Source code for tidy3d.plugins.microwave.path_integrals

"""Helper classes for performing path integrals with fields on the Yee grid"""

from __future__ import annotations

from abc import ABC, abstractmethod
from typing import Union

import numpy as np
import pydantic.v1 as pd

from ...components.base import Tidy3dBaseModel, cached_property
from ...components.data.data_array import (
    FreqDataArray,
    FreqModeDataArray,
    ScalarFieldDataArray,
    ScalarFieldTimeDataArray,
    ScalarModeFieldDataArray,
    TimeDataArray,
)
from ...components.data.monitor_data import FieldData, FieldTimeData, ModeSolverData
from ...components.geometry.base import Box
from ...components.types import Axis, Direction
from ...components.validators import assert_line, assert_plane
from ...exceptions import DataError, Tidy3dError

MonitorDataTypes = Union[FieldData, FieldTimeData, ModeSolverData]
EMScalarFieldType = Union[ScalarFieldDataArray, ScalarFieldTimeDataArray, ScalarModeFieldDataArray]
IntegralResultTypes = Union[FreqDataArray, FreqModeDataArray, TimeDataArray]


class AbstractAxesRH(Tidy3dBaseModel, ABC):
    """Represents an axis-aligned right-handed coordinate system with one axis preferred.
    Typically `main_axis` would refer to the normal axis of a plane.
    """

    @cached_property
    @abstractmethod
    def main_axis(self) -> Axis:
        """Get the preferred axis."""

    @cached_property
    def remaining_axes(self) -> tuple[Axis, Axis]:
        """Get in-plane axes, ordered to maintain a right-handed coordinate system."""
        axes: list[Axis] = [0, 1, 2]
        axes.pop(self.main_axis)
        if self.main_axis == 1:
            return (axes[1], axes[0])
        else:
            return (axes[0], axes[1])

    @cached_property
    def remaining_dims(self) -> tuple[str, str]:
        """Get in-plane dimensions, ordered to maintain a right-handed coordinate system."""
        dim1 = "xyz"[self.remaining_axes[0]]
        dim2 = "xyz"[self.remaining_axes[1]]
        return (dim1, dim2)

    @cached_property
    def local_dims(self) -> tuple[str, str, str]:
        """Get in-plane dimensions with in-plane dims first, followed by the `main_axis` dimension."""
        dim3 = "xyz"[self.main_axis]
        return self.remaining_dims + tuple(dim3)


[docs] class AxisAlignedPathIntegral(AbstractAxesRH, Box): """Class for defining the simplest type of path integral, which is aligned with Cartesian axes.""" _line_validator = assert_line() extrapolate_to_endpoints: bool = pd.Field( False, title="Extrapolate to Endpoints", description="If the endpoints of the path integral terminate at or near a material interface, " "the field is likely discontinuous. When this field is ``True``, fields that are outside and on the bounds " "of the integral are ignored. Should be enabled when computing voltage between two conductors.", ) snap_path_to_grid: bool = pd.Field( False, title="Snap Path to Grid", description="It might be desireable to integrate exactly along the Yee grid associated with " "a field. When this field is ``True``, the integration path will be snapped to the grid.", )
[docs] def compute_integral(self, scalar_field: EMScalarFieldType) -> IntegralResultTypes: """Computes the defined integral given the input ``scalar_field``.""" if not scalar_field.does_cover(self.bounds): raise DataError("Scalar field does not cover the integration domain.") coord = "xyz"[self.main_axis] scalar_field = self._get_field_along_path(scalar_field) # Get the boundaries min_bound = self.bounds[0][self.main_axis] max_bound = self.bounds[1][self.main_axis] if self.extrapolate_to_endpoints: # Remove field outside the boundaries scalar_field = scalar_field.sel({coord: slice(min_bound, max_bound)}) # Ignore values on the boundary (sel is inclusive) scalar_field = scalar_field.drop_sel({coord: (min_bound, max_bound)}, errors="ignore") coordinates = scalar_field.coords[coord].values else: coordinates = scalar_field.coords[coord].sel({coord: slice(min_bound, max_bound)}) # Integration is along the original coordinates plus ensure that # endpoints corresponding to the precise bounds of the port are included coords_interp = np.array([min_bound]) coords_interp = np.concatenate((coords_interp, coordinates)) coords_interp = np.concatenate((coords_interp, [max_bound])) coords_interp = {coord: coords_interp} # Use extrapolation for the 2 additional endpoints, unless there is only a single sample point method = "linear" if len(coordinates) == 1 and self.extrapolate_to_endpoints: method = "nearest" scalar_field = scalar_field.interp( coords_interp, method=method, kwargs={"fill_value": "extrapolate"} ) result = scalar_field.integrate(coord=coord) if isinstance(scalar_field, ScalarFieldDataArray): return FreqDataArray(data=result.data, coords=result.coords) elif isinstance(scalar_field, ScalarFieldTimeDataArray): return TimeDataArray(data=result.data, coords=result.coords) else: if not isinstance(scalar_field, ScalarModeFieldDataArray): raise TypeError( f"Unsupported 'scalar_field' type: {type(scalar_field)}. " "Expected one of 'ScalarFieldDataArray', 'ScalarFieldTimeDataArray', " "'ScalarModeFieldDataArray'." ) return FreqModeDataArray(data=result.data, coords=result.coords)
def _get_field_along_path(self, scalar_field: EMScalarFieldType) -> EMScalarFieldType: """Returns a selection of the input ``scalar_field`` ready for integration.""" (axis1, axis2) = self.remaining_axes (coord1, coord2) = self.remaining_dims if self.snap_path_to_grid: # Coordinates that are not integrated remaining_coords = { coord1: self.center[axis1], coord2: self.center[axis2], } # Select field nearest to center of integration line scalar_field = scalar_field.sel( remaining_coords, method="nearest", drop=False, ) else: # Try to interpolate unless there is only a single coordinate coord1dict = {coord1: self.center[axis1]} if scalar_field.sizes[coord1] == 1: scalar_field = scalar_field.sel(coord1dict, method="nearest") else: scalar_field = scalar_field.interp( coord1dict, method="linear", kwargs={"bounds_error": True} ) coord2dict = {coord2: self.center[axis2]} if scalar_field.sizes[coord2] == 1: scalar_field = scalar_field.sel(coord2dict, method="nearest") else: scalar_field = scalar_field.interp( coord2dict, method="linear", kwargs={"bounds_error": True} ) # Remove unneeded coordinates scalar_field = scalar_field.reset_coords(drop=True) return scalar_field @cached_property def main_axis(self) -> Axis: """Axis for performing integration.""" for index, value in enumerate(self.size): if value != 0: return index raise Tidy3dError("Failed to identify axis.")
[docs] class VoltageIntegralAxisAligned(AxisAlignedPathIntegral): """Class for computing the voltage between two points defined by an axis-aligned line.""" sign: Direction = pd.Field( ..., title="Direction of Path Integral", description="Positive indicates V=Vb-Va where position b has a larger coordinate along the axis of integration.", )
[docs] def compute_voltage(self, em_field: MonitorDataTypes) -> IntegralResultTypes: """Compute voltage along path defined by a line.""" if not isinstance(em_field, (FieldData, FieldTimeData, ModeSolverData)): raise DataError("'em_field' type not supported.") e_component = "xyz"[self.main_axis] field_name = f"E{e_component}" # Validate that the field is present if field_name not in em_field.field_components: raise DataError(f"'field_name' '{field_name}' not found.") e_field = em_field.field_components[field_name] # V = -integral(E) voltage = self.compute_integral(e_field) if self.sign == "+": voltage *= -1 # Return data array of voltage while keeping coordinates of frequency|time|mode index return voltage
[docs] class CurrentIntegralAxisAligned(AbstractAxesRH, Box): """Class for computing conduction current via Ampère's circuital law on an axis-aligned loop.""" _plane_validator = assert_plane() sign: Direction = pd.Field( ..., title="Direction of Contour Integral", description="Positive indicates current flowing in the positive normal axis direction.", ) extrapolate_to_endpoints: bool = pd.Field( False, title="Extrapolate to Endpoints", description="This parameter is passed to ``AxisAlignedPathIntegral`` objects when computing the contour integral.", ) snap_contour_to_grid: bool = pd.Field( False, title="Snap Contour to Grid", description="This parameter is passed to ``AxisAlignedPathIntegral`` objects when computing the contour integral.", )
[docs] def compute_current(self, em_field: MonitorDataTypes) -> IntegralResultTypes: """Compute current flowing in loop defined by the outer edge of a rectangle.""" if not isinstance(em_field, (FieldData, FieldTimeData, ModeSolverData)): raise DataError("'em_field' type not supported.") ax1 = self.remaining_axes[0] ax2 = self.remaining_axes[1] h_component = "xyz"[ax1] v_component = "xyz"[ax2] h_field_name = f"H{h_component}" v_field_name = f"H{v_component}" # Validate that fields are present if h_field_name not in em_field.field_components: raise DataError(f"'field_name' '{h_field_name}' not found.") if v_field_name not in em_field.field_components: raise DataError(f"'field_name' '{v_field_name}' not found.") h_horizontal = em_field.field_components[h_field_name] h_vertical = em_field.field_components[v_field_name] # Decompose contour into path integrals (bottom, right, top, left) = self._to_path_integrals(h_horizontal, h_vertical) current = 0 # Compute and add contributions from each part of the contour current += bottom.compute_integral(h_horizontal) current += right.compute_integral(h_vertical) current -= top.compute_integral(h_horizontal) current -= left.compute_integral(h_vertical) if self.sign == "-": current *= -1 return current
@cached_property def main_axis(self) -> Axis: """Axis normal to loop""" for index, value in enumerate(self.size): if value == 0: return index raise Tidy3dError("Failed to identify axis.") def _to_path_integrals(self, h_horizontal, h_vertical) -> tuple[AxisAlignedPathIntegral, ...]: """Returns four ``AxisAlignedPathIntegral`` instances, which represent a contour integral around the surface defined by ``self.size``.""" ax1 = self.remaining_axes[0] ax2 = self.remaining_axes[1] if self.snap_contour_to_grid: (coord1, coord2) = self.remaining_dims # Locations where horizontal paths will be snapped v_bounds = [ self.center[ax2] - self.size[ax2] / 2, self.center[ax2] + self.size[ax2] / 2, ] h_snaps = h_horizontal.sel({coord2: v_bounds}, method="nearest").coords[coord2].values # Locations where vertical paths will be snapped h_bounds = [ self.center[ax1] - self.size[ax1] / 2, self.center[ax1] + self.size[ax1] / 2, ] v_snaps = h_vertical.sel({coord1: h_bounds}, method="nearest").coords[coord1].values bottom_bound = h_snaps[0] top_bound = h_snaps[1] left_bound = v_snaps[0] right_bound = v_snaps[1] else: bottom_bound = self.bounds[0][ax2] top_bound = self.bounds[1][ax2] left_bound = self.bounds[0][ax1] right_bound = self.bounds[1][ax1] # Horizontal paths path_size = list(self.size) path_size[ax1] = right_bound - left_bound path_size[ax2] = 0 path_center = list(self.center) path_center[ax2] = bottom_bound bottom = AxisAlignedPathIntegral( center=path_center, size=path_size, extrapolate_to_endpoints=self.extrapolate_to_endpoints, snap_path_to_grid=self.snap_contour_to_grid, ) path_center[ax2] = top_bound top = AxisAlignedPathIntegral( center=path_center, size=path_size, extrapolate_to_endpoints=self.extrapolate_to_endpoints, snap_path_to_grid=self.snap_contour_to_grid, ) # Vertical paths path_size = list(self.size) path_size[ax1] = 0 path_size[ax2] = top_bound - bottom_bound path_center = list(self.center) path_center[ax1] = left_bound left = AxisAlignedPathIntegral( center=path_center, size=path_size, extrapolate_to_endpoints=self.extrapolate_to_endpoints, snap_path_to_grid=self.snap_contour_to_grid, ) path_center[ax1] = right_bound right = AxisAlignedPathIntegral( center=path_center, size=path_size, extrapolate_to_endpoints=self.extrapolate_to_endpoints, snap_path_to_grid=self.snap_contour_to_grid, ) return (bottom, right, top, left)