tidy3d.DirectivityData#
- class DirectivityData[source]#
Bases:
AbstractFieldProjectionData
Data associated with a
DirectivityMonitor
.- Parameters:
attrs (dict = {}) β Dictionary storing arbitrary metadata for a Tidy3D object. This dictionary can be freely used by the user for storing data without affecting the operation of Tidy3D as it is not used internally. Note that, unlike regular Tidy3D fields,
attrs
are mutable. For example, the following is allowed for setting anattr
obj.attrs['foo'] = bar
. Also note that Tidy3D` will raise aTypeError
ifattrs
contain objects that can not be serialized. One can check ifattrs
are serializable by callingobj.json()
.monitor (DirectivityMonitor) β Monitor describing the angle-based projection grid on which to measure directivity data.
Er (FieldProjectionAngleDataArray) β Spatial distribution of r-component of the electric field.
Etheta (FieldProjectionAngleDataArray) β Spatial distribution of the theta-component of the electric field.
Ephi (FieldProjectionAngleDataArray) β Spatial distribution of phi-component of the electric field.
Hr (FieldProjectionAngleDataArray) β Spatial distribution of r-component of the magnetic field.
Htheta (FieldProjectionAngleDataArray) β Spatial distribution of theta-component of the magnetic field.
Hphi (FieldProjectionAngleDataArray) β Spatial distribution of phi-component of the magnetic field.
medium (Union[Medium, AnisotropicMedium, PECMedium, PoleResidue, Sellmeier, Lorentz, Debye, Drude, FullyAnisotropicMedium, CustomMedium, CustomPoleResidue, CustomSellmeier, CustomLorentz, CustomDebye, CustomDrude, CustomAnisotropicMedium, PerturbationMedium, PerturbationPoleResidue, LossyMetalMedium, Medium2D, AnisotropicMediumFromMedium2D] = Medium(attrs={}, name=None, frequency_range=None, allow_gain=False, nonlinear_spec=None, modulation_spec=None, viz_spec=None, heat_spec=None, type='Medium', permittivity=1.0, conductivity=0.0)) β Background medium through which to project fields.
is_2d_simulation (bool = False) β Indicates whether the monitor data is for a 2D simulation.
flux (FluxDataArray) β Flux values.
Example
>>> from tidy3d import FluxDataArray, FieldProjectionAngleDataArray >>> f = np.linspace(1e14, 2e14, 10) >>> r = np.atleast_1d(1e6) >>> theta = np.linspace(0, np.pi, 10) >>> phi = np.linspace(0, 2*np.pi, 20) >>> coords = dict(r=r, theta=theta, phi=phi, f=f) >>> coords_flux = dict(f=f) >>> values = (1+1j) * np.random.random((len(r), len(theta), len(phi), len(f))) >>> flux_data = FluxDataArray(np.random.random(len(f)), coords=coords_flux) >>> scalar_field = FieldProjectionAngleDataArray(values, coords=coords) >>> monitor = DirectivityMonitor(center=(1,2,3), size=(2,2,2), freqs=f, name='n2f_monitor', phi=phi, theta=theta) >>> data = DirectivityData(monitor=monitor, flux=flux_data, Er=scalar_field, Etheta=scalar_field, Ephi=scalar_field, ... Hr=scalar_field, Htheta=scalar_field, Hphi=scalar_field)
Attributes
Axial Ratio (AR) in the frequency domain as a function of angles theta and phi.
Directivity in the frequency domain as a function of angles theta and phi.
Electric far field for left-hand circular polarization
Electric far field for right-hand circular polarization
Methods
normalize
(source_spectrum_fn)Return a copy of self after normalization is applied using the source spectrum function, for both field components and flux data.
Inherited Common Usage
- monitor#
- flux#
- Er#
- Etheta#
- Ephi#
- Hr#
- Htheta#
- Hphi#
- normalize(source_spectrum_fn)[source]#
Return a copy of self after normalization is applied using the source spectrum function, for both field components and flux data.
- property directivity#
Directivity in the frequency domain as a function of angles theta and phi. Directivity is a dimensionless quantity defined as the ratio of the radiation intensity in a given direction to the average radiation intensity over all directions.
- property axial_ratio#
Axial Ratio (AR) in the frequency domain as a function of angles theta and phi. AR is a dimensionless quantity defined as the ratio of the major axis to the minor axis of the polarization ellipse.
Note
The axial ratio computation is based on:
Balanis, Constantine A., βAntenna Theory: Analysis and Design,β John Wiley & Sons, Chapter 2.12 (2016).
- property left_polarization#
Electric far field for left-hand circular polarization
- property right_polarization#
Electric far field for right-hand circular polarization
- __hash__()#
Hash method.