Source code for trimesh.base

"""
github.com/mikedh/trimesh
----------------------------

Library for importing, exporting and doing simple operations on triangular meshes.
"""

import copy
import warnings

import numpy as np
from numpy import float64, int64, ndarray

from . import (
    boolean,
    comparison,
    convex,
    curvature,
    decomposition,
    geometry,
    graph,
    grouping,
    inertia,
    intersections,
    permutate,
    poses,
    proximity,
    ray,
    registration,
    remesh,
    repair,
    sample,
    transformations,
    triangles,
    units,
    util,
)
from .caching import Cache, DataStore, TrackedArray, cache_decorator
from .constants import log, tol
from .exceptions import ExceptionWrapper
from .exchange.export import export_mesh
from .parent import Geometry3D
from .scene import Scene
from .triangles import MassProperties
from .typed import (
    Any,
    ArrayLike,
    Dict,
    Floating,
    Integer,
    List,
    NDArray,
    Number,
    Optional,
    Sequence,
    Union,
)
from .visual import ColorVisuals, TextureVisuals, create_visual

try:
    from scipy.sparse import coo_matrix
    from scipy.spatial import cKDTree
except BaseException as E:
    cKDTree = ExceptionWrapper(E)
    coo_matrix = ExceptionWrapper(E)
try:
    from networkx import Graph
except BaseException as E:
    Graph = ExceptionWrapper(E)

try:
    from rtree.index import Index
except BaseException as E:
    Index = ExceptionWrapper(E)

try:
    from .path import Path2D, Path3D
except BaseException as E:
    Path2D = ExceptionWrapper(E)
    Path3D = ExceptionWrapper(E)


[docs] class Trimesh(Geometry3D):
[docs] def __init__( self, vertices: Optional[ArrayLike] = None, faces: Optional[ArrayLike] = None, face_normals: Optional[ArrayLike] = None, vertex_normals: Optional[ArrayLike] = None, face_colors: Optional[ArrayLike] = None, vertex_colors: Optional[ArrayLike] = None, face_attributes: Optional[Dict[str, ArrayLike]] = None, vertex_attributes: Optional[Dict[str, ArrayLike]] = None, metadata: Optional[Dict[str, Any]] = None, process: bool = True, validate: bool = False, merge_tex: Optional[bool] = None, merge_norm: Optional[bool] = None, use_embree: bool = True, initial_cache: Optional[Dict[str, ndarray]] = None, visual: Optional[Union[ColorVisuals, TextureVisuals]] = None, **kwargs, ) -> None: """ A Trimesh object contains a triangular 3D mesh. Parameters ------------ vertices : (n, 3) float Array of vertex locations faces : (m, 3) or (m, 4) int Array of triangular or quad faces (triangulated on load) face_normals : (m, 3) float Array of normal vectors corresponding to faces vertex_normals : (n, 3) float Array of normal vectors for vertices metadata : dict Any metadata about the mesh process : bool if True, Nan and Inf values will be removed immediately and vertices will be merged validate : bool If True, degenerate and duplicate faces will be removed immediately, and some functions will alter the mesh to ensure consistent results. use_embree : bool If True try to use pyembree raytracer. If pyembree is not available it will automatically fall back to a much slower rtree/numpy implementation initial_cache : dict A way to pass things to the cache in case expensive things were calculated before creating the mesh object. visual : ColorVisuals or TextureVisuals Assigned to self.visual """ # self._data stores information about the mesh which # CANNOT be regenerated. # in the base class all that is stored here is vertex and # face information # any data put into the store is converted to a TrackedArray # which is a subclass of np.ndarray that provides hash and crc # methods which can be used to detect changes in the array. self._data = DataStore() # self._cache stores information about the mesh which CAN be # regenerated from self._data, but may be slow to calculate. # In order to maintain consistency # the cache is cleared when self._data.__hash__() changes self._cache = Cache(id_function=self._data.__hash__, force_immutable=True) if initial_cache is not None: self._cache.update(initial_cache) # check for None only to avoid warning messages in subclasses # (n, 3) float array of vertices self.vertices = vertices # (m, 3) int of triangle faces that references self.vertices self.faces = faces # hold visual information about the mesh (vertex and face colors) if visual is None: self.visual = create_visual( face_colors=face_colors, vertex_colors=vertex_colors, mesh=self ) else: self.visual = visual # normals are accessed through setters/properties and are regenerated # if dimensions are inconsistent, but can be set by the constructor # to avoid a substantial number of cross products if face_normals is not None: self.face_normals = face_normals # (n, 3) float of vertex normals, can be created from face normals if vertex_normals is not None: self.vertex_normals = vertex_normals # embree is a much, much faster raytracer written by Intel # if you have pyembree installed you should use it # although both raytracers were designed to have a common API if ray.has_embree and use_embree: self.ray = ray.ray_pyembree.RayMeshIntersector(self) else: # create a ray-mesh query object for the current mesh # initializing is very inexpensive and object is convenient to have. # On first query expensive bookkeeping is done (creation of r-tree), # and is cached for subsequent queries self.ray = ray.ray_triangle.RayMeshIntersector(self) # a quick way to get permuted versions of the current mesh self.permutate = permutate.Permutator(self) # convenience class for nearest point queries self.nearest = proximity.ProximityQuery(self) # update the mesh metadata with passed metadata self.metadata = {} if isinstance(metadata, dict): self.metadata.update(metadata) elif metadata is not None: raise ValueError(f"metadata should be a dict or None, got {metadata!s}") # store per-face and per-vertex attributes which will # be updated when an update_faces call is made self.face_attributes = {} self.vertex_attributes = {} # use update to copy items if face_attributes is not None: self.face_attributes.update(face_attributes) if vertex_attributes is not None: self.vertex_attributes.update(vertex_attributes) # process will remove NaN and Inf values and merge vertices # if validate, will remove degenerate and duplicate faces if process or validate: self.process(validate=validate, merge_tex=merge_tex, merge_norm=merge_norm)
[docs] def process( self, validate: bool = False, merge_tex: Optional[bool] = None, merge_norm: Optional[bool] = None, ) -> "Trimesh": """ Do processing to make a mesh useful. Does this by: 1) removing NaN and Inf values 2) merging duplicate vertices If validate: 3) Remove triangles which have one edge of their 2D oriented bounding box shorter than tol.merge 4) remove duplicated triangles 5) Attempt to ensure triangles are consistently wound and normals face outwards. Parameters ------------ validate : bool Remove degenerate and duplicate faces. Returns ------------ self: trimesh.Trimesh Current mesh """ # if there are no vertices or faces exit early if self.is_empty: return self # avoid clearing the cache during operations with self._cache: # if we're cleaning remove duplicate # and degenerate faces if validate: # get a mask with only unique and non-degenerate faces mask = self.unique_faces() & self.nondegenerate_faces() self.update_faces(mask) self.fix_normals() # since none of our process operations moved vertices or faces # we can keep face and vertex normals in the cache without recomputing # if faces or vertices have been removed, normals are validated before # being returned so there is no danger of inconsistent dimensions self.remove_infinite_values() self.merge_vertices(merge_tex=merge_tex, merge_norm=merge_norm) self._cache.clear(exclude={"face_normals", "vertex_normals"}) self.metadata["processed"] = True return self
@property def mutable(self) -> bool: """ Is the current mesh allowed to be altered in-place? Returns ------------- mutable If data is allowed to be set for the mesh. """ return self._data.mutable @mutable.setter def mutable(self, value: bool) -> None: """ Set the mutability of the current mesh. Parameters ---------- value Change whether the current mesh is allowed to be altered in-place. """ self._data.mutable = value @property def faces(self) -> TrackedArray: """ The faces of the mesh. This is regarded as core information which cannot be regenerated from cache and as such is stored in `self._data` which tracks the array for changes and clears cached values of the mesh altered. Returns ---------- faces : (n, 3) int64 References for `self.vertices` for triangles. """ return self._data["faces"] @faces.setter def faces(self, values: Optional[ArrayLike]) -> None: """ Set the vertex indexes that make up triangular faces. Parameters -------------- values : (n, 3) int64 Indexes of self.vertices """ if values is None: # if passed none store an empty array values = np.zeros(shape=(0, 3), dtype=int64) else: values = np.asanyarray(values, dtype=int64) # automatically triangulate quad faces if len(values.shape) == 2 and values.shape[1] != 3: log.info("triangulating faces") values = geometry.triangulate_quads(values) self._data["faces"] = values @cache_decorator def faces_sparse(self) -> coo_matrix: """ A sparse matrix representation of the faces. Returns ---------- sparse : scipy.sparse.coo_matrix Has properties: dtype : bool shape : (len(self.vertices), len(self.faces)) """ return geometry.index_sparse(columns=len(self.vertices), indices=self.faces) @property def face_normals(self) -> NDArray[float64]: """ Return the unit normal vector for each face. If a face is degenerate and a normal can't be generated a zero magnitude unit vector will be returned for that face. Returns ----------- normals : (len(self.faces), 3) float64 Normal vectors of each face """ # check shape of cached normals cached = self._cache["face_normals"] # get faces from datastore if "faces" in self._data: faces = self._data.data["faces"] else: faces = None # if we have no faces exit early if faces is None or len(faces) == 0: return np.array([], dtype=float64).reshape((0, 3)) # if the shape of cached normals equals the shape of faces return if np.shape(cached) == np.shape(faces): return cached # use cached triangle cross products to generate normals # this will always return the correct shape but some values # will be zero or an arbitrary vector if the inputs had # a cross product below machine epsilon normals, valid = triangles.normals( triangles=self.triangles, crosses=self.triangles_cross ) # if all triangles are valid shape is correct if valid.all(): # put calculated face normals into cache manually self._cache["face_normals"] = normals return normals # make a padded list of normals for correct shape padded = np.zeros((len(self.triangles), 3), dtype=float64) padded[valid] = normals # put calculated face normals into cache manually self._cache["face_normals"] = padded return padded @face_normals.setter def face_normals(self, values: Optional[ArrayLike]) -> None: """ Assign values to face normals. Parameters ------------- values : (len(self.faces), 3) float Unit face normals. If None will clear existing normals. """ # if nothing passed exit if values is None: return # make sure candidate face normals are C-contiguous float values = np.asanyarray(values, order="C", dtype=float64) # face normals need to correspond to faces if len(values) == 0 or values.shape != self.faces.shape: log.debug("face_normals incorrect shape, ignoring!") return # check if any values are larger than tol.merge # don't set the normals if they are all zero ptp = np.ptp(values) if not np.isfinite(ptp): log.debug("face_normals contain NaN, ignoring!") return if ptp < tol.merge: log.debug("face_normals all zero, ignoring!") return # make sure the first few normals match the first few triangles check, valid = triangles.normals(self.vertices.view(np.ndarray)[self.faces[:20]]) compare = np.zeros((len(valid), 3)) compare[valid] = check if not np.allclose(compare, values[:20]): log.debug("face_normals didn't match triangles, ignoring!") return # otherwise store face normals self._cache["face_normals"] = values @property def vertices(self) -> TrackedArray: """ The vertices of the mesh. This is regarded as core information which cannot be generated from cache and as such is stored in self._data which tracks the array for changes and clears cached values of the mesh if this is altered. Returns ---------- vertices : (n, 3) float Points in cartesian space referenced by self.faces """ # get vertices if already stored return self._data["vertices"] @vertices.setter def vertices(self, values: Optional[ArrayLike]): """ Assign vertex values to the mesh. Parameters -------------- values : (n, 3) float Points in space """ if values is None: # remove any stored data and store an empty array values = np.zeros(shape=(0, 3), dtype=float64) self._data["vertices"] = np.asanyarray(values, order="C", dtype=float64) @cache_decorator def vertex_normals(self) -> NDArray[float64]: """ The vertex normals of the mesh. If the normals were loaded we check to make sure we have the same number of vertex normals and vertices before returning them. If there are no vertex normals defined or a shape mismatch we calculate the vertex normals from the mean normals of the faces the vertex is used in. Returns ---------- vertex_normals : (n, 3) float Represents the surface normal at each vertex. Where n == len(self.vertices) """ # make sure we have faces_sparse assert hasattr(self.faces_sparse, "dot") return geometry.weighted_vertex_normals( vertex_count=len(self.vertices), faces=self.faces, face_normals=self.face_normals, face_angles=self.face_angles, ) @vertex_normals.setter def vertex_normals(self, values: ArrayLike) -> None: """ Assign values to vertex normals. Parameters ------------- values : (len(self.vertices), 3) float Unit normal vectors for each vertex """ if values is not None: values = np.asanyarray(values, order="C", dtype=float64) if values.shape == self.vertices.shape: # check to see if they assigned all zeros if np.ptp(values) < tol.merge: log.debug("vertex_normals are all zero!") self._cache["vertex_normals"] = values @cache_decorator def vertex_faces(self) -> NDArray[int64]: """ A representation of the face indices that correspond to each vertex. Returns ---------- vertex_faces : (n,m) int Each row contains the face indices that correspond to the given vertex, padded with -1 up to the max number of faces corresponding to any one vertex Where n == len(self.vertices), m == max number of faces for a single vertex """ vertex_faces = geometry.vertex_face_indices( vertex_count=len(self.vertices), faces=self.faces, faces_sparse=self.faces_sparse, ) return vertex_faces @cache_decorator def bounds(self) -> Optional[NDArray[float64]]: """ The axis aligned bounds of the faces of the mesh. Returns ----------- bounds : (2, 3) float or None Bounding box with [min, max] coordinates If mesh is empty will return None """ # return bounds including ONLY referenced vertices in_mesh = self.vertices[self.referenced_vertices] # don't crash if we have no vertices referenced if len(in_mesh) == 0: return None # get mesh bounds with min and max return np.array([in_mesh.min(axis=0), in_mesh.max(axis=0)]) @cache_decorator def extents(self) -> Optional[NDArray[float64]]: """ The length, width, and height of the axis aligned bounding box of the mesh. Returns ----------- extents : (3, ) float or None Array containing axis aligned [length, width, height] If mesh is empty returns None """ # if mesh is empty return None if self.bounds is None: return None extents = np.ptp(self.bounds, axis=0) return extents @cache_decorator def centroid(self) -> NDArray[float64]: """ The point in space which is the average of the triangle centroids weighted by the area of each triangle. This will be valid even for non-watertight meshes, unlike self.center_mass Returns ---------- centroid : (3, ) float The average vertex weighted by face area """ # use the centroid of each triangle weighted by # the area of the triangle to find the overall centroid try: centroid = np.average(self.triangles_center, weights=self.area_faces, axis=0) except BaseException: # if all triangles are zero-area weights will not work centroid = self.triangles_center.mean(axis=0) return centroid @property def center_mass(self) -> NDArray[float64]: """ The point in space which is the center of mass/volume. Returns ----------- center_mass : (3, ) float Volumetric center of mass of the mesh. """ return self.mass_properties.center_mass @center_mass.setter def center_mass(self, value: ArrayLike) -> None: """ Override the point in space which is the center of mass and volume. Parameters ----------- center_mass : (3, ) float Volumetric center of mass of the mesh. """ value = np.array(value, dtype=float64) if value.shape != (3,): raise ValueError("shape must be (3,) float!") self._data["center_mass"] = value self._cache.delete("mass_properties") @property def density(self) -> float: """ The density of the mesh used in inertia calculations. Returns ----------- density The density of the primitive. """ return float(self.mass_properties.density) @density.setter def density(self, value: Number) -> None: """ Set the density of the primitive. Parameters ------------- density Specify the density of the primitive to be used in inertia calculations. """ self._data["density"] = float(value) self._cache.delete("mass_properties") @property def volume(self) -> float64: """ Volume of the current mesh calculated using a surface integral. If the current mesh isn't watertight this is garbage. Returns --------- volume : float Volume of the current mesh """ return self.mass_properties.volume @property def mass(self) -> float64: """ Mass of the current mesh, based on specified density and volume. If the current mesh isn't watertight this is garbage. Returns --------- mass : float Mass of the current mesh """ return self.mass_properties.mass @property def moment_inertia(self) -> NDArray[float64]: """ Return the moment of inertia matrix of the current mesh. If mesh isn't watertight this is garbage. The returned moment of inertia is *axis aligned* at the mesh's center of mass `mesh.center_mass`. If you want the moment at any other frame including the origin call: `mesh.moment_inertia_frame` Returns --------- inertia : (3, 3) float Moment of inertia of the current mesh at the center of mass and aligned with the cartesian axis. """ return self.mass_properties.inertia
[docs] def moment_inertia_frame(self, transform: ArrayLike) -> NDArray[float64]: """ Get the moment of inertia of this mesh with respect to an arbitrary frame, versus with respect to the center of mass as returned by `mesh.moment_inertia`. For example if `transform` is an identity matrix `np.eye(4)` this will give the moment at the origin. Uses the parallel axis theorum to move the center mass tensor to this arbitrary frame. Parameters ------------ transform : (4, 4) float Homogeneous transformation matrix. Returns ------------- inertia : (3, 3) Moment of inertia in the requested frame. """ # we'll need the inertia tensor and the center of mass props = self.mass_properties # calculated moment of inertia is at the center of mass # so we want to offset our requested translation by that # center of mass offset = np.eye(4) offset[:3, 3] = -props["center_mass"] # apply the parallel axis theorum to get the new inertia return inertia.transform_inertia( inertia_tensor=props["inertia"], transform=np.dot(offset, transform), mass=props["mass"], parallel_axis=True, )
@cache_decorator def principal_inertia_components(self) -> NDArray[float64]: """ Return the principal components of inertia Ordering corresponds to mesh.principal_inertia_vectors Returns ---------- components : (3, ) float Principal components of inertia """ # both components and vectors from inertia matrix components, vectors = inertia.principal_axis(self.moment_inertia) # store vectors in cache for later self._cache["principal_inertia_vectors"] = vectors return components @property def principal_inertia_vectors(self) -> NDArray[float64]: """ Return the principal axis of inertia as unit vectors. The order corresponds to `mesh.principal_inertia_components`. Returns ---------- vectors : (3, 3) float Three vectors pointing along the principal axis of inertia directions """ _ = self.principal_inertia_components return self._cache["principal_inertia_vectors"] @cache_decorator def principal_inertia_transform(self) -> NDArray[float64]: """ A transform which moves the current mesh so the principal inertia vectors are on the X,Y, and Z axis, and the centroid is at the origin. Returns ---------- transform : (4, 4) float Homogeneous transformation matrix """ order = np.argsort(self.principal_inertia_components)[1:][::-1] vectors = self.principal_inertia_vectors[order] vectors = np.vstack((vectors, np.cross(*vectors))) transform = np.eye(4) transform[:3, :3] = vectors transform = transformations.transform_around( matrix=transform, point=self.centroid ) transform[:3, 3] -= self.centroid return transform @cache_decorator def symmetry(self) -> Optional[str]: """ Check whether a mesh has rotational symmetry around an axis (radial) or point (spherical). Returns ----------- symmetry : None, 'radial', 'spherical' What kind of symmetry does the mesh have. """ symmetry, axis, section = inertia.radial_symmetry(self) self._cache["symmetry_axis"] = axis self._cache["symmetry_section"] = section return symmetry @property def symmetry_axis(self) -> Optional[NDArray[float64]]: """ If a mesh has rotational symmetry, return the axis. Returns ------------ axis : (3, ) float Axis around which a 2D profile was revolved to create this mesh. """ if self.symmetry is None: return None return self._cache["symmetry_axis"] @property def symmetry_section(self) -> Optional[NDArray[float64]]: """ If a mesh has rotational symmetry return the two vectors which make up a section coordinate frame. Returns ---------- section : (2, 3) float Vectors to take a section along """ if self.symmetry is None: return None return self._cache["symmetry_section"] @cache_decorator def triangles(self) -> NDArray[float64]: """ Actual triangles of the mesh (points, not indexes) Returns --------- triangles : (n, 3, 3) float Points of triangle vertices """ # use of advanced indexing on our tracked arrays will # trigger a change flag which means the hash will have to be # recomputed. We can escape this check by viewing the array. return self.vertices.view(np.ndarray)[self.faces] @cache_decorator def triangles_tree(self) -> Index: """ An R-tree containing each face of the mesh. Returns ---------- tree : rtree.index Each triangle in self.faces has a rectangular cell """ return triangles.bounds_tree(self.triangles) @cache_decorator def triangles_center(self) -> NDArray[float64]: """ The center of each triangle (barycentric [1/3, 1/3, 1/3]) Returns --------- triangles_center : (len(self.faces), 3) float Center of each triangular face """ return self.triangles.mean(axis=1) @cache_decorator def triangles_cross(self) -> NDArray[float64]: """ The cross product of two edges of each triangle. Returns --------- crosses : (n, 3) float Cross product of each triangle """ crosses = triangles.cross(self.triangles) return crosses @cache_decorator def edges(self) -> NDArray[int64]: """ Edges of the mesh (derived from faces). Returns --------- edges : (n, 2) int List of vertex indices making up edges """ edges, index = geometry.faces_to_edges( self.faces.view(np.ndarray), return_index=True ) self._cache["edges_face"] = index return edges @cache_decorator def edges_face(self) -> NDArray[int64]: """ Which face does each edge belong to. Returns --------- edges_face : (n, ) int Index of self.faces """ _ = self.edges return self._cache["edges_face"] @cache_decorator def edges_unique(self) -> NDArray[int64]: """ The unique edges of the mesh. Returns ---------- edges_unique : (n, 2) int Vertex indices for unique edges """ unique, inverse = grouping.unique_rows(self.edges_sorted) edges_unique = self.edges_sorted[unique] # edges_unique will be added automatically by the decorator # additional terms generated need to be added to the cache manually self._cache["edges_unique_idx"] = unique self._cache["edges_unique_inverse"] = inverse return edges_unique @cache_decorator def edges_unique_length(self) -> NDArray[float64]: """ How long is each unique edge. Returns ---------- length : (len(self.edges_unique), ) float Length of each unique edge """ vector = np.subtract(*self.vertices[self.edges_unique.T]) length = util.row_norm(vector) return length @cache_decorator def edges_unique_inverse(self) -> NDArray[int64]: """ Return the inverse required to reproduce self.edges_sorted from self.edges_unique. Useful for referencing edge properties: mesh.edges_unique[mesh.edges_unique_inverse] == m.edges_sorted Returns ---------- inverse : (len(self.edges), ) int Indexes of self.edges_unique """ _ = self.edges_unique return self._cache["edges_unique_inverse"] @cache_decorator def edges_sorted(self) -> NDArray[int64]: """ Edges sorted along axis 1 Returns ---------- edges_sorted : (n, 2) Same as self.edges but sorted along axis 1 """ edges_sorted = np.sort(self.edges, axis=1) return edges_sorted @cache_decorator def edges_sorted_tree(self) -> cKDTree: """ A KDTree for mapping edges back to edge index. Returns ------------ tree : scipy.spatial.cKDTree Tree when queried with edges will return their index in mesh.edges_sorted """ return cKDTree(self.edges_sorted) @cache_decorator def edges_sparse(self) -> coo_matrix: """ Edges in sparse bool COO graph format where connected vertices are True. Returns ---------- sparse: (len(self.vertices), len(self.vertices)) bool Sparse graph in COO format """ sparse = graph.edges_to_coo(self.edges, count=len(self.vertices)) return sparse @cache_decorator def body_count(self) -> int: """ How many connected groups of vertices exist in this mesh. Note that this number may differ from result in mesh.split, which is calculated from FACE rather than vertex adjacency. Returns ----------- count : int Number of connected vertex groups """ # labels are (len(vertices), int) OB count, labels = graph.csgraph.connected_components( self.edges_sparse, directed=False, return_labels=True ) self._cache["vertices_component_label"] = labels return count @cache_decorator def faces_unique_edges(self) -> NDArray[int64]: """ For each face return which indexes in mesh.unique_edges constructs that face. Returns --------- faces_unique_edges : (len(self.faces), 3) int Indexes of self.edges_unique that construct self.faces Examples --------- In [0]: mesh.faces[:2] Out[0]: TrackedArray([[ 1, 6946, 24224], [ 6946, 1727, 24225]]) In [1]: mesh.edges_unique[mesh.faces_unique_edges[:2]] Out[1]: array([[[ 1, 6946], [ 6946, 24224], [ 1, 24224]], [[ 1727, 6946], [ 1727, 24225], [ 6946, 24225]]]) """ # make sure we have populated unique edges _ = self.edges_unique # we are relying on the fact that edges are stacked in triplets result = self._cache["edges_unique_inverse"].reshape((-1, 3)) return result @cache_decorator def euler_number(self) -> int: """ Return the Euler characteristic (a topological invariant) for the mesh In order to guarantee correctness, this should be called after remove_unreferenced_vertices Returns ---------- euler_number : int Topological invariant """ return int( self.referenced_vertices.sum() - len(self.edges_unique) + len(self.faces) ) @cache_decorator def referenced_vertices(self) -> NDArray[np.bool_]: """ Which vertices in the current mesh are referenced by a face. Returns ------------- referenced : (len(self.vertices), ) bool Which vertices are referenced by a face """ referenced = np.zeros(len(self.vertices), dtype=bool) referenced[self.faces] = True return referenced
[docs] def convert_units(self, desired: str, guess: bool = False) -> "Trimesh": """ Convert the units of the mesh into a specified unit. Parameters ------------ desired : string Units to convert to (eg 'inches') guess : boolean If self.units are not defined should we guess the current units of the document and then convert? """ units._convert_units(self, desired, guess) return self
[docs] def merge_vertices( self, merge_tex: Optional[bool] = None, merge_norm: Optional[bool] = None, digits_vertex: Optional[Integer] = None, digits_norm: Optional[Integer] = None, digits_uv: Optional[Integer] = None, ) -> None: """ Removes duplicate vertices grouped by position and optionally texture coordinate and normal. Parameters ------------- mesh : Trimesh object Mesh to merge vertices on merge_tex : bool If True textured meshes with UV coordinates will have vertices merged regardless of UV coordinates merge_norm : bool If True, meshes with vertex normals will have vertices merged ignoring different normals digits_vertex : None or int Number of digits to consider for vertex position digits_norm : int Number of digits to consider for unit normals digits_uv : int Number of digits to consider for UV coordinates """ grouping.merge_vertices( mesh=self, merge_tex=merge_tex, merge_norm=merge_norm, digits_vertex=digits_vertex, digits_norm=digits_norm, digits_uv=digits_uv, )
[docs] def update_vertices( self, mask: ArrayLike, inverse: Optional[ArrayLike] = None, ) -> None: """ Update vertices with a mask. Parameters ------------ vertex_mask : (len(self.vertices)) bool Array of which vertices to keep inverse : (len(self.vertices)) int Array to reconstruct vertex references such as output by np.unique """ # if the mesh is already empty we can't remove anything if self.is_empty: return # make sure mask is a numpy array mask = np.asanyarray(mask) if (mask.dtype.name == "bool" and mask.all()) or len(mask) == 0 or self.is_empty: # mask doesn't remove any vertices so exit early return # create the inverse mask if not passed if inverse is None: inverse = np.zeros(len(self.vertices), dtype=int64) if mask.dtype.kind == "b": inverse[mask] = np.arange(mask.sum()) elif mask.dtype.kind == "i": inverse[mask] = np.arange(len(mask)) else: inverse = None # re-index faces from inverse if inverse is not None and util.is_shape(self.faces, (-1, 3)): self.faces = inverse[self.faces.reshape(-1)].reshape((-1, 3)) # update the visual object with our mask self.visual.update_vertices(mask) # get the normals from cache before dumping cached_normals = self._cache["vertex_normals"] # apply to face_attributes count = len(self.vertices) for key, value in self.vertex_attributes.items(): try: # covers un-len'd objects as well if len(value) != count: raise TypeError() except TypeError: continue # apply the mask to the attribute self.vertex_attributes[key] = value[mask] # actually apply the mask self.vertices = self.vertices[mask] # if we had passed vertex normals try to save them if util.is_shape(cached_normals, (-1, 3)): try: self.vertex_normals = cached_normals[mask] except BaseException: pass
[docs] def update_faces(self, mask: ArrayLike) -> None: """ In many cases, we will want to remove specific faces. However, there is additional bookkeeping to do this cleanly. This function updates the set of faces with a validity mask, as well as keeping track of normals and colors. Parameters ------------ valid : (m) int or (len(self.faces)) bool Mask to remove faces """ # if the mesh is already empty we can't remove anything if self.is_empty: return mask = np.asanyarray(mask) if mask.dtype.name == "bool" and mask.all(): # mask removes no faces so exit early return # try to save face normals before dumping cache cached_normals = self._cache["face_normals"] faces = self._data["faces"] # if Trimesh has been subclassed and faces have been moved # from data to cache, get faces from cache. if not util.is_shape(faces, (-1, 3)): faces = self._cache["faces"] # apply to face_attributes count = len(self.faces) for key, value in self.face_attributes.items(): try: # covers un-len'd objects as well if len(value) != count: raise TypeError() except TypeError: continue # apply the mask to the attribute self.face_attributes[key] = value[mask] # actually apply the mask self.faces = faces[mask] # apply to face colors self.visual.update_faces(mask) # if our normals were the correct shape apply them if util.is_shape(cached_normals, (-1, 3)): self.face_normals = cached_normals[mask]
[docs] def remove_infinite_values(self) -> None: """ Ensure that every vertex and face consists of finite numbers. This will remove vertices or faces containing np.nan and np.inf Alters `self.faces` and `self.vertices` """ if util.is_shape(self.faces, (-1, 3)): # (len(self.faces), ) bool, mask for faces face_mask = np.isfinite(self.faces).all(axis=1) self.update_faces(face_mask) if util.is_shape(self.vertices, (-1, 3)): # (len(self.vertices), ) bool, mask for vertices vertex_mask = np.isfinite(self.vertices).all(axis=1) self.update_vertices(vertex_mask)
[docs] def unique_faces(self) -> NDArray[np.bool_]: """ On the current mesh find which faces are unique. Returns -------- unique : (len(faces),) bool A mask where the first occurrence of a unique face is true. """ mask = np.zeros(len(self.faces), dtype=bool) mask[grouping.unique_rows(np.sort(self.faces, axis=1))[0]] = True return mask
[docs] def remove_duplicate_faces(self) -> None: """ DERECATED MARCH 2024 REPLACE WITH: `mesh.update_faces(mesh.unique_faces())` """ warnings.warn( "`remove_duplicate_faces` is deprecated " + "and will be removed in March 2024: " + "replace with `mesh.update_faces(mesh.unique_faces())`", category=DeprecationWarning, stacklevel=2, ) self.update_faces(self.unique_faces())
[docs] def rezero(self) -> None: """ Translate the mesh so that all vertex vertices are positive. Alters `self.vertices`. """ self.apply_translation(self.bounds[0] * -1.0)
[docs] def split(self, **kwargs) -> List["Trimesh"]: """ Returns a list of Trimesh objects, based on face connectivity. Splits into individual components, sometimes referred to as 'bodies' Parameters ------------ only_watertight : bool Only return watertight meshes and discard remainder adjacency : None or (n, 2) int Override face adjacency with custom values Returns --------- meshes : (n, ) trimesh.Trimesh Separate bodies from original mesh """ return graph.split(self, **kwargs)
@cache_decorator def face_adjacency(self) -> NDArray[int64]: """ Find faces that share an edge i.e. 'adjacent' faces. Returns ---------- adjacency : (n, 2) int Pairs of faces which share an edge Examples --------- In [1]: mesh = trimesh.load('models/featuretype.STL') In [2]: mesh.face_adjacency Out[2]: array([[ 0, 1], [ 2, 3], [ 0, 3], ..., [1112, 949], [3467, 3475], [1113, 3475]]) In [3]: mesh.faces[mesh.face_adjacency[0]] Out[3]: TrackedArray([[ 1, 0, 408], [1239, 0, 1]], dtype=int64) In [4]: import networkx as nx In [5]: graph = nx.from_edgelist(mesh.face_adjacency) In [6]: groups = nx.connected_components(graph) """ adjacency, edges = graph.face_adjacency(mesh=self, return_edges=True) self._cache["face_adjacency_edges"] = edges return adjacency @cache_decorator def face_neighborhood(self) -> NDArray[int64]: """ Find faces that share a vertex i.e. 'neighbors' faces. Returns ---------- neighborhood : (n, 2) int Pairs of faces which share a vertex """ return graph.face_neighborhood(self) @cache_decorator def face_adjacency_edges(self) -> NDArray[int64]: """ Returns the edges that are shared by the adjacent faces. Returns -------- edges : (n, 2) int Vertex indices which correspond to face_adjacency """ # this value is calculated as a byproduct of the face adjacency _ = self.face_adjacency return self._cache["face_adjacency_edges"] @cache_decorator def face_adjacency_edges_tree(self) -> cKDTree: """ A KDTree for mapping edges back face adjacency index. Returns ------------ tree : scipy.spatial.cKDTree Tree when queried with SORTED edges will return their index in mesh.face_adjacency """ return cKDTree(self.face_adjacency_edges) @cache_decorator def face_adjacency_angles(self) -> NDArray[float64]: """ Return the angle between adjacent faces Returns -------- adjacency_angle : (n, ) float Angle between adjacent faces Each value corresponds with self.face_adjacency """ # get pairs of unit vectors for adjacent faces pairs = self.face_normals[self.face_adjacency] # find the angle between the pairs of vectors angles = geometry.vector_angle(pairs) return angles @cache_decorator def face_adjacency_projections(self) -> NDArray[float64]: """ The projection of the non-shared vertex of a triangle onto its adjacent face Returns ---------- projections : (len(self.face_adjacency), ) float Dot product of vertex onto plane of adjacent triangle. """ projections = convex.adjacency_projections(self) return projections @cache_decorator def face_adjacency_convex(self) -> NDArray[np.bool_]: """ Return faces which are adjacent and locally convex. What this means is that given faces A and B, the one vertex in B that is not shared with A, projected onto the plane of A has a projection that is zero or negative. Returns ---------- are_convex : (len(self.face_adjacency), ) bool Face pairs that are locally convex """ return self.face_adjacency_projections < tol.merge @cache_decorator def face_adjacency_unshared(self) -> NDArray[int64]: """ Return the vertex index of the two vertices not in the shared edge between two adjacent faces Returns ----------- vid_unshared : (len(mesh.face_adjacency), 2) int Indexes of mesh.vertices """ return graph.face_adjacency_unshared(self) @cache_decorator def face_adjacency_radius(self) -> NDArray[float64]: """ The approximate radius of a cylinder that fits inside adjacent faces. Returns ------------ radii : (len(self.face_adjacency), ) float Approximate radius formed by triangle pair """ radii, self._cache["face_adjacency_span"] = graph.face_adjacency_radius(mesh=self) return radii @cache_decorator def face_adjacency_span(self) -> NDArray[float64]: """ The approximate perpendicular projection of the non-shared vertices in a pair of adjacent faces onto the shared edge of the two faces. Returns ------------ span : (len(self.face_adjacency), ) float Approximate span between the non-shared vertices """ _ = self.face_adjacency_radius return self._cache["face_adjacency_span"] @cache_decorator def integral_mean_curvature(self) -> float64: """ The integral mean curvature, or the surface integral of the mean curvature. Returns --------- area : float Integral mean curvature of mesh """ edges_length = np.linalg.norm( np.subtract(*self.vertices[self.face_adjacency_edges.T]), axis=1 ) return (self.face_adjacency_angles * edges_length).sum() * 0.5 @cache_decorator def vertex_adjacency_graph(self) -> Graph: """ Returns a networkx graph representing the vertices and their connections in the mesh. Returns --------- graph: networkx.Graph Graph representing vertices and edges between them where vertices are nodes and edges are edges Examples ---------- This is useful for getting nearby vertices for a given vertex, potentially for some simple smoothing techniques. mesh = trimesh.primitives.Box() graph = mesh.vertex_adjacency_graph graph.neighbors(0) > [1, 2, 3, 4] """ return graph.vertex_adjacency_graph(mesh=self) @cache_decorator def vertex_neighbors(self) -> List[List[int64]]: """ The vertex neighbors of each vertex of the mesh, determined from the cached vertex_adjacency_graph, if already existent. Returns ---------- vertex_neighbors : (len(self.vertices), ) int Represents immediate neighbors of each vertex along the edge of a triangle Examples ---------- This is useful for getting nearby vertices for a given vertex, potentially for some simple smoothing techniques. >>> mesh = trimesh.primitives.Box() >>> mesh.vertex_neighbors[0] [1, 2, 3, 4] """ return graph.neighbors(edges=self.edges_unique, max_index=len(self.vertices)) @cache_decorator def is_winding_consistent(self) -> bool: """ Does the mesh have consistent winding or not. A mesh with consistent winding has each shared edge going in an opposite direction from the other in the pair. Returns -------- consistent : bool Is winding is consistent or not """ if self.is_empty: return False # consistent winding check is populated into the cache by is_watertight _ = self.is_watertight return self._cache["is_winding_consistent"] @cache_decorator def is_watertight(self) -> bool: """ Check if a mesh is watertight by making sure every edge is included in two faces. Returns ---------- is_watertight : bool Is mesh watertight or not """ if self.is_empty: return False watertight, winding = graph.is_watertight( edges=self.edges, edges_sorted=self.edges_sorted ) self._cache["is_winding_consistent"] = winding return watertight @cache_decorator def is_volume(self) -> bool: """ Check if a mesh has all the properties required to represent a valid volume, rather than just a surface. These properties include being watertight, having consistent winding and outward facing normals. Returns --------- valid : bool Does the mesh represent a volume """ valid = bool( self.is_watertight and self.is_winding_consistent and np.isfinite(self.center_mass).all() and self.volume > 0.0 ) return valid @property def is_empty(self) -> bool: """ Does the current mesh have data defined. Returns -------- empty : bool If True, no data is set on the current mesh """ return self._data.is_empty() @cache_decorator def is_convex(self) -> bool: """ Check if a mesh is convex or not. Returns ---------- is_convex: bool Is mesh convex or not """ if self.is_empty: return False is_convex = bool(convex.is_convex(self)) return is_convex @cache_decorator def kdtree(self) -> cKDTree: """ Return a scipy.spatial.cKDTree of the vertices of the mesh. Not cached as this lead to observed memory issues and segfaults. Returns --------- tree : scipy.spatial.cKDTree Contains mesh.vertices """ return cKDTree(self.vertices.view(np.ndarray))
[docs] def remove_degenerate_faces(self, height: float = tol.merge) -> None: """ DERECATED MARCH 2024 REPLACE WITH: `self.update_faces(self.nondegenerate_faces(height=height))` """ warnings.warn( "`remove_degenerate_faces` is deprecated " + "and will be removed in March 2024 replace with " + "`self.update_faces(self.nondegenerate_faces(height=height))`", category=DeprecationWarning, stacklevel=2, ) self.update_faces(self.nondegenerate_faces(height=height))
[docs] def nondegenerate_faces(self, height: float = tol.merge) -> NDArray[np.bool_]: """ Identify degenerate faces (faces without 3 unique vertex indices) in the current mesh. Usage example for removing them: `mesh.update_faces(mesh.nondegenerate_faces())` If a height is specified, it will identify any face with a 2D oriented bounding box with one edge shorter than that height. If not specified, it will identify any face with a zero normal. Parameters ------------ height : float If specified identifies faces with an oriented bounding box shorter than this on one side. Returns ------------- nondegenerate : (len(self.faces), ) bool Mask that can be used to remove faces """ return triangles.nondegenerate( self.triangles, areas=self.area_faces, height=height )
@cache_decorator def facets(self) -> List[NDArray[int64]]: """ Return a list of face indices for coplanar adjacent faces. Returns --------- facets : (n, ) sequence of (m, ) int Groups of indexes of self.faces """ facets = graph.facets(self) return facets @cache_decorator def facets_area(self) -> NDArray[float64]: """ Return an array containing the area of each facet. Returns --------- area : (len(self.facets), ) float Total area of each facet (group of faces) """ # avoid thrashing the cache inside a loop area_faces = self.area_faces # sum the area of each group of faces represented by facets # use native python sum in tight loop as opposed to array.sum() # as in this case the lower function call overhead of # native sum provides roughly a 50% speedup areas = np.array([sum(area_faces[i]) for i in self.facets], dtype=float64) return areas @cache_decorator def facets_normal(self) -> NDArray[float64]: """ Return the normal of each facet Returns --------- normals: (len(self.facets), 3) float A unit normal vector for each facet """ if len(self.facets) == 0: return np.array([]) area_faces = self.area_faces # the face index of the largest face in each facet index = np.array([i[area_faces[i].argmax()] for i in self.facets]) # (n, 3) float, unit normal vectors of facet plane normals = self.face_normals[index] # (n, 3) float, points on facet plane origins = self.vertices[self.faces[:, 0][index]] # save origins in cache self._cache["facets_origin"] = origins return normals @cache_decorator def facets_origin(self) -> NDArray[float64]: """ Return a point on the facet plane. Returns ------------ origins : (len(self.facets), 3) float A point on each facet plane """ _ = self.facets_normal return self._cache["facets_origin"] @cache_decorator def facets_boundary(self) -> List[NDArray[int64]]: """ Return the edges which represent the boundary of each facet Returns --------- edges_boundary : sequence of (n, 2) int Indices of self.vertices """ # make each row correspond to a single face edges = self.edges_sorted.reshape((-1, 6)) # get the edges for each facet edges_facet = [edges[i].reshape((-1, 2)) for i in self.facets] edges_boundary = [i[grouping.group_rows(i, require_count=1)] for i in edges_facet] return edges_boundary @cache_decorator def facets_on_hull(self) -> NDArray[np.bool_]: """ Find which facets of the mesh are on the convex hull. Returns --------- on_hull : (len(mesh.facets), ) bool is A facet on the meshes convex hull or not """ # if no facets exit early if len(self.facets) == 0: return np.array([], dtype=bool) # facets plane, origin and normal normals = self.facets_normal origins = self.facets_origin # (n, 3) convex hull vertices convex = self.convex_hull.vertices.view(np.ndarray).copy() # boolean mask for which facets are on convex hull on_hull = np.zeros(len(self.facets), dtype=bool) for i, normal, origin in zip(range(len(normals)), normals, origins): # a facet plane is on the convex hull if every vertex # of the convex hull is behind that plane # which we are checking with dot products dot = np.dot(normal, (convex - origin).T) on_hull[i] = (dot < tol.merge).all() return on_hull
[docs] def fix_normals(self, multibody: Optional[bool] = None) -> None: """ Find and fix problems with self.face_normals and self.faces winding direction. For face normals ensure that vectors are consistently pointed outwards, and that self.faces is wound in the correct direction for all connected components. Parameters ------------- multibody : None or bool Fix normals across multiple bodies if None automatically pick from body_count """ if multibody is None: multibody = self.body_count > 1 repair.fix_normals(self, multibody=multibody)
[docs] def fill_holes(self) -> bool: """ Fill single triangle and single quad holes in the current mesh. Returns ---------- watertight : bool Is the mesh watertight after the function completes """ return repair.fill_holes(self)
[docs] def register(self, other: Union[Geometry3D, NDArray], **kwargs): """ Align a mesh with another mesh or a PointCloud using the principal axes of inertia as a starting point which is refined by iterative closest point. Parameters ------------ other : trimesh.Trimesh or (n, 3) float Mesh or points in space samples : int Number of samples from mesh surface to align icp_first : int How many ICP iterations for the 9 possible combinations of icp_final : int How many ICP itertations for the closest candidate from the wider search Returns ----------- mesh_to_other : (4, 4) float Transform to align mesh to the other object cost : float Average square distance per point """ mesh_to_other, cost = registration.mesh_other(mesh=self, other=other, **kwargs) return mesh_to_other, cost
[docs] def compute_stable_poses( self, center_mass: Optional[NDArray[float64]] = None, sigma: float = 0.0, n_samples: int = 1, threshold: float = 0.0, ): """ Computes stable orientations of a mesh and their quasi-static probabilities. This method samples the location of the center of mass from a multivariate gaussian (mean at com, cov equal to identity times sigma) over n_samples. For each sample, it computes the stable resting poses of the mesh on a a planar workspace and evaluates the probabilities of landing in each pose if the object is dropped onto the table randomly. This method returns the 4x4 homogeneous transform matrices that place the shape against the planar surface with the z-axis pointing upwards and a list of the probabilities for each pose. The transforms and probabilities that are returned are sorted, with the most probable pose first. Parameters ------------ center_mass : (3, ) float The object center of mass (if None, this method assumes uniform density and watertightness and computes a center of mass explicitly) sigma : float The covariance for the multivariate gaussian used to sample center of mass locations n_samples : int The number of samples of the center of mass location threshold : float The probability value at which to threshold returned stable poses Returns ------- transforms : (n, 4, 4) float The homogeneous matrices that transform the object to rest in a stable pose, with the new z-axis pointing upwards from the table and the object just touching the table. probs : (n, ) float A probability ranging from 0.0 to 1.0 for each pose """ return poses.compute_stable_poses( mesh=self, center_mass=center_mass, sigma=sigma, n_samples=n_samples, threshold=threshold, )
[docs] def subdivide(self, face_index: Optional[ArrayLike] = None) -> "Trimesh": """ Subdivide a mesh with each subdivided face replaced with four smaller faces. Will return a copy of current mesh with subdivided faces. Parameters ------------ face_index : (m, ) int or None If None all faces of mesh will be subdivided If (m, ) int array of indices: only specified faces will be subdivided. Note that in this case the mesh will generally no longer be manifold, as the additional vertex on the midpoint will not be used by the adjacent faces to the faces specified, and an additional postprocessing step will be required to make resulting mesh watertight """ visual = None if hasattr(self.visual, "uv") and np.shape(self.visual.uv) == ( len(self.vertices), 2, ): # uv coords divided along with vertices vertices, faces, attr = remesh.subdivide( vertices=np.hstack((self.vertices, self.visual.uv)), faces=self.faces, face_index=face_index, vertex_attributes=self.vertex_attributes, ) # get a copy of the current visuals visual = self.visual.copy() # separate uv coords and vertices vertices, visual.uv = vertices[:, :3], vertices[:, 3:] else: # perform the subdivision with vertex attributes vertices, faces, attr = remesh.subdivide( vertices=self.vertices, faces=self.faces, face_index=face_index, vertex_attributes=self.vertex_attributes, ) # create a new mesh result = Trimesh( vertices=vertices, faces=faces, visual=visual, vertex_attributes=attr, process=False, ) return result
[docs] def subdivide_to_size(self, max_edge, max_iter=10, return_index=False): """ Subdivide a mesh until every edge is shorter than a specified length. Will return a triangle soup, not a nicely structured mesh. Parameters ------------ max_edge : float Maximum length of any edge in the result max_iter : int The maximum number of times to run subdivision return_index : bool If True, return index of original face for new faces """ # subdivide vertex attributes visual = None if hasattr(self.visual, "uv") and np.shape(self.visual.uv) == ( len(self.vertices), 2, ): # uv coords divided along with vertices vertices_faces = remesh.subdivide_to_size( vertices=np.hstack((self.vertices, self.visual.uv)), faces=self.faces, max_edge=max_edge, max_iter=max_iter, return_index=return_index, ) # unpack result if return_index: vertices, faces, final_index = vertices_faces else: vertices, faces = vertices_faces # get a copy of the current visuals visual = self.visual.copy() # separate uv coords and vertices vertices, visual.uv = vertices[:, :3], vertices[:, 3:] else: # uv coords divided along with vertices vertices_faces = remesh.subdivide_to_size( vertices=self.vertices, faces=self.faces, max_edge=max_edge, max_iter=max_iter, return_index=return_index, ) # unpack result if return_index: vertices, faces, final_index = vertices_faces else: vertices, faces = vertices_faces # create a new mesh result = Trimesh(vertices=vertices, faces=faces, visual=visual, process=False) if return_index: return result, final_index return result
[docs] def subdivide_loop(self, iterations=None): """ Subdivide a mesh by dividing each triangle into four triangles and approximating their smoothed surface using loop subdivision. Loop subdivision often looks better on triangular meshes than catmul-clark, which operates primarily on quads. Parameters ------------ iterations : int Number of iterations to run subdivision. multibody : bool If True will try to subdivide for each submesh """ # perform subdivision for one mesh new_vertices, new_faces = remesh.subdivide_loop( vertices=self.vertices, faces=self.faces, iterations=iterations ) # create new mesh result = Trimesh(vertices=new_vertices, faces=new_faces, process=False) return result
[docs] def smoothed(self, **kwargs): """ DEPRECATED: use `mesh.smooth_shaded` or `trimesh.graph.smooth_shade(mesh)` """ warnings.warn( "`mesh.smoothed()` is deprecated and will be removed in March 2024: " + "use `mesh.smooth_shaded` or `trimesh.graph.smooth_shade(mesh)`", category=DeprecationWarning, stacklevel=2, ) # run smoothing return self.smooth_shaded
@property def smooth_shaded(self): """ Smooth shading in OpenGL relies on which vertices are shared, this function will disconnect regions above an angle threshold and return a non-watertight version which will look better in an OpenGL rendering context. If you would like to use non-default arguments see `graph.smooth_shade`. Returns --------- smooth_shaded : trimesh.Trimesh Non watertight version of current mesh. """ # key this also by the visual properties # but store it in the mesh cache self.visual._verify_hash() cache = self.visual._cache # needs to be dumped whenever visual or mesh changes key = f"smooth_shaded_{hash(self.visual)}_{hash(self)}" if key in cache: return cache[key] smooth = graph.smooth_shade(self) # store it in the mesh cache which dumps when vertices change cache[key] = smooth return smooth @property def visual(self): """ Get the stored visuals for the current mesh. Returns ------------- visual : ColorVisuals or TextureVisuals Contains visual information about the mesh """ if hasattr(self, "_visual"): return self._visual return None @visual.setter def visual(self, value): """ When setting a visual object, always make sure that `visual.mesh` points back to the source mesh. Parameters -------------- visual : ColorVisuals or TextureVisuals Contains visual information about the mesh """ value.mesh = self self._visual = value
[docs] def section( self, plane_normal: ArrayLike, plane_origin: ArrayLike, **kwargs ) -> Optional[Path3D]: """ Returns a 3D cross section of the current mesh and a plane defined by origin and normal. Parameters ------------ plane_normal : (3,) float Normal vector of section plane. plane_origin : (3, ) float Point on the cross section plane. Returns --------- intersections Curve of intersection or None if it was not hit by plane. """ # turn line segments into Path2D/Path3D objects from .exchange.load import load_path # return a single cross section in 3D lines, face_index = intersections.mesh_plane( mesh=self, plane_normal=plane_normal, plane_origin=plane_origin, return_faces=True, **kwargs, ) # if the section didn't hit the mesh return None if len(lines) == 0: return None # otherwise load the line segments into a Path3D object path = load_path(lines) # add the face index info into metadata path.metadata["face_index"] = face_index return path
[docs] def section_multiplane( self, plane_origin: ArrayLike, plane_normal: ArrayLike, heights: ArrayLike, ) -> List[Optional[Path2D]]: """ Return multiple parallel cross sections of the current mesh in 2D. Parameters ------------ plane_origin : (3, ) float Point on the cross section plane plane_normal : (3) float Normal vector of section plane heights : (n, ) float Each section is offset by height along the plane normal. Returns --------- paths : (n, ) Path2D or None 2D cross sections at specified heights. path.metadata['to_3D'] contains transform to return 2D section back into 3D space. """ # turn line segments into Path2D/Path3D objects from .exchange.load import load_path # do a multiplane intersection lines, transforms, faces = intersections.mesh_multiplane( mesh=self, plane_normal=plane_normal, plane_origin=plane_origin, heights=heights, ) # turn the line segments into Path2D objects paths = [None] * len(lines) for i, f, segments, T in zip(range(len(lines)), faces, lines, transforms): if len(segments) > 0: paths[i] = load_path(segments, metadata={"to_3D": T, "face_index": f}) return paths
[docs] def slice_plane( self, plane_origin, plane_normal, cap=False, face_index=None, cached_dots=None, **kwargs, ): """ Slice the mesh with a plane, returning a new mesh that is the portion of the original mesh to the positive normal side of the plane plane_origin : (3,) float Point on plane to intersect with mesh plane_normal : (3,) float Normal vector of plane to intersect with mesh cap : bool If True, cap the result with a triangulated polygon face_index : ((m,) int) Indexes of mesh.faces to slice. When no mask is provided, the default is to slice all faces. cached_dots : (n, 3) float If an external function has stored dot products pass them here to avoid recomputing Returns --------- new_mesh: trimesh.Trimesh or None Subset of current mesh that intersects the half plane to the positive normal side of the plane """ # return a new mesh new_mesh = intersections.slice_mesh_plane( mesh=self, plane_normal=plane_normal, plane_origin=plane_origin, cap=cap, face_index=face_index, cached_dots=cached_dots, **kwargs, ) return new_mesh
[docs] def unwrap(self, image=None): """ Returns a Trimesh object equivalent to the current mesh where the vertices have been assigned uv texture coordinates. Vertices may be split into as many as necessary by the unwrapping algorithm, depending on how many uv maps they appear in. Requires `pip install xatlas` Parameters ------------ image : None or PIL.Image Image to assign to the material Returns -------- unwrapped : trimesh.Trimesh Mesh with unwrapped uv coordinates """ import xatlas vmap, faces, uv = xatlas.parametrize(self.vertices, self.faces) result = Trimesh( vertices=self.vertices[vmap], faces=faces, visual=TextureVisuals(uv=uv, image=image), process=False, ) # run additional checks for unwrapping if tol.strict: # check the export object to make sure we didn't # move the indices around on creation assert np.allclose(result.visual.uv, uv) assert np.allclose(result.faces, faces) assert np.allclose(result.vertices, self.vertices[vmap]) # check to make sure indices are still the # same order after we've exported to OBJ export = result.export(file_type="obj") uv_recon = np.array( [L[3:].split() for L in str.splitlines(export) if L.startswith("vt ")], dtype=float64, ) assert np.allclose(uv_recon, uv) v_recon = np.array( [L[2:].split() for L in str.splitlines(export) if L.startswith("v ")], dtype=float64, ) assert np.allclose(v_recon, self.vertices[vmap]) return result
@cache_decorator def convex_hull(self) -> "Trimesh": """ Returns a Trimesh object representing the convex hull of the current mesh. Returns -------- convex : trimesh.Trimesh Mesh of convex hull of current mesh """ return convex.convex_hull(self)
[docs] def sample( self, count: int, return_index: bool = False, face_weight: Optional[NDArray[float64]] = None, ): """ Return random samples distributed across the surface of the mesh Parameters ------------ count : int Number of points to sample return_index : bool If True will also return the index of which face each sample was taken from. face_weight : None or len(mesh.faces) float Weight faces by a factor other than face area. If None will be the same as face_weight=mesh.area Returns --------- samples : (count, 3) float Points on surface of mesh face_index : (count, ) int Index of self.faces """ samples, index = sample.sample_surface( mesh=self, count=count, face_weight=face_weight ) if return_index: return samples, index return samples
[docs] def remove_unreferenced_vertices(self) -> None: """ Remove all vertices in the current mesh which are not referenced by a face. """ referenced = np.zeros(len(self.vertices), dtype=bool) referenced[self.faces] = True inverse = np.zeros(len(self.vertices), dtype=int64) inverse[referenced] = np.arange(referenced.sum()) self.update_vertices(mask=referenced, inverse=inverse)
[docs] def unmerge_vertices(self) -> None: """ Removes all face references so that every face contains three unique vertex indices and no faces are adjacent. """ # new faces are incrementing so every vertex is unique faces = np.arange(len(self.faces) * 3, dtype=int64).reshape((-1, 3)) # use update_vertices to apply mask to # all properties that are per-vertex self.update_vertices(self.faces.reshape(-1)) # set faces to incrementing indexes self.faces = faces # keep face normals as the haven't changed self._cache.clear(exclude=["face_normals"])
[docs] def apply_transform(self, matrix: ArrayLike) -> "Trimesh": """ Transform mesh by a homogeneous transformation matrix. Does the bookkeeping to avoid recomputing things so this function should be used rather than directly modifying self.vertices if possible. Parameters ------------ matrix : (4, 4) float Homogeneous transformation matrix """ # get c-order float64 matrix matrix = np.asanyarray(matrix, order="C", dtype=float64) # only support homogeneous transformations if matrix.shape != (4, 4): raise ValueError("Transformation matrix must be (4, 4)!") # exit early if we've been passed an identity matrix # np.allclose is surprisingly slow so do this test elif util.allclose(matrix, np.eye(4), 1e-8): return self # new vertex positions new_vertices = transformations.transform_points(self.vertices, matrix=matrix) # check to see if the matrix has rotation # rather than just translation has_rotation = not util.allclose(matrix[:3, :3], np.eye(3), atol=1e-6) # transform overridden center of mass if "center_mass" in self._data: center_mass = [self._data["center_mass"]] self.center_mass = transformations.transform_points( center_mass, matrix, )[0] # preserve face normals if we have them stored if has_rotation and "face_normals" in self._cache: # transform face normals by rotation component self._cache.cache["face_normals"] = util.unitize( transformations.transform_points( self.face_normals, matrix=matrix, translate=False ) ) # preserve vertex normals if we have them stored if has_rotation and "vertex_normals" in self._cache: self._cache.cache["vertex_normals"] = util.unitize( transformations.transform_points( self.vertex_normals, matrix=matrix, translate=False ) ) # if transformation flips winding of triangles if has_rotation and transformations.flips_winding(matrix): log.debug("transform flips winding") # fliplr will make array non C contiguous # which will cause hashes to be more # expensive than necessary so wrap self.faces = np.ascontiguousarray(np.fliplr(self.faces)) # assign the new values self.vertices = new_vertices # preserve normals and topology in cache # while dumping everything else self._cache.clear( exclude={ "face_normals", # transformed by us "vertex_normals", # also transformed by us "face_adjacency", # topological "face_adjacency_edges", "face_adjacency_unshared", "edges", "edges_face", "edges_sorted", "edges_unique", "edges_unique_idx", "edges_unique_inverse", "edges_sparse", "body_count", "faces_unique_edges", "euler_number", } ) # set the cache ID with the current hash value self._cache.id_set() return self
[docs] def voxelized(self, pitch, method="subdivide", **kwargs): """ Return a VoxelGrid object representing the current mesh discretized into voxels at the specified pitch Parameters ------------ pitch : float The edge length of a single voxel method: implementation key. See `trimesh.voxel.creation.voxelizers` **kwargs: additional kwargs passed to the specified implementation. Returns ---------- voxelized : VoxelGrid object Representing the current mesh """ from .voxel import creation return creation.voxelize(mesh=self, pitch=pitch, method=method, **kwargs)
[docs] def simplify_quadric_decimation( self, percent: Optional[Floating] = None, face_count: Optional[Integer] = None, aggression: Optional[Integer] = None, ) -> "Trimesh": """ A thin wrapper around `pip install fast-simplification`. Parameters ----------- percent A number between 0.0 and 1.0 for how much face_count Target number of faces desired in the resulting mesh. agression An integer between `0` and `10`, the scale being roughly `0` is "slow and good" and `10` being "fast and bad." Returns --------- simple : trimesh.Trimesh Simplified version of mesh. """ from fast_simplification import simplify # create keyword arguments as dict so we can filter out `None` # values as the C wrapper as of writing is not happy with `None` # and requires they be omitted from the constructor kwargs = { "target_count": face_count, "target_reduction": percent, "agg": aggression, } # todo : one could take the `return_collapses=True` array and use it to # apply the same simplification to the visual info vertices, faces = simplify( points=self.vertices.view(np.ndarray), triangles=self.faces.view(np.ndarray), **{k: v for k, v in kwargs.items() if v is not None}, ) return Trimesh(vertices=vertices, faces=faces)
[docs] def outline(self, face_ids: Optional[NDArray[int64]] = None, **kwargs) -> Path3D: """ Given a list of face indexes find the outline of those faces and return it as a Path3D. The outline is defined here as every edge which is only included by a single triangle. Note that this implies a non-watertight mesh as the outline of a watertight mesh is an empty path. Parameters ------------ face_ids : (n, ) int Indices to compute the outline of. If None, outline of full mesh will be computed. **kwargs: passed to Path3D constructor Returns ---------- path : Path3D Curve in 3D of the outline """ from .path.exchange.misc import faces_to_path return Path3D(**faces_to_path(self, face_ids, **kwargs))
[docs] def projected(self, normal, **kwargs) -> Path2D: """ Project a mesh onto a plane and then extract the polygon that outlines the mesh projection on that plane. Parameters ---------- mesh : trimesh.Trimesh Source geometry check : bool If True make sure is flat normal : (3,) float Normal to extract flat pattern along origin : None or (3,) float Origin of plane to project mesh onto pad : float Proportion to pad polygons by before unioning and then de-padding result by to avoid zero-width gaps. tol_dot : float Tolerance for discarding on-edge triangles. max_regions : int Raise an exception if the mesh has more than this number of disconnected regions to fail quickly before unioning. Returns ---------- projected : trimesh.path.Path2D Outline of source mesh """ from .exchange.load import load_path from .path import Path2D from .path.polygons import projected projection = projected(mesh=self, normal=normal, **kwargs) if projection is None: return Path2D() return load_path(projection)
@cache_decorator def area(self) -> float64: """ Summed area of all triangles in the current mesh. Returns --------- area : float Surface area of mesh """ area = self.area_faces.sum() return area @cache_decorator def area_faces(self) -> NDArray[float64]: """ The area of each face in the mesh. Returns --------- area_faces : (n, ) float Area of each face """ return triangles.area(crosses=self.triangles_cross) @cache_decorator def mass_properties(self) -> MassProperties: """ Returns the mass properties of the current mesh. Assumes uniform density, and result is probably garbage if mesh isn't watertight. Returns ---------- properties : dict With keys: 'volume' : in global units^3 'mass' : From specified density 'density' : Included again for convenience (same as kwarg density) 'inertia' : Taken at the center of mass and aligned with global coordinate system 'center_mass' : Center of mass location, in global coordinate system """ # if the density or center of mass was overridden they will be put into data density = self._data.data.get("density", None) center_mass = self._data.data.get("center_mass", None) return triangles.mass_properties( triangles=self.triangles, crosses=self.triangles_cross, density=density, center_mass=center_mass, skip_inertia=False, )
[docs] def invert(self) -> None: """ Invert the mesh in-place by reversing the winding of every face and negating normals without dumping the cache. Alters `self.faces` by reversing columns, and negating `self.face_normals` and `self.vertex_normals`. """ with self._cache: if "face_normals" in self._cache: self.face_normals = self._cache["face_normals"] * -1.0 if "vertex_normals" in self._cache: self.vertex_normals = self._cache["vertex_normals"] * -1.0 # fliplr makes array non-contiguous so cache checks slow self.faces = np.ascontiguousarray(np.fliplr(self.faces)) # save our normals self._cache.clear(exclude=["face_normals", "vertex_normals"])
[docs] def scene(self, **kwargs) -> Scene: """ Returns a Scene object containing the current mesh. Returns --------- scene : trimesh.scene.scene.Scene Contains just the current mesh """ return Scene(self, **kwargs)
[docs] def show(self, **kwargs): """ Render the mesh in an opengl window. Requires pyglet. Parameters ------------ smooth : bool Run smooth shading on mesh or not, large meshes will be slow Returns ----------- scene : trimesh.scene.Scene Scene with current mesh in it """ scene = self.scene() return scene.show(**kwargs)
[docs] def submesh( self, faces_sequence: Sequence[ArrayLike], **kwargs ) -> Union["Trimesh", List["Trimesh"]]: """ Return a subset of the mesh. Parameters ------------ faces_sequence : sequence (m, ) int Face indices of mesh only_watertight : bool Only return submeshes which are watertight append : bool Return a single mesh which has the faces appended. if this flag is set, only_watertight is ignored Returns --------- submesh : Trimesh or (n,) Trimesh Single mesh if `append` or list of submeshes """ return util.submesh(mesh=self, faces_sequence=faces_sequence, **kwargs)
@cache_decorator def identifier(self) -> NDArray[float64]: """ Return a float vector which is unique to the mesh and is robust to rotation and translation. Returns ----------- identifier : (7,) float Identifying properties of the current mesh """ return comparison.identifier_simple(self) @cache_decorator def identifier_hash(self) -> str: """ A hash of the rotation invariant identifier vector. Returns --------- hashed : str Hex string of the SHA256 hash from the identifier vector at hand-tuned sigfigs. """ return comparison.identifier_hash(self.identifier)
[docs] def export( self, file_obj=None, file_type: Optional[str] = None, **kwargs, ): """ Export the current mesh to a file object. If file_obj is a filename, file will be written there. Supported formats are stl, off, ply, collada, json, dict, glb, dict64, msgpack. Parameters ------------ file_obj : open writeable file object str, file name where to save the mesh None, return the export blob file_type : str Which file type to export as, if `file_name` is passed this is not required. """ return export_mesh(mesh=self, file_obj=file_obj, file_type=file_type, **kwargs)
[docs] def to_dict(self) -> Dict[str, Union[str, List[List[float]], List[List[int]]]]: """ Return a dictionary representation of the current mesh with keys that can be used as the kwargs for the Trimesh constructor and matches the schema in: `trimesh/resources/schema/primitive/trimesh.schema.json` Returns ---------- result : dict Matches schema and Trimesh constructor. """ return { "kind": "trimesh", "vertices": self.vertices.tolist(), "faces": self.faces.tolist(), }
[docs] def convex_decomposition(self, **kwargs) -> List["Trimesh"]: """ Compute an approximate convex decomposition of a mesh using `pip install pyVHACD`. Returns ------- meshes List of convex meshes that approximate the original **kwargs : VHACD keyword arguments """ return [ Trimesh(**kwargs) for kwargs in decomposition.convex_decomposition(self, **kwargs) ]
[docs] def union( self, other: "Trimesh", engine: Optional[str] = None, check_volume: bool = True, **kwargs, ) -> "Trimesh": """ Boolean union between this mesh and other meshes. Parameters ------------ other : Trimesh or (n, ) Trimesh Other meshes to union engine Which backend to use, the default recommendation is: `pip install manifold3d`. check_volume Raise an error if not all meshes are watertight positive volumes. Advanced users may want to ignore this check as it is expensive. kwargs Passed through to the `engine`. Returns --------- union : trimesh.Trimesh Union of self and other Trimesh objects """ return boolean.union( meshes=[self, other], engine=engine, check_volume=check_volume, **kwargs, )
[docs] def difference( self, other: "Trimesh", engine: Optional[str] = None, check_volume: bool = True, **kwargs, ) -> "Trimesh": """ Boolean difference between this mesh and n other meshes Parameters ------------ other : trimesh.Trimesh, or list of trimesh.Trimesh objects Meshes to difference engine Which backend to use, the default recommendation is: `pip install manifold3d`. check_volume Raise an error if not all meshes are watertight positive volumes. Advanced users may want to ignore this check as it is expensive. kwargs Passed through to the `engine`. Returns --------- difference : trimesh.Trimesh Difference between self and other Trimesh objects """ return boolean.difference( meshes=[self, other], engine=engine, check_volume=check_volume, **kwargs )
[docs] def intersection( self, other: "Trimesh", engine: Optional[str] = None, check_volume: bool = True, **kwargs, ) -> "Trimesh": """ Boolean intersection between this mesh and other meshes. Parameters ------------ other : trimesh.Trimesh, or list of trimesh.Trimesh objects Meshes to calculate intersections with engine Which backend to use, the default recommendation is: `pip install manifold3d`. check_volume Raise an error if not all meshes are watertight positive volumes. Advanced users may want to ignore this check as it is expensive. kwargs Passed through to the `engine`. Returns --------- intersection : trimesh.Trimesh Mesh of the volume contained by all passed meshes """ return boolean.intersection( meshes=[self, other], engine=engine, check_volume=check_volume, **kwargs, )
[docs] def contains(self, points: ArrayLike) -> NDArray[np.bool_]: """ Given an array of points determine whether or not they are inside the mesh. This raises an error if called on a non-watertight mesh. Parameters ------------ points : (n, 3) float Points in cartesian space Returns --------- contains : (n, ) bool Whether or not each point is inside the mesh """ return self.ray.contains_points(points)
@cache_decorator def face_angles(self) -> NDArray[float64]: """ Returns the angle at each vertex of a face. Returns -------- angles : (len(self.faces), 3) float Angle at each vertex of a face """ return triangles.angles(self.triangles) @cache_decorator def face_angles_sparse(self) -> coo_matrix: """ A sparse matrix representation of the face angles. Returns ---------- sparse : scipy.sparse.coo_matrix Float sparse matrix with with shape: (len(self.vertices), len(self.faces)) """ angles = curvature.face_angles_sparse(self) return angles @cache_decorator def vertex_defects(self) -> NDArray[float64]: """ Return the vertex defects, or (2*pi) minus the sum of the angles of every face that includes that vertex. If a vertex is only included by coplanar triangles, this will be zero. For convex regions this is positive, and concave negative. Returns -------- vertex_defect : (len(self.vertices), ) float Vertex defect at the every vertex """ defects = curvature.vertex_defects(self) return defects @cache_decorator def vertex_degree(self) -> NDArray[int64]: """ Return the number of faces each vertex is included in. Returns ---------- degree : (len(self.vertices), ) int Number of faces each vertex is included in """ # get degree through sparse matrix degree = np.array(self.faces_sparse.sum(axis=1)).flatten() return degree @cache_decorator def face_adjacency_tree(self) -> Index: """ An R-tree of face adjacencies. Returns -------- tree Where each edge in self.face_adjacency has a rectangular cell """ # the (n,6) interleaved bounding box for every line segment return util.bounds_tree( np.column_stack( ( self.vertices[self.face_adjacency_edges].min(axis=1), self.vertices[self.face_adjacency_edges].max(axis=1), ) ) )
[docs] def copy(self, include_cache: bool = False, include_visual: bool = True) -> "Trimesh": """ Safely return a copy of the current mesh. By default, copied meshes will have emptied cache to avoid memory issues and so may be slow on initial operations until caches are regenerated. Current object will *never* have its cache cleared. Parameters ------------ include_cache : bool If True, will shallow copy cached data to new mesh Returns --------- copied : trimesh.Trimesh Copy of current mesh """ # start with an empty mesh copied = Trimesh() # always deepcopy vertex and face data copied._data.data = copy.deepcopy(self._data.data) if include_visual: # copy visual information copied.visual = self.visual.copy() # get metadata copied.metadata = copy.deepcopy(self.metadata) # make sure cache ID is set initially copied._cache.verify() if include_cache: # shallow copy cached items into the new cache # since the data didn't change here when the # data in the new mesh is changed these items # will be dumped in the new mesh but preserved # in the original mesh copied._cache.cache.update(self._cache.cache) return copied
def __deepcopy__(self, *args) -> "Trimesh": # interpret deep copy as "get rid of cached data" return self.copy(include_cache=False) def __copy__(self, *args) -> "Trimesh": # interpret shallow copy as "keep cached data" return self.copy(include_cache=True)
[docs] def eval_cached(self, statement: str, *args): """ Evaluate a statement and cache the result before returning. Statements are evaluated inside the Trimesh object, and Parameters ------------ statement : str Statement of valid python code *args : list Available inside statement as args[0], etc Returns ----------- result : result of running eval on statement with args Examples ----------- r = mesh.eval_cached('np.dot(self.vertices, args[0])', [0, 0, 1]) """ # store this by the combined hash of statement and args hashable = [hash(statement)] hashable.extend(hash(a) for a in args) key = f"eval_cached_{hash(tuple(hashable))}" if key in self._cache: return self._cache[key] result = eval(statement) self._cache[key] = result return result
[docs] def __add__(self, other: "Trimesh") -> "Trimesh": """ Concatenate the mesh with another mesh. Parameters ------------ other : trimesh.Trimesh object Mesh to be concatenated with self Returns ---------- concat : trimesh.Trimesh Mesh object of combined result """ concat = util.concatenate(self, other) return concat