <../../notebooks/AdiabaticCouplerLN.html>`_ """ xx: IsotropicUniformMediumType = pd.Field( ..., title="XX Component", description="Medium describing the xx-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) yy: IsotropicUniformMediumType = pd.Field( ..., title="YY Component", description="Medium describing the yy-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) zz: IsotropicUniformMediumType = pd.Field( ..., title="ZZ Component", description="Medium describing the zz-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) allow_gain: bool = pd.Field( None, title="Allow gain medium", description="This field is ignored. Please set ``allow_gain`` in each component", ) @pd.validator("modulation_spec", always=True) def _validate_modulation_spec(cls, val): """Check compatibility with modulation_spec.""" if val is not None: raise ValidationError( f"A 'modulation_spec' of class {type(val)} is not " f"currently supported for medium class {cls.__name__}. " "Please add modulation to each component." ) return val @pd.root_validator(pre=True) def _ignored_fields(cls, values): """The field is ignored.""" if values.get("xx") is not None and values.get("allow_gain") is not None: log.warning( "The field 'allow_gain' is ignored. Please set 'allow_gain' in each component." ) return values @cached_property def components(self) -> dict[str, Medium]: """Dictionary of diagonal medium components.""" return {"xx": self.xx, "yy": self.yy, "zz": self.zz} @cached_property def is_time_modulated(self) -> bool: """Whether any component of the medium is time modulated.""" return any(mat.is_time_modulated for mat in self.components.values()) @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For this medium, it takes the minimal of ``n_clf`` in all components. """ return min(mat_component.n_cfl for mat_component in self.components.values())
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return np.mean(self.eps_diagonal(frequency), axis=0)
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor as a function of frequency.""" eps_xx = self.xx.eps_model(frequency) eps_yy = self.yy.eps_model(frequency) eps_zz = self.zz.eps_model(frequency) return (eps_xx, eps_yy, eps_zz)
[docs] def eps_comp(self, row: Axis, col: Axis, frequency: float) -> complex: """Single component the complex-valued permittivity tensor as a function of frequency. Parameters ---------- row : int Component's row in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). col : int Component's column in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- complex Element of the relative permittivity tensor evaluated at ``frequency``. """ if row != col: return 0j cmp = "xyz"[row] field_name = cmp + cmp return self.components[field_name].eps_model(frequency)
def _eps_plot( self, frequency: float, eps_component: Optional[PermittivityComponent] = None ) -> float: """Returns real part of epsilon for plotting. A specific component of the epsilon tensor can be selected for anisotropic medium. Parameters ---------- frequency : float eps_component : PermittivityComponent Returns ------- float Element ``eps_component`` of the relative permittivity tensor evaluated at ``frequency``. """ if eps_component is None: # return the average of the diag return self.eps_model(frequency).real if eps_component in ["xx", "yy", "zz"]: # return the requested diagonal component comp2indx = {"x": 0, "y": 1, "z": 2} return self.eps_comp( row=comp2indx[eps_component[0]], col=comp2indx[eps_component[1]], frequency=frequency, ).real raise ValueError( f"Plotting component '{eps_component}' of a diagonally-anisotropic permittivity tensor is not supported." )
[docs] @add_ax_if_none def plot(self, freqs: float, ax: Ax = None) -> Ax: """Plot n, k of a :class:`.Medium` as a function of frequency.""" freqs = np.array(freqs) freqs_thz = freqs / 1e12 for label, medium_component in self.elements.items(): eps_complex = medium_component.eps_model(freqs) n, k = AbstractMedium.eps_complex_to_nk(eps_complex) ax.plot(freqs_thz, n, label=f"n, eps_{label}") ax.plot(freqs_thz, k, label=f"k, eps_{label}") ax.set_xlabel("frequency (THz)") ax.set_title("medium dispersion") ax.legend() ax.set_aspect("auto") return ax
@property def elements(self) -> dict[str, IsotropicUniformMediumType]: """The diagonal elements of the medium as a dictionary.""" return {"xx": self.xx, "yy": self.yy, "zz": self.zz} @cached_property def is_pec(self): """Whether the medium is a PEC.""" return any(self.is_comp_pec(i) for i in range(3)) @cached_property def is_pmc(self): """Whether the medium is a PMC.""" return any(self.is_comp_pmc(i) for i in range(3))
[docs] def is_comp_pec(self, comp: Axis): """Whether the medium is a PEC.""" return isinstance(self.components[["xx", "yy", "zz"][comp]], PECMedium)
[docs] def is_comp_pmc(self, comp: Axis): """Whether the medium is a PMC.""" return isinstance(self.components[["xx", "yy", "zz"][comp]], PMCMedium)
[docs] def sel_inside(self, bounds: Bound): """Return a new medium that contains the minimal amount data necessary to cover a spatial region defined by ``bounds``. Parameters ---------- bounds : Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- AnisotropicMedium AnisotropicMedium with reduced data. """ new_comps = [comp.sel_inside(bounds) for comp in [self.xx, self.yy, self.zz]] return self.updated_copy(**dict(zip(["xx", "yy", "zz"], new_comps)))
class AnisotropicMediumFromMedium2D(AnisotropicMedium): """The same as ``AnisotropicMedium``, but converted from Medium2D. (This class is for internal use only) """
[docs] class FullyAnisotropicMedium(AbstractMedium): """Fully anisotropic medium including all 9 components of the permittivity and conductivity tensors. Notes ----- Provided permittivity tensor and the symmetric part of the conductivity tensor must have coinciding main directions. A non-symmetric conductivity tensor can be used to model magneto-optic effects. Note that dispersive properties and subpixel averaging are currently not supported for fully anisotropic materials. Note ---- Simulations involving fully anisotropic materials are computationally more intensive, thus, they take longer time to complete. This increase strongly depends on the filling fraction of the simulation domain by fully anisotropic materials, varying approximately in the range from 1.5 to 5. The cost of running a simulation is adjusted correspondingly. Example ------- >>> perm = [[2, 0, 0], [0, 1, 0], [0, 0, 3]] >>> cond = [[0.1, 0, 0], [0, 0, 0], [0, 0, 0]] >>> anisotropic_dielectric = FullyAnisotropicMedium(permittivity=perm, conductivity=cond) See Also -------- :class:`CustomAnisotropicMedium` Diagonally anisotropic medium with spatially varying permittivity in each component. :class:`AnisotropicMedium` Diagonally anisotropic medium. **Notebooks** * `Broadband polarizer assisted by anisotropic metamaterial <../../notebooks/SWGBroadbandPolarizer.html>`_ * `Thin film lithium niobate adiabatic waveguide coupler <../../notebooks/AdiabaticCouplerLN.html>`_ * `Defining fully anisotropic materials <../../notebooks/FullyAnisotropic.html>`_ """ permittivity: TensorReal = pd.Field( [[1, 0, 0], [0, 1, 0], [0, 0, 1]], title="Permittivity", description="Relative permittivity tensor.", units=PERMITTIVITY, ) conductivity: TensorReal = pd.Field( [[0, 0, 0], [0, 0, 0], [0, 0, 0]], title="Conductivity", description="Electric conductivity tensor. Defined such that the imaginary part " "of the complex permittivity at angular frequency omega is given by conductivity/omega.", units=CONDUCTIVITY, ) @pd.validator("modulation_spec", always=True) def _validate_modulation_spec(cls, val): """Check compatibility with modulation_spec.""" if val is not None: raise ValidationError( f"A 'modulation_spec' of class {type(val)} is not " f"currently supported for medium class {cls.__name__}." ) return val
[docs] @pd.validator("permittivity", always=True) def permittivity_spd_and_ge_one(cls, val): """Check that provided permittivity tensor is symmetric positive definite with eigenvalues >= 1. """ if not np.allclose(val, np.transpose(val), atol=fp_eps): raise ValidationError("Provided permittivity tensor is not symmetric.") if np.any(np.linalg.eigvals(val) < 1 - fp_eps): raise ValidationError("Main diagonal of provided permittivity tensor is not >= 1.") return val
[docs] @pd.validator("conductivity", always=True) @skip_if_fields_missing(["permittivity"]) def conductivity_commutes(cls, val, values): """Check that the symmetric part of conductivity tensor commutes with permittivity tensor (that is, simultaneously diagonalizable). """ perm = values.get("permittivity") cond_sym = 0.5 * (val + val.T) comm_diff = np.abs(np.matmul(perm, cond_sym) - np.matmul(cond_sym, perm)) if not np.allclose(comm_diff, 0, atol=fp_eps): raise ValidationError( "Main directions of conductivity and permittivity tensor do not coincide." ) return val
@pd.validator("conductivity", always=True) @skip_if_fields_missing(["allow_gain"]) def _passivity_validation(cls, val, values): """Assert passive medium if ``allow_gain`` is False.""" if values.get("allow_gain"): return val cond_sym = 0.5 * (val + val.T) if np.any(np.linalg.eigvals(cond_sym) < -fp_eps): raise ValidationError( "For passive medium, main diagonal of provided conductivity tensor " "must be non-negative. " "To simulate a gain medium, please set 'allow_gain=True'. " "Caution: simulations with a gain medium are unstable, and are likely to diverge." ) return val
[docs] @classmethod def from_diagonal(cls, xx: Medium, yy: Medium, zz: Medium, rotation: RotationType): """Construct a fully anisotropic medium by rotating a diagonally anisotropic medium. Parameters ---------- xx : :class:`.Medium` Medium describing the xx-component of the diagonal permittivity tensor. yy : :class:`.Medium` Medium describing the yy-component of the diagonal permittivity tensor. zz : :class:`.Medium` Medium describing the zz-component of the diagonal permittivity tensor. rotation : Union[:class:`.RotationAroundAxis`] Rotation applied to diagonal permittivity tensor. Returns ------- :class:`FullyAnisotropicMedium` Resulting fully anisotropic medium. """ if any(comp.nonlinear_spec is not None for comp in [xx, yy, zz]): raise ValidationError( "Nonlinearities are not currently supported for the components " "of a fully anisotropic medium." ) if any(comp.modulation_spec is not None for comp in [xx, yy, zz]): raise ValidationError( "Modulation is not currently supported for the components " "of a fully anisotropic medium." ) permittivity_diag = np.diag([comp.permittivity for comp in [xx, yy, zz]]).tolist() conductivity_diag = np.diag([comp.conductivity for comp in [xx, yy, zz]]).tolist() permittivity = rotation.rotate_tensor(permittivity_diag) conductivity = rotation.rotate_tensor(conductivity_diag) return cls(permittivity=permittivity, conductivity=conductivity)
@cached_property def _to_diagonal(self) -> AnisotropicMedium: """Construct a diagonally anisotropic medium from main components. Returns ------- :class:`AnisotropicMedium` Resulting diagonally anisotropic medium. """ perm, cond, _ = self.eps_sigma_diag return AnisotropicMedium( xx=Medium(permittivity=perm[0], conductivity=cond[0]), yy=Medium(permittivity=perm[1], conductivity=cond[1]), zz=Medium(permittivity=perm[2], conductivity=cond[2]), ) @cached_property def eps_sigma_diag( self, ) -> tuple[tuple[float, float, float], tuple[float, float, float], TensorReal]: """Main components of permittivity and conductivity tensors and their directions.""" perm_diag, vecs = np.linalg.eig(self.permittivity) cond_diag = np.diag(np.matmul(np.transpose(vecs), np.matmul(self.conductivity, vecs))) return (perm_diag, cond_diag, vecs)
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" perm_diag, cond_diag, _ = self.eps_sigma_diag if not np.isscalar(frequency): perm_diag = perm_diag[:, None] cond_diag = cond_diag[:, None] eps_diag = AbstractMedium.eps_sigma_to_eps_complex(perm_diag, cond_diag, frequency) return np.mean(eps_diag)
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor as a function of frequency.""" perm_diag, cond_diag, _ = self.eps_sigma_diag if not np.isscalar(frequency): perm_diag = perm_diag[:, None] cond_diag = cond_diag[:, None] return AbstractMedium.eps_sigma_to_eps_complex(perm_diag, cond_diag, frequency)
[docs] def eps_comp(self, row: Axis, col: Axis, frequency: float) -> complex: """Single component the complex-valued permittivity tensor as a function of frequency. Parameters ---------- row : int Component's row in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). col : int Component's column in the permittivity tensor (0, 1, or 2 for x, y, or z respectively). frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- complex Element of the relative permittivity tensor evaluated at ``frequency``. """ eps = self.permittivity[row][col] sig = self.conductivity[row][col] return AbstractMedium.eps_sigma_to_eps_complex(eps, sig, frequency)
def _eps_plot( self, frequency: float, eps_component: Optional[PermittivityComponent] = None ) -> float: """Returns real part of epsilon for plotting. A specific component of the epsilon tensor can be selected for anisotropic medium. Parameters ---------- frequency : float eps_component : PermittivityComponent Returns ------- float Element ``eps_component`` of the relative permittivity tensor evaluated at ``frequency``. """ if eps_component is None: # return the average of the diag return self.eps_model(frequency).real # return the requested component comp2indx = {"x": 0, "y": 1, "z": 2} return self.eps_comp( row=comp2indx[eps_component[0]], col=comp2indx[eps_component[1]], frequency=frequency ).real @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For this medium, it take the minimal of ``sqrt(permittivity)`` for main directions. """ perm_diag, _, _ = self.eps_sigma_diag return min(np.sqrt(perm_diag))
[docs] @add_ax_if_none def plot(self, freqs: float, ax: Ax = None) -> Ax: """Plot n, k of a :class:`FullyAnisotropicMedium` as a function of frequency.""" diagonal_medium = self._to_diagonal ax = diagonal_medium.plot(freqs=freqs, ax=ax) _, _, directions = self.eps_sigma_diag # rename components from xx, yy, zz to 1, 2, 3 to avoid misleading # and add their directions for label, n_line, k_line, direction in zip( ("1", "2", "3"), ax.lines[-6::2], ax.lines[-5::2], directions.T ): direction_str = f"({direction[0]:.2f}, {direction[1]:.2f}, {direction[2]:.2f})" k_line.set_label(f"k, eps_{label} {direction_str}") n_line.set_label(f"n, eps_{label} {direction_str}") ax.legend() return ax
[docs] class CustomAnisotropicMedium(AbstractCustomMedium, AnisotropicMedium): """Diagonally anisotropic medium with spatially varying permittivity in each component. Note ---- Only diagonal anisotropy is currently supported. Example ------- >>> Nx, Ny, Nz = 10, 9, 8 >>> x = np.linspace(-1, 1, Nx) >>> y = np.linspace(-1, 1, Ny) >>> z = np.linspace(-1, 1, Nz) >>> coords = dict(x=x, y=y, z=z) >>> permittivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> conductivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> medium_xx = CustomMedium(permittivity=permittivity, conductivity=conductivity) >>> medium_yy = CustomMedium(permittivity=permittivity, conductivity=conductivity) >>> d_epsilon = SpatialDataArray(np.random.random((Nx, Ny, Nz)), coords=coords) >>> f = SpatialDataArray(1+np.random.random((Nx, Ny, Nz)), coords=coords) >>> delta = SpatialDataArray(np.random.random((Nx, Ny, Nz)), coords=coords) >>> medium_zz = CustomLorentz(eps_inf=permittivity, coeffs=[(d_epsilon,f,delta),]) >>> anisotropic_dielectric = CustomAnisotropicMedium(xx=medium_xx, yy=medium_yy, zz=medium_zz) See Also -------- :class:`AnisotropicMedium` Diagonally anisotropic medium. **Notebooks** * `Broadband polarizer assisted by anisotropic metamaterial <../../notebooks/SWGBroadbandPolarizer.html>`_ * `Thin film lithium niobate adiabatic waveguide coupler <../../notebooks/AdiabaticCouplerLN.html>`_ * `Defining fully anisotropic materials <../../notebooks/FullyAnisotropic.html>`_ """ xx: Union[IsotropicCustomMediumType, CustomMedium] = pd.Field( ..., title="XX Component", description="Medium describing the xx-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) yy: Union[IsotropicCustomMediumType, CustomMedium] = pd.Field( ..., title="YY Component", description="Medium describing the yy-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) zz: Union[IsotropicCustomMediumType, CustomMedium] = pd.Field( ..., title="ZZ Component", description="Medium describing the zz-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) interp_method: Optional[InterpMethod] = pd.Field( None, title="Interpolation method", description="When the value is ``None`` each component will follow its own " "interpolation method. When the value is other than ``None`` the interpolation " "method specified by this field will override the one in each component.", ) allow_gain: bool = pd.Field( None, title="Allow gain medium", description="This field is ignored. Please set ``allow_gain`` in each component", ) subpixel: bool = pd.Field( None, title="Subpixel averaging", description="This field is ignored. Please set ``subpixel`` in each component", ) @pd.validator("xx", always=True) def _isotropic_xx(cls, val): """If it's `CustomMedium`, make sure it's isotropic.""" if isinstance(val, CustomMedium) and not val.is_isotropic: raise SetupError("The xx-component medium type is not isotropic.") return val @pd.validator("yy", always=True) def _isotropic_yy(cls, val): """If it's `CustomMedium`, make sure it's isotropic.""" if isinstance(val, CustomMedium) and not val.is_isotropic: raise SetupError("The yy-component medium type is not isotropic.") return val @pd.validator("zz", always=True) def _isotropic_zz(cls, val): """If it's `CustomMedium`, make sure it's isotropic.""" if isinstance(val, CustomMedium) and not val.is_isotropic: raise SetupError("The zz-component medium type is not isotropic.") return val @pd.root_validator(pre=True) def _ignored_fields(cls, values): """The field is ignored.""" if values.get("xx") is not None: if values.get("allow_gain") is not None: log.warning( "The field 'allow_gain' is ignored. Please set 'allow_gain' in each component." ) if values.get("subpixel") is not None: log.warning( "The field 'subpixel' is ignored. Please set 'subpixel' in each component." ) return values @cached_property def is_spatially_uniform(self) -> bool: """Whether the medium is spatially uniform.""" return any(comp.is_spatially_uniform for comp in self.components.values()) @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. For this medium, it takes the minimal of ``n_clf`` in all components. """ return min(mat_component.n_cfl for mat_component in self.components.values()) @cached_property def is_isotropic(self): """Whether the medium is isotropic.""" return False def _interp_method(self, comp: Axis) -> InterpMethod: """Interpolation method applied to comp.""" # override `interp_method` in components if self.interp_method is not None if self.interp_method is not None: return self.interp_method # use component's interp_method comp_map = ["xx", "yy", "zz"] return self.components[comp_map[comp]].interp_method
[docs] def eps_dataarray_freq( self, frequency: float ) -> tuple[CustomSpatialDataType, CustomSpatialDataType, CustomSpatialDataType]: """Permittivity array at ``frequency``. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[ Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ], ] The permittivity evaluated at ``frequency``. """ return tuple( mat_component.eps_dataarray_freq(frequency)[ind] for ind, mat_component in enumerate(self.components.values()) )
def _eps_bounds( self, frequency: Optional[float] = None, eps_component: Optional[PermittivityComponent] = None, ) -> tuple[float, float]: """Returns permittivity bounds for setting the color bounds when plotting. Parameters ---------- frequency : float = None Frequency to evaluate the relative permittivity of all mediums. If not specified, evaluates at infinite frequency. eps_component : Optional[PermittivityComponent] = None Component of the permittivity tensor to plot for anisotropic materials, e.g. ``"xx"``, ``"yy"``, ``"zz"``, ``"xy"``, ``"yz"``, ... Defaults to ``None``, which returns the average of the diagonal values. Returns ------- Tuple[float, float] The min and max values of the permittivity for the selected component and evaluated at ``frequency``. """ comps = ["xx", "yy", "zz"] if eps_component in comps: # Return the bounds of a specific component eps_dataarray = self.eps_dataarray_freq(frequency) eps = self._get_real_vals(eps_dataarray[comps.index(eps_component)]) return (np.min(eps), np.max(eps)) if eps_component is None: # Returns the bounds across all components return super()._eps_bounds(frequency=frequency) raise ValueError( f"Plotting component '{eps_component}' of a diagonally-anisotropic permittivity tensor is not supported." ) def _sel_custom_data_inside(self, bounds: Bound): return self
class CustomAnisotropicMediumInternal(CustomAnisotropicMedium): """Diagonally anisotropic medium with spatially varying permittivity in each component. Notes ----- Only diagonal anisotropy is currently supported. Example ------- >>> Nx, Ny, Nz = 10, 9, 8 >>> X = np.linspace(-1, 1, Nx) >>> Y = np.linspace(-1, 1, Ny) >>> Z = np.linspace(-1, 1, Nz) >>> coords = dict(x=X, y=Y, z=Z) >>> permittivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> conductivity= SpatialDataArray(np.ones((Nx, Ny, Nz)), coords=coords) >>> medium_xx = CustomMedium(permittivity=permittivity, conductivity=conductivity) >>> medium_yy = CustomMedium(permittivity=permittivity, conductivity=conductivity) >>> d_epsilon = SpatialDataArray(np.random.random((Nx, Ny, Nz)), coords=coords) >>> f = SpatialDataArray(1+np.random.random((Nx, Ny, Nz)), coords=coords) >>> delta = SpatialDataArray(np.random.random((Nx, Ny, Nz)), coords=coords) >>> medium_zz = CustomLorentz(eps_inf=permittivity, coeffs=[(d_epsilon,f,delta),]) >>> anisotropic_dielectric = CustomAnisotropicMedium(xx=medium_xx, yy=medium_yy, zz=medium_zz) """ xx: Union[IsotropicCustomMediumInternalType, CustomMedium] = pd.Field( ..., title="XX Component", description="Medium describing the xx-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) yy: Union[IsotropicCustomMediumInternalType, CustomMedium] = pd.Field( ..., title="YY Component", description="Medium describing the yy-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) zz: Union[IsotropicCustomMediumInternalType, CustomMedium] = pd.Field( ..., title="ZZ Component", description="Medium describing the zz-component of the diagonal permittivity tensor.", discriminator=TYPE_TAG_STR, ) """ Medium perturbation classes """
[docs] class AbstractPerturbationMedium(ABC, Tidy3dBaseModel): """Abstract class for medium perturbation.""" subpixel: bool = pd.Field( True, title="Subpixel averaging", description="This value will be transferred to the resulting custom medium. That is, " "if ``True``, the subpixel averaging will be applied to the custom medium. The type " "of subpixel averaging method applied is specified in ``Simulation``'s field ``subpixel``. " "If the resulting medium is not a custom medium (no perturbations), this field does not " "have an effect.", ) perturbation_spec: Optional[Union[PermittivityPerturbation, IndexPerturbation]] = pd.Field( None, title="Perturbation Spec", description="Specification of medium perturbation as one of predefined types.", discriminator=TYPE_TAG_STR, )
[docs] @abstractmethod def perturbed_copy( self, temperature: CustomSpatialDataType = None, electron_density: CustomSpatialDataType = None, hole_density: CustomSpatialDataType = None, interp_method: InterpMethod = "linear", ) -> Union[AbstractMedium, AbstractCustomMedium]: """Sample perturbations on provided heat and/or charge data and create a custom medium. Any of ``temperature``, ``electron_density``, and ``hole_density`` can be ``None``. If all passed arguments are ``None`` then a non-custom medium is returned. All provided fields must have identical coords. Parameters ---------- temperature : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Temperature field data. electron_density : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Electron density field data. hole_density : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Hole density field data. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain heat and/or charge values that are not supplied at the Yee grids. Returns ------- Union[AbstractMedium, AbstractCustomMedium] Medium specification after application of heat and/or charge data. """
[docs] @classmethod def from_unperturbed( cls, medium: Union[Medium, DispersiveMedium], subpixel: bool = True, perturbation_spec: Union[PermittivityPerturbation, IndexPerturbation] = None, **kwargs, ) -> AbstractPerturbationMedium: """Construct a medium with pertubation models from an unpertubed one. Parameters ---------- medium : Union[ :class:`.Medium`, :class:`.DispersiveMedium`, ] A medium with no perturbation models. subpixel : bool = True Subpixel averaging of derivative custom medium. perturbation_spec : Union[ :class:`.PermittivityPerturbation`, :class:`.IndexPerturbation`, ] = None Perturbation model specification. Returns ------- :class:`.AbstractPerturbationMedium` Resulting medium with perturbation model. """ new_dict = medium.dict( exclude={ "type", } ) new_dict["perturbation_spec"] = perturbation_spec new_dict["subpixel"] = subpixel new_dict.update(kwargs) return cls.parse_obj(new_dict)
[docs] class PerturbationMedium(Medium, AbstractPerturbationMedium): """Dispersionless medium with perturbations. Perturbation model can be defined either directly through providing ``permittivity_perturbation`` and ``conductivity_perturbation`` or via providing a specific perturbation model (:class:`PermittivityPerturbation`, :class:`IndexPerturbation`) as ``perturbaiton_spec``. Example ------- >>> from tidy3d import ParameterPerturbation, LinearHeatPerturbation >>> dielectric = PerturbationMedium( ... permittivity=4.0, ... permittivity_perturbation=ParameterPerturbation( ... heat=LinearHeatPerturbation(temperature_ref=300, coeff=0.0001), ... ), ... name='my_medium', ... ) """ permittivity_perturbation: Optional[ParameterPerturbation] = pd.Field( None, title="Permittivity Perturbation", description="List of heat and/or charge perturbations to permittivity.", units=PERMITTIVITY, ) conductivity_perturbation: Optional[ParameterPerturbation] = pd.Field( None, title="Permittivity Perturbation", description="List of heat and/or charge perturbations to permittivity.", units=CONDUCTIVITY, ) _permittivity_perturbation_validator = validate_parameter_perturbation( "permittivity_perturbation", "permittivity", allowed_real_range=[(1.0, None)], allowed_imag_range=[None], allowed_complex=False, ) _conductivity_perturbation_validator = validate_parameter_perturbation( "conductivity_perturbation", "conductivity", allowed_real_range=[(0.0, None)], allowed_imag_range=[None], allowed_complex=False, ) @pd.root_validator(pre=True) def _check_overdefining(cls, values): """Check that perturbation model is provided either directly or through ``perturbation_spec``, but not both. """ perm_p = values.get("permittivity_perturbation") is not None cond_p = values.get("conductivity_perturbation") is not None p_spec = values.get("perturbation_spec") is not None if p_spec and (perm_p or cond_p): raise SetupError( "Must provide perturbation model either as 'perturbation_spec' or as " "'permittivity_perturbation' and 'conductivity_perturbation', " "but not in both ways simultaneously." ) return values @pd.root_validator(skip_on_failure=True) def _check_perturbation_spec_ranges(cls, values): """Check perturbation ranges if defined as ``perturbation_spec``.""" p_spec = values["perturbation_spec"] if p_spec is None: return values perm = values["permittivity"] cond = values["conductivity"] if isinstance(p_spec, IndexPerturbation): eps_complex = Medium._eps_model( permittivity=perm, conductivity=cond, frequency=p_spec.freq ) n, k = Medium.eps_complex_to_nk(eps_c=eps_complex) delta_eps_range, delta_sigma_range = p_spec._delta_eps_delta_sigma_ranges(n, k) elif isinstance(p_spec, PermittivityPerturbation): delta_eps_range, delta_sigma_range = p_spec._delta_eps_delta_sigma_ranges() else: raise SetupError("Unknown type of 'perturbation_spec'.") _warn_potential_error( field_name="permittivity", base_value=perm, val_change_range=delta_eps_range, allowed_real_range=(1.0, None), allowed_imag_range=None, ) _warn_potential_error( field_name="conductivity", base_value=cond, val_change_range=delta_sigma_range, allowed_real_range=(0.0, None), allowed_imag_range=None, ) return values
[docs] def perturbed_copy( self, temperature: CustomSpatialDataType = None, electron_density: CustomSpatialDataType = None, hole_density: CustomSpatialDataType = None, interp_method: InterpMethod = "linear", ) -> Union[Medium, CustomMedium]: """Sample perturbations on provided heat and/or charge data and return 'CustomMedium'. Any of temperature, electron_density, and hole_density can be 'None'. If all passed arguments are 'None' then a 'Medium' object is returned. All provided fields must have identical coords. Parameters ---------- temperature : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Temperature field data. electron_density : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Electron density field data. hole_density : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Hole density field data. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain heat and/or charge values that are not supplied at the Yee grids. Returns ------- Union[Medium, CustomMedium] Medium specification after application of heat and/or charge data. """ new_dict = self.dict( exclude={ "permittivity_perturbation", "conductivity_perturbation", "perturbation_spec", "type", } ) if all(x is None for x in [temperature, electron_density, hole_density]): new_dict.pop("subpixel") return Medium.parse_obj(new_dict) permittivity_field = self.permittivity + ParameterPerturbation._zeros_like( temperature, electron_density, hole_density ) delta_eps = None delta_sigma = None if self.perturbation_spec is not None: pspec = self.perturbation_spec if isinstance(pspec, PermittivityPerturbation): delta_eps, delta_sigma = pspec._sample_delta_eps_delta_sigma( temperature, electron_density, hole_density ) elif isinstance(pspec, IndexPerturbation): n, k = self.nk_model(frequency=pspec.freq) delta_eps, delta_sigma = pspec._sample_delta_eps_delta_sigma( n, k, temperature, electron_density, hole_density ) else: if self.permittivity_perturbation is not None: delta_eps = self.permittivity_perturbation.apply_data( temperature, electron_density, hole_density ) if self.conductivity_perturbation is not None: delta_sigma = self.conductivity_perturbation.apply_data( temperature, electron_density, hole_density ) if delta_eps is not None: permittivity_field = permittivity_field + delta_eps conductivity_field = None if delta_sigma is not None: conductivity_field = self.conductivity + delta_sigma new_dict["permittivity"] = permittivity_field new_dict["conductivity"] = conductivity_field new_dict["interp_method"] = interp_method return CustomMedium.parse_obj(new_dict)
[docs] class PerturbationPoleResidue(PoleResidue, AbstractPerturbationMedium): """A dispersive medium described by the pole-residue pair model with perturbations. Perturbation model can be defined either directly through providing ``eps_inf_perturbation`` and ``poles_perturbation`` or via providing a specific perturbation model (:class:`PermittivityPerturbation`, :class:`IndexPerturbation`) as ``perturbaiton_spec``. Notes ----- The frequency-dependence of the complex-valued permittivity is described by: .. math:: \\epsilon(\\omega) = \\epsilon_\\infty - \\sum_i \\left[\\frac{c_i}{j \\omega + a_i} + \\frac{c_i^*}{j \\omega + a_i^*}\\right] Example ------- >>> from tidy3d import ParameterPerturbation, LinearHeatPerturbation >>> c0_perturbation = ParameterPerturbation( ... heat=LinearHeatPerturbation(temperature_ref=300, coeff=0.0001), ... ) >>> pole_res = PerturbationPoleResidue( ... eps_inf=2.0, ... poles=[((-1+2j), (3+4j)), ((-5+6j), (7+8j))], ... poles_perturbation=[(None, c0_perturbation), (None, None)], ... ) """ eps_inf_perturbation: Optional[ParameterPerturbation] = pd.Field( None, title="Perturbation of Epsilon at Infinity", description="Perturbations to relative permittivity at infinite frequency " "(:math:`\\epsilon_\\infty`).", units=PERMITTIVITY, ) poles_perturbation: Optional[ tuple[tuple[Optional[ParameterPerturbation], Optional[ParameterPerturbation]], ...] ] = pd.Field( None, title="Perturbations of Poles", description="Perturbations to poles of the model.", units=(RADPERSEC, RADPERSEC), ) _eps_inf_perturbation_validator = validate_parameter_perturbation( "eps_inf_perturbation", "eps_inf", allowed_real_range=[(0.0, None)], allowed_imag_range=[None], allowed_complex=False, ) _poles_perturbation_validator = validate_parameter_perturbation( "poles_perturbation", "poles", allowed_real_range=[(None, 0.0), (None, None)], allowed_imag_range=[None, None], ) @pd.root_validator(pre=True) def _check_overdefining(cls, values): """Check that perturbation model is provided either directly or through ``perturbation_spec``, but not both. """ eps_i_p = values.get("eps_inf_perturbation") is not None poles_p = values.get("poles_perturbation") is not None p_spec = values.get("perturbation_spec") is not None if p_spec and (eps_i_p or poles_p): raise SetupError( "Must provide perturbation model either as 'perturbation_spec' or as " "'eps_inf_perturbation' and 'poles_perturbation', " "but not in both ways simultaneously." ) return values @pd.root_validator(skip_on_failure=True) def _check_perturbation_spec_ranges(cls, values): """Check perturbation ranges if defined as ``perturbation_spec``.""" p_spec = values["perturbation_spec"] if p_spec is None: return values eps_inf = values["eps_inf"] poles = values["poles"] if isinstance(p_spec, IndexPerturbation): eps_complex = PoleResidue._eps_model( eps_inf=eps_inf, poles=poles, frequency=p_spec.freq ) n, k = Medium.eps_complex_to_nk(eps_c=eps_complex) delta_eps_range, _ = p_spec._delta_eps_delta_sigma_ranges(n, k) elif isinstance(p_spec, PermittivityPerturbation): delta_eps_range, _ = p_spec._delta_eps_delta_sigma_ranges() else: raise SetupError("Unknown type of 'perturbation_spec'.") _warn_potential_error( field_name="eps_inf", base_value=eps_inf, val_change_range=delta_eps_range, allowed_real_range=(0.0, None), allowed_imag_range=None, ) return values
[docs] def perturbed_copy( self, temperature: CustomSpatialDataType = None, electron_density: CustomSpatialDataType = None, hole_density: CustomSpatialDataType = None, interp_method: InterpMethod = "linear", ) -> Union[PoleResidue, CustomPoleResidue]: """Sample perturbations on provided heat and/or charge data and return 'CustomPoleResidue'. Any of temperature, electron_density, and hole_density can be 'None'. If all passed arguments are 'None' then a 'PoleResidue' object is returned. All provided fields must have identical coords. Parameters ---------- temperature : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Temperature field data. electron_density : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Electron density field data. hole_density : Union[ :class:`.SpatialDataArray`, :class:`.TriangularGridDataset`, :class:`.TetrahedralGridDataset`, ] = None Hole density field data. interp_method : :class:`.InterpMethod`, optional Interpolation method to obtain heat and/or charge values that are not supplied at the Yee grids. Returns ------- Union[PoleResidue, CustomPoleResidue] Medium specification after application of heat and/or charge data. """ new_dict = self.dict( exclude={"eps_inf_perturbation", "poles_perturbation", "perturbation_spec", "type"} ) if all(x is None for x in [temperature, electron_density, hole_density]): new_dict.pop("subpixel") return PoleResidue.parse_obj(new_dict) zeros = ParameterPerturbation._zeros_like(temperature, electron_density, hole_density) eps_inf_field = self.eps_inf + zeros poles_field = [[a + zeros, c + zeros] for a, c in self.poles] if self.perturbation_spec is not None: pspec = self.perturbation_spec if isinstance(pspec, PermittivityPerturbation): delta_eps, delta_sigma = pspec._sample_delta_eps_delta_sigma( temperature, electron_density, hole_density ) elif isinstance(pspec, IndexPerturbation): n, k = self.nk_model(frequency=pspec.freq) delta_eps, delta_sigma = pspec._sample_delta_eps_delta_sigma( n, k, temperature, electron_density, hole_density ) if delta_eps is not None: eps_inf_field = eps_inf_field + delta_eps if delta_sigma is not None: poles_field = [*poles_field, [zeros, 0.5 * delta_sigma / EPSILON_0]] else: # sample eps_inf if self.eps_inf_perturbation is not None: eps_inf_field = eps_inf_field + self.eps_inf_perturbation.apply_data( temperature, electron_density, hole_density ) # sample poles if self.poles_perturbation is not None: for ind, ((a_perturb, c_perturb), (a_field, c_field)) in enumerate( zip(self.poles_perturbation, poles_field) ): if a_perturb is not None: a_field = a_field + a_perturb.apply_data( temperature, electron_density, hole_density ) if c_perturb is not None: c_field = c_field + c_perturb.apply_data( temperature, electron_density, hole_density ) poles_field[ind] = [a_field, c_field] new_dict["eps_inf"] = eps_inf_field new_dict["poles"] = poles_field new_dict["interp_method"] = interp_method return CustomPoleResidue.parse_obj(new_dict)
# types of mediums that can be used in Simulation and Structures MediumType3D = Union[ Medium, AnisotropicMedium, PECMedium, PMCMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue, LossyMetalMedium, ]
[docs] class Medium2D(AbstractMedium): """2D diagonally anisotropic medium. Notes ----- Only diagonal anisotropy is currently supported. Example ------- >>> drude_medium = Drude(eps_inf=2.0, coeffs=[(1,2), (3,4)]) >>> medium2d = Medium2D(ss=drude_medium, tt=drude_medium) """ ss: IsotropicUniformMediumFor2DType = pd.Field( ..., title="SS Component", description="Medium describing the ss-component of the diagonal permittivity tensor. " "The ss-component refers to the in-plane dimension of the medium that is the first " "component in order of 'x', 'y', 'z'. " "If the 2D material is normal to the y-axis, for example, then this determines the " "xx-component of the corresponding 3D medium.", discriminator=TYPE_TAG_STR, ) tt: IsotropicUniformMediumFor2DType = pd.Field( ..., title="TT Component", description="Medium describing the tt-component of the diagonal permittivity tensor. " "The tt-component refers to the in-plane dimension of the medium that is the second " "component in order of 'x', 'y', 'z'. " "If the 2D material is normal to the y-axis, for example, then this determines the " "zz-component of the corresponding 3D medium.", discriminator=TYPE_TAG_STR, ) @pd.validator("modulation_spec", always=True) def _validate_modulation_spec(cls, val): """Check compatibility with modulation_spec.""" if val is not None: raise ValidationError( f"A 'modulation_spec' of class {type(val)} is not " f"currently supported for medium class {cls.__name__}." ) return val @pd.validator("tt", always=True) @skip_if_fields_missing(["ss"]) def _validate_inplane_pec(cls, val, values): """ss/tt components must be both PEC or non-PEC.""" if isinstance(val, PECMedium) != isinstance(values["ss"], PECMedium): raise ValidationError( "Materials describing ss- and tt-components must be " "either both 'PECMedium', or non-'PECMedium'." ) return val @classmethod def _weighted_avg( cls, meds: list[IsotropicUniformMediumFor2DType], weights: list[float] ) -> Union[PoleResidue, PECMedium]: """Average ``meds`` with weights ``weights``.""" eps_inf = 1 poles = [] for med, weight in zip(meds, weights): if isinstance(med, DispersiveMedium): pole_res = med.pole_residue eps_inf += weight * (med.pole_residue.eps_inf - 1) elif isinstance(med, Medium): pole_res = PoleResidue.from_medium(med) eps_inf += weight * (med.permittivity - 1) elif isinstance(med, PECMedium): # special treatment for PEC return med else: raise ValidationError("Invalid medium type for the components of 'Medium2D'.") poles += [(a, weight * c) for (a, c) in pole_res.poles if c != 0.0] return PoleResidue(eps_inf=np.real(eps_inf), poles=poles)
[docs] def volumetric_equivalent( self, axis: Axis, adjacent_media: tuple[MediumType3D, MediumType3D], adjacent_dls: tuple[float, float], ) -> AnisotropicMedium: """Produces a 3D volumetric equivalent medium. The new medium has thickness equal to the average of the ``dls`` in the ``axis`` direction. The ss and tt components of the 2D material are mapped in order onto the xx, yy, and zz components of the 3D material, excluding the ``axis`` component. The conductivity and residues (in the case of a dispersive 2D material) are rescaled by ``1/dl``. The neighboring media ``neighbors`` enter in as a background for the resulting volumetric equivalent. Parameters ---------- axis : Axis Index (0, 1, or 2 for x, y, or z respectively) of the normal direction to the 2D material. adjacent_media : Tuple[MediumType3D, MediumType3D] The neighboring media on either side of the 2D material. The first element is directly on the - side of the 2D material in the supplied axis, and the second element is directly on the + side. adjacent_dls : Tuple[float, float] Each dl represents twice the thickness of the desired volumetric model on the respective side of the 2D material. Returns ------- :class:`.AnisotropicMedium` The 3D material corresponding to this 2D material. """ def get_component(med: MediumType3D, comp: Axis) -> IsotropicUniformMediumFor2DType: """Extract the ``comp`` component of ``med``.""" if isinstance(med, AnisotropicMedium): dim = "xyz"[comp] element_name = dim + dim return med.elements[element_name] return med def get_background(comp: Axis) -> PoleResidue: """Get the background medium appropriate for the ``comp`` component.""" meds = [get_component(med=med, comp=comp) for med in adjacent_media] # the Yee site for the E field in the normal direction is fully contained # in the medium on the + side if comp == axis: return meds[1] weights = np.array(adjacent_dls) / np.sum(adjacent_dls) return self._weighted_avg(meds, weights) dl = (adjacent_dls[0] + adjacent_dls[1]) / 2 media_bg = [get_background(comp=i) for i in range(3)] # perform weighted average of planar media transverse dimensions with the # respective background media media_fg_plane = list(self.elements.values()) _, media_bg_plane = Geometry.pop_axis(media_bg, axis=axis) media_fg_weighted = [ self._weighted_avg([media_bg, media_fg], [1, 1 / dl]) for media_bg, media_fg in zip(media_bg_plane, media_fg_plane) ] # combine the two weighted, planar media with the background medium and put in the xyz basis media_3d = Geometry.unpop_axis( ax_coord=media_bg[axis], plane_coords=media_fg_weighted, axis=axis ) media_3d_kwargs = {dim + dim: medium for dim, medium in zip("xyz", media_3d)} return AnisotropicMediumFromMedium2D( **media_3d_kwargs, frequency_range=self.frequency_range )
[docs] def to_anisotropic_medium(self, axis: Axis, thickness: float) -> AnisotropicMedium: """Generate a 3D :class:`.AnisotropicMedium` equivalent of a given thickness. Parameters ---------- axis: Axis The normal axis to the 2D medium. thickness: float The thickness of the desired 3D medium. Returns ------- :class:`.AnisotropicMedium` The 3D equivalent of this 2D medium. """ media = list(self.elements.values()) media_weighted = [self._weighted_avg([medium], [1 / thickness]) for medium in media] media_3d = Geometry.unpop_axis(ax_coord=Medium(), plane_coords=media_weighted, axis=axis) media_3d_kwargs = {dim + dim: medium for dim, medium in zip("xyz", media_3d)} return AnisotropicMedium(**media_3d_kwargs, frequency_range=self.frequency_range)
[docs] def to_pole_residue(self, thickness: float) -> PoleResidue: """Generate a :class:`.PoleResidue` equivalent of a given thickness. The 2D medium to be isotropic in-plane (otherwise the components are averaged). Parameters ---------- thickness: float The thickness of the desired 3D medium. Returns ------- :class:`.PoleResidue` The 3D equivalent pole residue model of this 2D medium. """ return self._weighted_avg( [self.ss, self.tt], [1 / (2 * thickness), 1 / (2 * thickness)] ).updated_copy(frequency_range=self.frequency_range)
[docs] def to_medium(self, thickness: float) -> Medium: """Generate a :class:`.Medium` equivalent of a given thickness. The 2D medium must be isotropic in-plane (otherwise the components are averaged) and non-dispersive besides a constant conductivity. Parameters ---------- thickness: float The thickness of the desired 3D medium. Returns ------- :class:`.Medium` The 3D equivalent of this 2D medium. """ if self.is_pec: return PEC return self.to_pole_residue(thickness=thickness).to_medium()
[docs] @classmethod def from_medium(cls, medium: Medium, thickness: float) -> Medium2D: """Generate a :class:`.Medium2D` equivalent of a :class:`.Medium` with a given thickness. Parameters ---------- medium: :class:`.Medium` The 3D medium to convert. thickness : float The thickness of the 3D material. Returns ------- :class:`.Medium2D` The 2D equivalent of the given 3D medium. """ med = cls._weighted_avg([medium], [thickness]) return Medium2D(ss=med, tt=med, frequency_range=medium.frequency_range)
[docs] @classmethod def from_dispersive_medium(cls, medium: DispersiveMedium, thickness: float) -> Medium2D: """Generate a :class:`.Medium2D` equivalent of a :class:`.DispersiveMedium` with a given thickness. Parameters ---------- medium: :class:`.DispersiveMedium` The 3D dispersive medium to convert. thickness : float The thickness of the 3D material. Returns ------- :class:`.Medium2D` The 2D equivalent of the given 3D medium. """ med = cls._weighted_avg([medium], [thickness]) return Medium2D(ss=med, tt=med, frequency_range=medium.frequency_range, name=medium.name)
[docs] @classmethod def from_anisotropic_medium( cls, medium: AnisotropicMedium, axis: Axis, thickness: float ) -> Medium2D: """Generate a :class:`.Medium2D` equivalent of a :class:`.AnisotropicMedium` with given normal axis and thickness. The ``ss`` and ``tt`` components of the resulting 2D medium correspond to the first of the ``xx``, ``yy``, and ``zz`` components of the 3D medium, with the ``axis`` component removed. Parameters ---------- medium: :class:`.AnisotropicMedium` The 3D anisotropic medium to convert. axis: :class:`.Axis` The normal axis to the 2D material. thickness : float The thickness of the 3D material. Returns ------- :class:`.Medium2D` The 2D equivalent of the given 3D medium. """ media = list(medium.elements.values()) _, media_plane = Geometry.pop_axis(media, axis=axis) media_plane_scaled = [] for _, med in enumerate(media_plane): media_plane_scaled.append(cls._weighted_avg([med], [thickness])) media_kwargs = {dim + dim: medium for dim, medium in zip("st", media_plane_scaled)} return Medium2D(**media_kwargs, frequency_range=medium.frequency_range)
[docs] @ensure_freq_in_range def eps_model(self, frequency: float) -> complex: """Complex-valued permittivity as a function of frequency.""" return np.mean(self.eps_diagonal(frequency=frequency), axis=0)
[docs] @ensure_freq_in_range def eps_diagonal(self, frequency: float) -> tuple[complex, complex]: """Main diagonal of the complex-valued permittivity tensor as a function of frequency.""" log.warning( "The permittivity of a 'Medium2D' is unphysical. " "Use 'Medium2D.to_anisotropic_medium' or 'Medium2D.to_pole_residue' first " "to obtain the physical refractive index." ) eps_ss = self.ss.eps_model(frequency) eps_tt = self.tt.eps_model(frequency) return (eps_ss, eps_tt)
[docs] def eps_diagonal_numerical(self, frequency: float) -> tuple[complex, complex, complex]: """Main diagonal of the complex-valued permittivity tensor for numerical considerations such as meshing and runtime estimation. Parameters ---------- frequency : float Frequency to evaluate permittivity at (Hz). Returns ------- Tuple[complex, complex, complex] The diagonal elements of relative permittivity tensor relevant for numerical considerations evaluated at ``frequency``. """ return (1.0 + 0j,) * 3
[docs] @add_ax_if_none def plot(self, freqs: float, ax: Ax = None) -> Ax: """Plot n, k of a :class:`.Medium` as a function of frequency.""" log.warning( "The refractive index of a 'Medium2D' is unphysical. " "Use 'Medium2D.plot_sigma' instead to plot surface conductivity, or call " "'Medium2D.to_anisotropic_medium' or 'Medium2D.to_pole_residue' first " "to obtain the physical refractive index." ) freqs = np.array(freqs) freqs_thz = freqs / 1e12 for label, medium_component in self.elements.items(): eps_complex = medium_component.eps_model(freqs) n, k = AbstractMedium.eps_complex_to_nk(eps_complex) ax.plot(freqs_thz, n, label=f"n, eps_{label}") ax.plot(freqs_thz, k, label=f"k, eps_{label}") ax.set_xlabel("frequency (THz)") ax.set_title("medium dispersion") ax.legend() ax.set_aspect("auto") return ax
[docs] @add_ax_if_none def plot_sigma(self, freqs: float, ax: Ax = None) -> Ax: """Plot the surface conductivity of the 2D material.""" freqs = np.array(freqs) freqs_thz = freqs / 1e12 for label, medium_component in self.elements.items(): sigma = medium_component.sigma_model(freqs) ax.plot(freqs_thz, np.real(sigma) * 1e6, label=f"Re($\\sigma$) ($\\mu$S), eps_{label}") ax.plot(freqs_thz, np.imag(sigma) * 1e6, label=f"Im($\\sigma$) ($\\mu$S), eps_{label}") ax.set_xlabel("frequency (THz)") ax.set_title("surface conductivity") ax.legend() ax.set_aspect("auto") return ax
[docs] @ensure_freq_in_range def sigma_model(self, freq: float) -> complex: """Complex-valued conductivity as a function of frequency. Parameters ---------- freq: float Frequency to evaluate conductivity at (Hz). Returns ------- complex Complex conductivity at this frequency. """ return np.mean([self.ss.sigma_model(freq), self.tt.sigma_model(freq)], axis=0)
@property def elements(self) -> dict[str, IsotropicUniformMediumFor2DType]: """The diagonal elements of the 2D medium as a dictionary.""" return {"ss": self.ss, "tt": self.tt} @cached_property def n_cfl(self): """This property computes the index of refraction related to CFL condition, so that the FDTD with this medium is stable when the time step size that doesn't take material factor into account is multiplied by ``n_cfl``. """ return 1.0 @cached_property def is_pec(self): """Whether the medium is a PEC.""" return any(isinstance(comp, PECMedium) for comp in self.elements.values())
[docs] def is_comp_pec_2d(self, comp: Axis, axis: Axis): """Whether the medium is a PEC.""" elements_3d = Geometry.unpop_axis( ax_coord=Medium(), plane_coords=self.elements.values(), axis=axis ) return isinstance(elements_3d[comp], PECMedium)
PEC2D = Medium2D(ss=PEC, tt=PEC) # types of mediums that can be used in Simulation and Structures MediumType = Union[MediumType3D, Medium2D, AnisotropicMediumFromMedium2D] # Utility function def medium_from_nk(n: float, k: float, freq: float, **kwargs) -> Union[Medium, Lorentz]: """Convert ``n`` and ``k`` values at frequency ``freq`` to :class:`.Medium` if ``Re[epsilon]>=1``, or :class:`Lorentz` if if ``Re[epsilon]<1``. Parameters ---------- n : float Real part of refractive index. k : float = 0 Imaginary part of refrative index. freq : float Frequency to evaluate permittivity at (Hz). kwargs: dict Keyword arguments passed to the medium construction. Returns ------- Union[:class:`.Medium`, :class:`Lorentz`] Dispersionless medium or Lorentz medium having refractive index n+ik at frequency ``freq``. """ eps_complex = AbstractMedium.nk_to_eps_complex(n, k) if eps_complex.real >= 1: return Medium.from_nk(n, k, freq, **kwargs) return Lorentz.from_nk(n, k, freq, **kwargs)