Source code for tidy3d.components.geometry.base

"""Abstract base classes for geometry."""

from __future__ import annotations

import functools
import pathlib
from abc import ABC, abstractmethod
from typing import Any, Callable, Optional, Union

import autograd.numpy as np
import pydantic.v1 as pydantic
import shapely
import xarray as xr

try:
    from matplotlib import patches
except ImportError:
    pass

from tidy3d.compat import _shapely_is_older_than
from tidy3d.components.autograd import (
    AutogradFieldMap,
    TracedCoordinate,
    TracedFloat,
    TracedSize,
    get_static,
)
from tidy3d.components.autograd.constants import GRADIENT_DTYPE_FLOAT
from tidy3d.components.autograd.derivative_utils import (
    DerivativeInfo,
    FieldData,
    integrate_within_bounds,
)
from tidy3d.components.base import Tidy3dBaseModel, cached_property
from tidy3d.components.data.data_array import ScalarFieldDataArray
from tidy3d.components.geometry.bound_ops import bounds_intersection, bounds_union
from tidy3d.components.transformation import ReflectionFromPlane, RotationAroundAxis
from tidy3d.components.types import (
    ArrayFloat2D,
    ArrayFloat3D,
    Ax,
    Axis,
    Bound,
    ClipOperationType,
    Coordinate,
    Coordinate2D,
    LengthUnit,
    MatrixReal4x4,
    PlanePosition,
    Shapely,
    Size,
    annotate_type,
)
from tidy3d.components.viz import (
    ARROW_LENGTH,
    PLOT_BUFFER,
    PlotParams,
    VisualizationSpec,
    add_ax_if_none,
    arrow_style,
    equal_aspect,
    plot_params_geometry,
    polygon_patch,
    set_default_labels_and_title,
)
from tidy3d.constants import EPSILON_0, LARGE_NUMBER, MICROMETER, MU_0, RADIAN, fp_eps, inf
from tidy3d.exceptions import (
    SetupError,
    Tidy3dError,
    Tidy3dImportError,
    Tidy3dKeyError,
    ValidationError,
)
from tidy3d.log import log
from tidy3d.packaging import verify_packages_import

POLY_GRID_SIZE = 1e-12
POLY_TOLERANCE_RATIO = 1e-12
POLY_DISTANCE_TOLERANCE = 8e-12


_shapely_operations = {
    "union": shapely.union,
    "intersection": shapely.intersection,
    "difference": shapely.difference,
    "symmetric_difference": shapely.symmetric_difference,
}

_bit_operations = {
    "union": lambda a, b: a | b,
    "intersection": lambda a, b: a & b,
    "difference": lambda a, b: a & ~b,
    "symmetric_difference": lambda a, b: a != b,
}


[docs] class Geometry(Tidy3dBaseModel, ABC): """Abstract base class, defines where something exists in space.""" @cached_property def plot_params(self): """Default parameters for plotting a Geometry object.""" return plot_params_geometry
[docs] def inside( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> np.ndarray[bool]: """For input arrays ``x``, ``y``, ``z`` of arbitrary but identical shape, return an array with the same shape which is ``True`` for every point in zip(x, y, z) that is inside the volume of the :class:`Geometry`, and ``False`` otherwise. Parameters ---------- x : np.ndarray[float] Array of point positions in x direction. y : np.ndarray[float] Array of point positions in y direction. z : np.ndarray[float] Array of point positions in z direction. Returns ------- np.ndarray[bool] ``True`` for every point that is inside the geometry. """ def point_inside(x: float, y: float, z: float): """Returns ``True`` if a single point ``(x, y, z)`` is inside.""" shapes_intersect = self.intersections_plane(z=z) loc = self.make_shapely_point(x, y) return any(shape.contains(loc) for shape in shapes_intersect) arrays = tuple(map(np.array, (x, y, z))) self._ensure_equal_shape(*arrays) inside = np.zeros((arrays[0].size,), dtype=bool) arrays_flat = map(np.ravel, arrays) for ipt, args in enumerate(zip(*arrays_flat)): inside[ipt] = point_inside(*args) return inside.reshape(arrays[0].shape)
@staticmethod def _ensure_equal_shape(*arrays): """Ensure all input arrays have the same shape.""" shapes = {np.array(arr).shape for arr in arrays} if len(shapes) > 1: raise ValueError("All coordinate inputs (x, y, z) must have the same shape.")
[docs] @staticmethod def make_shapely_box(minx: float, miny: float, maxx: float, maxy: float) -> shapely.box: """Make a shapely box ensuring everything untraced.""" minx = get_static(minx) miny = get_static(miny) maxx = get_static(maxx) maxy = get_static(maxy) return shapely.box(minx, miny, maxx, maxy)
[docs] @staticmethod def make_shapely_point(minx: float, miny: float) -> shapely.Point: """Make a shapely Point ensuring everything untraced.""" minx = get_static(minx) miny = get_static(miny) return shapely.Point(minx, miny)
def _inds_inside_bounds( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> tuple[slice, slice, slice]: """Return slices into the sorted input arrays that are inside the geometry bounds. Parameters ---------- x : np.ndarray[float] 1D array of point positions in x direction. y : np.ndarray[float] 1D array of point positions in y direction. z : np.ndarray[float] 1D array of point positions in z direction. Returns ------- Tuple[slice, slice, slice] Slices into each of the three arrays that are inside the geometry bounds. """ bounds = self.bounds inds_in = [] for dim, coords in enumerate([x, y, z]): inds = np.nonzero((bounds[0][dim] <= coords) * (coords <= bounds[1][dim]))[0] inds_in.append(slice(0, 0) if inds.size == 0 else slice(inds[0], inds[-1] + 1)) return tuple(inds_in)
[docs] def inside_meshgrid( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> np.ndarray[bool]: """Perform ``self.inside`` on a set of sorted 1D coordinates. Applies meshgrid to the supplied coordinates before checking inside. Parameters ---------- x : np.ndarray[float] 1D array of point positions in x direction. y : np.ndarray[float] 1D array of point positions in y direction. z : np.ndarray[float] 1D array of point positions in z direction. Returns ------- np.ndarray[bool] Array with shape ``(x.size, y.size, z.size)``, which is ``True`` for every point that is inside the geometry. """ arrays = tuple(map(np.array, (x, y, z))) if any(arr.ndim != 1 for arr in arrays): raise ValueError("Each of the supplied coordinates (x, y, z) must be 1D.") shape = tuple(arr.size for arr in arrays) is_inside = np.zeros(shape, dtype=bool) inds_inside = self._inds_inside_bounds(*arrays) coords_inside = tuple(arr[ind] for ind, arr in zip(inds_inside, arrays)) coords_3d = np.meshgrid(*coords_inside, indexing="ij") is_inside[inds_inside] = self.inside(*coords_3d) return is_inside
[docs] @abstractmethod def intersections_tilted_plane( self, normal: Coordinate, origin: Coordinate, to_2D: MatrixReal4x4 ) -> list[Shapely]: """Return a list of shapely geometries at the plane specified by normal and origin. Parameters ---------- normal : Coordinate Vector defining the normal direction to the plane. origin : Coordinate Vector defining the plane origin. to_2D : MatrixReal4x4 Transformation matrix to apply to resulting shapes. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """
[docs] def intersections_plane( self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None ) -> list[Shapely]: """Returns list of shapely geometries at plane specified by one non-None value of x,y,z. Parameters ---------- x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ axis, position = self.parse_xyz_kwargs(x=x, y=y, z=z) origin = self.unpop_axis(position, (0, 0), axis=axis) normal = self.unpop_axis(1, (0, 0), axis=axis) to_2D = np.eye(4) if axis != 2: last, indices = self.pop_axis((0, 1, 2), axis) to_2D = to_2D[[*list(indices), last, 3]] return self.intersections_tilted_plane(normal, origin, to_2D)
[docs] def intersections_2dbox(self, plane: Box) -> list[Shapely]: """Returns list of shapely geometries representing the intersections of the geometry with a 2D box. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ log.warning( "'intersections_2dbox()' is deprecated and will be removed in the future. " "Use 'plane.intersections_with(...)' for the same functionality." ) return plane.intersections_with(self)
[docs] def intersects( self, other, strict_inequality: tuple[bool, bool, bool] = [False, False, False] ) -> bool: """Returns ``True`` if two :class:`Geometry` have intersecting `.bounds`. Parameters ---------- other : :class:`Geometry` Geometry to check intersection with. strict_inequality : Tuple[bool, bool, bool] = [False, False, False] For each dimension, defines whether to include equality in the boundaries comparison. If ``False``, equality is included, and two geometries that only intersect at their boundaries will evaluate as ``True``. If ``True``, such geometries will evaluate as ``False``. Returns ------- bool Whether the rectangular bounding boxes of the two geometries intersect. """ self_bmin, self_bmax = self.bounds other_bmin, other_bmax = other.bounds for smin, omin, smax, omax, strict in zip( self_bmin, other_bmin, self_bmax, other_bmax, strict_inequality ): # are all of other's minimum coordinates less than self's maximum coordinate? in_minus = omin < smax if strict else omin <= smax # are all of other's maximum coordinates greater than self's minimum coordinate? in_plus = omax > smin if strict else omax >= smin # if either failed, return False if not all((in_minus, in_plus)): return False return True
[docs] def contains( self, other: Geometry, strict_inequality: tuple[bool, bool, bool] = [False, False, False] ) -> bool: """Returns ``True`` if the `.bounds` of ``other`` are contained within the `.bounds` of ``self``. Parameters ---------- other : :class:`Geometry` Geometry to check containment with. strict_inequality : Tuple[bool, bool, bool] = [False, False, False] For each dimension, defines whether to include equality in the boundaries comparison. If ``False``, equality will be considered as contained. If ``True``, ``other``'s bounds must be strictly within the bounds of ``self``. Returns ------- bool Whether the rectangular bounding box of ``other`` is contained within the bounding box of ``self``. """ self_bmin, self_bmax = self.bounds other_bmin, other_bmax = other.bounds for smin, omin, smax, omax, strict in zip( self_bmin, other_bmin, self_bmax, other_bmax, strict_inequality ): # are all of other's minimum coordinates greater than self's minimim coordinate? in_minus = omin > smin if strict else omin >= smin # are all of other's maximum coordinates less than self's maximum coordinate? in_plus = omax < smax if strict else omax <= smax # if either failed, return False if not all((in_minus, in_plus)): return False return True
[docs] def intersects_plane( self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None ) -> bool: """Whether self intersects plane specified by one non-None value of x,y,z. Parameters ---------- x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. Returns ------- bool Whether this geometry intersects the plane. """ axis, position = self.parse_xyz_kwargs(x=x, y=y, z=z) return self.intersects_axis_position(axis, position)
[docs] def intersects_axis_position(self, axis: int, position: float) -> bool: """Whether self intersects plane specified by a given position along a normal axis. Parameters ---------- axis : int = None Axis normal to the plane. position : float = None Position of plane along the normal axis. Returns ------- bool Whether this geometry intersects the plane. """ return self.bounds[0][axis] <= position <= self.bounds[1][axis]
@cached_property @abstractmethod def bounds(self) -> Bound: """Returns bounding box min and max coordinates. Returns ------- Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. """
[docs] @staticmethod def bounds_intersection(bounds1: Bound, bounds2: Bound) -> Bound: """Return the bounds that are the intersection of two bounds.""" return bounds_intersection(bounds1, bounds2)
[docs] @staticmethod def bounds_union(bounds1: Bound, bounds2: Bound) -> Bound: """Return the bounds that are the union of two bounds.""" return bounds_union(bounds1, bounds2)
@cached_property def bounding_box(self): """Returns :class:`Box` representation of the bounding box of a :class:`Geometry`. Returns ------- :class:`Box` Geometric object representing bounding box. """ return Box.from_bounds(*self.bounds) @cached_property def zero_dims(self) -> list[Axis]: """A list of axes along which the :class:`Geometry` is zero-sized based on its bounds.""" zero_dims = [] for dim in range(3): if self.bounds[1][dim] == self.bounds[0][dim]: zero_dims.append(dim) return zero_dims def _pop_bounds(self, axis: Axis) -> tuple[Coordinate2D, tuple[Coordinate2D, Coordinate2D]]: """Returns min and max bounds in plane normal to and tangential to ``axis``. Parameters ---------- axis : int Integer index into 'xyz' (0,1,2). Returns ------- Tuple[float, float], Tuple[Tuple[float, float], Tuple[float, float]] Bounds along axis and a tuple of bounds in the ordered planar coordinates. Packed as ``(zmin, zmax), ((xmin, ymin), (xmax, ymax))``. """ b_min, b_max = self.bounds zmin, (xmin, ymin) = self.pop_axis(b_min, axis=axis) zmax, (xmax, ymax) = self.pop_axis(b_max, axis=axis) return (zmin, zmax), ((xmin, ymin), (xmax, ymax)) @staticmethod def _get_center(pt_min: float, pt_max: float) -> float: """Returns center point based on bounds along dimension.""" if np.isneginf(pt_min) and np.isposinf(pt_max): return 0.0 if np.isneginf(pt_min) or np.isposinf(pt_max): raise SetupError( f"Bounds of ({pt_min}, {pt_max}) supplied along one dimension. " "We currently don't support a single ``inf`` value in bounds for ``Box``. " "To construct a semi-infinite ``Box``, " "please supply a large enough number instead of ``inf``. " "For example, a location extending outside of the " "Simulation domain (including PML)." ) return (pt_min + pt_max) / 2.0 @cached_property def _normal_2dmaterial(self) -> Axis: """Get the normal to the given geometry, checking that it is a 2D geometry.""" raise ValidationError("'Medium2D' is not compatible with this geometry class.") def _update_from_bounds(self, bounds: tuple[float, float], axis: Axis) -> Geometry: """Returns an updated geometry which has been transformed to fit within ``bounds`` along the ``axis`` direction.""" raise NotImplementedError( "'_update_from_bounds' is not compatible with this geometry class." )
[docs] @equal_aspect @add_ax_if_none def plot( self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, ax: Ax = None, plot_length_units: LengthUnit = None, viz_spec: VisualizationSpec = None, **patch_kwargs, ) -> Ax: """Plot geometry cross section at single (x,y,z) coordinate. Parameters ---------- x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. ax : matplotlib.axes._subplots.Axes = None Matplotlib axes to plot on, if not specified, one is created. plot_length_units : LengthUnit = None Specify units to use for axis labels, tick labels, and the title. viz_spec : VisualizationSpec = None Plotting parameters associated with a medium to use instead of defaults. **patch_kwargs Optional keyword arguments passed to the matplotlib patch plotting of structure. For details on accepted values, refer to `Matplotlib's documentation <https://tinyurl.com/2nf5c2fk>`_. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """ # find shapes that intersect self at plane axis, position = self.parse_xyz_kwargs(x=x, y=y, z=z) shapes_intersect = self.intersections_plane(x=x, y=y, z=z) plot_params = self.plot_params if viz_spec is not None: plot_params = plot_params.override_with_viz_spec(viz_spec) plot_params = plot_params.include_kwargs(**patch_kwargs) # for each intersection, plot the shape for shape in shapes_intersect: ax = self.plot_shape(shape, plot_params=plot_params, ax=ax) # clean up the axis display ax = self.add_ax_lims(axis=axis, ax=ax) ax.set_aspect("equal") # Add the default axis labels, tick labels, and title ax = Box.add_ax_labels_and_title(ax=ax, x=x, y=y, z=z, plot_length_units=plot_length_units) return ax
[docs] def plot_shape(self, shape: Shapely, plot_params: PlotParams, ax: Ax) -> Ax: """Defines how a shape is plotted on a matplotlib axes.""" if shape.geom_type in ( "MultiPoint", "MultiLineString", "MultiPolygon", "GeometryCollection", ): for sub_shape in shape.geoms: ax = self.plot_shape(shape=sub_shape, plot_params=plot_params, ax=ax) return ax _shape = Geometry.evaluate_inf_shape(shape) if _shape.geom_type == "LineString": xs, ys = zip(*_shape.coords) ax.plot(xs, ys, color=plot_params.facecolor, linewidth=plot_params.linewidth) elif _shape.geom_type == "Point": ax.scatter(shape.x, shape.y, color=plot_params.facecolor) else: patch = polygon_patch(_shape, **plot_params.to_kwargs()) ax.add_artist(patch) return ax
@staticmethod def _do_not_intersect(bounds_a, bounds_b, shape_a, shape_b): """Check whether two shapes intersect.""" # do a bounding box check to see if any intersection to do anything about if ( bounds_a[0] > bounds_b[2] or bounds_b[0] > bounds_a[2] or bounds_a[1] > bounds_b[3] or bounds_b[1] > bounds_a[3] ): return True # look more closely to see if intersected. if shape_b.is_empty or not shape_a.intersects(shape_b): return True return False @staticmethod def _get_plot_labels(axis: Axis) -> tuple[str, str]: """Returns planar coordinate x and y axis labels for cross section plots. Parameters ---------- axis : int Integer index into 'xyz' (0,1,2). Returns ------- str, str Labels of plot, packaged as ``(xlabel, ylabel)``. """ _, (xlabel, ylabel) = Geometry.pop_axis("xyz", axis=axis) return xlabel, ylabel def _get_plot_limits( self, axis: Axis, buffer: float = PLOT_BUFFER ) -> tuple[Coordinate2D, Coordinate2D]: """Gets planar coordinate limits for cross section plots. Parameters ---------- axis : int Integer index into 'xyz' (0,1,2). buffer : float = 0.3 Amount of space to add around the limits on the + and - sides. Returns ------- Tuple[float, float], Tuple[float, float] The x and y plot limits, packed as ``(xmin, xmax), (ymin, ymax)``. """ _, ((xmin, ymin), (xmax, ymax)) = self._pop_bounds(axis=axis) return (xmin - buffer, xmax + buffer), (ymin - buffer, ymax + buffer)
[docs] def add_ax_lims(self, axis: Axis, ax: Ax, buffer: float = PLOT_BUFFER) -> Ax: """Sets the x,y limits based on ``self.bounds``. Parameters ---------- axis : int Integer index into 'xyz' (0,1,2). ax : matplotlib.axes._subplots.Axes Matplotlib axes to add labels and limits on. buffer : float = 0.3 Amount of space to place around the limits on the + and - sides. Returns ------- matplotlib.axes._subplots.Axes The supplied or created matplotlib axes. """ (xmin, xmax), (ymin, ymax) = self._get_plot_limits(axis=axis, buffer=buffer) # note: axes limits dont like inf values, so we need to evaluate them first if present xmin, xmax, ymin, ymax = self._evaluate_inf((xmin, xmax, ymin, ymax)) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) return ax
[docs] @staticmethod def add_ax_labels_and_title( ax: Ax, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, plot_length_units: LengthUnit = None, ) -> Ax: """Sets the axis labels, tick labels, and title based on ``axis`` and an optional ``plot_length_units`` argument. Parameters ---------- ax : matplotlib.axes._subplots.Axes Matplotlib axes to add labels and limits on. x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. plot_length_units : LengthUnit = None When set to a supported ``LengthUnit``, plots will be produced with annotated axes and title with the proper units. Returns ------- matplotlib.axes._subplots.Axes The supplied matplotlib axes. """ axis, position = Box.parse_xyz_kwargs(x=x, y=y, z=z) axis_labels = Box._get_plot_labels(axis) ax = set_default_labels_and_title( axis_labels=axis_labels, axis=axis, position=position, ax=ax, plot_length_units=plot_length_units, ) return ax
@staticmethod def _evaluate_inf(array): """Processes values and evaluates any infs into large (signed) numbers.""" array = get_static(np.array(array)) return np.where(np.isinf(array), np.sign(array) * LARGE_NUMBER, array)
[docs] @staticmethod def evaluate_inf_shape(shape: Shapely) -> Shapely: """Returns a copy of shape with inf vertices replaced by large numbers if polygon.""" if not any(np.isinf(b) for b in shape.bounds): return shape if shape.geom_type == "Polygon": return shapely.Polygon( Geometry._evaluate_inf(np.array(shape.exterior.coords)), [Geometry._evaluate_inf(np.array(g.coords)) for g in shape.interiors], ) if shape.geom_type in {"Point", "LineString", "LinearRing"}: return shape.__class__(Geometry._evaluate_inf(np.array(shape.coords))) if shape.geom_type in { "MultiPoint", "MultiLineString", "MultiPolygon", "GeometryCollection", }: return shape.__class__([Geometry.evaluate_inf_shape(g) for g in shape.geoms]) return shape
[docs] @staticmethod def pop_axis(coord: tuple[Any, Any, Any], axis: int) -> tuple[Any, tuple[Any, Any]]: """Separates coordinate at ``axis`` index from coordinates on the plane tangent to ``axis``. Parameters ---------- coord : Tuple[Any, Any, Any] Tuple of three values in original coordinate system. axis : int Integer index into 'xyz' (0,1,2). Returns ------- Any, Tuple[Any, Any] The input coordinates are separated into the one along the axis provided and the two on the planar coordinates, like ``axis_coord, (planar_coord1, planar_coord2)``. """ plane_vals = list(coord) axis_val = plane_vals.pop(axis) return axis_val, tuple(plane_vals)
[docs] @staticmethod def unpop_axis(ax_coord: Any, plane_coords: tuple[Any, Any], axis: int) -> tuple[Any, Any, Any]: """Combine coordinate along axis with coordinates on the plane tangent to the axis. Parameters ---------- ax_coord : Any Value along axis direction. plane_coords : Tuple[Any, Any] Values along ordered planar directions. axis : int Integer index into 'xyz' (0,1,2). Returns ------- Tuple[Any, Any, Any] The three values in the xyz coordinate system. """ coords = list(plane_coords) coords.insert(axis, ax_coord) return tuple(coords)
[docs] @staticmethod def parse_xyz_kwargs(**xyz) -> tuple[Axis, float]: """Turns x,y,z kwargs into index of the normal axis and position along that axis. Parameters ---------- x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. Returns ------- int, float Index into xyz axis (0,1,2) and position along that axis. """ xyz_filtered = {k: v for k, v in xyz.items() if v is not None} if len(xyz_filtered) != 1: raise ValueError("exactly one kwarg in [x,y,z] must be specified.") axis_label, position = list(xyz_filtered.items())[0] axis = "xyz".index(axis_label) return axis, position
[docs] @staticmethod def parse_two_xyz_kwargs(**xyz) -> list[tuple[Axis, float]]: """Turns x,y,z kwargs into indices of axes and the position along each axis. Parameters ---------- x : float = None Position in x direction, only two of x,y,z can be specified to define line. y : float = None Position in y direction, only two of x,y,z can be specified to define line. z : float = None Position in z direction, only two of x,y,z can be specified to define line. Returns ------- [(int, float), (int, float)] Index into xyz axis (0,1,2) and position along that axis. """ xyz_filtered = {k: v for k, v in xyz.items() if v is not None} assert len(xyz_filtered) == 2, "exactly two kwarg in [x,y,z] must be specified." xyz_list = list(xyz_filtered.items()) return [("xyz".index(axis_label), position) for axis_label, position in xyz_list]
[docs] @staticmethod def rotate_points(points: ArrayFloat3D, axis: Coordinate, angle: float) -> ArrayFloat3D: """Rotate a set of points in 3D. Parameters ---------- points : ArrayLike[float] Array of shape ``(3, ...)``. axis : Coordinate Axis of rotation angle : float Angle of rotation counter-clockwise around the axis (rad). """ rotation = RotationAroundAxis(axis=axis, angle=angle) return rotation.rotate_vector(points)
[docs] def reflect_points( self, points: ArrayFloat3D, polar_axis: Axis, angle_theta: float, angle_phi: float, ) -> ArrayFloat3D: """Reflect a set of points in 3D at a plane passing through the coordinate origin defined and normal to a given axis defined in polar coordinates (theta, phi) w.r.t. the ``polar_axis`` which can be 0, 1, or 2. Parameters ---------- points : ArrayLike[float] Array of shape ``(3, ...)``. polar_axis : Axis Cartesian axis w.r.t. which the normal axis angles are defined. angle_theta : float Polar angle w.r.t. the polar axis. angle_phi : float Azimuth angle around the polar axis. """ # Rotate such that the plane normal is along the polar_axis axis_theta, axis_phi = [0, 0, 0], [0, 0, 0] axis_phi[polar_axis] = 1 plane_axes = [0, 1, 2] plane_axes.pop(polar_axis) axis_theta[plane_axes[1]] = 1 points_new = self.rotate_points(points, axis_phi, -angle_phi) points_new = self.rotate_points(points_new, axis_theta, -angle_theta) # Flip the ``polar_axis`` coordinate of the points, which is now normal to the plane points_new[polar_axis, :] *= -1 # Rotate back points_new = self.rotate_points(points_new, axis_theta, angle_theta) points_new = self.rotate_points(points_new, axis_phi, angle_phi) return points_new
[docs] def volume(self, bounds: Bound = None): """Returns object's volume with optional bounds. Parameters ---------- bounds : Tuple[Tuple[float, float, float], Tuple[float, float, float]] = None Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- float Volume in um^3. """ if not bounds: bounds = self.bounds return self._volume(bounds)
@abstractmethod def _volume(self, bounds: Bound) -> float: """Returns object's volume within given bounds."""
[docs] def surface_area(self, bounds: Bound = None): """Returns object's surface area with optional bounds. Parameters ---------- bounds : Tuple[Tuple[float, float, float], Tuple[float, float, float]] = None Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. Returns ------- float Surface area in um^2. """ if not bounds: bounds = self.bounds return self._surface_area(bounds)
@abstractmethod def _surface_area(self, bounds: Bound) -> float: """Returns object's surface area within given bounds."""
[docs] def translated(self, x: float, y: float, z: float) -> Geometry: """Return a translated copy of this geometry. Parameters ---------- x : float Translation along x. y : float Translation along y. z : float Translation along z. Returns ------- :class:`Geometry` Translated copy of this geometry. """ return Transformed(geometry=self, transform=Transformed.translation(x, y, z))
[docs] def scaled(self, x: float = 1.0, y: float = 1.0, z: float = 1.0) -> Geometry: """Return a scaled copy of this geometry. Parameters ---------- x : float = 1.0 Scaling factor along x. y : float = 1.0 Scaling factor along y. z : float = 1.0 Scaling factor along z. Returns ------- :class:`Geometry` Scaled copy of this geometry. """ return Transformed(geometry=self, transform=Transformed.scaling(x, y, z))
[docs] def rotated(self, angle: float, axis: Union[Axis, Coordinate]) -> Geometry: """Return a rotated copy of this geometry. Parameters ---------- angle : float Rotation angle (in radians). axis : Union[int, Tuple[float, float, float]] Axis of rotation: 0, 1, or 2 for x, y, and z, respectively, or a 3D vector. Returns ------- :class:`Geometry` Rotated copy of this geometry. """ return Transformed(geometry=self, transform=Transformed.rotation(angle, axis))
[docs] def reflected(self, normal: Coordinate) -> Geometry: """Return a reflected copy of this geometry. Parameters ---------- normal : Tuple[float, float, float] The 3D normal vector of the plane of reflection. The plane is assumed to pass through the origin (0,0,0). Returns ------- :class:`Geometry` Reflected copy of this geometry. """ return Transformed(geometry=self, transform=Transformed.reflection(normal))
""" Field and coordinate transformations """
[docs] @staticmethod def car_2_sph(x: float, y: float, z: float) -> tuple[float, float, float]: """Convert Cartesian to spherical coordinates. Parameters ---------- x : float x coordinate relative to ``local_origin``. y : float y coordinate relative to ``local_origin``. z : float z coordinate relative to ``local_origin``. Returns ------- Tuple[float, float, float] r, theta, and phi coordinates relative to ``local_origin``. """ r = np.sqrt(x**2 + y**2 + z**2) theta = np.arccos(z / r) phi = np.arctan2(y, x) return r, theta, phi
[docs] @staticmethod def sph_2_car(r: float, theta: float, phi: float) -> tuple[float, float, float]: """Convert spherical to Cartesian coordinates. Parameters ---------- r : float radius. theta : float polar angle (rad) downward from x=y=0 line. phi : float azimuthal (rad) angle from y=z=0 line. Returns ------- Tuple[float, float, float] x, y, and z coordinates relative to ``local_origin``. """ r_sin_theta = r * np.sin(theta) x = r_sin_theta * np.cos(phi) y = r_sin_theta * np.sin(phi) z = r * np.cos(theta) return x, y, z
[docs] @staticmethod def sph_2_car_field( f_r: float, f_theta: float, f_phi: float, theta: float, phi: float ) -> tuple[complex, complex, complex]: """Convert vector field components in spherical coordinates to cartesian. Parameters ---------- f_r : float radial component of the vector field. f_theta : float polar angle component of the vector fielf. f_phi : float azimuthal angle component of the vector field. theta : float polar angle (rad) of location of the vector field. phi : float azimuthal angle (rad) of location of the vector field. Returns ------- Tuple[float, float, float] x, y, and z components of the vector field in cartesian coordinates. """ sin_theta = np.sin(theta) cos_theta = np.cos(theta) sin_phi = np.sin(phi) cos_phi = np.cos(phi) f_x = f_r * sin_theta * cos_phi + f_theta * cos_theta * cos_phi - f_phi * sin_phi f_y = f_r * sin_theta * sin_phi + f_theta * cos_theta * sin_phi + f_phi * cos_phi f_z = f_r * cos_theta - f_theta * sin_theta return f_x, f_y, f_z
[docs] @staticmethod def car_2_sph_field( f_x: float, f_y: float, f_z: float, theta: float, phi: float ) -> tuple[complex, complex, complex]: """Convert vector field components in cartesian coordinates to spherical. Parameters ---------- f_x : float x component of the vector field. f_y : float y component of the vector fielf. f_z : float z component of the vector field. theta : float polar angle (rad) of location of the vector field. phi : float azimuthal angle (rad) of location of the vector field. Returns ------- Tuple[float, float, float] radial (s), elevation (theta), and azimuthal (phi) components of the vector field in spherical coordinates. """ sin_theta = np.sin(theta) cos_theta = np.cos(theta) sin_phi = np.sin(phi) cos_phi = np.cos(phi) f_r = f_x * sin_theta * cos_phi + f_y * sin_theta * sin_phi + f_z * cos_theta f_theta = f_x * cos_theta * cos_phi + f_y * cos_theta * sin_phi - f_z * sin_theta f_phi = -f_x * sin_phi + f_y * cos_phi return f_r, f_theta, f_phi
[docs] @staticmethod def kspace_2_sph(ux: float, uy: float, axis: Axis) -> tuple[float, float]: """Convert normalized k-space coordinates to angles. Parameters ---------- ux : float normalized kx coordinate. uy : float normalized ky coordinate. axis : int axis along which the observation plane is oriented. Returns ------- Tuple[float, float] theta and phi coordinates relative to ``local_origin``. """ phi_local = np.arctan2(uy, ux) with np.errstate(invalid="ignore"): theta_local = np.arcsin(np.sqrt(ux**2 + uy**2)) # Spherical coordinates rotation matrix reference: # https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula#Matrix_notation if axis == 2: return theta_local, phi_local x = np.cos(theta_local) y = np.sin(theta_local) * np.cos(phi_local) z = np.sin(theta_local) * np.sin(phi_local) if axis == 1: x, y, z = y, x, z theta = np.arccos(z) phi = np.arctan2(y, x) return theta, phi
[docs] @staticmethod @verify_packages_import(["gdstk"]) def load_gds_vertices_gdstk( gds_cell, gds_layer: int, gds_dtype: Optional[int] = None, gds_scale: pydantic.PositiveFloat = 1.0, ) -> list[ArrayFloat2D]: """Load polygon vertices from a ``gdstk.Cell``. Parameters ---------- gds_cell : gdstk.Cell ``gdstk.Cell`` containing 2D geometric data. gds_layer : int Layer index in the ``gds_cell``. gds_dtype : int = None Data-type index in the ``gds_cell``. If ``None``, imports all data for this layer into the returned list. gds_scale : float = 1.0 Length scale used in GDS file in units of micrometer. For example, if gds file uses nanometers, set ``gds_scale=1e-3``. Must be positive. Returns ------- List[ArrayFloat2D] List of polygon vertices """ # apply desired scaling and load the polygon vertices if gds_dtype is not None: # if both layer and datatype are specified, let gdstk do the filtering for better # performance on large layouts all_vertices = [ polygon.scale(gds_scale).points for polygon in gds_cell.get_polygons(layer=gds_layer, datatype=gds_dtype) ] else: all_vertices = [ polygon.scale(gds_scale).points for polygon in gds_cell.get_polygons() if polygon.layer == gds_layer ] # make sure something got loaded, otherwise error if not all_vertices: raise Tidy3dKeyError( f"Couldn't load gds_cell, no vertices found at gds_layer={gds_layer} " f"with specified gds_dtype={gds_dtype}." ) return all_vertices
[docs] @staticmethod @verify_packages_import(["gdstk"]) def from_gds( gds_cell, axis: Axis, slab_bounds: tuple[float, float], gds_layer: int, gds_dtype: Optional[int] = None, gds_scale: pydantic.PositiveFloat = 1.0, dilation: float = 0.0, sidewall_angle: float = 0, reference_plane: PlanePosition = "middle", ) -> Geometry: """Import a ``gdstk.Cell`` and extrude it into a GeometryGroup. Parameters ---------- gds_cell : gdstk.Cell ``gdstk.Cell`` containing 2D geometric data. axis : int Integer index defining the extrusion axis: 0 (x), 1 (y), or 2 (z). slab_bounds: Tuple[float, float] Minimal and maximal positions of the extruded slab along ``axis``. gds_layer : int Layer index in the ``gds_cell``. gds_dtype : int = None Data-type index in the ``gds_cell``. If ``None``, imports all data for this layer into the returned list. gds_scale : float = 1.0 Length scale used in GDS file in units of micrometer. For example, if gds file uses nanometers, set ``gds_scale=1e-3``. Must be positive. dilation : float = 0.0 Dilation (positive) or erosion (negative) amount to be applied to the original polygons. sidewall_angle : float = 0 Angle of the extrusion sidewalls, away from the vertical direction, in radians. Positive (negative) values result in slabs larger (smaller) at the base than at the top. reference_plane : PlanePosition = "middle" Reference position of the (dilated/eroded) polygons along the slab axis. One of ``"middle"`` (polygons correspond to the center of the slab bounds), ``"bottom"`` (minimal slab bound position), or ``"top"`` (maximal slab bound position). This value has no effect if ``sidewall_angle == 0``. Returns ------- :class:`Geometry` Geometries created from the 2D data. """ import gdstk if not isinstance(gds_cell, gdstk.Cell): # Check if it might be a gdstk cell but gdstk is not found (should be caught by decorator) # or if it's an entirely different type. if "gdstk" in gds_cell.__class__.__name__.lower(): raise Tidy3dImportError( "Module 'gdstk' not found. It is required to import gdstk cells." ) raise Tidy3dImportError("Argument 'gds_cell' must be an instance of 'gdstk.Cell'.") gds_loader_fn = Geometry.load_gds_vertices_gdstk geometries = [] with log as consolidated_logger: for vertices in gds_loader_fn(gds_cell, gds_layer, gds_dtype, gds_scale): # buffer(0) is necessary to merge self-intersections shape = shapely.set_precision(shapely.Polygon(vertices).buffer(0), POLY_GRID_SIZE) try: geometries.append( from_shapely( shape, axis, slab_bounds, dilation, sidewall_angle, reference_plane ) ) except pydantic.ValidationError as error: consolidated_logger.warning(str(error)) except Tidy3dError as error: consolidated_logger.warning(str(error)) return geometries[0] if len(geometries) == 1 else GeometryGroup(geometries=geometries)
[docs] @staticmethod def from_shapely( shape: Shapely, axis: Axis, slab_bounds: tuple[float, float], dilation: float = 0.0, sidewall_angle: float = 0, reference_plane: PlanePosition = "middle", ) -> Geometry: """Convert a shapely primitive into a geometry instance by extrusion. Parameters ---------- shape : shapely.geometry.base.BaseGeometry Shapely primitive to be converted. It must be a linear ring, a polygon or a collection of any of those. axis : int Integer index defining the extrusion axis: 0 (x), 1 (y), or 2 (z). slab_bounds: Tuple[float, float] Minimal and maximal positions of the extruded slab along ``axis``. dilation : float Dilation of the polygon in the base by shifting each edge along its normal outwards direction by a distance; a negative value corresponds to erosion. sidewall_angle : float = 0 Angle of the extrusion sidewalls, away from the vertical direction, in radians. Positive (negative) values result in slabs larger (smaller) at the base than at the top. reference_plane : PlanePosition = "middle" Reference position of the (dilated/eroded) polygons along the slab axis. One of ``"middle"`` (polygons correspond to the center of the slab bounds), ``"bottom"`` (minimal slab bound position), or ``"top"`` (maximal slab bound position). This value has no effect if ``sidewall_angle == 0``. Returns ------- :class:`Geometry` Geometry extruded from the 2D data. """ return from_shapely(shape, axis, slab_bounds, dilation, sidewall_angle, reference_plane)
[docs] @verify_packages_import(["gdstk"]) def to_gdstk( self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, gds_layer: pydantic.NonNegativeInt = 0, gds_dtype: pydantic.NonNegativeInt = 0, ) -> list: """Convert a Geometry object's planar slice to a .gds type polygon. Parameters ---------- x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. gds_layer : int = 0 Layer index to use for the shapes stored in the .gds file. gds_dtype : int = 0 Data-type index to use for the shapes stored in the .gds file. Return ------ List List of `gdstk.Polygon`. """ import gdstk shapes = self.intersections_plane(x=x, y=y, z=z) polygons = [] for shape in shapes: for vertices in vertices_from_shapely(shape): if len(vertices) == 1: polygons.append(gdstk.Polygon(vertices[0], gds_layer, gds_dtype)) else: polygons.extend( gdstk.boolean( vertices[:1], vertices[1:], "not", layer=gds_layer, datatype=gds_dtype, ) ) return polygons
[docs] @verify_packages_import(["gdstk"]) def to_gds( self, cell, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, gds_layer: pydantic.NonNegativeInt = 0, gds_dtype: pydantic.NonNegativeInt = 0, ) -> None: """Append a Geometry object's planar slice to a .gds cell. Parameters ---------- cell : ``gdstk.Cell`` Cell object to which the generated polygons are added. x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. gds_layer : int = 0 Layer index to use for the shapes stored in the .gds file. gds_dtype : int = 0 Data-type index to use for the shapes stored in the .gds file. """ import gdstk if not isinstance(cell, gdstk.Cell): if "gdstk" in cell.__class__.__name__.lower(): raise Tidy3dImportError( "Module 'gdstk' not found. It is required to export shapes to gdstk cells." ) raise Tidy3dImportError("Argument 'cell' must be an instance of 'gdstk.Cell'.") polygons = self.to_gdstk(x=x, y=y, z=z, gds_layer=gds_layer, gds_dtype=gds_dtype) if polygons: cell.add(*polygons)
[docs] @verify_packages_import(["gdstk"]) def to_gds_file( self, fname: str, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, gds_layer: pydantic.NonNegativeInt = 0, gds_dtype: pydantic.NonNegativeInt = 0, gds_cell_name: str = "MAIN", ) -> None: """Export a Geometry object's planar slice to a .gds file. Parameters ---------- fname : str Full path to the .gds file to save the :class:`Geometry` slice to. x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. gds_layer : int = 0 Layer index to use for the shapes stored in the .gds file. gds_dtype : int = 0 Data-type index to use for the shapes stored in the .gds file. gds_cell_name : str = 'MAIN' Name of the cell created in the .gds file to store the geometry. """ try: import gdstk except ImportError as e: raise Tidy3dImportError( "Python module 'gdstk' not found. To export geometries to .gds " "files, please install it." ) from e library = gdstk.Library() cell = library.new_cell(gds_cell_name) self.to_gds(cell, x=x, y=y, z=z, gds_layer=gds_layer, gds_dtype=gds_dtype) pathlib.Path(fname).parent.mkdir(parents=True, exist_ok=True) library.write_gds(fname)
def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" raise NotImplementedError(f"Can't compute derivative for 'Geometry': '{type(self)}'.") def _as_union(self) -> list[Geometry]: """Return a list of geometries that, united, make up the given geometry.""" if isinstance(self, GeometryGroup): return self.geometries if isinstance(self, ClipOperation) and self.operation == "union": return (self.geometry_a, self.geometry_b) return (self,)
[docs] def __add__(self, other): """Union of geometries""" # This allows the user to write sum(geometries...) with the default start=0 if isinstance(other, int): return self if not isinstance(other, Geometry): return NotImplemented return GeometryGroup(geometries=self._as_union() + other._as_union())
[docs] def __radd__(self, other): """Union of geometries""" # This allows the user to write sum(geometries...) with the default start=0 if isinstance(other, int): return self if not isinstance(other, Geometry): return NotImplemented return GeometryGroup(geometries=other._as_union() + self._as_union())
[docs] def __or__(self, other): """Union of geometries""" if not isinstance(other, Geometry): return NotImplemented return GeometryGroup(geometries=self._as_union() + other._as_union())
[docs] def __mul__(self, other): """Intersection of geometries""" if not isinstance(other, Geometry): return NotImplemented return ClipOperation(operation="intersection", geometry_a=self, geometry_b=other)
[docs] def __and__(self, other): """Intersection of geometries""" if not isinstance(other, Geometry): return NotImplemented return ClipOperation(operation="intersection", geometry_a=self, geometry_b=other)
[docs] def __sub__(self, other): """Difference of geometries""" if not isinstance(other, Geometry): return NotImplemented return ClipOperation(operation="difference", geometry_a=self, geometry_b=other)
[docs] def __xor__(self, other): """Symmetric difference of geometries""" if not isinstance(other, Geometry): return NotImplemented return ClipOperation(operation="symmetric_difference", geometry_a=self, geometry_b=other)
[docs] def __pos__(self): """No op""" return self
[docs] def __neg__(self): """Opposite of a geometry""" return ClipOperation( operation="difference", geometry_a=Box(size=(inf, inf, inf)), geometry_b=self )
[docs] def __invert__(self): """Opposite of a geometry""" return ClipOperation( operation="difference", geometry_a=Box(size=(inf, inf, inf)), geometry_b=self )
""" Abstract subclasses """
[docs] class Centered(Geometry, ABC): """Geometry with a well defined center.""" center: TracedCoordinate = pydantic.Field( (0.0, 0.0, 0.0), title="Center", description="Center of object in x, y, and z.", units=MICROMETER, ) @pydantic.validator("center", always=True) def _center_not_inf(cls, val): """Make sure center is not infinitiy.""" if any(np.isinf(v) for v in val): raise ValidationError("center can not contain td.inf terms.") return val
[docs] class SimplePlaneIntersection(Geometry, ABC): """A geometry where intersections with an axis aligned plane may be computed efficiently."""
[docs] def intersections_tilted_plane( self, normal: Coordinate, origin: Coordinate, to_2D: MatrixReal4x4 ) -> list[Shapely]: """Return a list of shapely geometries at the plane specified by normal and origin. Checks special cases before relying on the complete computation. Parameters ---------- normal : Coordinate Vector defining the normal direction to the plane. origin : Coordinate Vector defining the plane origin. to_2D : MatrixReal4x4 Transformation matrix to apply to resulting shapes. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ # Check if normal is a special case, where the normal is aligned with an axis. if np.sum(np.isclose(normal, 0.0)) == 2: axis = np.argmax(np.abs(normal)).item() coord = "xyz"[axis] kwargs = {coord: origin[axis]} section = self.intersections_plane(**kwargs) # Apply transformation in the plane by removing row and column to_2D_in_plane = np.delete(np.delete(to_2D, 2, 0), axis, 1) def transform(p_array): return np.dot( np.hstack((p_array, np.ones((p_array.shape[0], 1)))), to_2D_in_plane.T )[:, :2] transformed_section = shapely.transform(section, transformation=transform) return transformed_section # Otherwise compute the arbitrary intersection return self._do_intersections_tilted_plane(normal=normal, origin=origin, to_2D=to_2D)
@abstractmethod def _do_intersections_tilted_plane( self, normal: Coordinate, origin: Coordinate, to_2D: MatrixReal4x4 ) -> list[Shapely]: """Return a list of shapely geometries at the plane specified by normal and origin. Parameters ---------- normal : Coordinate Vector defining the normal direction to the plane. origin : Coordinate Vector defining the plane origin. to_2D : MatrixReal4x4 Transformation matrix to apply to resulting shapes. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """
[docs] class Planar(SimplePlaneIntersection, Geometry, ABC): """Geometry with one ``axis`` that is slab-like with thickness ``height``.""" axis: Axis = pydantic.Field( 2, title="Axis", description="Specifies dimension of the planar axis (0,1,2) -> (x,y,z)." ) sidewall_angle: TracedFloat = pydantic.Field( 0.0, title="Sidewall angle", description="Angle of the sidewall. " "``sidewall_angle=0`` (default) specifies a vertical wall; " "``0<sidewall_angle<np.pi/2`` specifies a shrinking cross section " "along the ``axis`` direction; " "and ``-np.pi/2<sidewall_angle<0`` specifies an expanding cross section " "along the ``axis`` direction.", units=RADIAN, ) reference_plane: PlanePosition = pydantic.Field( "middle", title="Reference plane for cross section", description="The position of the plane where the supplied cross section are " "defined. The plane is perpendicular to the ``axis``. " "The plane is located at the ``bottom``, ``middle``, or ``top`` of the " "geometry with respect to the axis. " "E.g. if ``axis=1``, ``bottom`` refers to the negative side of the y-axis, and " "``top`` refers to the positive side of the y-axis.", )
[docs] @pydantic.validator("sidewall_angle", always=True) def validate_angle(cls, value: float) -> float: lower_bound = -np.pi / 2 upper_bound = np.pi / 2 if (value <= lower_bound) or (value >= upper_bound): # u03C0 is unicode for pi raise ValidationError(f"Sidewall angle ({value}) must be between -Ο€/2 and Ο€/2 rad.") return value
@property @abstractmethod def center_axis(self) -> float: """Gets the position of the center of the geometry in the out of plane dimension.""" @property @abstractmethod def length_axis(self) -> float: """Gets the length of the geometry along the out of plane dimension.""" @property def finite_length_axis(self) -> float: """Gets the length of the geometry along the out of plane dimension. If the length is td.inf, return ``LARGE_NUMBER`` """ return min(self.length_axis, LARGE_NUMBER) @property def reference_axis_pos(self) -> float: """Coordinate along the slab axis at the reference plane. Returns the axis coordinate corresponding to the selected reference_plane: - "bottom": lower bound of slab_bounds - "middle": center_axis - "top": upper bound of slab_bounds """ if self.reference_plane == "bottom": return self.slab_bounds[0] if self.reference_plane == "top": return self.slab_bounds[1] # default to middle return self.center_axis
[docs] def intersections_plane( self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None ): """Returns shapely geometry at plane specified by one non None value of x,y,z. Parameters ---------- x : float Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float Position of plane in z direction, only one of x,y,z can be specified to define plane. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ axis, position = self.parse_xyz_kwargs(x=x, y=y, z=z) if not self.intersects_axis_position(axis, position): return [] if axis == self.axis: return self._intersections_normal(position) return self._intersections_side(position, axis)
@abstractmethod def _intersections_normal(self, z: float) -> list: """Find shapely geometries intersecting planar geometry with axis normal to slab. Parameters ---------- z : float Position along the axis normal to slab Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ @abstractmethod def _intersections_side(self, position: float, axis: Axis) -> list: """Find shapely geometries intersecting planar geometry with axis orthogonal to plane. Parameters ---------- position : float Position along axis. axis : int Integer index into 'xyz' (0,1,2). Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ def _order_axis(self, axis: int) -> int: """Order the axis as if self.axis is along z-direction. Parameters ---------- axis : int Integer index into the structure's planar axis. Returns ------- int New index of axis. """ axis_index = [0, 1] axis_index.insert(self.axis, 2) return axis_index[axis] def _order_by_axis(self, plane_val: Any, axis_val: Any, axis: int) -> tuple[Any, Any]: """Orders a value in the plane and value along axis in correct (x,y) order for plotting. Note: sometimes if axis=1 and we compute cross section values orthogonal to axis, they can either be x or y in the plots. This function allows one to figure out the ordering. Parameters ---------- plane_val : Any The value in the planar coordinate. axis_val : Any The value in the ``axis`` coordinate. axis : int Integer index into the structure's planar axis. Returns ------- ``(Any, Any)`` The two planar coordinates in this new coordinate system. """ vals = 3 * [plane_val] vals[self.axis] = axis_val _, (val_x, val_y) = self.pop_axis(vals, axis=axis) return val_x, val_y @cached_property def _tanq(self) -> float: """Value of ``tan(sidewall_angle)``. The (possibliy infinite) geometry offset is given by ``_tanq * length_axis``. """ return np.tan(self.sidewall_angle)
[docs] class Circular(Geometry): """Geometry with circular characteristics (specified by a radius).""" radius: pydantic.NonNegativeFloat = pydantic.Field( ..., title="Radius", description="Radius of geometry.", units=MICROMETER ) @pydantic.validator("radius", always=True) def _radius_not_inf(cls, val): """Make sure center is not infinitiy.""" if np.isinf(val): raise ValidationError("radius can not be td.inf.") return val def _intersect_dist(self, position, z0) -> float: """Distance between points on circle at z=position where center of circle at z=z0. Parameters ---------- position : float position along z. z0 : float center of circle in z. Returns ------- float Distance between points on the circle intersecting z=z, if no points, ``None``. """ dz = np.abs(z0 - position) if dz > self.radius: return None return 2 * np.sqrt(self.radius**2 - dz**2)
"""Primitive classes"""
[docs] class Box(SimplePlaneIntersection, Centered): """Rectangular prism. Also base class for :class:`.Simulation`, :class:`Monitor`, and :class:`Source`. Example ------- >>> b = Box(center=(1,2,3), size=(2,2,2)) """ size: TracedSize = pydantic.Field( ..., title="Size", description="Size in x, y, and z directions.", units=MICROMETER, )
[docs] @classmethod def from_bounds(cls, rmin: Coordinate, rmax: Coordinate, **kwargs): """Constructs a :class:`Box` from minimum and maximum coordinate bounds Parameters ---------- rmin : Tuple[float, float, float] (x, y, z) coordinate of the minimum values. rmax : Tuple[float, float, float] (x, y, z) coordinate of the maximum values. Example ------- >>> b = Box.from_bounds(rmin=(-1, -2, -3), rmax=(3, 2, 1)) """ center = tuple(cls._get_center(pt_min, pt_max) for pt_min, pt_max in zip(rmin, rmax)) size = tuple((pt_max - pt_min) for pt_min, pt_max in zip(rmin, rmax)) return cls(center=center, size=size, **kwargs)
@cached_property def _normal_axis(self) -> Axis: """Axis normal to the Box. Errors if box is not planar.""" if self.size.count(0.0) != 1: raise ValidationError( f"Tried to get 'normal_axis' of 'Box' that is not planar. Given 'size={self.size}.'" ) return self.size.index(0.0)
[docs] @classmethod def surfaces(cls, size: Size, center: Coordinate, **kwargs): """Returns a list of 6 :class:`Box` instances corresponding to each surface of a 3D volume. The output surfaces are stored in the order [x-, x+, y-, y+, z-, z+], where x, y, and z denote which axis is perpendicular to that surface, while "-" and "+" denote the direction of the normal vector of that surface. If a name is provided, each output surface's name will be that of the provided name appended with the above symbols. E.g., if the provided name is "box", the x+ surfaces's name will be "box_x+". Parameters ---------- size : Tuple[float, float, float] Size of object in x, y, and z directions. center : Tuple[float, float, float] Center of object in x, y, and z. Example ------- >>> b = Box.surfaces(size=(1, 2, 3), center=(3, 2, 1)) """ if any(s == 0.0 for s in size): raise SetupError( "Can't generate surfaces for the given object because it has zero volume." ) bounds = Box(center=center, size=size).bounds # Set up geometry data and names for each surface: centers = [list(center) for _ in range(6)] sizes = [list(size) for _ in range(6)] surface_index = 0 for dim_index in range(3): for min_max_index in range(2): new_center = centers[surface_index] new_size = sizes[surface_index] new_center[dim_index] = bounds[min_max_index][dim_index] new_size[dim_index] = 0.0 centers[surface_index] = new_center sizes[surface_index] = new_size surface_index += 1 name_base = kwargs.pop("name", "") kwargs.pop("normal_dir", None) names = [] normal_dirs = [] for coord in "xyz": for direction in "-+": surface_name = name_base + "_" + coord + direction names.append(surface_name) normal_dirs.append(direction) # ignore surfaces that are infinitely far away del_idx = [] for idx, _size in enumerate(size): if _size == inf: del_idx.append(idx) del_idx = [[2 * i, 2 * i + 1] for i in del_idx] del_idx = [item for sublist in del_idx for item in sublist] def del_items(items, indices): """Delete list items at indices.""" return [i for j, i in enumerate(items) if j not in indices] centers = del_items(centers, del_idx) sizes = del_items(sizes, del_idx) names = del_items(names, del_idx) normal_dirs = del_items(normal_dirs, del_idx) surfaces = [] for _cent, _size, _name, _normal_dir in zip(centers, sizes, names, normal_dirs): if "normal_dir" in cls.__dict__["__fields__"]: kwargs["normal_dir"] = _normal_dir if "name" in cls.__dict__["__fields__"]: kwargs["name"] = _name surface = cls(center=_cent, size=_size, **kwargs) surfaces.append(surface) return surfaces
[docs] @classmethod def surfaces_with_exclusion(cls, size: Size, center: Coordinate, **kwargs): """Returns a list of 6 :class:`Box` instances corresponding to each surface of a 3D volume. The output surfaces are stored in the order [x-, x+, y-, y+, z-, z+], where x, y, and z denote which axis is perpendicular to that surface, while "-" and "+" denote the direction of the normal vector of that surface. If a name is provided, each output surface's name will be that of the provided name appended with the above symbols. E.g., if the provided name is "box", the x+ surfaces's name will be "box_x+". If ``kwargs`` contains an ``exclude_surfaces`` parameter, the returned list of surfaces will not include the excluded surfaces. Otherwise, the behavior is identical to that of ``surfaces()``. Parameters ---------- size : Tuple[float, float, float] Size of object in x, y, and z directions. center : Tuple[float, float, float] Center of object in x, y, and z. Example ------- >>> b = Box.surfaces_with_exclusion( ... size=(1, 2, 3), center=(3, 2, 1), exclude_surfaces=["x-"] ... ) """ exclude_surfaces = kwargs.pop("exclude_surfaces", None) surfaces = cls.surfaces(size=size, center=center, **kwargs) if "name" in cls.__dict__["__fields__"] and exclude_surfaces: surfaces = [surf for surf in surfaces if surf.name[-2:] not in exclude_surfaces] return surfaces
@verify_packages_import(["trimesh"]) def _do_intersections_tilted_plane( self, normal: Coordinate, origin: Coordinate, to_2D: MatrixReal4x4 ) -> list[Shapely]: """Return a list of shapely geometries at the plane specified by normal and origin. Parameters ---------- normal : Coordinate Vector defining the normal direction to the plane. origin : Coordinate Vector defining the plane origin. to_2D : MatrixReal4x4 Transformation matrix to apply to resulting shapes. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ import trimesh (x0, y0, z0), (x1, y1, z1) = self.bounds vertices = [ (x0, y0, z0), # 0 (x0, y0, z1), # 1 (x0, y1, z0), # 2 (x0, y1, z1), # 3 (x1, y0, z0), # 4 (x1, y0, z1), # 5 (x1, y1, z0), # 6 (x1, y1, z1), # 7 ] faces = [ (0, 1, 3, 2), # -x (4, 6, 7, 5), # +x (0, 4, 5, 1), # -y (2, 3, 7, 6), # +y (0, 2, 6, 4), # -z (1, 5, 7, 3), # +z ] mesh = trimesh.Trimesh(vertices, faces) section = mesh.section(plane_origin=origin, plane_normal=normal) if section is None: return [] path, _ = section.to_2D(to_2D=to_2D) return path.polygons_full
[docs] def intersections_plane( self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None ): """Returns shapely geometry at plane specified by one non None value of x,y,z. Parameters ---------- x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ axis, position = self.parse_xyz_kwargs(x=x, y=y, z=z) if not self.intersects_axis_position(axis, position): return [] z0, (x0, y0) = self.pop_axis(self.center, axis=axis) Lz, (Lx, Ly) = self.pop_axis(self.size, axis=axis) dz = np.abs(z0 - position) if dz > Lz / 2 + fp_eps: return [] minx = x0 - Lx / 2 miny = y0 - Ly / 2 maxx = x0 + Lx / 2 maxy = y0 + Ly / 2 # handle case where the box vertices are identical if np.isclose(minx, maxx) and np.isclose(miny, maxy): return [self.make_shapely_point(minx, miny)] return [self.make_shapely_box(minx, miny, maxx, maxy)]
[docs] def inside( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> np.ndarray[bool]: """For input arrays ``x``, ``y``, ``z`` of arbitrary but identical shape, return an array with the same shape which is ``True`` for every point in zip(x, y, z) that is inside the volume of the :class:`Geometry`, and ``False`` otherwise. Parameters ---------- x : np.ndarray[float] Array of point positions in x direction. y : np.ndarray[float] Array of point positions in y direction. z : np.ndarray[float] Array of point positions in z direction. Returns ------- np.ndarray[bool] ``True`` for every point that is inside the geometry. """ self._ensure_equal_shape(x, y, z) x0, y0, z0 = self.center Lx, Ly, Lz = self.size dist_x = np.abs(x - x0) dist_y = np.abs(y - y0) dist_z = np.abs(z - z0) return (dist_x <= Lx / 2) * (dist_y <= Ly / 2) * (dist_z <= Lz / 2)
[docs] def intersections_with(self, other): """Returns list of shapely geometries representing the intersections of the geometry with this 2D box. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect this 2D box. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ # Verify 2D if self.size.count(0.0) != 1: raise ValidationError( "Intersections with other geometry are only calculated from a 2D box." ) # dont bother if the geometry doesn't intersect the self at all if not other.intersects(self): return [] # get list of Shapely shapes that intersect at the self normal_ind = self.size.index(0.0) dim = "xyz"[normal_ind] pos = self.center[normal_ind] xyz_kwargs = {dim: pos} shapes_plane = other.intersections_plane(**xyz_kwargs) # intersect all shapes with the input self bs_min, bs_max = (self.pop_axis(bounds, axis=normal_ind)[1] for bounds in self.bounds) shapely_box = self.make_shapely_box(bs_min[0], bs_min[1], bs_max[0], bs_max[1]) shapely_box = Geometry.evaluate_inf_shape(shapely_box) return [Geometry.evaluate_inf_shape(shape) & shapely_box for shape in shapes_plane]
@cached_property def bounds(self) -> Bound: """Returns bounding box min and max coordinates. Returns ------- Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. """ size = self.size center = self.center coord_min = tuple(c - s / 2 for (s, c) in zip(size, center)) coord_max = tuple(c + s / 2 for (s, c) in zip(size, center)) return (coord_min, coord_max) @cached_property def geometry(self): """:class:`Box` representation of self (used for subclasses of Box). Returns ------- :class:`Box` Instance of :class:`Box` representing self's geometry. """ return Box(center=self.center, size=self.size) @cached_property def zero_dims(self) -> list[Axis]: """A list of axes along which the :class:`Box` is zero-sized.""" return [dim for dim, size in enumerate(self.size) if size == 0] @cached_property def _normal_2dmaterial(self) -> Axis: """Get the normal to the given geometry, checking that it is a 2D geometry.""" if np.count_nonzero(self.size) != 2: raise ValidationError( "'Medium2D' requires exactly one of the 'Box' dimensions to have size zero." ) return self.size.index(0) def _update_from_bounds(self, bounds: tuple[float, float], axis: Axis) -> Box: """Returns an updated geometry which has been transformed to fit within ``bounds`` along the ``axis`` direction.""" new_center = list(self.center) new_center[axis] = (bounds[0] + bounds[1]) / 2 new_size = list(self.size) new_size[axis] = bounds[1] - bounds[0] return self.updated_copy(center=new_center, size=new_size) def _plot_arrow( self, direction: tuple[float, float, float], x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None, color: Optional[str] = None, alpha: Optional[float] = None, bend_radius: Optional[float] = None, bend_axis: Axis = None, both_dirs: bool = False, ax: Ax = None, arrow_base: Coordinate = None, ) -> Ax: """Adds an arrow to the axis if with options if certain conditions met. Parameters ---------- direction: Tuple[float, float, float] Normalized vector describing the arrow direction. x : float = None Position of plotting plane in x direction. y : float = None Position of plotting plane in y direction. z : float = None Position of plotting plane in z direction. color : str = None Color of the arrow. alpha : float = None Opacity of the arrow (0, 1) bend_radius : float = None Radius of curvature for this arrow. bend_axis : Axis = None Axis of curvature of ``bend_radius``. both_dirs : bool = False If True, plots an arrow pointing in direction and one in -direction. arrow_base : :class:`.Coordinate` = None Custom base of the arrow. Uses the geometry's center if not provided. Returns ------- matplotlib.axes._subplots.Axes The matplotlib axes with the arrow added. """ plot_axis, _ = self.parse_xyz_kwargs(x=x, y=y, z=z) _, (dx, dy) = self.pop_axis(direction, axis=plot_axis) # conditions to check to determine whether to plot arrow, taking into account the # possibility of a custom arrow base arrow_intersecting_plane = len(self.intersections_plane(x=x, y=y, z=z)) > 0 center = self.center if arrow_base: arrow_intersecting_plane = arrow_intersecting_plane and any( a == b for a, b in zip(arrow_base, [x, y, z]) ) center = arrow_base _, (dx, dy) = self.pop_axis(direction, axis=plot_axis) components_in_plane = any(not np.isclose(component, 0) for component in (dx, dy)) # plot if arrow in plotting plane and some non-zero component can be displayed. if arrow_intersecting_plane and components_in_plane: _, (x0, y0) = self.pop_axis(center, axis=plot_axis) # Reasonable value for temporary arrow size. The correct size and direction # have to be calculated after all transforms have been set. That is why we # use a callback to do these calculations only at the drawing phase. xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() v_x = (xmax - xmin) / 10 v_y = (ymax - ymin) / 10 directions = (1.0, -1.0) if both_dirs else (1.0,) for sign in directions: arrow = patches.FancyArrowPatch( (x0, y0), (x0 + v_x, y0 + v_y), arrowstyle=arrow_style, color=color, alpha=alpha, zorder=np.inf, ) # Don't draw this arrow until it's been reshaped arrow.set_visible(False) callback = self._arrow_shape_cb( arrow, (x0, y0), (dx, dy), sign, bend_radius if bend_axis == plot_axis else None ) callback_id = ax.figure.canvas.mpl_connect("draw_event", callback) # Store a reference to the callback because mpl_connect does not. arrow.set_shape_cb = (callback_id, callback) ax.add_patch(arrow) return ax @staticmethod def _arrow_shape_cb(arrow, pos, direction, sign, bend_radius): def _cb(event): # We only want to set the shape once, so we disconnect ourselves event.canvas.mpl_disconnect(arrow.set_shape_cb[0]) transform = arrow.axes.transData.transform scale_x = transform((1, 0))[0] - transform((0, 0))[0] scale_y = transform((0, 1))[1] - transform((0, 0))[1] scale = max(scale_x, scale_y) # <-- Hack: This is a somewhat arbitrary choice. arrow_length = ARROW_LENGTH * event.canvas.figure.get_dpi() / scale if bend_radius: v_norm = (direction[0] ** 2 + direction[1] ** 2) ** 0.5 vx_norm = direction[0] / v_norm vy_norm = direction[1] / v_norm bend_angle = -sign * arrow_length / bend_radius t_x = 1 - np.cos(bend_angle) t_y = np.sin(bend_angle) v_x = -bend_radius * (vx_norm * t_y - vy_norm * t_x) v_y = -bend_radius * (vx_norm * t_x + vy_norm * t_y) tangent_angle = np.arctan2(direction[1], direction[0]) arrow.set_connectionstyle( patches.ConnectionStyle.Angle3( angleA=180 / np.pi * tangent_angle, angleB=180 / np.pi * (tangent_angle + bend_angle), ) ) else: v_x = sign * arrow_length * direction[0] v_y = sign * arrow_length * direction[1] arrow.set_positions(pos, (pos[0] + v_x, pos[1] + v_y)) arrow.set_visible(True) arrow.draw(event.renderer) return _cb def _volume(self, bounds: Bound) -> float: """Returns object's volume within given bounds.""" volume = 1 for axis in range(3): min_bound = max(self.bounds[0][axis], bounds[0][axis]) max_bound = min(self.bounds[1][axis], bounds[1][axis]) volume *= max_bound - min_bound return volume def _surface_area(self, bounds: Bound) -> float: """Returns object's surface area within given bounds.""" min_bounds = list(self.bounds[0]) max_bounds = list(self.bounds[1]) in_bounds_factor = [2, 2, 2] length = [0, 0, 0] for axis in (0, 1, 2): if min_bounds[axis] < bounds[0][axis]: min_bounds[axis] = bounds[0][axis] in_bounds_factor[axis] -= 1 if max_bounds[axis] > bounds[1][axis]: max_bounds[axis] = bounds[1][axis] in_bounds_factor[axis] -= 1 length[axis] = max_bounds[axis] - min_bounds[axis] return ( length[0] * length[1] * in_bounds_factor[2] + length[1] * length[2] * in_bounds_factor[0] + length[2] * length[0] * in_bounds_factor[1] ) """ Autograd code """ def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" # get gradients w.r.t. each of the 6 faces (in normal direction) vjps_faces = self._derivative_faces(derivative_info=derivative_info) # post-process these values to give the gradients w.r.t. center and size vjps_center_size = self._derivatives_center_size(vjps_faces=vjps_faces) # store only the gradients asked for in 'field_paths' derivative_map = {} for field_path in derivative_info.paths: field_name, *index = field_path if field_name in vjps_center_size: # if the vjp calls for a specific index into the tuple if index and len(index) == 1: index = int(index[0]) if field_path not in derivative_map: derivative_map[field_path] = vjps_center_size[field_name][index] # otherwise, just grab the whole array else: derivative_map[field_path] = vjps_center_size[field_name] return derivative_map @staticmethod def _derivatives_center_size(vjps_faces: Bound) -> dict[str, Coordinate]: """Derivatives with respect to the ``center`` and ``size`` fields in the ``Box``.""" vjps_faces_min, vjps_faces_max = np.array(vjps_faces) # post-process min and max face gradients into center and size vjp_center = vjps_faces_max - vjps_faces_min vjp_size = (vjps_faces_min + vjps_faces_max) / 2.0 return { "center": tuple(vjp_center.tolist()), "size": tuple(vjp_size.tolist()), } def _derivative_faces(self, derivative_info: DerivativeInfo) -> Bound: """Derivative with respect to normal position of 6 faces of ``Box``.""" # change in permittivity between inside and outside vjp_faces = np.zeros((2, 3)) for min_max_index, _ in enumerate((0, -1)): for axis in range(3): vjp_face = self._derivative_face( min_max_index=min_max_index, axis_normal=axis, derivative_info=derivative_info, ) # record vjp for this face vjp_faces[min_max_index, axis] = vjp_face return vjp_faces def _derivative_face( self, min_max_index: int, axis_normal: Axis, derivative_info: DerivativeInfo, ) -> float: """Compute the derivative w.r.t. shifting a face in the normal direction.""" # normal and tangential dims dim_normal, dims_perp = self.pop_axis("xyz", axis=axis_normal) fld_E_normal, flds_E_perp = self.pop_axis(("Ex", "Ey", "Ez"), axis=axis_normal) # fields and bounds D_normal = derivative_info.D_der_map[fld_E_normal] Es_perp = tuple(derivative_info.E_der_map[key] for key in flds_E_perp) bounds_normal, bounds_perp = self.pop_axis( np.array(derivative_info.bounds).T, axis=axis_normal ) # define the integration plane coord_normal_face = bounds_normal[min_max_index] bounds_perp = np.array(bounds_perp).T # put (min / max) first dimension for integrator # normal field data coordinates fld_coords_normal = D_normal.coords[dim_normal] # condition: a face is entirely outside of the domain, skip! sign = (-1, 1)[min_max_index] normal_coord_positive = sign * coord_normal_face fld_coords_positive = sign * fld_coords_normal if all(fld_coords_positive < normal_coord_positive): log.info( f"skipping VJP for 'Box' face '{dim_normal}{'-+'[min_max_index]}' " "as it is entirely outside of the simulation domain." ) return 0.0 # permittivity data eps_xyz = [derivative_info.eps_data[f"eps_{dim}{dim}"] for dim in "xyz"] # number of cells from the edge of data to register "inside" (index = num_cells_in - 1) num_cells_in = 4 # if not enough data, just use best guess using eps in medium and simulation needs_eps_approx = any(len(eps.coords[dim_normal]) <= num_cells_in for eps in eps_xyz) if derivative_info.eps_approx or needs_eps_approx: eps_xyz_inside = 3 * [derivative_info.eps_in] eps_xyz_outside = 3 * [derivative_info.eps_out] # TODO: not tested... # otherwise, try to grab the data at the edges else: if min_max_index == 0: index_out, index_in = (0, num_cells_in - 1) else: index_out, index_in = (-1, -num_cells_in) eps_xyz_inside = [eps.isel(**{dim_normal: index_in}) for eps in eps_xyz] eps_xyz_outside = [eps.isel(**{dim_normal: index_out}) for eps in eps_xyz] # put in normal / tangential basis eps_in_normal, eps_in_perps = self.pop_axis(eps_xyz_inside, axis=axis_normal) eps_out_normal, eps_out_perps = self.pop_axis(eps_xyz_outside, axis=axis_normal) if derivative_info.is_medium_pec: return self._derivative_face_pec( dim_normal=dim_normal, axis_normal=axis_normal, min_max_index=min_max_index, coord_normal_face=coord_normal_face, dims_perp=dims_perp, bounds_perp=bounds_perp, D_normal=D_normal, H_der_map=derivative_info.H_der_map, eps_out_normal=eps_out_normal, ) else: return self._derivative_face_dielectric( dim_normal=dim_normal, coord_normal_face=coord_normal_face, dims_perp=dims_perp, bounds_perp=bounds_perp, D_normal=D_normal, Es_perp=Es_perp, eps_in_normal=eps_in_normal, eps_out_normal=eps_out_normal, eps_in_perps=eps_in_perps, eps_out_perps=eps_out_perps, ) @staticmethod def _arr_at_face(arr: xr.DataArray, interp_point: float, dim_normal: str) -> xr.DataArray: """Interpolate the array at the given coordinate unless it only has a single value in the normal dimnsion already in which case just return the array itself.""" arr_at_face = ( arr if (len(arr.coords[dim_normal]) == 1) else arr.interp(**{dim_normal: float(interp_point)}, assume_sorted=True) ) return arr_at_face @staticmethod def _integrate_face( arr_at_face: xr.DataArray, integration_dims: Union[tuple[str], tuple[str, str]], integration_bounds: Union[tuple[Coordinate2D], tuple[Coordinate2D, Coordinate2D]], ) -> complex: """Perform the integration of the surface and sum over the frequency component of the gradient.""" integral_result = integrate_within_bounds( arr=arr_at_face, dims=integration_dims, bounds=integration_bounds, ) return complex(integral_result.sum("f")) @staticmethod def _snap_coords_outside( min_max_index: int, snap_coords_values: np.ndarray, coord_normal_face: float ) -> float: """Snap interpolation coordinate for a PEC face integration to be just outside the surface boundary. This ensures we don't interpolate with fields that are zero inside of the PEC.""" if min_max_index == 0: min_boundary_mapping = np.where(snap_coords_values > coord_normal_face)[0] index_face = ( 0 if (len(min_boundary_mapping) == 0) else np.maximum(0, min_boundary_mapping[0] - 1) ) if snap_coords_values[index_face] > coord_normal_face: log.warning("Unable to snap coordinates outside of min face.") else: max_boundary_mapping = np.where(snap_coords_values < coord_normal_face)[0] index_face = ( len(snap_coords_values) - 1 if (len(max_boundary_mapping) == 0) else np.minimum(len(snap_coords_values) - 1, max_boundary_mapping[-1] + 1) ) if snap_coords_values[index_face] < coord_normal_face: log.warning("Unable to snap coordinates outside of max face.") snapped_point = snap_coords_values[index_face] return snapped_point @staticmethod def _check_singularity_correction_pec( size: TracedSize, axis_normal: Axis ) -> tuple[bool, str, bool]: """Checks if the box is 2D (i.e. - one of the dimensions is zero) and identifies the zero dimension if any. Then, checks if we should apply singularity correction if we are integrating a face with that contains the zero dimension.""" # detect whether the box is 2-dimensional zero_size_map = [s == 0.0 for s in size] dimension = 3 - np.sum(zero_size_map) if dimension < 2: log.error( "Derivative of PEC material with less than 2 dimensions is unsupported. " f"Specified PEC box is {dimension}-dimesional" ) do_singularity_correction = False is_2d = np.any(zero_size_map) zero_dimension = None if is_2d: zero_dim_idx = np.where(zero_size_map)[0][0] zero_dimension = "xyz"[zero_dim_idx] # for singularity correction, need 2-dimensional box and that # the face we are integrating over is the 1-dimensional (i.e. - # the normal for the face is not the same as the flat dimension do_singularity_correction = not (axis_normal == zero_dim_idx) return is_2d, zero_dimension, do_singularity_correction @staticmethod def _trim_dims_and_bounds_edge( dims_perp: tuple[str, str], bounds_perp: tuple[Coordinate2D, Coordinate2D], zero_dimension: str, ) -> tuple[tuple[str], tuple[tuple[float], tuple[float]]]: """Trim the dimensions and bounds for integration along the edge.""" # if we are correcting for singularity and integrating over the line, then adjust # integration dimensions and bounds to exclude the flat dimension integration_dims = [dim for dim in dims_perp if (not (dim == zero_dimension))] integration_bounds = [] zero_dim_idx = 0 # find the index into the bounds that corresponds to the flat dimension for dim in dims_perp: if dim == zero_dimension: break zero_dim_idx += 1 # trim the zero dimension from the integration bounds for bound in bounds_perp: new_bound = [b for b_idx, b in enumerate(bound) if b_idx != zero_dim_idx] integration_bounds.append(new_bound) return integration_dims, integration_bounds def _derivative_face_dielectric( self, dim_normal: str, coord_normal_face: float, dims_perp: tuple[str, str], bounds_perp: tuple[Coordinate2D, Coordinate2D], D_normal: ScalarFieldDataArray, Es_perp: tuple[ScalarFieldDataArray, ScalarFieldDataArray], eps_in_normal: ScalarFieldDataArray, eps_out_normal: ScalarFieldDataArray, eps_in_perps: tuple[ScalarFieldDataArray, ScalarFieldDataArray], eps_out_perps: tuple[ScalarFieldDataArray, ScalarFieldDataArray], ) -> float: """Compute derivative with respect to the face using the dielectric form of the gradient. Parameters ---------- dtype : np.dtype = GRADIENT_DTYPE_FLOAT Data type for interpolation coordinates and values. dim_normal : str Surface normal of the face coord_normal_face : float The coordinate at which to interpolate the surface fields dims_perp : tuple[str, str] The perpendicular dimensions of the face bounds_perp : tuple[Coordinate2D, Coordinate2D] Bounds of integration along the face D_normal : ScalarFieldDataArray D-field component normal to the surface Es_perp : tuple[ScalarFieldDataArray, ScalarFieldDataArray] E-field components tangential to the surface eps_in_normal : ScalarFieldDataArray Normal component of permittivity inside the surface eps_out_normal : ScalarFieldDataArray Normal component of permittivity outside the surface eps_in_perps : tuple[ScalarFieldDataArray, ScalarFieldDataArray] Tangential components of permittivity inside the surface eps_out_perps : tuple[ScalarFieldDataArray, ScalarFieldDataArray] Tangential components of permittivity outside the surface Returns ------- float Surface gradient vjp value """ delta_eps_inv_normal = 1.0 / eps_in_normal - 1.0 / eps_out_normal # compute integration pre-factors delta_eps_perps = [eps_in - eps_out for eps_in, eps_out in zip(eps_in_perps, eps_out_perps)] integrand_D = -delta_eps_inv_normal * D_normal integral_D = self._integrate_face( self._arr_at_face(integrand_D, coord_normal_face, dim_normal), integration_dims=dims_perp, integration_bounds=bounds_perp, ) vjp_value = integral_D # perform E-perpendicular integrals for E_perp, delta_eps_perp in zip(Es_perp, delta_eps_perps): integrand_E = E_perp * delta_eps_perp integral_E = self._integrate_face( self._arr_at_face(integrand_E, coord_normal_face, dim_normal), integration_dims=dims_perp, integration_bounds=bounds_perp, ) vjp_value += integral_E return np.real(vjp_value) def _derivative_face_pec( self, dim_normal: str, axis_normal: Axis, min_max_index: int, coord_normal_face: float, dims_perp: tuple[str, str], bounds_perp: tuple[Coordinate2D, Coordinate2D], D_normal: ScalarFieldDataArray, H_der_map: FieldData, eps_out_normal: ScalarFieldDataArray, ) -> float: """Compute derivative with respect to the face using the PEC form of the gradient. Parameters ---------- dtype : np.dtype = GRADIENT_DTYPE_FLOAT Data type for interpolation coordinates and values. dim_normal : str Surface normal of the face axis_normal : Axis Axis (index) corresponding to the normal of the face min_max_index : int Indicator for if the face is on the minimum of the box (0) or the maximum of the Box (1) coord_normal_face : float The coordinate at which to interpolate the surface fields dims_perp : tuple[str, str] The perpendicular dimensions of the face bounds_perp : tuple[Coordinate2D, Coordinate2D] Bounds of integration along the face D_normal : ScalarFieldDataArray D-field component normal to the surface H_der_map : FieldData Multiplication of H-field components in the Box region eps_out_normal : ScalarFieldDataArray Normal component of permittivity outside the surface Returns ------- float Surface gradient vjp value """ fld_H_normal, flds_H_perp = self.pop_axis(("Hx", "Hy", "Hz"), axis=axis_normal) Hs_perp = tuple(H_der_map[key] for key in flds_H_perp) is_2d, zero_dimension, do_singularity_correction = self._check_singularity_correction_pec( self.size, axis_normal ) integration_dims = dims_perp integration_bounds = bounds_perp if do_singularity_correction: integration_dims, integration_bounds = self._trim_dims_and_bounds_edge( dims_perp, bounds_perp, zero_dimension ) integrand_E = D_normal / np.real(eps_out_normal) # apply singularity correction only when integrating along the line def _apply_singularity_correction(interp_point: float) -> float: edge_distance = np.abs(interp_point - coord_normal_face) return (0.5 * np.pi * edge_distance) if do_singularity_correction else 1.0 snap_E_coord = self._snap_coords_outside( min_max_index, integrand_E.coords[dim_normal].values, coord_normal_face ) integral_E = self._integrate_face( self._arr_at_face(integrand_E, snap_E_coord, dim_normal), integration_dims=integration_dims, integration_bounds=integration_bounds, ) vjp_value = _apply_singularity_correction(snap_E_coord) * integral_E for H_perp_idx, H_perp in enumerate(Hs_perp): integrand_H = MU_0 * H_perp / EPSILON_0 if (is_2d and not (flds_H_perp[H_perp_idx] == f"H{zero_dimension}")) and ( dim_normal != zero_dimension ): continue snap_H_coord = self._snap_coords_outside( min_max_index, integrand_H.coords[dim_normal].values, coord_normal_face ) integral_H = self._integrate_face( self._arr_at_face(integrand_H, snap_H_coord, dim_normal), integration_dims=integration_dims, integration_bounds=integration_bounds, ) vjp_value += _apply_singularity_correction(snap_H_coord) * integral_H return np.real(vjp_value)
"""Compound subclasses"""
[docs] class Transformed(Geometry): """Class representing a transformed geometry.""" geometry: annotate_type(GeometryType) = pydantic.Field( ..., title="Geometry", description="Base geometry to be transformed." ) transform: MatrixReal4x4 = pydantic.Field( np.eye(4).tolist(), title="Transform", description="Transform matrix applied to the base geometry.", ) @pydantic.validator("transform") def _transform_is_invertible(cls, val): # If the transform is not invertible, this will raise an error _ = np.linalg.inv(val) return val @pydantic.validator("geometry") def _geometry_is_finite(cls, val): if not np.isfinite(val.bounds).all(): raise ValidationError( "Transformations are only supported on geometries with finite dimensions. " "Try using a large value instead of 'inf' when creating geometries that undergo " "transformations." ) return val @pydantic.root_validator(skip_on_failure=True) def _apply_transforms(cls, values): while isinstance(values["geometry"], Transformed): inner = values["geometry"] values["geometry"] = inner.geometry values["transform"] = np.dot(values["transform"], inner.transform) return values @cached_property def inverse(self) -> MatrixReal4x4: """Inverse of this transform.""" return np.linalg.inv(self.transform) @staticmethod def _vertices_from_bounds(bounds: Bound) -> ArrayFloat2D: """Return the 8 vertices derived from bounds. The vertices are returned as homogeneous coordinates (with 4 components). Parameters ---------- bounds : Bound Bounds from which to derive the vertices. Returns ------- ArrayFloat2D Array with shape (4, 8) with all vertices from ``bounds``. """ (x0, y0, z0), (x1, y1, z1) = bounds return np.array( ( (x0, x0, x0, x0, x1, x1, x1, x1), (y0, y0, y1, y1, y0, y0, y1, y1), (z0, z1, z0, z1, z0, z1, z0, z1), (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0), ) ) @cached_property def bounds(self) -> Bound: """Returns bounding box min and max coordinates. Returns ------- Tuple[float, float, float], Tuple[float, float, float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. """ # NOTE (Lucas): The bounds are overestimated because we don't want to calculate # precise TriangleMesh representations for GeometryGroup or ClipOperation. vertices = np.dot(self.transform, self._vertices_from_bounds(self.geometry.bounds))[:3] return (tuple(vertices.min(axis=1)), tuple(vertices.max(axis=1)))
[docs] def intersections_tilted_plane( self, normal: Coordinate, origin: Coordinate, to_2D: MatrixReal4x4 ) -> list[Shapely]: """Return a list of shapely geometries at the plane specified by normal and origin. Parameters ---------- normal : Coordinate Vector defining the normal direction to the plane. origin : Coordinate Vector defining the plane origin. to_2D : MatrixReal4x4 Transformation matrix to apply to resulting shapes. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ return self.geometry.intersections_tilted_plane( tuple(np.dot((normal[0], normal[1], normal[2], 0.0), self.transform)[:3]), tuple(np.dot(self.inverse, (origin[0], origin[1], origin[2], 1.0))[:3]), np.dot(to_2D, self.transform), )
[docs] def inside( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> np.ndarray[bool]: """For input arrays ``x``, ``y``, ``z`` of arbitrary but identical shape, return an array with the same shape which is ``True`` for every point in zip(x, y, z) that is inside the volume of the :class:`Geometry`, and ``False`` otherwise. Parameters ---------- x : np.ndarray[float] Array of point positions in x direction. y : np.ndarray[float] Array of point positions in y direction. z : np.ndarray[float] Array of point positions in z direction. Returns ------- np.ndarray[bool] ``True`` for every point that is inside the geometry. """ x = np.array(x) y = np.array(y) z = np.array(z) xyz = np.dot(self.inverse, np.vstack((x.flat, y.flat, z.flat, np.ones(x.size)))) if xyz.shape[1] == 1: # TODO: This "fix" is required because of a bug in PolySlab.inside (with non-zero sidewall angle) return self.geometry.inside(xyz[0][0], xyz[1][0], xyz[2][0]).reshape(x.shape) return self.geometry.inside(xyz[0], xyz[1], xyz[2]).reshape(x.shape)
def _volume(self, bounds: Bound) -> float: """Returns object's volume within given bounds.""" # NOTE (Lucas): Bounds are overestimated. vertices = np.dot(self.inverse, self._vertices_from_bounds(bounds))[:3] inverse_bounds = (tuple(vertices.min(axis=1)), tuple(vertices.max(axis=1))) return abs(np.linalg.det(self.transform)) * self.geometry.volume(inverse_bounds) def _surface_area(self, bounds: Bound) -> float: """Returns object's surface area within given bounds.""" log.warning("Surface area of transformed elements cannot be calculated.") return None
[docs] @staticmethod def translation(x: float, y: float, z: float) -> MatrixReal4x4: """Return a translation matrix. Parameters ---------- x : float Translation along x. y : float Translation along y. z : float Translation along z. Returns ------- numpy.ndarray Transform matrix with shape (4, 4). """ return np.array( [ (1.0, 0.0, 0.0, x), (0.0, 1.0, 0.0, y), (0.0, 0.0, 1.0, z), (0.0, 0.0, 0.0, 1.0), ], dtype=float, )
[docs] @staticmethod def scaling(x: float = 1.0, y: float = 1.0, z: float = 1.0) -> MatrixReal4x4: """Return a scaling matrix. Parameters ---------- x : float = 1.0 Scaling factor along x. y : float = 1.0 Scaling factor along y. z : float = 1.0 Scaling factor along z. Returns ------- numpy.ndarray Transform matrix with shape (4, 4). """ if np.isclose((x, y, z), 0.0).any(): raise Tidy3dError("Scaling factors cannot be zero in any dimensions.") return np.array( [ (x, 0.0, 0.0, 0.0), (0.0, y, 0.0, 0.0), (0.0, 0.0, z, 0.0), (0.0, 0.0, 0.0, 1.0), ], dtype=float, )
[docs] @staticmethod def rotation(angle: float, axis: Union[Axis, Coordinate]) -> MatrixReal4x4: """Return a rotation matrix. Parameters ---------- angle : float Rotation angle (in radians). axis : Union[int, Tuple[float, float, float]] Axis of rotation: 0, 1, or 2 for x, y, and z, respectively, or a 3D vector. Returns ------- numpy.ndarray Transform matrix with shape (4, 4). """ transform = np.eye(4) transform[:3, :3] = RotationAroundAxis(angle=angle, axis=axis).matrix return transform
[docs] @staticmethod def reflection(normal: Coordinate) -> MatrixReal4x4: """Return a reflection matrix. Parameters ---------- normal : Tuple[float, float, float] Normal of the plane of reflection. Returns ------- numpy.ndarray Transform matrix with shape (4, 4). """ transform = np.eye(4) transform[:3, :3] = ReflectionFromPlane(normal=normal).matrix return transform
[docs] @staticmethod def preserves_axis(transform: MatrixReal4x4, axis: Axis) -> bool: """Indicate if the transform preserves the orientation of a given axis. Parameters: transform: MatrixReal4x4 Transform matrix to check. axis : int Axis to check. Values 0, 1, or 2, to check x, y, or z, respectively. Returns ------- bool ``True`` if the transformation preserves the axis orientation, ``False`` otherwise. """ i = (axis + 1) % 3 j = (axis + 2) % 3 return np.isclose(transform[i, axis], 0) and np.isclose(transform[j, axis], 0)
@cached_property def _normal_2dmaterial(self) -> Axis: """Get the normal to the given geometry, checking that it is a 2D geometry.""" normal = self.geometry._normal_2dmaterial preserves_axis = Transformed.preserves_axis(self.transform, normal) if not preserves_axis: raise ValidationError( "'Medium2D' requires geometries of type 'Transformed' to " "perserve the axis normal to the 'Medium2D'." ) return normal def _update_from_bounds(self, bounds: tuple[float, float], axis: Axis) -> Transformed: """Returns an updated geometry which has been transformed to fit within ``bounds`` along the ``axis`` direction.""" min_bound = np.array([0, 0, 0, 1.0]) min_bound[axis] = bounds[0] max_bound = np.array([0, 0, 0, 1.0]) max_bound[axis] = bounds[1] new_bounds = [] new_bounds.append(np.dot(self.inverse, min_bound)[axis]) new_bounds.append(np.dot(self.inverse, max_bound)[axis]) new_geometry = self.geometry._update_from_bounds(bounds=new_bounds, axis=axis) return self.updated_copy(geometry=new_geometry)
[docs] class ClipOperation(Geometry): """Class representing the result of a set operation between geometries.""" operation: ClipOperationType = pydantic.Field( ..., title="Operation Type", description="Operation to be performed between geometries.", ) geometry_a: annotate_type(GeometryType) = pydantic.Field( ..., title="Geometry A", description="First operand for the set operation. It can be any geometry type, including " ":class:`GeometryGroup`.", ) geometry_b: annotate_type(GeometryType) = pydantic.Field( ..., title="Geometry B", description="Second operand for the set operation. It can also be any geometry type.", ) @pydantic.validator("geometry_a", "geometry_b", always=True) def _geometries_untraced(cls, val): """Make sure that ``ClipOperation`` geometries do not contain tracers.""" traced = val._strip_traced_fields() if traced: raise ValidationError( f"{val.type} contains traced fields {list(traced.keys())}. Note that " "'ClipOperation' does not currently support automatic differentiation." ) return val
[docs] @staticmethod def to_polygon_list(base_geometry: Shapely, cleanup: bool = False) -> list[Shapely]: """Return a list of valid polygons from a shapely geometry, discarding points, lines, and empty polygons, and empty triangles within polygons. Parameters ---------- base_geometry : shapely.geometry.base.BaseGeometry Base geometry for inspection. cleanup: bool = False If True, removes extremely small features from each polygon's boundary. This is useful for removing artifacts from 2D plots displayed to the user. Returns ------- List[shapely.geometry.base.BaseGeometry] Valid polygons retrieved from ``base geometry``. """ unfiltered_geoms = [] if base_geometry.geom_type == "GeometryCollection": unfiltered_geoms = [ p for geom in base_geometry.geoms for p in ClipOperation.to_polygon_list(geom) ] if base_geometry.geom_type == "MultiPolygon": unfiltered_geoms = [p for p in base_geometry.geoms if not p.is_empty] if base_geometry.geom_type == "Polygon" and not base_geometry.is_empty: unfiltered_geoms = [base_geometry] geoms = [] if cleanup: # Optional: "clean" each of the polygons (by removing extremely small or thin features). for geom in unfiltered_geoms: geom_clean = cleanup_shapely_object(geom) if geom_clean.geom_type == "Polygon": geoms.append(geom_clean) if geom_clean.geom_type == "MultiPolygon": geoms += [p for p in geom_clean.geoms if not p.is_empty] # Ignore other types of shapely objects (points and lines) else: geoms = unfiltered_geoms return geoms
@property def _shapely_operation(self) -> Callable[[Shapely, Shapely], Shapely]: """Return a Shapely function equivalent to this operation.""" result = _shapely_operations.get(self.operation, None) if not result: raise ValueError( "'operation' must be one of 'union', 'intersection', 'difference', or " "'symmetric_difference'." ) return result @property def _bit_operation(self) -> Callable[[Any, Any], Any]: """Return a function equivalent to this operation using bit operators.""" result = _bit_operations.get(self.operation, None) if not result: raise ValueError( "'operation' must be one of 'union', 'intersection', 'difference', or " "'symmetric_difference'." ) return result
[docs] def intersections_tilted_plane( self, normal: Coordinate, origin: Coordinate, to_2D: MatrixReal4x4 ) -> list[Shapely]: """Return a list of shapely geometries at the plane specified by normal and origin. Parameters ---------- normal : Coordinate Vector defining the normal direction to the plane. origin : Coordinate Vector defining the plane origin. to_2D : MatrixReal4x4 Transformation matrix to apply to resulting shapes. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ a = self.geometry_a.intersections_tilted_plane(normal, origin, to_2D) b = self.geometry_b.intersections_tilted_plane(normal, origin, to_2D) geom_a = shapely.unary_union([Geometry.evaluate_inf_shape(g) for g in a]) geom_b = shapely.unary_union([Geometry.evaluate_inf_shape(g) for g in b]) return ClipOperation.to_polygon_list( self._shapely_operation(geom_a, geom_b), cleanup=True, )
[docs] def intersections_plane( self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None ) -> list[Shapely]: """Returns list of shapely geometries at plane specified by one non-None value of x,y,z. Parameters ---------- x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentaton <https://shapely.readthedocs.io/en/stable/project.html>`_. """ a = self.geometry_a.intersections_plane(x, y, z) b = self.geometry_b.intersections_plane(x, y, z) geom_a = shapely.unary_union([Geometry.evaluate_inf_shape(g) for g in a]) geom_b = shapely.unary_union([Geometry.evaluate_inf_shape(g) for g in b]) return ClipOperation.to_polygon_list( self._shapely_operation(geom_a, geom_b), cleanup=True, )
@cached_property def bounds(self) -> Bound: """Returns bounding box min and max coordinates. Returns ------- Tuple[float, float, float], Tuple[float, float float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. """ # Overestimates if self.operation == "difference": result = self.geometry_a.bounds elif self.operation == "intersection": bounds = (self.geometry_a.bounds, self.geometry_b.bounds) result = ( tuple(max(b[i] for b, _ in bounds) for i in range(3)), tuple(min(b[i] for _, b in bounds) for i in range(3)), ) if any(result[0][i] > result[1][i] for i in range(3)): result = ((0, 0, 0), (0, 0, 0)) else: bounds = (self.geometry_a.bounds, self.geometry_b.bounds) result = ( tuple(min(b[i] for b, _ in bounds) for i in range(3)), tuple(max(b[i] for _, b in bounds) for i in range(3)), ) return result
[docs] def inside( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> np.ndarray[bool]: """For input arrays ``x``, ``y``, ``z`` of arbitrary but identical shape, return an array with the same shape which is ``True`` for every point in zip(x, y, z) that is inside the volume of the :class:`Geometry`, and ``False`` otherwise. Parameters ---------- x : np.ndarray[float] Array of point positions in x direction. y : np.ndarray[float] Array of point positions in y direction. z : np.ndarray[float] Array of point positions in z direction. Returns ------- np.ndarray[bool] ``True`` for every point that is inside the geometry. """ inside_a = self.geometry_a.inside(x, y, z) inside_b = self.geometry_b.inside(x, y, z) return self._bit_operation(inside_a, inside_b)
[docs] def inside_meshgrid( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> np.ndarray[bool]: """Faster way to check ``self.inside`` on a meshgrid. The input arrays are assumed sorted. Parameters ---------- x : np.ndarray[float] 1D array of point positions in x direction. y : np.ndarray[float] 1D array of point positions in y direction. z : np.ndarray[float] 1D array of point positions in z direction. Returns ------- np.ndarray[bool] Array with shape ``(x.size, y.size, z.size)``, which is ``True`` for every point that is inside the geometry. """ inside_a = self.geometry_a.inside_meshgrid(x, y, z) inside_b = self.geometry_b.inside_meshgrid(x, y, z) return self._bit_operation(inside_a, inside_b)
def _volume(self, bounds: Bound) -> float: """Returns object's volume within given bounds.""" # Overestimates if self.operation == "intersection": return min(self.geometry_a.volume(bounds), self.geometry_b.volume(bounds)) if self.operation == "difference": return self.geometry_a.volume(bounds) return self.geometry_a.volume(bounds) + self.geometry_b.volume(bounds) def _surface_area(self, bounds: Bound) -> float: """Returns object's surface area within given bounds.""" # Overestimates return self.geometry_a.surface_area(bounds) + self.geometry_b.surface_area(bounds) @cached_property def _normal_2dmaterial(self) -> Axis: """Get the normal to the given geometry, checking that it is a 2D geometry.""" normal_a = self.geometry_a._normal_2dmaterial normal_b = self.geometry_b._normal_2dmaterial if normal_a != normal_b: raise ValidationError( "'Medium2D' requires both geometries in the 'ClipOperation' to " "have exactly one dimension with zero size in common." ) plane_position_a = self.geometry_a.bounds[0][normal_a] plane_position_b = self.geometry_b.bounds[0][normal_b] if plane_position_a != plane_position_b: raise ValidationError( "'Medium2D' requires both geometries in the 'ClipOperation' to be co-planar." ) return normal_a def _update_from_bounds(self, bounds: tuple[float, float], axis: Axis) -> ClipOperation: """Returns an updated geometry which has been transformed to fit within ``bounds`` along the ``axis`` direction.""" new_geom_a = self.geometry_a._update_from_bounds(bounds=bounds, axis=axis) new_geom_b = self.geometry_b._update_from_bounds(bounds=bounds, axis=axis) return self.updated_copy(geometry_a=new_geom_a, geometry_b=new_geom_b)
[docs] class GeometryGroup(Geometry): """A collection of Geometry objects that can be called as a single geometry object.""" geometries: tuple[annotate_type(GeometryType), ...] = pydantic.Field( ..., title="Geometries", description="Tuple of geometries in a single grouping. " "Can provide significant performance enhancement in ``Structure`` when all geometries are " "assigned the same medium.", ) @pydantic.validator("geometries", always=True) def _geometries_not_empty(cls, val): """make sure geometries are not empty.""" if not len(val) > 0: raise ValidationError("GeometryGroup.geometries must not be empty.") return val @cached_property def bounds(self) -> Bound: """Returns bounding box min and max coordinates. Returns ------- Tuple[float, float, float], Tuple[float, float, float] Min and max bounds packaged as ``(minx, miny, minz), (maxx, maxy, maxz)``. """ bounds = tuple(geometry.bounds for geometry in self.geometries) return ( tuple(min(b[i] for b, _ in bounds) for i in range(3)), tuple(max(b[i] for _, b in bounds) for i in range(3)), )
[docs] def intersections_tilted_plane( self, normal: Coordinate, origin: Coordinate, to_2D: MatrixReal4x4 ) -> list[Shapely]: """Return a list of shapely geometries at the plane specified by normal and origin. Parameters ---------- normal : Coordinate Vector defining the normal direction to the plane. origin : Coordinate Vector defining the plane origin. to_2D : MatrixReal4x4 Transformation matrix to apply to resulting shapes. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ return [ intersection for geometry in self.geometries for intersection in geometry.intersections_tilted_plane(normal, origin, to_2D) ]
[docs] def intersections_plane( self, x: Optional[float] = None, y: Optional[float] = None, z: Optional[float] = None ) -> list[Shapely]: """Returns list of shapely geometries at plane specified by one non-None value of x,y,z. Parameters ---------- x : float = None Position of plane in x direction, only one of x,y,z can be specified to define plane. y : float = None Position of plane in y direction, only one of x,y,z can be specified to define plane. z : float = None Position of plane in z direction, only one of x,y,z can be specified to define plane. Returns ------- List[shapely.geometry.base.BaseGeometry] List of 2D shapes that intersect plane. For more details refer to `Shapely's Documentation <https://shapely.readthedocs.io/en/stable/project.html>`_. """ if not self.intersects_plane(x, y, z): return [] return [ intersection for geometry in self.geometries for intersection in geometry.intersections_plane(x=x, y=y, z=z) ]
[docs] def intersects_axis_position(self, axis: float, position: float) -> bool: """Whether self intersects plane specified by a given position along a normal axis. Parameters ---------- axis : int = None Axis normal to the plane. position : float = None Position of plane along the normal axis. Returns ------- bool Whether this geometry intersects the plane. """ return any(geom.intersects_axis_position(axis, position) for geom in self.geometries)
[docs] def inside( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> np.ndarray[bool]: """For input arrays ``x``, ``y``, ``z`` of arbitrary but identical shape, return an array with the same shape which is ``True`` for every point in zip(x, y, z) that is inside the volume of the :class:`Geometry`, and ``False`` otherwise. Parameters ---------- x : np.ndarray[float] Array of point positions in x direction. y : np.ndarray[float] Array of point positions in y direction. z : np.ndarray[float] Array of point positions in z direction. Returns ------- np.ndarray[bool] ``True`` for every point that is inside the geometry. """ individual_insides = (geometry.inside(x, y, z) for geometry in self.geometries) return functools.reduce(lambda a, b: a | b, individual_insides)
[docs] def inside_meshgrid( self, x: np.ndarray[float], y: np.ndarray[float], z: np.ndarray[float] ) -> np.ndarray[bool]: """Faster way to check ``self.inside`` on a meshgrid. The input arrays are assumed sorted. Parameters ---------- x : np.ndarray[float] 1D array of point positions in x direction. y : np.ndarray[float] 1D array of point positions in y direction. z : np.ndarray[float] 1D array of point positions in z direction. Returns ------- np.ndarray[bool] Array with shape ``(x.size, y.size, z.size)``, which is ``True`` for every point that is inside the geometry. """ individual_insides = (geom.inside_meshgrid(x, y, z) for geom in self.geometries) return functools.reduce(lambda a, b: a | b, individual_insides)
def _volume(self, bounds: Bound) -> float: """Returns object's volume within given bounds.""" individual_volumes = (geometry.volume(bounds) for geometry in self.geometries) return np.sum(individual_volumes) def _surface_area(self, bounds: Bound) -> float: """Returns object's surface area within given bounds.""" individual_areas = (geometry.surface_area(bounds) for geometry in self.geometries) return np.sum(individual_areas) @cached_property def _normal_2dmaterial(self) -> Axis: """Get the normal to the given geometry, checking that it is a 2D geometry.""" normals = {geom._normal_2dmaterial for geom in self.geometries} if len(normals) != 1: raise ValidationError( "'Medium2D' requires all geometries in the 'GeometryGroup' to " "share exactly one dimension with zero size." ) normal = list(normals)[0] positions = {geom.bounds[0][normal] for geom in self.geometries} if len(positions) != 1: raise ValidationError( "'Medium2D' requires all geometries in the 'GeometryGroup' to be co-planar." ) return normal def _update_from_bounds(self, bounds: tuple[float, float], axis: Axis) -> GeometryGroup: """Returns an updated geometry which has been transformed to fit within ``bounds`` along the ``axis`` direction.""" new_geometries = [ geometry._update_from_bounds(bounds=bounds, axis=axis) for geometry in self.geometries ] return self.updated_copy(geometries=new_geometries) def _compute_derivatives(self, derivative_info: DerivativeInfo) -> AutogradFieldMap: """Compute the adjoint derivatives for this object.""" grad_vjps = {} # create interpolators once for all geometries to avoid redundant field data conversions interpolators = derivative_info.interpolators or derivative_info.create_interpolators( dtype=GRADIENT_DTYPE_FLOAT ) for field_path in derivative_info.paths: _, index, *geo_path = field_path geo = self.geometries[index] # pass pre-computed interpolators if available geo_info = derivative_info.updated_copy( paths=[tuple(geo_path)], bounds=geo.bounds, eps_approx=True, deep=False, interpolators=interpolators, ) vjp_dict_geo = geo._compute_derivatives(geo_info) if len(vjp_dict_geo) != 1: raise AssertionError("Got multiple gradients for single geometry field.") grad_vjps[field_path] = vjp_dict_geo.popitem()[1] return grad_vjps
def cleanup_shapely_object(obj: Shapely, tolerance_ratio: float = POLY_TOLERANCE_RATIO) -> Shapely: """Remove small geometric features from the boundaries of a shapely object including inward and outward spikes, thin holes, and thin connections between larger regions. Parameters ---------- obj : shapely a shapely object (typically a ``Polygon`` or a ``MultiPolygon``) tolerance_ratio : float = ``POLY_TOLERANCE_RATIO`` Features on the boundaries of polygons will be discarded if they are smaller or narrower than ``tolerance_ratio`` multiplied by the size of the object. Returns ------- Shapely A new shapely object whose small features (eg. thin spikes or holes) are removed. Notes ----- This function does not attempt to delete overlapping, nearby, or collinear vertices. To solve that problem, use ``shapely.simplify()`` afterwards. """ if _shapely_is_older_than("2.1"): log.warning( "Using old versions of the shapely library (prior to v2.1) may cause " "plot errors. This can be solved by upgrading to Python 3.10 " "(or later) and reinstalling Tidy3d.", log_once=True, ) return obj if obj.is_empty: return obj centroid = obj.centroid object_size = min(obj.bounds[2] - obj.bounds[0], obj.bounds[3] - obj.bounds[1]) if object_size == 0.0: return shapely.Polygon([]) # In order to prevent numerical overflow or underflow errors, we first subtract # the centroid and divide by (rescale) the size of the object so it is not too big. normalized_obj = shapely.affinity.affine_transform( # https://shapely.readthedocs.io/en/stable/manual.html#affine-transformations obj, matrix=[ 1 / object_size, 0.0, 0.0, 1 / object_size, -centroid.x / object_size, -centroid.y / object_size, ], ) # Important: Remove any self intersections beforehand using `shapely.make_valid()`. valid_obj = shapely.make_valid(normalized_obj, method="structure", keep_collapsed=False) # To get rid of small thin features, erode(shrink), dilate(expand), and erode again. eroded_obj = shapely.buffer( # This removes outward spikes valid_obj, distance=-tolerance_ratio, cap_style="square", # (optional parameter to reduce computation time) quad_segs=3, # (optional parameter to reduce computation time) ) dilated_obj = shapely.buffer( # This removes inward spikes and tiny holes eroded_obj, distance=2 * tolerance_ratio, cap_style="square", quad_segs=3, ) cleaned_obj = dilated_obj # Optional: Now shrink the polygon back to the original size. cleaned_obj = shapely.buffer( cleaned_obj, distance=-tolerance_ratio, cap_style="square", quad_segs=3, ) # Clean vertices of very close distances created during the erosion/dilation process. # The distance value is heuristic. cleaned_obj = cleaned_obj.simplify(POLY_DISTANCE_TOLERANCE, preserve_topology=True) # Revert to the original scale and position. rescaled_clean_obj = shapely.affinity.affine_transform( cleaned_obj, matrix=[ object_size, 0.0, 0.0, object_size, centroid.x, centroid.y, ], ) return rescaled_clean_obj from .utils import GeometryType, from_shapely, vertices_from_shapely # noqa: E402