{
"cells": [
{
"cell_type": "markdown",
"id": "da3f0190",
"metadata": {},
"source": [
"# Waveguide Y junction"
]
},
{
"cell_type": "markdown",
"id": "eab8c7bd",
"metadata": {},
"source": [
"Power splitters such as Y-junctions are widely used in photonic integrated circuits across different applications. When designing a power splitter, we aim to achieve a flat broadband response, low insertion loss, and compact footprint. At the same time, the design needs to comply with the fabrication resolution and tolerance.\n",
"\n",
"In this example, we demonstrate the modeling of a Y-junction for integrated photonics. The designed device shows an average insertion loss below 0.2 dB in the wavelength range of 1500 nm to 1600 nm. At the same time, it has a small footprint. The junction area is smaller than 2 $\\mu m$ by 2 $\\mu m$, much smaller than the typical power splitters based on multimode interference devices. The design is adapted from [Yi Zhang, Shuyu Yang, Andy Eu-Jin Lim, Guo-Qiang Lo, Christophe Galland, Tom Baehr-Jones, and Michael Hochberg, \"A compact and low loss Y-junction for submicron silicon waveguide,\" Opt. Express 21, 1310-1316 (2013)](https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-1-1310).\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ad43045e",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:02.306336Z",
"iopub.status.busy": "2023-03-27T23:47:02.306184Z",
"iopub.status.idle": "2023-03-27T23:47:03.664582Z",
"shell.execute_reply": "2023-03-27T23:47:03.664014Z"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import gdstk\n",
"\n",
"import tidy3d as td\n",
"import tidy3d.web as web\n",
"from tidy3d.plugins.mode import ModeSolver\n"
]
},
{
"cell_type": "markdown",
"id": "128b718e",
"metadata": {},
"source": [
"## Simulation Setup "
]
},
{
"cell_type": "markdown",
"id": "c26dafaa",
"metadata": {},
"source": [
"Define simulation wavelength range to be 1.5 $\\mu m$ to 1.6 $\\mu m$."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3a2dd129",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:03.667202Z",
"iopub.status.busy": "2023-03-27T23:47:03.666920Z",
"iopub.status.idle": "2023-03-27T23:47:03.686371Z",
"shell.execute_reply": "2023-03-27T23:47:03.685840Z"
}
},
"outputs": [],
"source": [
"lda0 = 1.55 # central wavelength\n",
"freq0 = td.C_0 / lda0 # central frequency\n",
"ldas = np.linspace(1.5, 1.6, 101) # wavelength range\n",
"freqs = td.C_0 / ldas # frequency range\n"
]
},
{
"cell_type": "markdown",
"id": "946d0a45",
"metadata": {},
"source": [
"In this model, the Y-junction is made of silicon. The top and bottom claddings are made of silicon oxide. We will model them as non-dispersive materials here."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b90f342c",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:03.688684Z",
"iopub.status.busy": "2023-03-27T23:47:03.688526Z",
"iopub.status.idle": "2023-03-27T23:47:03.707421Z",
"shell.execute_reply": "2023-03-27T23:47:03.706885Z"
}
},
"outputs": [],
"source": [
"n_si = 3.48 # silicon refractive index\n",
"si = td.Medium(permittivity=n_si**2)\n",
"\n",
"n_sio2 = 1.44 # silicon oxide refractive index\n",
"sio2 = td.Medium(permittivity=n_sio2**2)\n"
]
},
{
"cell_type": "markdown",
"id": "473f2133",
"metadata": {},
"source": [
"The junction is discretized into 13 segments. Each segment is a tapper with the given widths. The optimum design is obtained by optimizing the 13 width parameters using the Particle Swarm Optimization algorithm. For the sake of simplicity, in this notebook, we skip the optimization procedure and only present the optimized result."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c67cbbf5",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:03.709835Z",
"iopub.status.busy": "2023-03-27T23:47:03.709661Z",
"iopub.status.idle": "2023-03-27T23:47:03.729588Z",
"shell.execute_reply": "2023-03-27T23:47:03.729044Z"
}
},
"outputs": [],
"source": [
"t = 0.22 # thickness of the silicon layer\n",
"\n",
"# width of the 13 segments\n",
"w1 = 0.5\n",
"w2 = 0.5\n",
"w3 = 0.6\n",
"w4 = 0.7\n",
"w5 = 0.9\n",
"w6 = 1.26\n",
"w7 = 1.4\n",
"w8 = 1.4\n",
"w9 = 1.4\n",
"w10 = 1.4\n",
"w11 = 1.31\n",
"w12 = 1.2\n",
"w13 = 1.2\n",
"\n",
"l_in = 1 # input waveguide length\n",
"l_junction = 2 # length of the junction\n",
"l_bend = 6 # horizontal length of the waveguide bend\n",
"h_bend = 2 # vertical offset of the waveguide bend\n",
"l_out = 1 # output waveguide length\n",
"inf_eff = 100 # effective infinity\n"
]
},
{
"cell_type": "markdown",
"id": "98ae6d2c",
"metadata": {},
"source": [
"First, define the junction structure by using a [PolySlab](../_autosummary/tidy3d.PolySlab.html). The vertices are given by the widths of the segments defined above. If a smooth curve is desirable, one can interpolate the vertices to a finer grid using spline for example. \n",
"\n",
"Before proceeding further to construct other structures, we can use the `plot` method to inspect the geometry. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f1bd7cba",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:03.731924Z",
"iopub.status.busy": "2023-03-27T23:47:03.731752Z",
"iopub.status.idle": "2023-03-27T23:47:04.120469Z",
"shell.execute_reply": "2023-03-27T23:47:04.119990Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAHWCAYAAABuRm14AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNgklEQVR4nO3deVxU9f7H8feAMIDI5gKS5FruirkQprkhmFZaaWmW5jW8Wd6uUZreW5razSwz0zTbXCots3LvhyJqi5maSZmhqbkrqJCMIrKe3x9d5zYJyDFhHHg9H4/zqDnn+z18znFg3o/z/Z4zFsMwDAEAAKBE3JxdAAAAgCshPAEAAJhAeAIAADCB8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBqHA2btwoi8WijRs3OrsUAC6I8ASg3Jo9e7bmz5/v7DKuyKJFizR9+nRnlyFJKigo0EsvvaS6devKy8tLLVq00IcffliividOnNCYMWPUpUsXValSpdjQunbtWg0dOlTNmjWTu7u76tSpc/UOAriKCE8Ayq2iwtOtt96qrKws3XrrrWVfVAldS+Hp3//+t55++ml1795dM2fO1PXXX6/7779fH3300WX77tmzR1OmTNGxY8fUvHnzYtsuWrRIixYtkr+/v0JDQ69W+cBVR3gCyrnMzExnl3DNcXNzk5eXl9zc+BN4OceOHdMrr7yixx57TG+99ZZiY2O1cuVKdezYUaNGjVJ+fn6x/Vu3bq20tDT98ssviouLK7btCy+8IJvNpk2bNqlly5ZX8zCAq4q/HIALOXbsmIYOHarQ0FBZrVbVrVtXw4cPV05OjiRp/vz5slgs+uKLL/Too4+qRo0aqlWrlr3/7Nmz1bRpU1mtVoWGhuqxxx7TmTNnHH7G3r17dc899ygkJEReXl6qVauW+vfvr4yMDHubhIQEdejQQQEBAfL19VXDhg31r3/967L1l6Rfdna2xo8frwYNGshqtSosLEyjR49Wdnb2Jfv74IMP1K5dO/n4+CgwMFC33nqr1q5dK0mqU6eOdu3apS+++EIWi0UWi0WdO3eWVPScpyVLlqh169by9vZWtWrV9MADD+jYsWMObR566CH5+vrq2LFj6tOnj3x9fVW9enU99dRTlw0SkrR8+XL16tXL/m9Yv359TZo0yaFv586dtXr1ah06dMhee3FDWA899JC93Z+X55577rI1Xa7e3NxcPfroo/Z1FotFw4cP19GjR7V58+Zi+1epUkVBQUEl+lmhoaHy8PD4S/UCZaGSswsAUDLHjx9Xu3btdObMGQ0bNkyNGjXSsWPH9Mknn+j8+fPy9PS0t3300UdVvXp1jRs3zn7l6bnnntOECRMUFRWl4cOHa8+ePXrjjTe0bds2bdq0SR4eHsrJyVFMTIyys7P1j3/8QyEhITp27JhWrVqlM2fOyN/fX7t27dLtt9+uFi1aaOLEibJardq3b582bdpUbP0l6VdQUKA777xTX3/9tYYNG6bGjRtr586devXVV/XLL79o2bJl9rYTJkzQc889p/bt22vixIny9PTUli1btH79ekVHR2v69On6xz/+IV9fX/373/+WJAUHBxdZ3/z58zVkyBC1bdtWkydPVmpqql577TVt2rRJO3bsUEBAgL1tfn6+YmJiFBERoalTp2rdunV65ZVXVL9+fQ0fPrzY8zB//nz5+voqLi5Ovr6+Wr9+vcaNGyebzaaXX35Z0u/DZBkZGTp69KheffVVSZKvr2+R+/z73/+uqKgoh3Xx8fFauHChatSoYV93+vTpYmu7qEqVKrJarZKkHTt2qHLlymrcuLFDm3bt2tm3d+jQoUT7BcoNA4BLGDRokOHm5mZs27btkm0FBQWGYRjGvHnzDElGhw4djLy8PPv2kydPGp6enkZ0dLSRn59vX//6668bkoy5c+cahmEYO3bsMCQZS5YsKbKOV1991ZBknDp1ylT9Jen3/vvvG25ubsZXX33lsH7OnDmGJGPTpk2GYRjG3r17DTc3N+Ouu+5yOB7D+N+5MAzDaNq0qdGpU6dLfs6GDRsMScaGDRsMwzCMnJwco0aNGkazZs2MrKwse7tVq1YZkoxx48bZ1w0ePNiQZEycONFhn61atTJat25d/EkwDOP8+fOXrPv73/9u+Pj4GBcuXLCv69Wrl1G7du3L7q8we/fuNfz9/Y3u3bs7vA8klWiZN2+eQx316tW75GdkZmYakowxY8aUuK4lS5Y4nPfi/JXjB0obw3aACygoKNCyZct0xx13qE2bNpdst1gsDq9jY2Pl7u5uf71u3Trl5ORo5MiRDvN8YmNj5efnp9WrV0uS/P39JUlr1qzR+fPnC63l4hWY5cuXq6CgoMTHUJJ+S5YsUePGjdWoUSOdPn3avnTt2lWStGHDBknSsmXLVFBQoHHjxl0yb+nP56IkvvvuO508eVKPPvqovLy87Ot79eqlRo0a2c/PHz3yyCMOrzt27Khff/31sj/L29vb/v9nz57V6dOn1bFjR50/f167d+82XfufZWZm6q677lJgYKA+/PBDh/dBQkJCiZaYmBh7n6ysLPtVqD+6eJ6ysrL+cs2Aq2HYDnABp06dks1mU7NmzUrUvm7dug6vDx06JElq2LChw3pPT0/Vq1fPvr1u3bqKi4vTtGnTtHDhQnXs2FF33nmnHnjgAXuwuu+++/TOO+/o4Ycf1pgxY9StWzfdfffd6tu3b7ETsEvSb+/evUpOTlb16tUL3cfJkyclSfv375ebm5uaNGlSovNxOUWdH0lq1KiRvv76a4d1Xl5el9QYGBio33777bI/a9euXXrmmWe0fv162Ww2h21/nFd2pWJjY7V//3598803qlq1qsO2Pw/tlYS3t3eh880uXLhg3w5UNIQnoBz6Kx9or7zyih566CEtX75ca9eu1eOPP67Jkyfr22+/Va1ateTt7a0vv/xSGzZs0OrVqxUfH6/Fixera9euWrt2rcOVjj/XdLl+BQUFat68uaZNm1boPsLCwq74uK6moo7xcs6cOaNOnTrJz89PEydOVP369eXl5aXvv/9eTz/9tKkreYV57bXX9OGHH+qDDz5QeHj4JdtTUlJKtB9/f3/7e6hmzZrasGGDDMNwuKp34sQJSeKRAqiQGLYDXED16tXl5+enn3766Yr6165dW9Lvz9z5o5ycHB04cMC+/aLmzZvrmWee0ZdffqmvvvpKx44d05w5c+zb3dzc1K1bN02bNk0///yz/vOf/2j9+vX2YbWiXK5f/fr1lZ6erm7duikqKuqS5eKVofr166ugoEA///xzsT+vpEN4RZ2fi+v+fH6u1MaNG5WWlqb58+frn//8p26//XZFRUUpMDDwkrZmhx+/+uorPfXUUxo5cqQGDhxYaJuaNWuWaFm8eLG9T3h4uM6fP6/k5GSHfW3ZssW+HahoCE+AC3Bzc1OfPn20cuVKfffdd5dsNwyj2P5RUVHy9PTUjBkzHNq+++67ysjIUK9evSRJNptNeXl5Dn2bN28uNzc3+9BNenr6Jfu/+AFa2PDORSXpd++99+rYsWN6++23L2mblZVlv3OwT58+cnNz08SJEy+5WvPH46tcufIlj2IoTJs2bVSjRg3NmTPH4Rj+7//+T8nJyfbz81ddvGL1xxpzcnI0e/bsS9pWrly5xMN4J06c0L333qsOHTrY79grzJXMeerdu7c8PDwcajQMQ3PmzNF1112n9u3bO9Sxe/du5ebmlqhuwFUxbAe4iBdeeEFr165Vp06d7LfxnzhxQkuWLNHXX3/tcCv9n1WvXl1jx47VhAkT1KNHD915553as2ePZs+erbZt2+qBBx6QJK1fv14jRoxQv379dOONNyovL0/vv/++3N3ddc8990iSJk6cqC+//FK9evVS7dq1dfLkSc2ePVu1atUq9pb1kvR78MEH9fHHH+uRRx7Rhg0bdMsttyg/P1+7d+/Wxx9/rDVr1qhNmzZq0KCB/v3vf2vSpEnq2LGj7r77blmtVm3btk2hoaGaPHmypN8f0PjGG2/o+eefV4MGDVSjRg375PM/8vDw0JQpUzRkyBB16tRJAwYMsD+qoE6dOnriiSeu9J/NQfv27RUYGKjBgwfr8ccfl8Vi0fvvv19o+G3durUWL16suLg4tW3bVr6+vrrjjjsK3e/jjz+uU6dOafTo0Zc89btFixZq0aKFpCub81SrVi2NHDlSL7/8snJzc9W2bVstW7ZMX331lRYuXOgwhDl27FgtWLBABw4ccHgu1fPPPy/p9/lekvT+++/b55E988wz9nY//vijVqxYIUnat2+fMjIy7H1btmxZ5PEDZc6Jd/oBMOnQoUPGoEGDjOrVqxtWq9WoV6+e8dhjjxnZ2dmGYfzvUQWFPc7AMH5/NEGjRo0MDw8PIzg42Bg+fLjx22+/2bf/+uuvxt/+9jejfv36hpeXlxEUFGR06dLFWLdunb1NYmKi0bt3byM0NNTw9PQ0QkNDjQEDBhi//PJLsbWXtF9OTo4xZcoUo2nTpobVajUCAwON1q1bGxMmTDAyMjIc2s6dO9do1aqVvV2nTp2MhIQE+/aUlBSjV69eRpUqVQxJ9scW/PlRBRctXrzYvr+goCBj4MCBxtGjRx3aDB482KhcufIlxzd+/HijJH9SN23aZNx8882Gt7e3ERoaaowePdpYs2bNJfWcO3fOuP/++42AgABDUrG37Xfq1KnIxw6MHz/+sjVdTn5+vvHCCy8YtWvXNjw9PY2mTZsaH3zwwSXtLj7G4cCBAw7ri6rtz+fr4vu3sGXw4MF/+TiAq8ViGJe53g8AAAA75jwBAACYQHgCAAAwgfAEAABggkuFpy+//FJ33HGHQkNDZbFYHL4ktCgbN27UTTfdJKvVqgYNGmj+/PmXtJk1a5bq1KkjLy8vRUREaOvWrVe/eAAAUC64VHjKzMxUy5YtNWvWrBK1P3DggHr16qUuXbooKSlJI0eO1MMPP6w1a9bY21y8FXj8+PH6/vvv1bJlS8XExNi/BgIAAOCPXPZuO4vFoqVLl6pPnz5Ftnn66ae1evVqh6cy9+/fX2fOnFF8fLwkKSIiQm3bttXrr78u6fcvYA0LC9M//vEPjRkzplSPAQAAuJ5y/ZDMzZs3X/JQuJiYGI0cOVLS70/23b59u8aOHWvf7ubmpqioKG3evLnI/WZnZzs8hbigoEDp6emqWrXqFX2jOwAAcC7DMHT27FmFhoYW+yXnUjkPTykpKQoODnZYFxwcLJvNpqysLP3222/Kz88vtM3u3buL3O/kyZM1YcKEUqkZAAA4z5EjR1SrVq1i25Tr8FRaxo4dq7i4OPvrjIwMXX/99Tpy5Ij8/PycWBkAALgSNptNYWFhqlKlymXbluvwFBISotTUVId1qamp8vPzk7e3t9zd3eXu7l5om5CQkCL3a7VaZbVaL1nv5+dHeAIAwIWVZPqNS91tZ1ZkZKQSExMd1iUkJCgyMlKS5OnpqdatWzu0KSgoUGJior0NAADAH7lUeDp37pySkpKUlJQk6fdHESQlJenw4cOSfh9OGzRokL39I488ol9//VWjR4/W7t27NXv2bH388ccO35AeFxent99+WwsWLFBycrKGDx+uzMxMDRkypEyPDQAAuAaXGrb77rvv1KVLF/vri/OOBg8erPnz5+vEiRP2ICVJdevW1erVq/XEE0/otddeU61atfTOO+8oJibG3ua+++7TqVOnNG7cOKWkpCg8PFzx8fGXTCIHAACQXPg5T9cSm80mf39/ZWRkMOcJAAAXZOaz3KWG7QAAAJyN8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBAACYQHgCAAAwgfAEAABgAuEJAADABMITAACACYQnAAAAEwhPAAAAJhCeAAAATCA8AQAAmEB4AgAAMIHwBAAAYALhCQAAwATCEwAAgAmEJwAAABMITwAAACYQngAAAEwgPAEAAJhAeAIAADCB8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBAACYQHgCAAAwgfAEAABgAuEJAADABMITAACACYQnAAAAE1wuPM2aNUt16tSRl5eXIiIitHXr1iLbdu7cWRaL5ZKlV69e9jYPPfTQJdt79OhRFocCAABcUCVnF2DG4sWLFRcXpzlz5igiIkLTp09XTEyM9uzZoxo1alzS/rPPPlNOTo79dVpamlq2bKl+/fo5tOvRo4fmzZtnf221WkvvIAAAgEtzqStP06ZNU2xsrIYMGaImTZpozpw58vHx0dy5cwttHxQUpJCQEPuSkJAgHx+fS8KT1Wp1aBcYGFgWhwMAAFyQy4SnnJwcbd++XVFRUfZ1bm5uioqK0ubNm0u0j3fffVf9+/dX5cqVHdZv3LhRNWrUUMOGDTV8+HClpaUVu5/s7GzZbDaHBQAAVAwuE55Onz6t/Px8BQcHO6wPDg5WSkrKZftv3bpVP/30kx5++GGH9T169NB7772nxMRETZkyRV988YVuu+025efnF7mvyZMny9/f376EhYVd2UEBAACX41Jznv6Kd999V82bN1e7du0c1vfv39/+/82bN1eLFi1Uv359bdy4Ud26dSt0X2PHjlVcXJz9tc1mI0ABAFBBuMyVp2rVqsnd3V2pqakO61NTUxUSElJs38zMTH300UcaOnToZX9OvXr1VK1aNe3bt6/INlarVX5+fg4LAACoGFwmPHl6eqp169ZKTEy0rysoKFBiYqIiIyOL7btkyRJlZ2frgQceuOzPOXr0qNLS0lSzZs2/XDMAACh/XCY8SVJcXJzefvttLViwQMnJyRo+fLgyMzM1ZMgQSdKgQYM0duzYS/q9++676tOnj6pWreqw/ty5cxo1apS+/fZbHTx4UImJierdu7caNGigmJiYMjkmAADgWlxqztN9992nU6dOady4cUpJSVF4eLji4+Ptk8gPHz4sNzfHPLhnzx59/fXXWrt27SX7c3d3148//qgFCxbozJkzCg0NVXR0tCZNmsSzngAAQKEshmEYzi7C1dlsNvn7+ysjI4P5TwAAuCAzn+UuNWwHAADgbIQnAAAAE1xqzhMAlLWcnBx99tlnWrJkiS5cyHZ2ORVWpUruatOmjbp37642bdqoUiU+vuA8zHm6CpjzBJQ/x48f15tvvqk35rypUydT5X1dI8knwNllVVx5Oco9sUd5FzLlW8VPUd26KTq6u6Kjo1W/fn1nV4dywMxnOdEdAP7LMAx99dVXmjlzppYuWyaLu4e8mnRRzdt7yrN6HWeXV+EZBfnKOfGLsg7s0NrtSVq+YoWMgnyF1a6j22Ki1b17d3Xt2lVBQUHOLhXlHFeergKuPAGu7dy5c1q4cKFem/m6knf9JK9qYfIO7ynfZl3lZq18+R3AKQqyz+vC4Z26cHCH8o78oKxTR2SxWNTqptbq8d8w1b59e3l6ejq7VLgAM5/lhKergPAEuKZffvlFs2fP1jtz5+r8uUz53NBOlVvdLq/aLWWxWJxdHkzKs53UhYNJunAwSbmHf1BOZoa8fXzUqVMnxUT/HqaaNGnCvy0KRXgqY4QnwHXk5+dr9erVmvn661qXkCDPyv7yat5dVcJ7qpJ/DWeXh6vEMAqUk/qrLhxMUs6hJF04+rMK8nJUI6SmekR3V/fu3RUVFXXZ70ZFxUF4KmOEJ+Dal5aWpnfffVczX5+lo0cOy/u6hvIJ76nKjTrKUolhnfKuIDdb2Ud3/feqVJKyUn6VJDVp1tw+X6pjx47y8fFxcqVwFsJTGSM8Adeu7777TrNmzdLCRR8qv8CQT6OO8r2pl6w1b3R2aXCi/MzfdOHQD8o6kKS8Iz8oO+OUPDw8dcsttyjmv2GqVatWl3zlF8ovwlMZIzwB15bs7Gx9/PHHmjHzdX23bausATXk3bKnfFt0l7uPv7PLwzXGMAzlph3RhYM7lH0oSTlHflJedpYCAoMU3b27ov87zHf99dc7u1SUIsJTGSM8AdeGw4cPa86cOXrzrbeVnnZaPnVbqXKr2+Vdv40sbu7OLg8uwsjPVfbxPbpwYIdyj/ygrGO/yDAK1KxFSw2471717dtXN97IlcvyhvBUxghPgPMYhqH169drxsyZWrVypdw8veXdtKuqtOolj6q1nF0eyoH8C+d04WCSsn75Rtm/blNedpaaNGuu/vf2U79+/dSoUSNnl4irgPBUxghPQNmz2Wx67733NGPm69r7yx55B9eRd8ueqty0i9w8vZ1dHsqpgtxsXTiwXef3bFL2/m3Kyz6vho2b2K9INW3a1Nkl4goRnsoY4QkoOz///LNmzZql+QsWKCvrgnxujJRvq16yhjXj+T0oU0ZejrIO7ND5PV8re/9W5V3I1A0NG9mvSDVrxnvSlRCeyhjhCShdhmFo6dKlem3mTH25caM8qwTJu3mMfMNjVKlKNWeXB8jIy1XWwR06v2eTcvZvUW7WOdVrcIP9ilTLljx49VpHeCpjhCegdI0dO1YvvviifMKayCe8l3watpfF3cPZZQGFMvJzdeHgD/+9IrVFuefPqk69+up/bz/17dtXN910E0HqGkR4KmOEJ6D0TJ06VaNGjVJg14fl17aPs8sBTDHy83Th0A//nSO1RbmZGQqrXcc+tNemTRuC1DWC8FTGCE9A6Zg7d66GDh0qv8j7FHjrg84uB/hLjPw8XTjyk87v/lo5+zYrJzND14Vdb78iFRERQZByIsJTGSM8AVffZ599pn79+qlyyxgFdn+UDxWUK0ZB/u9Bas8m5ez7Vjln01Xzulq6r19f9evXTzfffDNPNy9jhKcyRngCrq7ExETddltPWRvcrKDbn+QBlyjXjIJ8ZR/9+fc5Uns3K+dsuoJrhuq+fn3Vt29f3XLLLQSpMkB4KmOEJ+Dq2bZtmzp36SIFN1K1u59hYjgqFKMgX9nHkn+/IrV3s7Jtp1U9OER9775LoaGhTqurcuXKGjFihDw8yu/vo5nP8kplVBMAXFZycrKiY3pIgbVVtfdYghMqHIubu7zCmskrrJmMbrHKPrZH5/d8rXkfr5CRk+W0urLPpiswMFAPPfSQ02q4lhCeAFwTDh06pK7dopTt6a+q94yTm6eXs0sCnMpicZNXrcbyqtVYUqxTazk05Xbl5uY6tYZrCYOoAJzu5MmT6totSr9lGwrqO0HuXr7OLgkAisSVJwBOlZGRoe7RMTp6Ml3V7n9JlXyDnF0SABSL8ATAabKystTr9juU/Ms+VRvwojwCQpxdEgBcFsN2AJwiNzdX/e69V99u3aqgu8fLs3odZ5cEACVCeAJQ5goKCvS3vw3V//1fvKr2/td/J8QCgGsgPAEoU4ZhKC4uTh8s/EBBveLkXa+1s0sCAFMITwDK1PPPP6/XXntNQd2Hq3LjW51dDgCYRngCUGZmz56tcePGKaDjg6rSqqezywGAK0J4AlAmPvzwQ40YMUJV2vSWX+S9zi4HAK4Y4QlAqfv888/14KBBqty0qwK7DpXFYnF2SQBwxQhPAErV119/rbvv6Suvem0UdNvjslj4swPAtfFXDECp+eGHH3Rbr15yD75BVe8YLYubu7NLAoC/jPAEoFTs27dPUd2jle8brKp3PSNLJU9nlwQAV4XLhadZs2apTp068vLyUkREhLZu3Vpk2/nz58tisTgsXl6O39RuGIbGjRunmjVrytvbW1FRUdq7d29pHwZQrh07dkxdu0XpnGFV1Xuek5vVx9klAcBV41LhafHixYqLi9P48eP1/fffq2XLloqJidHJkyeL7OPn56cTJ07Yl0OHDjlsf+mllzRjxgzNmTNHW7ZsUeXKlRUTE6MLFy6U9uEA5VJ6erqiukfrZMZ5Ve03Qe4+/s4uCQCuKpcKT9OmTVNsbKyGDBmiJk2aaM6cOfLx8dHcuXOL7GOxWBQSEmJfgoOD7dsMw9D06dP1zDPPqHfv3mrRooXee+89HT9+XMuWLSuDIwLKl3Pnzimmx23af/iYqvabqEp+NZxdEgBcdS4TnnJycrR9+3ZFRUXZ17m5uSkqKkqbN28ust+5c+dUu3ZthYWFqXfv3tq1a5d924EDB5SSkuKwT39/f0VERBS7z+zsbNlsNocFqOiys7PV5667lPTjTlW95zl5VA1zdkkAUCpcJjydPn1a+fn5DleOJCk4OFgpKSmF9mnYsKHmzp2r5cuX64MPPlBBQYHat2+vo0ePSpK9n5l9StLkyZPl7+9vX8LC+JBAxZafn6+BDzygDRu/VNW7npW15g3OLgkASo3LhKcrERkZqUGDBik8PFydOnXSZ599purVq+vNN9/8S/sdO3asMjIy7MuRI0euUsWA6zEMQ4888og++/QzVb1jlLxqt3B2SQBQqlwmPFWrVk3u7u5KTU11WJ+amqqQkJAS7cPDw0OtWrXSvn37JMnez+w+rVar/Pz8HBagovrXv/6ld955R0G3PS6fGyOdXQ4AlDqXCU+enp5q3bq1EhMT7esKCgqUmJioyMiS/cHOz8/Xzp07VbNmTUlS3bp1FRIS4rBPm82mLVu2lHifQEU2depUvfjiiwrs+rB8m0ddvgMAlAOVnF2AGXFxcRo8eLDatGmjdu3aafr06crMzNSQIUMkSYMGDdJ1112nyZMnS5ImTpyom2++WQ0aNNCZM2f08ssv69ChQ3r44Ycl/X4n3siRI/X888/rhhtuUN26dfXss88qNDRUffr0cdZhAi5h7ty5GjVqlPwi75Nf2z7OLgcAyoxLhaf77rtPp06d0rhx45SSkqLw8HDFx8fbJ3wfPnxYbm7/u5j222+/KTY2VikpKQoMDFTr1q31zTffqEmTJvY2o0ePVmZmpoYNG6YzZ86oQ4cOio+Pv+RhmgD+57PPPlNsbKyqtLpNAR0fcHY5AFCmLIZhGM4uwtXZbDb5+/srIyOD+U8o9xITE3XbbT1lbXCzgm5/ku+rAyqAQ1Nu11tvvaXY2Fhnl1JqzHyWu8ycJwDOt23bNt3Zu7c8wporqNcTBCcAFRLhCUCJJCcnKzqmhxRYW1V7j5XF3cPZJQGAUxCeAFzWli1b1C2qu7I9/RV0zzi5eTInEEDFRXgCUKTTp0/r4Ycf1s0336wzhreC+k6Qu5evs8sCAKdyqbvtAJSN/Px8vf3223p6zFhl5eQpqPtw+Yb3YI4TAIjwBOBPtmzZor8/Mlw/JO2Qb4vuCu70kNx9/J1dFgBcMxi2AyDJcYjul9SzCnngZVW97Z8EJwD4E648ARUcQ3QAYA7hCajAGKIDAPMYtgMqIIboAODKceUJqEAYogOAv47wBFQQDNEBwNXBsB1QzjFEBwBXF1eegHLqkiG66Efl2zKGIToA+IsIT0A5xBAdAJQehu2AcoQhOgAofVx5AsoBhugAoOwQngAX5zhEF63gToO50gQApYhhO8BFFT5E9zjBCQBKGVeeABfDEB0AOBfhCXAhDNEBgPMRnoBrnGEY2rFjh2bNmqW5c+fKu2YDhTzwsqzXNXZ2aQBQIRGegGtQVlaWEhMTtXLlSi1bsVInU07Iw8ePIToAuAYQnoBrxPHjx7V69WotX7FC69YlKvtClryqXiePuu0U3DlC1lpNZHHnVxYAnI2/xICTXByOW7lypZYuX6Efdnwvi8VN3mFN5X3zAFVt0FaVgmrJYrE4u1QAwB8QnoAyVOhwnLevPOu0UtXbn5R3vTZy967i7DIBAMUgPAGl7Pjx41q1apVWrFzJcBwAlAP8xQausuKH4/qraoN2DMcBgAsjPAFXAcNxAFBxEJ6AK3RxOG75ihVKTFzvMBxXo3M7edVqynAcAJRD/GUHSsgwDH3//ff2q0sMxwFAxUR4AorBcBwA4M8IT8CfFD4cF8pwHABAEuEJKGY4rgnDcQCASxCeUCExHAcAuFKEJ1QY3B0HALga+KRAucXDKgEApcHN2QWYNWvWLNWpU0deXl6KiIjQ1q1bi2z79ttvq2PHjgoMDFRgYKCioqIuaf/QQw/JYrE4LD169Cjtw0ApycrK0qpVq/T3v/9dIaHXqXXr1vrPlKnad6Gyqt7+pK77x0JVHzBZ/hH3yKNqGMEJAGCaS115Wrx4seLi4jRnzhxFRERo+vTpiomJ0Z49e1SjRo1L2m/cuFEDBgxQ+/bt5eXlpSlTpig6Olq7du3SddddZ2/Xo0cPzZs3z/7aarWWyfHg6jh+/LhWr16t5StW8N1xAIBS51KfKNOmTVNsbKyGDBkiSZozZ45Wr16tuXPnasyYMZe0X7hwocPrd955R59++qkSExM1aNAg+3qr1aqQkJDSLR5XTfHDcQNUtUFbhuMAAKXGZcJTTk6Otm/frrFjx9rXubm5KSoqSps3by7RPs6fP6/c3FwFBQU5rN+4caNq1KihwMBAde3aVc8//7yqVq1a5H6ys7OVnZ1tf22z2UwejWv66aeflJmZ6bSfn5qaqtWrV3N3HADAqVwmPJ0+fVr5+fkKDg52WB8cHKzdu3eXaB9PP/20QkNDFRUVZV/Xo0cP3X333apbt67279+vf/3rX7rtttu0efNmubu7F7qfyZMna8KECVd+MC5o7dq1iomJcXYZDMcBAJyuwnzyvPjii/roo4+0ceNGeXl52df379/f/v/NmzdXixYtVL9+fW3cuFHdunUrdF9jx45VXFyc/bXNZlNYWFjpFX8NOHr0qCSp5t9ed1oNFg8vVfIPZjgOAOBULhOeqlWrJnd3d6WmpjqsT01Nvex8palTp+rFF1/UunXr1KJFi2Lb1qtXT9WqVdO+ffuKDE9Wq7XCTir3qFab8AIAqNBc5lEFnp6eat26tRITE+3rCgoKlJiYqMjIyCL7vfTSS5o0aZLi4+PVpk2by/6co0ePKi0tTTVr1rwqdQMAgPLFZcKTJMXFxentt9/WggULlJycrOHDhyszM9N+992gQYMcJpRPmTJFzz77rObOnas6deooJSVFKSkpOnfunCTp3LlzGjVqlL799lsdPHhQiYmJ6t27txo0aHBNzO8BAADXHpcZtpOk++67T6dOndK4ceOUkpKi8PBwxcfH2yeRHz58WG5u/8uDb7zxhnJyctS3b1+H/YwfP17PPfec3N3d9eOPP2rBggU6c+aMQkNDFR0drUmTJlXYYTkAAFA8lwpPkjRixAiNGDGi0G0bN250eH3w4MFi9+Xt7a01a9ZcpcoAAEBF4FLDdgAAAM5GeAIAADCB8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBAACYQHgCAAAwgfAEAABgAuEJAADABMITAACACYQnAAAAEwhPAAAAJhCeAAAATCA8AQAAmEB4AgAAMIHwBAAAYALhCQAAwATCEwAAgAmEJwAAABMITwAAACYQngAAAEwgPAEAAJhAeAIAADCB8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBAACYQHgCAAAwgfAEAABgAuEJAADABMITAACACS4XnmbNmqU6derIy8tLERER2rp1a7HtlyxZokaNGsnLy0vNmzfX559/7rDdMAyNGzdONWvWlLe3t6KiorR3797SPAQAAODCXCo8LV68WHFxcRo/fry+//57tWzZUjExMTp58mSh7b/55hsNGDBAQ4cO1Y4dO9SnTx/16dNHP/30k73NSy+9pBkzZmjOnDnasmWLKleurJiYGF24cKGsDgsAALgQ0+Fp8ODB+vLLL0ujlsuaNm2aYmNjNWTIEDVp0kRz5syRj4+P5s6dW2j71157TT169NCoUaPUuHFjTZo0STfddJNef/11Sb9fdZo+fbqeeeYZ9e7dWy1atNB7772n48ePa9myZWV4ZAAAwFWYDk8ZGRmKiorSDTfcoBdeeEHHjh0rjboukZOTo+3btysqKsq+zs3NTVFRUdq8eXOhfTZv3uzQXpJiYmLs7Q8cOKCUlBSHNv7+/oqIiChynwAAoGIzHZ6WLVumY8eOafjw4Vq8eLHq1Kmj2267TZ988olyc3NLo0ZJ0unTp5Wfn6/g4GCH9cHBwUpJSSm0T0pKSrHtL/7XzD4lKTs7WzabzWEBAAAVwxXNeapevbri4uL0ww8/aMuWLWrQoIEefPBBhYaG6oknnij3E64nT54sf39/+xIWFubskgAAQBn5SxPGT5w4oYSEBCUkJMjd3V09e/bUzp071aRJE7366qtXq0ZJUrVq1eTu7q7U1FSH9ampqQoJCSm0T0hISLHtL/7XzD4laezYscrIyLAvR44cMX08AADANZkOT7m5ufr00091++23q3bt2lqyZIlGjhyp48ePa8GCBVq3bp0+/vhjTZw48aoW6unpqdatWysxMdG+rqCgQImJiYqMjCy0T2RkpEN7SUpISLC3r1u3rkJCQhza2Gw2bdmypch9SpLVapWfn5/DAgAAKoZKZjvUrFlTBQUFGjBggLZu3arw8PBL2nTp0kUBAQFXoTxHcXFxGjx4sNq0aaN27dpp+vTpyszM1JAhQyRJgwYN0nXXXafJkydLkv75z3+qU6dOeuWVV9SrVy999NFH+u677/TWW29JkiwWi0aOHKnnn39eN9xwg+rWratnn31WoaGh6tOnz1WvHwAAuD7T4enVV19Vv3795OXlVWSbgIAAHThw4C8VVpj77rtPp06d0rhx45SSkqLw8HDFx8fbJ3wfPnxYbm7/u5jWvn17LVq0SM8884z+9a9/6YYbbtCyZcvUrFkze5vRo0crMzNTw4YN05kzZ9ShQwfFx8cXe3wAAKDishiGYTi7CFdns9nk7++vjIyMcjuEN3fuXA0dOlTXj14pi8Xi7HIAAGXo0JTb9dZbbyk2NtbZpZQaM5/lLvWEcQAAAGcjPAEAAJhAeAIAADCB8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBAACYQHgCAAAwgfAEAABgAuEJAADABMITAACACYQnAAAAEwhPAAAAJhCeAAAATCA8AQAAmEB4AgAAMIHwBAAAYALhCQAAwATCEwAAgAmEJwAAABMITwAAACYQngAAAEwgPAEAAJhAeAIAADCB8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBAACYQHgCAAAwgfAEAABgAuEJAADABJcJT+np6Ro4cKD8/PwUEBCgoUOH6ty5c8W2/8c//qGGDRvK29tb119/vR5//HFlZGQ4tLNYLJcsH330UWkfDgAAcFGVnF1ASQ0cOFAnTpxQQkKCcnNzNWTIEA0bNkyLFi0qtP3x48d1/PhxTZ06VU2aNNGhQ4f0yCOP6Pjx4/rkk08c2s6bN089evSwvw4ICCjNQwEAAC7MJcJTcnKy4uPjtW3bNrVp00aSNHPmTPXs2VNTp05VaGjoJX2aNWumTz/91P66fv36+s9//qMHHnhAeXl5qlTpf4ceEBCgkJCQ0j8QAADg8lwiPG3evFkBAQH24CRJUVFRcnNz05YtW3TXXXeVaD8ZGRny8/NzCE6S9Nhjj+nhhx9WvXr19Mgjj2jIkCGyWCxX9RjKi3zbKclJp8ZSySp3H3/n/HAAAP7LJcJTSkqKatSo4bCuUqVKCgoKUkpKSon2cfr0aU2aNEnDhg1zWD9x4kR17dpVPj4+Wrt2rR599FGdO3dOjz/+eJH7ys7OVnZ2tv21zWYzcTSuqXHjxpKkY3P+5tQ6vGs2kGfdtvJu0E6eIfVlsbjMtD0AQDnh1PA0ZswYTZkypdg2ycnJf/nn2Gw29erVS02aNNFzzz3nsO3ZZ5+1/3+rVq2UmZmpl19+udjwNHnyZE2YMOEv1+VKIiMjtWPHDp06dcppNZw8eVKrVq3W6s8/V8o3H8rqV1UedVrLu0GEvOq0lJuHl9NqAwBUHE4NT08++aQeeuihYtvUq1dPISEhOnnypMP6vLw8paenX3au0tmzZ9WjRw9VqVJFS5culYeHR7HtIyIiNGnSJGVnZ8tqtRbaZuzYsYqLi7O/ttlsCgsLK3a/5UF4eLizS9DAgQOVl5enTZs2aeXKlVq6bIV+/Wyt3D2sstZuIa96beVdv50q+VVzdqkAgHLKqeGpevXqql69+mXbRUZG6syZM9q+fbtat24tSVq/fr0KCgoUERFRZD+bzaaYmBhZrVatWLFCXl6XvzKRlJSkwMDAIoOTJFmt1mK3o3RVqlRJnTp1UqdOnTR16lT98ssvWrlypZavWKlNiW8qfe1shvcAAKXGJeY8NW7cWD169FBsbKzmzJmj3NxcjRgxQv3797ffaXfs2DF169ZN7733ntq1ayebzabo6GidP39eH3zwgWw2m31uUvXq1eXu7q6VK1cqNTVVN998s7y8vJSQkKAXXnhBTz31lDMPFybdeOONevLJJ/Xkk0/qt99+U3x8vFasWMnwHgCgVLhEeJKkhQsXasSIEerWrZvc3Nx0zz33aMaMGfbtubm52rNnj86fPy9J+v7777VlyxZJUoMGDRz2deDAAdWpU0ceHh6aNWuWnnjiCRmGoQYNGmjatGmKjY0tuwPDVRUYGKgBAwZowIABys3N1aZNm7Rq1SqG9wAAV43FMAzD2UW4OpvNJn9/f/ujEHBtchje2/S1CvLz/zC811aeIQ0Y3gOAQhyacrveeuutcn1xwcxnuctceQL+Kob3AABXA+EJFVKJhveubyGv+gzvAQAcEZ5Q4Xl4eKhz587q3Lmzw917y5av0DcOd++1+e/dewzvAUBFRngC/qT44b2PGN4DgAqO8AQUo7DhvZUrV2rp8hU6wPAeAFRIhCeghP44vPfKK68UM7zH3XsAUJ4RnoArxN17AFAxEZ6Aq6BEw3s8nBMAygXCE3CVmRve47v3AMDVEJ6AUvbH4b309HTFx8dr5cpVDO8BgIsiPAFlKCgoSPfff7/uv/9+hvcAwEURngAnYXgPAFwTf4mBa8TF4b2vvvxCp06e1MKFC9W7U1sV/PS5Ut57QqlvPaxzuzaI7/IGAOciPAHXoIvDex9+uEhpp09pw4YNuiPqVqWtekWnPxqrnFMHnV0iAFRYhCfgGndxeG/JkiVKSEhQqDVHKfP/qfTEt1WQnens8gCgwiE8AS4kKipKu37aqRcnv6C8n9cp9d1HGMoDgDJGeAJcjKenp0aPHq1f9uxW7x5RDOUBQBkjPAEuqlatWvr444+VkJCg67xyGcoDgDJCeAJcXFRUlH7a+SNDeQBQRghPQDnAUB4AlB3CE1COMJQHAKWP8ASUQwzlAUDpITwB5RRDeQBQOghPQDnHUB4AXF2EJ6CCuHQobzhDeQBwBQhPQAXiOJTXjaE8ALgChCegAro4lLdu3TqG8gDAJMITUIF169aNoTwAMInwBFRwDOUBgDmEJwCSGMoDgJIiPAFwcHEob8qLkxnKA4BCEJ4AXMLT01OjRo3601Dev5R/PsPZpQGA0xGeABTpj0N5XpknlPbpBBVkn3d2WQDgVIQnAJfVrVs3rUtYK7ezJ5S27AUZebnOLgkAnIbwBKBEWrVqpc9XrVLeid1KW/WyjIJ8Z5cEAE5BeAJQYrfeeqs+WfKxsvZtUfqaWUwiB1AhEZ4AmHLHHXdowfz5OvfjWp3ZOM/Z5QBAmXOZ8JSenq6BAwfKz89PAQEBGjp0qM6dO1dsn86dO8tisTgsjzzyiEObw4cPq1evXvLx8VGNGjU0atQo5eXlleahAC7vgQce0GuvvSbb1s+U8e0nzi4HAMpUJWcXUFIDBw7UiRMnlJCQoNzcXA0ZMkTDhg3TokWLiu0XGxuriRMn2l/7+PjY/z8/P1+9evVSSEiIvvnmG504cUKDBg2Sh4eHXnjhhVI7FqA8ePzxx5WWlqaJEyfKzctXVcJ7OLskACgTLhGekpOTFR8fr23btqlNmzaSpJkzZ6pnz56aOnWqQkNDi+zr4+OjkJCQQretXbtWP//8s9atW6fg4GCFh4dr0qRJevrpp/Xcc8/J09OzVI4HKC+ee+45paWlafbs2XLz8lXlRh2cXRIAlDqXGLbbvHmzAgIC7MFJkqKiouTm5qYtW7YU23fhwoWqVq2amjVrprFjx+r8+f89o2bz5s1q3ry5goOD7etiYmJks9m0a9euq38gQDljsVg0Y8YM9e/fX+mrpirrwA5nlwQApc4lrjylpKSoRo0aDusqVaqkoKAgpaSkFNnv/vvvV+3atRUaGqoff/xRTz/9tPbs2aPPPvvMvt8/BidJ9tfF7Tc7O1vZ2dn21zabzfQxAeWFm5ubFiyYr9/O/KZ1y19QtXuflzW0obPLAoBS49QrT2PGjLlkQvefl927d1/x/ocNG6aYmBg1b95cAwcO1HvvvaelS5dq//79f6nuyZMny9/f376EhYX9pf0Brs7Dw0OffvKJ2ra+SWmfPqecU4ecXRIAlBqnhqcnn3xSycnJxS716tVTSEiITp486dA3Ly9P6enpRc5nKkxERIQkad++fZKkkJAQpaamOrS5+Lq4/Y4dO1YZGRn25ciRIyWuASivfHx89PnqVWpYv67SPhmvvIzUy3cCABfk1GG76tWrq3r16pdtFxkZqTNnzmj79u1q3bq1JGn9+vUqKCiwB6KSSEpKkiTVrFnTvt///Oc/OnnypH1YMCEhQX5+fmrSpEmR+7FarbJarSX+uUBFERAQoIS1axTZ/halLBmnagNelHvlQGeXBQBXlUtMGG/cuLF69Oih2NhYbd26VZs2bdKIESPUv39/+512x44dU6NGjbR161ZJ0v79+zVp0iRt375dBw8e1IoVKzRo0CDdeuutatGihSQpOjpaTZo00YMPPqgffvhBa9as0TPPPKPHHnuMcARcoZCQEK1PXCd/jwKlfTJeBReKfx4bALgalwhP0u93zTVq1EjdunVTz5491aFDB7311lv27bm5udqzZ4/9bjpPT0+tW7dO0dHRatSokZ588kndc889Wrlypb2Pu7u7Vq1aJXd3d0VGRuqBBx7QoEGDHJ4LBcC8unXrKnFdgjwv/Ka0zyapIPeCs0sCgKvGYvDlVH+ZzWaTv7+/MjIy5Ofn5+xygGvGli1b1KVrV1lCm6pan3/L4u4SN/gC+JNDU27XW2+9pdjYWGeXUmrMfJa7zJUnAK4nIiJCy5ctU87BJKV/Pl2GUeDskgDgLyM8AShV3bt314cfLlLm7i/127q3xMVuAK6O8ASg1PXt21dvzpmjs9+vUsam4r+PEgCudUxAAFAmYmNjlZ6erjFjxsjNq4r82tzp7JIA4IoQngCUmaefflppaWl6+eWX5eZdRb5Nuzi7JAAwjfAEoExNmTJFaWlpmjd/utysleXToJ2zSwIAU5jzBKBMWSwWvfnmm+rd+06lr5iiC0d+cnZJAGAK4QlAmatUqZI++vBD3drhFqV9Nkk5qX/ty7oBoCwRngA4hdVq1fLly9SiaWOlfTJeuenHnF0SAJQI4QmA01SpUkVr18SrznUhSlvyrPJsp51dEgBcFuEJgFNVrVpViesSVM3XqrRPxin/fIazSwKAYhGeADhdrVq1tD5xnXwKzivt0wkqyD7v7JIAoEg8qgDANeHGG2/UuoS16tipk9KWvaBq94yXpZKHs8sCnMYwDOWePqTzu79WzoHvpNwLTq3H3d3dqT//WkJ4AnDNaNWqlT5ftUrdo2OUtuplVb3zaVnc+IONisMwDOWePKDMPZuUs3eTLpw+Kt8qfrr7zjsUGhrqtLoqV66s+++/32k//1pDeAJwTbn11lv1yZKP1eeuu5S+ZpaCevxDFovF2WUBpcYwDOWk7tf5PV8rZ+9mXUg7Jj//APW/q4/69eunbt26yWq1OrtM/AHhCcA154477tCC+fP14IMPys3LV4Fd/ubskoCryjAM5aTs1fk9m5Sz9xtdSD8h/4BADbznbvXr109dunSRp6ens8tEEQhPAK5JDzzwgNLT0/XPf/5Tbt5+8r+5r7NLAv4SwzCUc+IXnd/9tbL3faPs31IVGFRVg/reo759+6pz587y8GCenysgPAG4Zj3++ONKS0vTxIkT5eblqyrhPZxdEmCKYRQo+9ie34fk9m1W9pmTqlqtuu6/7/fA1KlTJ1WqxEexq+FfDMA17bnnnlNaWppmzXpdF/ZuVuWbbpd33ZuYSI5r1u+BKfn3u+T2bVZ2xmlVqxGsB+/vq379+qljx47cuebiCE8ArmkWi0UzZsxQmzZt9NqMmUr6ZIKsQTXl3eI2+bboLnfvKs4uEZBRkK/soz//Podp32Zl29JUI6SmHho0QP369VP79u0JTOWIxTAMw9lFuDqbzSZ/f39lZGTIz8/P2eUA5ZZhGNq6datef32WFi9erAJZ5N34Vvm26iVrSANnl4cKxijIV/aRXcrc87Vy9n2rnLPpCgm9Tv3v7ae+ffsqMjJSbm48i9pVmPksJzxdBYQnoOydPHlS7777rmbOmq0Tx47Kp1ZjeYf3VOWGHXi4JkqNUZCvC4d3/ncO07fKOXdGobXC1P/efurXr5/atWtHYHJRhKcyRngCnCcvL0+rVq3SazNmauOG9fL0DZR382j5ht+mSn7VnF0eyoGC3GxlH/lJ5/dsUvb+LcrNzFCt62vbA1Pbtm15Flk5QHgqY4Qn4NqQnJys2bNna+78+co6nyWfG27+fUjv+uZ8uKHEDKNAuScPKOvgDuUcStKFIz+rIC9H19epqwH33au+ffuqdevWvKfKGcJTGSM8AdeWs2fP6v3339eMma9rz+5kedWoLZ+WPVW5aRe5WX2cXR6uQXm2U7pwcIcuHExS7pEflXPujLy8fdSp062KiY5W9+7d1bRpUwJTOUZ4KmOEJ+DaZBiGNm7cqJmvv67ly5fLzcMq7yZdVeWmXvKoGubs8uBEBdnndeHITl04mKS8wz8o69RhWSwWhbe6ST1iohUdHa3IyEi+FqUCITyVMcITcO07cuSI3nzzTc158y2lnT4ln7rhqhzeS94N2vHMqArAKMhXzolflHUwSbmHkpR1fLeM/HzVur62bov5/cpS165dVbVqVWeXCichPJUxwhPgOrKzs/Xpp5/qtRkztXXLt7IG1JB3ix7ybRkjdx9/Z5eHq8QwDOWdOaELB5OUfXCHco7sVG7WOVWuUkXdu3VT9H+H4urXr89QHCQRnsoc4QlwTd9//71ef/11LVz0ofLy8+XTsIN8b7pd1tCGzi4NVyA/66wuHPpBFw7uUN7hH3ThtxS5V6qkdu0i1OO/V5fatm3L16GgUISnMkZ4AlxbWlqa5s2bpxmvz9KRQwflHXqjfMJ7qXLjjrJU4pvtr1VGXq6yjycr67/zls4f/0UyDDW4saF9KK5z586qUoWn0OPyCE9ljPAElA/5+fmKj4/XjJkztXbNGnlU9pd3s+6q0uo2VfIPdnZ5FZ5hGMo9fej3obhDSco+8pPycy4oMKiqYqK7Kzo6WlFRUQoL42YAmEd4KmOEJ6D82bt3r9544w298+5cnTt7Vt51W8nCnCinMfJylH88Wdm2NHl4WtWxYwf7IwRatmzJU73xlxGeyhjhCSi/MjMztWjRIn20eLGyLmQ7u5wKy6OSuyLatVP37t3VoUMHeXt7O7sklDOEpzJGeAIAwLWZ+SznOicAAIAJhCcAAAATCE8AAAAmuEx4Sk9P18CBA+Xn56eAgAANHTpU586dK7L9wYMHZbFYCl2WLFlib1fY9o8++qgsDgkAALggl3nM6sCBA3XixAklJCQoNzdXQ4YM0bBhw7Ro0aJC24eFhenEiRMO69566y29/PLLuu222xzWz5s3Tz169LC/DggIuOr1AwCA8sElwlNycrLi4+O1bds2tWnTRpI0c+ZM9ezZU1OnTlVoaOglfdzd3RUSEuKwbunSpbr33nvl6+vrsD4gIOCStgAAAIVxiWG7zZs3KyAgwB6cJCkqKkpubm7asmVLifaxfft2JSUlaejQoZdse+yxx1StWjW1a9dOc+fOFU9vAAAARXGJK08pKSmqUaOGw7pKlSopKChIKSkpJdrHu+++q8aNG6t9+/YO6ydOnKiuXbvKx8dHa9eu1aOPPqpz587p8ccfL3Jf2dnZys7+38PybDabiaMBAACuzKlXnsaMGVPkpO6Ly+7du//yz8nKytKiRYsKver07LPP6pZbblGrVq309NNPa/To0Xr55ZeL3d/kyZPl7+9vX/geJQAAKg6nXnl68skn9dBDDxXbpl69egoJCdHJkycd1ufl5Sk9Pb1Ec5U++eQTnT9/XoMGDbps24iICE2aNEnZ2dmyWq2Fthk7dqzi4uLsr202GwEKAIAKwqnhqXr16qpevfpl20VGRurMmTPavn27WrduLUlav369CgoKFBERcdn+7777ru68884S/aykpCQFBgYWGZwkyWq1FrsdAACUXy4x56lx48bq0aOHYmNjNWfOHOXm5mrEiBHq37+//U67Y8eOqVu3bnrvvffUrl07e999+/bpyy+/1Oeff37JfleuXKnU1FTdfPPN8vLyUkJCgl544QU99dRTZXZsAADAtbhEeJKkhQsXasSIEerWrZvc3Nx0zz33aMaMGfbtubm52rNnj86fP+/Qb+7cuapVq5aio6Mv2aeHh4dmzZqlJ554QoZhqEGDBpo2bZpiY2NL/XgAAIBrshjcl/+XmfkmZgAAcO0x81nuEs95AgAAuFYQngAAAEwgPAEAAJhAeAIAADCB8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBAACYQHgCAAAwgfAEAABgAuEJAADABMITAACACYQnAAAAEwhPAAAAJhCeAAAATCA8AQAAmEB4AgAAMIHwBAAAYALhCQAAwATCEwAAgAmEJwAAABMITwAAACYQngAAAEwgPAEAAJhAeAIAADCB8AQAAGAC4QkAAMAEwhMAAIAJhCcAAAATCE8AAAAmEJ4AAABMIDwBAACYQHgCAAAwgfAEAABggsuEp//85z9q3769fHx8FBAQUKI+hmFo3Lhxqlmzpry9vRUVFaW9e/c6tElPT9fAgQPl5+engIAADR06VOfOnSuFIwAAAOWBy4SnnJwc9evXT8OHDy9xn5deekkzZszQnDlztGXLFlWuXFkxMTG6cOGCvc3AgQO1a9cuJSQkaNWqVfryyy81bNiw0jgEAABQDlgMwzCcXYQZ8+fP18iRI3XmzJli2xmGodDQUD355JN66qmnJEkZGRkKDg7W/Pnz1b9/fyUnJ6tJkybatm2b2rRpI0mKj49Xz549dfToUYWGhpaoJpvNJn9/f2VkZMjPz+8vHR8AACh7Zj7LXebKk1kHDhxQSkqKoqKi7Ov8/f0VERGhzZs3S5I2b96sgIAAe3CSpKioKLm5uWnLli1lXjMAALj2VXJ2AaUlJSVFkhQcHOywPjg42L4tJSVFNWrUcNheqVIlBQUF2dsUJjs7W9nZ2fbXGRkZkn5PrQAAwPVc/AwvyYCcU8PTmDFjNGXKlGLbJCcnq1GjRmVUUclMnjxZEyZMuGR9WFiYE6oBAABXy9mzZ+Xv719sG6eGpyeffFIPPfRQsW3q1at3RfsOCQmRJKWmpqpmzZr29ampqQoPD7e3OXnypEO/vLw8paen2/sXZuzYsYqLi7O/LigoUHp6uqpWrSqLxXJF9V7rbDabwsLCdOTIEeZ1OQHn3/n4N3Auzr9zVYTzbxiGzp49W6L5zk4NT9WrV1f16tVLZd9169ZVSEiIEhMT7WHJZrNpy5Yt9jv2IiMjdebMGW3fvl2tW7eWJK1fv14FBQWKiIgoct9Wq1VWq9VhXUkfn+Dq/Pz8yu0vjivg/Dsf/wbOxfl3rvJ+/i93xekil5kwfvjwYSUlJenw4cPKz89XUlKSkpKSHJ7J1KhRIy1dulSSZLFYNHLkSD3//PNasWKFdu7cqUGDBik0NFR9+vSRJDVu3Fg9evRQbGystm7dqk2bNmnEiBHq379/ie+0AwAAFYvLTBgfN26cFixYYH/dqlUrSdKGDRvUuXNnSdKePXvsk7clafTo0crMzNSwYcN05swZdejQQfHx8fLy8rK3WbhwoUaMGKFu3brJzc1N99xzj2bMmFE2BwUAAFyOy4Sn+fPna/78+cW2+fMMeYvFookTJ2rixIlF9gkKCtKiRYuuRonlmtVq1fjx4y8ZrkTZ4Pw7H/8GzsX5dy7OvyOXe0gmAACAM7nMnCcAAIBrAeEJAADABMITAACACYQnSJK+/PJL3XHHHQoNDZXFYtGyZcsu22fjxo266aabZLVa1aBBg8tO6EfRzJ7/jRs3ymKxXLIU97VCKNrkyZPVtm1bValSRTVq1FCfPn20Z8+ey/ZbsmSJGjVqJC8vLzVv3lyff/55GVRb/lzJ+Z8/f/4l7/8/3kmNknvjjTfUokUL+zOcIiMj9X//93/F9qno733CEyRJmZmZatmypWbNmlWi9gcOHFCvXr3UpUsXJSUlaeTIkXr44Ye1Zs2aUq60fDJ7/i/as2ePTpw4YV/+/F2NKJkvvvhCjz32mL799lslJCQoNzdX0dHRyszMLLLPN998owEDBmjo0KHasWOH+vTpoz59+uinn34qw8rLhys5/9LvD2z84/v/0KFDZVRx+VKrVi29+OKL2r59u7777jt17dpVvXv31q5duwptz3tfkgH8iSRj6dKlxbYZPXq00bRpU4d19913nxETE1OKlVUMJTn/GzZsMCQZv/32W5nUVNGcPHnSkGR88cUXRba59957jV69ejmsi4iIMP7+97+XdnnlXknO/7x58wx/f/+yK6qCCQwMNN55551Ct/HeNwyuPOGKbN68WVFRUQ7rYmJitHnzZidVVDGFh4erZs2a6t69uzZt2uTscsqNiw/bDQoKKrINvwOlpyTnX5LOnTun2rVrKywsrNgrJSi5/Px8ffTRR8rMzFRkZGShbXjvM2yHK5SSkqLg4GCHdcHBwbLZbMrKynJSVRVHzZo1NWfOHH366af69NNPFRYWps6dO+v77793dmkur6CgQCNHjtQtt9yiZs2aFdmuqN8B5p39NSU9/w0bNtTcuXO1fPlyffDBByooKFD79u119OjRMqy2/Ni5c6d8fX1ltVr1yCOPaOnSpWrSpEmhbXnvu9ATxgH8T8OGDdWwYUP76/bt22v//v169dVX9f777zuxMtf32GOP6aefftLXX3/t7FIqpJKe/8jISIcrI+3bt1fjxo315ptvatKkSaVdZrnTsGFDJSUlKSMjQ5988okGDx6sL774osgAVdFx5QlXJCQkRKmpqQ7rUlNT5efnJ29vbydVVbG1a9dO+/btc3YZLm3EiBFatWqVNmzYoFq1ahXbtqjfgZCQkNIssVwzc/7/zMPDQ61ateJ34Ap5enqqQYMGat26tSZPnqyWLVvqtddeK7Qt733CE65QZGSkEhMTHdYlJCQUOUaO0peUlKSaNWs6uwyXZBiGRowYoaVLl2r9+vWqW7fuZfvwO3D1XMn5/7P8/Hzt3LmT34GrpKCgQNnZ2YVu470v7rbD786ePWvs2LHD2LFjhyHJmDZtmrFjxw7j0KFDhmEYxpgxY4wHH3zQ3v7XX381fHx8jFGjRhnJycnGrFmzDHd3dyM+Pt5Zh+DSzJ7/V1991Vi2bJmxd+9eY+fOncY///lPw83NzVi3bp2zDsGlDR8+3PD39zc2btxonDhxwr6cP3/e3ubBBx80xowZY3+9adMmo1KlSsbUqVON5ORkY/z48YaHh4exc+dOZxyCS7uS8z9hwgRjzZo1xv79+43t27cb/fv3N7y8vIxdu3Y54xBc2pgxY4wvvvjCOHDggPHjjz8aY8aMMSwWi7F27VrDMHjvF4bwBMMw/nfr+5+XwYMHG4ZhGIMHDzY6dep0SZ/w8HDD09PTqFevnjFv3rwyr7u8MHv+p0yZYtSvX9/w8vIygoKCjM6dOxvr1693TvHlQGHnXpLDe7pTp072f4+LPv74Y+PGG280PD09jaZNmxqrV68u28LLiSs5/yNHjjSuv/56w9PT0wgODjZ69uxpfP/992VffDnwt7/9zahdu7bh6elpVK9e3ejWrZs9OBkG7/3CWAzDMMruOhcAAIBrY84TAACACYQnAAAAEwhPAAAAJhCeAAAATCA8AQAAmEB4AgAAMIHwBAAAYALhCQAAwATCEwAAgAmEJwAAABMITwAAACYQngCgCKdOnVJISIheeOEF+7pvvvlGnp6eSkxMdGJlAJyJLwYGgGJ8/vnn6tOnj7755hs1bNhQ4eHh6t27t6ZNm+bs0gA4CeEJAC7jscce07p169SmTRvt3LlT27Ztk9VqdXZZAJyE8AQAl5GVlaVmzZrpyJEj2r59u5o3b+7skgA4EXOeAOAy9u/fr+PHj6ugoEAHDx50djkAnIwrTwBQjJycHLVr107h4eFq2LChpk+frp07d6pGjRrOLg2AkxCeAKAYo0aN0ieffKIffvhBvr6+6tSpk/z9/bVq1SpnlwbASRi2A4AibNy4UdOnT9f7778vPz8/ubm56f3339dXX32lN954w9nlAXASrjwBAACYwJUnAAAAEwhPAAAAJhCeAAAATCA8AQAAmEB4AgAAMIHwBAAAYALhCQAAwATCEwAAgAmEJwAAABMITwAAACYQngAAAEwgPAEAAJjw/0dY6rFKMJ4LAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x = np.linspace(l_in, l_in + l_junction, 13) # x coordinates of the top edge vertices\n",
"y = np.array(\n",
" [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13]\n",
") # y coordinates of the top edge vertices\n",
"\n",
"# using concatenate to include bottom edge vertices\n",
"x = np.concatenate((x, np.flipud(x)))\n",
"y = np.concatenate((y / 2, -np.flipud(y / 2)))\n",
"\n",
"# stacking x and y coordinates to form vertices pairs\n",
"vertices = np.transpose(np.vstack((x, y)))\n",
"\n",
"junction = td.Structure(\n",
" geometry=td.PolySlab(vertices=vertices, axis=2, slab_bounds=(0, t)), medium=si\n",
")\n",
"junction.plot(z=t / 2)\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "f33fc2d8",
"metadata": {},
"source": [
"For the output waveguide bends, we use S bend sine waveguides, which are described by the function\n",
"
\n",
"\n",
"Different types of bend can also be used here for similar performance. To define the bends, the most convenient way is to use `gdstk`. First compute the $x$ and $y$ coordinates of the bend, then define a `FlexPath` and add it to a gds cell. The paths in the cell can be converted to Tidy3D [PolySlabs](../_autosummary/tidy3d.PolySlab.html) using the `from_gds` method."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2f517ebb",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:04.122624Z",
"iopub.status.busy": "2023-03-27T23:47:04.122434Z",
"iopub.status.idle": "2023-03-27T23:47:04.400328Z",
"shell.execute_reply": "2023-03-27T23:47:04.399604Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAAEvCAYAAAA+WMuGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOb0lEQVR4nO3dd1xV9eMG8Ofeyx3MC6gsRcQRTsQtauIgTc0km6aJ81uKJVmao5wlmbnKlWlapmaWomm5FQfmHoiKIycyHHAv887P7w/r/iRxJXKA+7xfr/OCe+45l+ceGY9nfI5MCCFARERERHZJLnUAIiIiIpIOyyARERGRHWMZJCIiIrJjLINEREREdoxlkIiIiMiOsQwSERER2TGWQSIiIiI7xjJIREREZMdYBomIiIjsGMsgEdED7Ny5EzKZDDt37pQ6ChHRU8EySEQEYO7cuViyZInUMf6T5cuXY+bMmVLHAABYrVZ88cUXCAwMhEajQXBwMFasWPFI66akpGDkyJFo27YtXF1dH1jCN2/ejP79+6Nu3bpQKBSoUqVK0b0JIjvDMkhEhPuXwdatWyMvLw+tW7cu/lCPqCSVwTFjxuCjjz7Cc889h6+//hqVK1fGm2++iZ9++umh6yYlJWHKlClITk5GvXr1Hrjs8uXLsXz5cmi1Wvj5+RVVfCK7xDJIRDY5OTlSRyhx5HI5NBoN5HL+unyY5ORkTJs2DVFRUViwYAEGDhyI3377Dc8++yyGDx8Oi8XywPUbNWqEW7du4ezZsxg2bNgDl508eTL0ej327t2L+vXrF+XbILI7/O1GVEYlJyejf//+8PPzg1qtRmBgIAYNGgSj0QgAWLJkCWQyGeLi4jB48GB4eXmhUqVKtvXnzp2LOnXqQK1Ww8/PD1FRUcjMzCzwNc6dO4eXX34ZPj4+0Gg0qFSpEt544w3odDrbMlu2bEGrVq3g7u4OFxcXBAUFYfTo0Q/N/yjrGQwGjBs3DtWrV4darYa/vz9GjBgBg8Fwz+v9+OOPaNq0KZycnODh4YHWrVtj8+bNAIAqVaogMTERcXFxkMlkkMlkaNOmDYD7nzO4atUqNGrUCI6Ojihfvjx69eqF5OTkAsv06dMHLi4uSE5ORkREBFxcXFChQgV8+OGHDy1GALB27Vp06dLF9m9YrVo1TJo0qcC6bdq0wYYNG3D58mVb9gcdMu3Tp49tuX9P48ePf2imh+U1mUwYPHiwbZ5MJsOgQYNw7do17Nu374Hru7q6wtPT85G+lp+fH5RK5RPlJaI7HKQOQERF7/r162jatCkyMzPxv//9DzVr1kRycjJ++eUX5ObmQqVS2ZYdPHgwKlSogLFjx9r2DI4fPx4TJkxAeHg4Bg0ahKSkJMybNw8HDx7E3r17oVQqYTQa0bFjRxgMBrz77rvw8fFBcnIy1q9fj8zMTGi1WiQmJuKFF15AcHAwJk6cCLVajfPnz2Pv3r0PzP8o61mtVrz44ovYs2cP/ve//6FWrVpISEjAjBkzcPbsWcTGxtqWnTBhAsaPH48WLVpg4sSJUKlU2L9/P7Zv344OHTpg5syZePfdd+Hi4oIxY8YAALy9ve+bb8mSJejbty+aNGmCmJgYpKWlYdasWdi7dy+OHj0Kd3d327IWiwUdO3ZEs2bN8OWXX2Lr1q2YNm0aqlWrhkGDBj1wOyxZsgQuLi4YNmwYXFxcsH37dowdOxZ6vR5Tp04FcOewrE6nw7Vr1zBjxgwAgIuLy31f8+2330Z4eHiBeRs3bsSyZcvg5eVlm3fz5s0HZvuHq6sr1Go1AODo0aNwdnZGrVq1CizTtGlT2/OtWrV6pNclomIkiKjM6d27t5DL5eLgwYP3PGe1WoUQQixevFgAEK1atRJms9n2fHp6ulCpVKJDhw7CYrHY5s+ePVsAEN99950QQoijR48KAGLVqlX3zTFjxgwBQNy4ceOx8j/KekuXLhVyuVzs3r27wPz58+cLAGLv3r1CCCHOnTsn5HK5eOmllwq8HyH+f1sIIUSdOnVEWFjYPV9nx44dAoDYsWOHEEIIo9EovLy8RN26dUVeXp5tufXr1wsAYuzYsbZ5kZGRAoCYOHFigdds0KCBaNSo0YM3ghAiNzf3nnlvv/22cHJyEvn5+bZ5Xbp0EQEBAQ99vcKcO3dOaLVa8dxzzxX4PgDwSNPixYsL5Khateo9XyMnJ0cAECNHjnzkXKtWrSqw3R/kSd4/EQnBw8REZYzVakVsbCy6du2Kxo0b3/O8TCYr8HjgwIFQKBS2x1u3boXRaER0dHSB8+QGDhwINzc3bNiwAQCg1WoBAJs2bUJubm6hWf7ZQ7Z27VpYrdZHfg+Pst6qVatQq1Yt1KxZEzdv3rRN7dq1AwDs2LEDABAbGwur1YqxY8fec97fv7fFozh06BDS09MxePBgaDQa2/wuXbqgZs2atu1zt3feeafA42effRZ//fXXQ7+Wo6Oj7fOsrCzcvHkTzz77LHJzc3HmzJnHzv5vOTk5eOmll+Dh4YEVK1YU+D7YsmXLI00dO3a0rZOXl2fbS3i3f7ZTXl7eE2cmoqLHw8REZcyNGzeg1+tRt27dR1o+MDCwwOPLly8DAIKCggrMV6lUqFq1qu35wMBADBs2DNOnT8eyZcvw7LPP4sUXX0SvXr1sRfH111/HwoULMWDAAIwcORLt27dH9+7d8corrzzwgoxHWe/cuXM4ffo0KlSoUOhrpKenAwAuXLgAuVyO2rVrP9L2eJj7bR8AqFmzJvbs2VNgnkajuSejh4cHMjIyHvq1EhMT8fHHH2P79u3Q6/UFnrv7vMz/auDAgbhw4QLi4+NRrly5As/9+1Dyo3B0dCz0fM38/Hzb80RU8rAMEtm5J/kDPW3aNPTp0wdr167F5s2b8d577yEmJgZ//vknKlWqBEdHR+zatQs7duzAhg0bsHHjRqxcuRLt2rXD5s2bC+yJ+nemh61ntVpRr149TJ8+vdDX8Pf3/8/vqyjd7z0+TGZmJsLCwuDm5oaJEyeiWrVq0Gg0OHLkCD766KPH2tNamFmzZmHFihX48ccfERIScs/zqampj/Q6Wq3W9j3k6+uLHTt2QAhRYK9rSkoKAHAIGKISioeJicqYChUqwM3NDSdPnvxP6wcEBAC4M+bb3YxGIy5evGh7/h/16tXDxx9/jF27dmH37t1ITk7G/Pnzbc/L5XK0b98e06dPx6lTp/DZZ59h+/bttsO49/Ow9apVq4bbt2+jffv2CA8Pv2f6Z89dtWrVYLVacerUqQd+vUc9ZHy/7fPPvH9vn/9q586duHXrFpYsWYKhQ4fihRdeQHh4ODw8PO5Z9nEPd+/evRsffvghoqOj0bNnz0KX8fX1faRp5cqVtnVCQkKQm5uL06dPF3it/fv3254nopKHZZCojJHL5YiIiMBvv/2GQ4cO3fO8EOKB64eHh0OlUuGrr74qsOyiRYug0+nQpUsXAIBer4fZbC6wbr169SCXy22HCm/fvn3P6/9TCAo7nPiPR1nvtddeQ3JyMr799tt7ls3Ly7NdGR0REQG5XI6JEyfeszft7vfn7Ox8z9A5hWncuDG8vLwwf/78Au/hjz/+wOnTp23b50n9s0fx7oxGoxFz5869Z1lnZ+dHPmyckpKC1157Da1atbJdkVyY/3LOYLdu3aBUKgtkFEJg/vz5qFixIlq0aFEgx5kzZ2AymR4pNxE9PTxMTFQGTZ48GZs3b0ZYWJht2JWUlBSsWrUKe/bsKTD0yb9VqFABo0aNwoQJE/D888/jxRdfRFJSEubOnYsmTZqgV69eAIDt27djyJAhePXVV/HMM8/AbDZj6dKlUCgUePnllwEAEydOxK5du9ClSxcEBAQgPT0dc+fORaVKlR44xMijrPfWW2/h559/xjvvvIMdO3agZcuWsFgsOHPmDH7++Wds2rQJjRs3RvXq1TFmzBhMmjQJzz77LLp37w61Wo2DBw/Cz88PMTExAO4MeDxv3jx8+umnqF69Ory8vGwXo9xNqVRiypQp6Nu3L8LCwtCjRw/b0DJVqlTB+++//1//2Qpo0aIFPDw8EBkZiffeew8ymQxLly4ttMw3atQIK1euxLBhw9CkSRO4uLiga9euhb7ue++9hxs3bmDEiBH33BUkODgYwcHBAP7bOYOVKlVCdHQ0pk6dCpPJhCZNmiA2Nha7d+/GsmXLChwyHzVqFL7//ntcvHixwLiIn376KYA750sCwNKlS23nYX788ce25U6cOIF169YBAM6fPw+dTmdbt379+vd9/0RUCAmvZCaip+jy5cuid+/eokKFCkKtVouqVauKqKgoYTAYhBD/P7RMYcPPCHFnKJmaNWsKpVIpvL29xaBBg0RGRobt+b/++kv069dPVKtWTWg0GuHp6Snatm0rtm7daltm27Ztolu3bsLPz0+oVCrh5+cnevToIc6ePfvA7I+6ntFoFFOmTBF16tQRarVaeHh4iEaNGokJEyYInU5XYNnvvvtONGjQwLZcWFiY2LJli+351NRU0aVLF+Hq6ioA2IaZ+ffQMv9YuXKl7fU8PT1Fz549xbVr1wosExkZKZydne95f+PGjROP8ut37969onnz5sLR0VH4+fmJESNGiE2bNt2TJzs7W7z55pvC3d1dAHjgMCthYWH3HSZm3LhxD830MBaLRUyePFkEBAQIlUol6tSpI3788cd7lvtn2J2LFy8WmH+/bP/eXv98/xY2RUZGPvH7ILInMiEecsyIiIiIiMosnjNIREREZMdYBomIiIjsGMsgERERkR1jGSQiIiKyYyyDRERERHaMZZCIiIjIjtndoNNWqxXXr1+Hq6vrY9/CiYiIiEhqQghkZWXBz88PcvmT79ezuzJ4/fr1EnMDeyIiIqL/6urVq6hUqdITv47dlUFXV1cAdzagm5ubxGmIiIiIHo9er4e/v7+t0zwpuyuD/xwadnNzYxkkIiKiUquoTnfjBSREREREdoxlkIiIiMiOsQwSERER2TGWQSIiIiI7xjJIREREZMdYBomIiIjsGMsgERERkR1jGSQiIiKyYyyDRERERHaMZZCIiIjIjrEMEhEREdkxlkEiIiIiO8YySERERGTHWAaJiIiI7BjLIBEREZEdYxkkIiIismMOUgcgIiKisk8IAavVCqvVCiGEbfrnOXp0eXl5Rfp6LINERER2wmg0IiMjAzqdzjbp9XpkZWUhOzvbNuXk5CA3Nxd5eXnIy8tDTk4u8g35yMvLR36+AfkGA4xGA0wmE0wmM0wmI8xmMyxmMywWCywWC6wWC6zCCvF3AaSSi2WQiIiolDKbzUhPT8f169eRkpKC1NRUpKen48aNG0hPT0dqWhrSb9zE7dsZ0GXeRm5Ozn1fS+6ghIPaEXKVI+RKDeCgujMp1BAKJWQOKsgUKsgcXCBTKwEnB8jkDpDJFYDizkeFXA4HmQKQywGZ/M5zMjkgk0EmkwGQAbaPuOsxPQ6ryYCMTbOL7PVYBomIiEoonU6Hixcv4q+//sLly5dx5coVXL16FRcv3fl462Z6wb1uMhlUzlo4OLsDGjdA4wa5UyXIK9eCOsgVjhpXyDUukKudIFc7Q6Z2uvO5yhEyhVKy90mPx2rIZRkkIiIqK7KysnD27FnblJSUhNNJZ3Hxr7+gy8ywLadQaaDSVoDMpTxkLuXhUKM63BuUg8K1HBTOHnBwKQe5k9udvXFEj0HSMhgTE4PVq1fjzJkzcHR0RIsWLTBlyhQEBQXdd50lS5agb9++Beap1Wrk5+c/7bhERET/WX5+PhITE3HixAkkJibiZGIiEhIScT35qm0ZtasnFB6+kGl9oaz3Asq7+8Dh70nu6Pb3oVaioiVpGYyLi0NUVBSaNGkCs9mM0aNHo0OHDjh16hScnZ3vu56bmxuSkpJsj/nDQUREJYler8eRI0dw6NAhHD16FIePHMO5c0mwWiwAAI2nL+Se/nCo1AzlQl6B0rMSlJ4VIde4SJyc7JGkZXDjxo0FHi9ZsgReXl44fPgwWrdufd/1ZDIZfHx8nnY8IiKihzKbzThx4gTi4+Oxf/9+7PvzAC6cPwvgzqFdtVcg5BUC4R7eFqoKgVBWCIBc5ShxaqL/V6LOGdTpdAAAT0/PBy6XnZ2NgIAAWK1WNGzYEJMnT0adOnUKXdZgMMBgMNge6/X6ogtMRER2JysrC/Hx8di1axd279mLgwcPIj8vF3KFAzQ+1aDwroFynTtD5VMDynKVeA4flXglpgxarVZER0ejZcuWqFu37n2XCwoKwnfffYfg4GDodDp8+eWXaNGiBRITE1GpUqV7lo+JicGECROeZnQiIirDsrKysGvXLuzYsQPbduzEiePHYLVYoHL1gINvTWiavQFtxZpQ+1SHzEEldVyixyYTJWTY70GDBuGPP/7Anj17Ci1192MymVCrVi306NEDkyZNuuf5wvYM+vv7Q6fTwc3NrUiyExFR2WE2m7F//35s3boVmzZvwYED+2Exm6HWlodDxTpQ+9eDxr8uHDwr8px1koTVkIurM18rsi5TIvYMDhkyBOvXr8euXbseqwgCgFKpRIMGDXD+/PlCn1er1VCr1UURk4iIyqjr169j48aN+P33P7Bp82ZkZ+mhdHSBsnIwtO3+B01AfTh4+LH8UZkkaRkUQuDdd9/FmjVrsHPnTgQGBj72a1gsFiQkJKBz585PISEREZVFQggcPXoU69atw+rYtUg4fgyQyeDkFwRl8AvwqdoIKp/qPN+P7IKkZTAqKgrLly/H2rVr4erqitTUVACAVquFo+OdK6169+6NihUrIiYmBgAwceJENG/eHNWrV0dmZiamTp2Ky5cvY8CAAZK9DyIiKvnMZjPi4uKwevVqrI5di9TryVA6ukAV2AjlXvgAjoENoXDSSh2TqNhJWgbnzZsHAGjTpk2B+YsXL0afPn0AAFeuXIFcLrc9l5GRgYEDByI1NRUeHh5o1KgR4uPjUbt27eKKTUREpYTJZML27dvxyy+/4JdfVyMz4zY0Ht5QVm0Kr2cHQeNfFzJFiThjikgyJeYCkuKi1+uh1Wp5AQkRURllsViwe/duLF++HD+v+gW6zAxoyvlBVaMFnIJaQeVdjef+UalWJi8gISIiehJCCBw5cgTLli3DshU/IT01BWoPH6hrhsO31rNQVghkASS6D5ZBIiIqta5fv45ly5Zh0eIlSDp9CipXT6ifaQmf8DCo/IJYAIkeAcsgERGVKkajEWvXrsW3Cxdi29atgNwBjjWaw+uV8dAENuAVwESPiWWQiIhKhdOnT2PRokX4bvESZNy+BcdKNeH+3GA412wFucZF6nhEpRbLIBERlVgGgwG//vorZs+Zi33xe6F01kJTqw18IzpAVSFA6nhEZQLLIBERlTiXLl3CN998gwXfLsTtWzfhVKU+yr84Ak41QiFzUEodj6hMYRkkIqISQQiBHTt2YMbMmdiwfj0cNM7Q1G4Lv4jOUJb3lzoeUZnFMkhERJLKzc3FsmXLMGPmLJw+lQhH7yrw6BAF59ptIFdppI5HVOaxDBIRkSTS09MxZ84cfPX1bGRmZsC5ejN4vfEZNJWDOSQMUTFiGSQiomJ15swZTJs2Dd//sBRCJodj3XD4NXoRSg9fqaMR2SWWQSIiKhZ//vknJsfE4Ld166ByKwfn0DfgEtIJCg4LQyQplkEiInpqhBDYsmULPv1sMnbvioOmvD/KdXoPzrXb8qpgohKCZZCIiIqcEALr1q3D+AkTcezoETj6PYMKEaPhWKMZ7xBCVMKwDBIRUZGxWq1YvXo1xk+YiMSTCXAKCIbX659CE1CfF4UQlVAsg0RE9MSsVit++eUXjB03HklnTsMpsAG83/wcGv+6UkcjoodgGSQiov9MCIE1a9bg40/G4vSpRDhVbQSfXlOhrlhL6mhE9IhYBomI6LEJIbBhwwaM+fgTnDh+7M6ewJ5ToanEEkhU2rAMEhHRY4mLi8OIj0biwP4/4VS5Lrx7xEBTuZ7UsYjoP2IZJCKiR3LkyBGMHDUKWzZvhqNfDXi9NgmaKiG8MISolGMZJCKiB7pw4QJGjx6Nn3/+GZoK/igfMQpOz7RgCSQqI1gGiYioUOnp6Zg0aRLmzZ8PB2f3O4NF123PcQLLEGG1wGrIgdWQC2HIhdWYC2HMh9WUD2HMgzAbYDUZIMxGCLMBwmyCsJggzCbAYoKwmCGsZsBqgUxYAKsFENY7k+1zcddHAeDvSeDvz++cg0qPTlitRfp6LINERFRAbm4uZsyYgZjPP4fBLODasidcG3WFXKmROho9hNWUD0t2Biw5t2HJzoA1NxOWHB0seTpYczIBYw5gyIY1Tw9zXjbMhrwHvp6DUgmNxhEaR8c7HzVqqNVqONo+10ClVEGlUkKpVMLBwQEODg5QKBQFJrlcDrlcDplMZvt493Q37nF+OIPBgK+//rrIXk8m7KyO6/V6aLVa6HQ6uLm5SR2HiKjEsFqt+PHHH/HRyFFIT0+Hc4Mu0Ia+BoWTVupohDt7z6y5mTBnpsKsS4M5Mw1m/Q1Ys28C2Tdh0t+EKS+7wDoOSiU8PcujglcF+Hh7oUL58vD09ES5cuXg4eEBd3d3aLVaaLVauLm5wdXVFS4uLnBxcYGzszOUSt4ysCQq6i7DPYNERIS4uDgMjX4fx48dhXNQS/h0nQClh6/UseyS1ZgP062rd6bbyTBnJAO6FBhuJcNizLctp3X3QGDlAFSpXRkBAc1RqVIl+Pn52SYfHx+4u7tzTxs9lKRlMCYmBqtXr8aZM2fg6OiIFi1aYMqUKQgKCnrgeqtWrcInn3yCS5cuoUaNGpgyZQo6d+5cTKmJiMqOv/76C8M++ABrY2PhWDEI3j2nQFOpjtSx7IKwWmDOSIEx/SKMNy7CfOMirLevIv92qm0Zbx8/BNV8BrXbPIcaNWqgatWqqFq1KgIDA+Hq6ipheipLJC2DcXFxiIqKQpMmTWA2mzF69Gh06NABp06dgrOzc6HrxMfHo0ePHoiJicELL7yA5cuXIyIiAkeOHEHdurztERHRo8jKysJnn32G6dNnQObkhnIvfADn2mGQyeRSRyuThBAwZ1yHMfUcDCnnYEk/D2PaX7Zz9rx8fNEgpD6C67VBnTp1ULt2bdSqVQsuLi4SJyd7UKLOGbxx4wa8vLwQFxeH1q1bF7rM66+/jpycHKxfv942r3nz5ggJCcH8+fMf+jV4ziAR2TOr1Yrvv/8eIz4aiYxMHVyadIdbs5chV/HikKJkNRlgTEmCIfkMjNdPw5xyFsYcHQCgckAgQps3RaNGjdCgQQPUr18fFSpUkDgxlSZl+pxBne7OD4qnp+d9l9m3bx+GDRtWYF7Hjh0RGxtb6PIGgwEGg8H2WK/XP3lQIqJS6MCBAxgcNQSHDx2ES63W8HmlDxzcvKSOVSZYTfkwXDuF/KsnYb52EvnXz8JqMcPZ1RUtmjdHy57RCA0NRZMmTR74N45ICiWmDFqtVkRHR6Nly5YPPNybmpoKb2/vAvO8vb2Rmppa6PIxMTGYMGFCkWYlIipN0tPTMXLkSCxevBiOPlXh/ebn0PjztJonIawWGFPPI//SMRivHEd+8mlYzSZ4lq+A58LC0KbNILRu3Rp16tSBQsFxGalkKzFlMCoqCidPnsSePXuK9HVHjRpVYE+iXq+Hv79/kX4NIqKSyGw2Y968eRj98ccwmAHPDoPhUr8jB43+jyy5OuRdPIL8vw7BePkYTDk6OLm4oG2bNugwrD/at2+P2rVr8+pdKnVKRBkcMmQI1q9fj127dqFSpUoPXNbHxwdpaWkF5qWlpcHHx6fQ5dXqOwNkEhHZk/j4eLz9ziCcPJkAl/od4d26NxSOPE/6cZluJyP33H4YL+xH3rXTEMKKevVD0HVoFDp16oTmzZvDwaFE/Ckl+s8k/Q4WQuDdd9/FmjVrsHPnTgQGBj50ndDQUGzbtg3R0dG2eVu2bEFoaOhTTEpEVDqkp6fjo48+wpIlS+Do9wx83poGte8zUscqNYQQMN24hNykvTCci0f+jStQqTV47rlwvDTufXTu3Bm+vhx/kcoWSctgVFQUli9fjrVr18LV1dV23p9Wq4WjoyMAoHfv3qhYsSJiYmIAAEOHDkVYWBimTZuGLl264KeffsKhQ4ewYMECyd4HEZHUrFYrvv32W4z4aCTyTBZ4dhwCl+DneEj4ERlvXEbO6V0wntuL/JvX4OqmxWsR3dC9e3c899xzcHJykjoi0VMjaRmcN28eAKBNmzYF5i9evBh9+vQBAFy5cgVy+f+Pe9WiRQssX74cH3/8MUaPHo0aNWogNjaWYwwSkd06duwYBv7vbRw6eAAu9cLh3aYvbyH3CMy6dOScjoPhzC7kpV2Eq5sWb77yMl599VW0a9cOKpVK6ohExaJEjTNYHDjOIBGVFVlZWRg7diy++uorqMpXhva5Qbx7yENYDbnIPRuPvMTtyL18AmqNIyK6dcObb/ZAx44deY45lQplepxBIiJ6NLGxsRgcNQTpN2/BrXVvuDWOgEzBX+mFEULAcC0R2Se2IP/sXlhNBrQOa4N+E79H9+7deZcPsnv8zUFEVIpcvXoVUUOG4Ld16+BUrQl8+k2Eg9b74SvaIUtOJrJPbkP+yS3Iv3kNAYFVMXDsx3jrrbdQuXJlqeMRlRgsg0REpYDFYsHs2bMxeswYmBUalO82Ek5BLTmm3b8IIWBIPoXso78jL2kvFAoFXnn5ZQwcOABhYWEFzkEnojtYBomISrjjx4+jX/8BOHLkMFxDOqFcWCTkamepY5UoVmM+chK3I/fY78hPv4QqVavh3S+moE+fPrz9G9FDsAwSEZVQeXl5mDhxIr6YOhWqcv7wfvMLaCrVkjpWiWLWpSPryHrkJWyGxZCLLi+8gHeHLED79u25F5DoEbEMEhGVQDt27EC//gNw5epVuLboAW2zlyFTKKWOVWIYrich6+Bq5Cbtg4urK4ZGvYOoqChUqVJF6mhEpQ7LIBFRCZKRkYHhw4dj0aJFcKpcFz59voay3INv02kvhNWCvPMHkHNoDXKvnkJgteoYPmc2evfuDWdnHjYn+q9YBomISojVq1fjnUGDkaHPhmfHKLjU7wiZjIc6hcWEnMQdyDm4Bvk3r6JFy1b4aPZavPDCCzwUTFQEWAaJiCSWmpqKwVFRWLN6NZyfaQ7vV96Bg2t5qWNJzmrMR/bxTcg9HAuD7ga6RURg1MhVaNasmdTRiMoUlkEiIokIIfD9999jaPT7yLfIOFzM36yGXGQdWY+cw2thNeSg55s9MXLkR6hVixfPED0NLINERBK4fPkyBgwciK1btsClbjt4tRsAhaN93yLTmp8N/eHfkHtkHWAyYMCA/vjoo48QEBAgdTSiMo1lkIioGFmtVsyfPx/DR4yAxcEJXq+Mg2O1JlLHkpTVkAv94XXIPRQLmdWMQW//DyNGjEDFihWljkZkF1gGiYiKyblz59C3X3/s3bMbrg06oVxYX8jVTlLHkozVmHfncPDBNYDZgEHvvI2RI0fC19dX6mhEdoVlkIjoKbNYLJg5cyZGj/kYMmcPeL8xGZqAYKljSUaYTcg69gdy9q+CNT8bAwcOwOjRo1GpEofQIZICyyAR0VN0+vRpRPbpi4MHD8C1YVe4t+4NuUojdSxJCKsFOYk7kL1vBUy6G+jduzfGjRvHgaKJJMYySET0FJjNZkybNg2fjB0HhVsFeL85BZpKtaWOJQkhBPLOH0DWnh+Qn34Z3V9+GZ9OmsSrg4lKCJZBIqIilpiYiN6RfXD0yBG4NomAtlVPyJVqqWNJwpB8Bvq4xci9mog2bdth6oZf0LhxY6ljEdFdWAaJiIqI2WzGF198gfHjJ0Dh7gPvnl9AXbGm1LEkYcpIgS5uCXKS9qJuvWB8+e1GdOjQwe7HUCQqiVgGiYiKQEJCAnpH9sHxY8fg2qw73Fu+CZmDSupYxc6Snw3d3hXIOboB3t7emPv99+jVqxdvG0dUgrEMEhE9AZPJhClTpmDChIlw8PCDd6+pUPsFSR2r2AmLGVlHNyB7309QyqyYNHEC3n//fTg6OkodjYgegmWQiOg/OnHiBHpH9sGJ48fh2uzlv/cGKqWOVezyLhyCfuciGG8no1+/fpg0aRJ8fHykjkVEj4hlkIjoMZlMJnz++eeYOHESHDwrwvutL6H2fUbqWMXOdOsqMncsQu6FQ2jdpg2+nrUewcH2O34iUWnFMkhE9BhsewNPnLizN7BFD7vbG2g15CJz73LkHPkNlfwrY+bq1YiIiODFIUSlFMsgEdEjuGdvYK8vofatIXWsYiWEFTkntyNr9w+Qm/MxaeJEDBs2DBqNfQ6iTVRWSHp5165du9C1a1f4+flBJpMhNjb2gcvv3LkTMpnsnik1NbV4AhORXUpISECTps0wbvwEODV5CV5vzbC7ImhIPY8by0bg1u8z8VLn53DubBJGjx7NIkhUBki6ZzAnJwf169dHv3790L1790deLykpCW5ubrbHXl5eTyMeEdk57g0ELHlZ0O1eiqxjf6BWrdqYt2wnwsLCpI5FREVI0jLYqVMndOrU6bHX8/Lygru7e9EHIiL624kTJ/BW70gkJCTY5bmBQliRk7AN+l1LoJJZMGP6dAwZMgQODjy7iKisKZWjgIaEhMDX1xfPPfcc9u7d+8BlDQYD9Hp9gYmI6H5MJhMmTZqERo0a42xKJrx7fQmP1r3tqggab1zCzeUjceuPWXi12ws4d/YsoqOjWQSJyqhS9ZPt6+uL+fPno3HjxjAYDFi4cCHatGmD/fv3o2HDhoWuExMTgwkTJhRzUiIqjY4fP463ekfi5MmTcG32CtxbvGFXJdBqzINuz3JkHV6H6tWr45vt29G2bVupYxHRUyYTQgipQwCATCbDmjVrEBER8VjrhYWFoXLlyli6dGmhzxsMBhgMBttjvV4Pf39/6HS6AucdEpH9MhqNiImJwaRPP4XSsxLcO0VD7VNd6ljFKvfsPui3LwAM2Rg39hN88MEHUKns73Z6RKWBXq+HVqstsi5TqvYMFqZp06bYs2fPfZ9Xq9VQq9XFmIiISpOjR4+id2QfnDqVCNdmr0Lb4nXIFPazN9Csv4HMbd8g5+yf6NS5M+bMno3AwECpYxFRMSr1ZfDYsWPw9fWVOgYRlTIGgwGffvopJsfEQF0+AN5vTYfKu5rUsYqNsFqQdXg9svb+CE93Lb7/5Rd0796dA0cT2SFJy2B2djbOnz9ve3zx4kUcO3YMnp6eqFy5MkaNGoXk5GT88MMPAICZM2ciMDAQderUQX5+PhYuXIjt27dj8+bNUr0FIiqFDh48iN6RfXD2bBJcm78ObeirdrU30JB6HrrNs5GfegFRUVH49NNPodVqpY5FRBKRtAweOnSowMnJw4YNAwBERkZiyZIlSElJwZUrV2zPG41GfPDBB0hOToaTkxOCg4OxdetWnuBMRI8kPz8f48ePx9SpU6H2rgrv3jOh8rKfQ6JWYz50e5cj69Ba1K5dG4vW7EOzZs2kjkVEEisxF5AUl6I+6ZKISof4+Hj07tMXFy9ehFvoG3Br9jJkilJ/pswjy7t4BLqt8yByMjBxwngMGzYMSqX97A0lKkt4AQkR0WPIycnBmDFj8NVXX0FTMQjekbOgKl9Z6ljFxpKnR+b2Rcg+uQ1hbdpi4bcLUL26fV0pTUQPxjJIRGXWtm3b0K//ACSnpMC9bX+4NuoKmVwhdaxiIYRA7uld0O/4FhoF8N1336FPnz68QISI7vHYdyCJjIzErl27nkYWIqIikZmZiQEDBiA8PBw34QbvPl/DrUmE3RRBs/4mbq2ehJu/TUXX58ORdOY0+vbtyyJIRIV67D2DOp0O4eHhCAgIQN++fREZGYmKFSs+jWxERI9t3bp1+N/b7+BWph6eHYfApX4HyGSl8s6bj00IK7KPb4I+bjHKuWuxLDYW3bp1kzoWEZVwj/0bMjY2FsnJyRg0aBBWrlyJKlWqoFOnTvjll19gMpmeRkYioodKTU3FK6++im7duiHbxR/efefANeR5uymCptvJuLlyDG5vmoM+vd7EmdOnWASJ6JE88dXER44cweLFi7Fw4UK4uLigV69eGDx4MGrUqFFUGYsUryYmKluEEFi8eDGihw2DwSKDW9uBcKrV2m4OiQqrBVmH1kK/ZxkqVvTD4kUL0a5dO6ljEdFTVNRd5on+y5ySkoItW7Zgy5YtUCgU6Ny5MxISElC7dm3MmDHjicMRET3I+fPn0b59OPr37w/h3whe/ebCuXaY3RRB443LuLF8BDJ3Lsa7UYNw6mQCiyARPbbHPmfQZDJh3bp1WLx4MTZv3ozg4GBER0fjzTfftLXTNWvWoF+/fnj//feLPDARkclkwrRp0zBu/ATInLTwenUCHKs2kjpWsREWM/T7f4V+30+oVrUqvt+7F6GhoVLHIqJS6rHLoK+vL6xWK3r06IEDBw4gJCTknmXatm0Ld3f3IohHRFTQwYMH0a//ACSePAnXxt2gbdUTcpVG6ljFxpj2FzI3zoLhxiWMGD4c48aNg0ZjP++fiIreY5fBGTNm4NVXX33gLx93d3dcvHjxiYIREd1Nr9fjk08+wdezZ0PjXRXevadD7WM/gycLiwm6+JXI2r8KQUE18cNvf6Jx48ZSxyKiMuCxy+Bbb731NHIQERVKCIE1a9ZgcNQQ3LydAfewPnBt3M1uxgwEAEPqeeg2zoLx1lV8PGYMxowZA5VKJXUsIiojeAcSIiqxLl++jKghQ7Bh/Xo4V28Kn4jP4KD1kjpWsRFmEzLjVyBr/6+oW7cufth4sNBTc4iIngTLIBGVOCaTCTNmzMC48RNgVTqhfMQoOD3Twm6uEgYAQ8o5ZG6cBfPtZEwYPw4jR46EUqmUOhYRlUEsg0RUouzevRv/e/sdJJ05A5dGXeHeqifkaiepYxUbYTYhc+9yZB1YjeDgYPywZS2Cg4OljkVEZZh9DM1PRCVeeno6+vTpi9atW+Oy3gqfyJnwbD/QroqgIeUs0pdGI/dQLCZOGI+DB/azCBLRU8c9g0QkKYvFgvnz52PU6DHINwu7u58wAAiz8c7ewP2rUT8kBEu3rUfdunWljkVEdoJlkIgks2/fPrwzaDBOnDgOl/od4d26NxSO9nWbSMP1JGRu+grm29cxadJEjBgxgucGElGxYhkkomKXmpqKESM+wtKlP8DRrwZ8en0JtV+Q1LGK1Z1zA5fZ9gb+sPU31KtXT+pYRGSHWAaJqNgYjUZ89dVXGD9hAoxCceeQcPBzdjVmIHDn3MA7VwpzbyARSY9lkIiKxe+//46h0e/jwvnzcGnYBd6tekKhcZE6VrHiuYFEVBKxDBLRU3X69GlEv/8+Nm/aBKcq9eHTZxZUXoFSxyp2PDeQiEoqlkEieipu3bqFCRMmYM7cuVBqvVDhpTFwrNHcrgaOBv7eG7jnzriBIQ0a4AfuDSSiEoZlkIiKlMFgwOzZszFh4iTkGU1wa/UW3Bp3g8zB/vaCGa4nIXPjTFgy0/DZZ59i+PDhcHDgr10iKln4W4mIioQQAr/88gs+HPERrl6+DJeQ5+HT8k0onN2ljlbshNmIzN0/IutgLBo0bIgfdvyBOnXqSB2LiKhQLINE9MR27dqFDz4cjkMHD8CpWmP49BsOVfnKUseShCH5DDI3zYIlMw0xMZPxwQcfcG8gEZVokg7xv2vXLnTt2hV+fn6QyWSIjY196Do7d+5Ew4YNoVarUb16dSxZsuSp5ySiwiUmJqLLCy8gLCwMickZ8HrjM1R4ZbxdFkGryYCM7YuQtmwE6gT44Nixo/joo49YBImoxJO0DObk5KB+/fqYM2fOIy1/8eJFdOnSBW3btsWxY8cQHR2NAQMGYNOmTU85KRHd7dKlS4iM7IPg4GBsiz+C8l2Ho0KvaXAMqC91NEnkX0vEje/fQ97x3zFlyuf4c188ateuLXUsIqJHIul/WTt16oROnTo98vLz589HYGAgpk2bBgCoVasW9uzZgxkzZqBjx46FrmMwGGAwGGyP9Xr9k4UmsmNpaWn47LPPMG/efMg1LtC2GwjX+s/b5cUhAGA15iNz1w/IOvIbmjZthu+XbEXNmjWljkVE9FhK1fGLffv2ITw8vMC8jh07Ijo6+r7rxMTEYMKECU85GVHZduvWLXz55ZeYOesrmCGHS4secG30IuQqjdTRJJN3+Th0m2cDuZmYPm0a3nvvPSgU9nUnFSIqG0pVGUxNTYW3t3eBed7e3tDr9cjLy4Ojo+M964waNQrDhg2zPdbr9fD393/qWYnKgoyMDEyfPh3TZ8yA0WyFU4MuKN/0ZSgcXaWOJhmrIQcZOxcj+9hGtHq2NRZ/twjVq1eXOhYR0X9Wqsrgf6FWq6FWq6WOQVSq3L59G7NmzcL0GTORZzDAOaQLPJu9DIWTVupoksq7cAi6LXOgMOdi7ty5ePvttyGXS3rqNRHREytVZdDHxwdpaWkF5qWlpcHNza3QvYJE9Hhu3ryJ6dOnY9bXX8NgNMEp+Hn4NnsFChcPqaNJypKrQ+b2hchO3IHw557Dwm+/RUBAgNSxiIiKRKkqg6Ghofj9998LzNuyZQtCQ0MlSkRUNly7dg3Tp0/H/G++gcki4BTSGZ5NXrLLAaPvJoRA7pnd0G9fAI0CWLJkCXr37m13t9QjorJN0jKYnZ2N8+fP2x5fvHgRx44dg6enJypXroxRo0YhOTkZP/zwAwDgnXfewezZszFixAj069cP27dvx88//4wNGzZI9RaISrWkpCRMmTIFS5f+CJlSDaeQrijX+EW7PxwMAOasm8jcMh855/5E95dfxpzZs+Hj4yN1LCKiIidpGTx06BDatm1re/zPhR6RkZFYsmQJUlJScOXKFdvzgYGB2LBhA95//33MmjULlSpVwsKFC+87rAwR3UsIgfj4eHwxdSp+W7cOSldPuLR6C64hz0OudpI6nuSEsCL72Ebod30PDzcX/PDrr+jevbvUsYiInhqZEEJIHaI46fV6aLVa6HQ6uLm5SR2HqNiYzWbExsZiyhdTcejgAWgq+MOpYTe41G1vt+ME/pvp1jVkbp6N3Csn0b9/f0ydOhUeHvZ9viQRlTxF3WVK1TmDRPT4MjIysHDhQsz66mskX7sKp4BgVHh5LByrNYZMxithAUBYTNDvXw39vpWo7F8Ji7ZtQ7t27aSORURULFgGicqohIQEzJkzB9//sBRGkwlONVvDp/0HUPtwTLy7GZLPIHPzbBhvXcWHH3yAcePGwcmJh8uJyH6wDBKVIQaDAb/++itmz5mLffF7oXIrB8dGL6F8yPNQOPNw592shlxk7voeWUd/R4MGDfHdpjUICQmROhYRUbFjGSQqA86cOYNFixbhu8VLcPvWTThVqY/y3UbCqUZzyBT8Mb+bEAJ5Z/dBt30BFOY8zJg+He+++y5vJUdEdot/JYhKqZycHPz666+Y/80C7IvfC6WTGzS12sAvohOU5XnLxcKY9enI3PoNcs7tR5cXXsCc2bM5eDQR2T2WQaJSxGq1Ii4uDt9//z1+XrUKebm5cA5sgPIvjoBTjVBeFXwfwmpB1qF1yIpfjvKeHli6ejUiIiI4eDQREVgGiUo8IQROnDiBFStWYOmy5bh+7So0nn5QN3wJnnXbwUHrLXXEEi3/2mnot86D4cYlREVF4dNPP+WwUkREd2EZJCqhzpw5g1WrVmHpsuU4l3QGSmct1DVC4R32LtQVa3Gv1kNY8vTIjFuC7OOb0aBhI3y74Wc0atRI6lhERCUOyyBRCSGEQGJiIn799VesWPkzkk6fgoPaCerqTeH1yuvQVGnAi0EegRBW5CRshX7X91ArBObMmYO3336bF4gQEd0H/7IQSchsNmPPnj1Yu3YtVseuxZVLF+GgcYa6WlNU6N4dmioNIFeqpY5ZahhSz0O3bT7yrp3Bm2/2xLRpX/J+wkRED8EySFTM0tLSsHHjRmzY8Ds2btqELL0OarfyUFZtAq9XekMTEMILQR6TJT8but1LkX30DwTVrIn5O3ciLCxM6lhERKUCyyDRU5abm4s9e/Zg27Zt+GPTZiQcPwbIZHDyewbKep3hU60pVD7VeGu4/0BYLchO2Iqs3T9AKbNg2rQvMWTIECiVLNNERI+KZZCoiOXm5uLPP/9EXFwctu/Yif1//gmTyQi1Wzk4+Aej3AsfwDGwIRROWqmjlmqG5DPQbf8GedfPoWfPXvjiiynw8/OTOhYRUanDMkj0hK5fv474+Hjs27cPe/bG48jhwzCbTVA6uUFVqQ5cWveBpkoIlOX8eQVwETBn34Yu7ntkn9yG4PohmPvzHrRs2VLqWEREpRbLINFjuHXrFo4cOYKDBw/i4MFD+PPAAaReTwYAaDy8ofAJgmubftBUrgdl+co89FuEhNkI/cFYZO1fBVcnR8yfPx8DBgzgVcJERE+IZZCoEAaDAWfPnsWpU6eQkJCAo0eP4vCRY0hLvQ4AcNA4Q+VTHQ7+zVG+6TNQ+9WEg2s5iVOXTUII5J6NR1bcYpizbuLdIUMwduxYeHh4SB2NiKhMYBkku2W1WpGamorz58/j7Nmzf0/nkJCYiEsX/4LVYgEAqN3KQVEhEA5VWqJ800CovKrCwdOPe/2KgSHlHPQ7FyH3ykk836kTZkyfjpo1a0odi4ioTGEZpDIrNzcXKSkpSE5OxtWrV3HlyhVcvXoVly5dwtnzF3D18mUYjYY7C8tk0Hj4QO7uB4VHTbiHd4SyvD+U5SpD4egq7RuxQ2b9Deh2/YDsxB0IqlUbM//4A88//7zUsYiIyiSWQSoVTCYTdDodMjMzkZmZidu3b+P27du4desWbt26hfT0dKSnpyM1LR0pqalITUlBdpa+wGsonVyh1HoBzuWg0AbB+dkwaN194KD1gdLDFzIHlUTvjv5hNeRCt/9X5ByKhbvWDdO++Qb9+vWDgwN/VRERPS38DUs2KSkpOHHihO2xEOKez4UQ90xWq9U2WSwW22Q2m2GxWGAymWA0GmEymWAymWAwGApM+fn5yM3NRV5eHrJzcpCTkwudPgvZ2VnIyclBTnY2DPl5hWaWKRRQOWmhcNYCGi3gqIXCNQgOfqEo5+wJhYsnHFzKQeFWHnKV49PdgPSfCYsJWcc2InvfT5CZDfho+AcYOXIkXF25V5aI6GljGSQAdy6YqFmrNvS6zCJ/bZlCAbnCATK5w52PDkrIFco7d9lQKAGFCnBQQShUkDmoIVM6Qq72hMxVA7nSEU4qDVzUzpCrnSBTO0OudobC0Q1yjQtkKkcO11KKCSGQe2Y3svYshSkzDX369MHEiRNRsWJFqaMREdkNlkECcOceuXpdJtzb9IFzrbtv4yW791OZHDLI/n4sA+Tyv+fdeQ5yOWQyxf/PZ1mjfxFCIP/iEWTtWYq8lPPo3KULvpgyBXXq1JE6GhGR3WEZpAIcXCvAwa2C1DGoDDMkn4Z+9w/IvZyAZs1D8cVPi9C6dWupYxER2S2WQSIqFsa0C9DvXY6cc/tRp249TFm/Hp07d+aeYyIiiZWIgdLmzJmDKlWqQKPRoFmzZjhw4MB9l12yZAlkMlmBSaPRFGNaInocxhuXcDN2MlKWDIWX9RaWLVuGE8ePoUuXLiyCREQlgOR7BleuXIlhw4Zh/vz5aNasGWbOnImOHTsiKSkJXl5eha7j5uaGpKQk22P+QSEqeYw3r0AfvwI5p3fDP6AKZi9ejF69enGYGCKiEkby38rTp0/HwIED0bdvXwDA/PnzsWHDBnz33XcYOXJkoevIZDL4+Pg80uv/M3zJP/R6/QOWJqInZUz/C/p9K5GTFI+KFSthxoIF6NOnD5RKpdTRiIioEJIeJjYajTh8+DDCw8Nt8+RyOcLDw7Fv3777rpednY2AgAD4+/ujW7duSExMvO+yMTEx0Gq1tsnf379I3wMR3WFIPY+baz5FyuL34JmXjG8XLMBfF85j4MCBLIJERCWYpGXw5s2bsFgs8Pb2LjDf29sbqampha4TFBSE7777DmvXrsWPP/4Iq9WKFi1a4Nq1a4UuP2rUKOh0Ott09erVIn8fRPZKCIH8yydw4+dPkPp9NLwtN7FkyRJcOHcWAwYMgErFu7oQEZV0kh8mflyhoaEIDQ21PW7RogVq1aqFb775BpMmTbpnebVaDbVaXZwRico8IazIO7cf2Qd+RV7yGdStF4wxK1bglVde4TmBRESljKS/tcuXLw+FQoG0tLQC89PS0h75nEClUokGDRrg/PnzTyMiEd1FmI3IPrkduYfXIv/mVbRo2Qoff/s7nn/+eV7IRURUSkl6mFilUqFRo0bYtm2bbZ7VasW2bdsK7P17EIvFgoSEBPj6+j6tmER2z5KrQ+beFUj9pj8yNs9Bx1aNsHfvXuzdsxudOnViESQiKsUkP54zbNgwREZGonHjxmjatClmzpyJnJwc29XFvXv3RsWKFRETEwMAmDhxIpo3b47q1asjMzMTU6dOxeXLlzFgwAAp3wZRmWS8cQlZh39D3umdcJDLMaBfX0RHR6NGjRpSRyMioiIieRl8/fXXcePGDYwdOxapqakICQnBxo0bbReVXLlyBXL5/+/AzMjIwMCBA5GamgoPDw80atQI8fHxqF27tlRvgahMEVYL8i4cQs6Rdci9dBzePr4YOfYTvP322yhfvrzU8YiIqIjJhBBC6hDFSa/XQ6vVQqfTwc3NTeo4JUZOTg5cXFxQvutwONcOkzoOScCSk4nshC3IO7ERhow0NG3WHO9HD8XLL7/MoWGIiEqQou4yku8ZJCLpCCFgSD6FnKN/IDdpDxwcHPBmjzcwePBgNGnSROp4RERUDFgGieyQJVeHnJPbkHdyK/JvXEGVqtXw7hdT0KdPH3h6ekodj4iIihHLIP2LXZ01YFeE1YL8i0eRc3IL8s7th0IuR/fu3TFgwCK0a9euwLm5RERkP1gGico4441LyEnYhvwzcTBm3UbN2nXwzrQv0atXL5QrV07qeEREJDGWQQIAjhNXxpj1N5FzehcMSbuQl3Ie7h6eeLtPT0RGRqJhw4b89yYiIhuWQaIywpKrQ+7ZeOSfjkPu1UQolSq80KUzeveeis6dO/M+wUREVCiWQaJSzJKTidxz+5B/di/yLidAJgPatWuHXhM/REREBLRardQRiYiohGMZJCplzLo05J7bD8P5P5F35SRkchlatw7D6yNm46WXXrIN2E5ERPQoWAaJSjghrDCmnkfeuf0wXjyIvNS/4OCgRNt2bfHax++iW7duqFChgtQxiYiolGIZJCqBLHl65F88iry/DsF0+RiM2RlwddOie9cX0K3b5+jYsSPvoENEREWCZZCoBBBmEwzJp5F3+RjMV44j7/o5CGFF7br10DXqf+jUqRNatGjB28IREVGRYxkkkoAwm2BIPQvD1UQYrybAkHwKFqMBHp7l8Hx4ODp0GI7nn38eFStWlDoqERGVcSyDRMXAmp8Nw/UkGJLPwHT9FAzJZ2AxGeDs4oJnW7XCc1E9ER4ejnr16vFOIEREVKxYBomKmLCYYLxxGcbU8zCmnIUlNQl56ZcBAO4enmjfqiXavNsbYWFhqF+/Phwc+GNIRETS4V8hoidgNeXDdOMyjOkXYUz/C9b0C8hPuwir2Qi5QoFaterg2e6dEBoaitDQUFSvXp13/yAiohKFZZDoEQiLCabb12G6eeXOdOsKxO0ryL+ZDCGskCsUqF79GTRr1xSNGw9GkyZNUL9+fTg5OUkdnYiI6IFYBon+JixmmPU3YNalwZxxHabbybBkXofITEH+7RQIqwUAUK6CF0Lq1EZwhwjUr18fISEhqFOnDjQajcTvgIiI6PGxDJJdEELAmp8NS/ZtWLJuwqy/Yfsosm7CmpUGQ0Y6hLACABQODqgcEIjaNZ9BUNCzqFGjBmrXro3atWujfPnyEr8bIiKiosMySKWSsFpgNeTCmp8Na34WrHlZsOZnwZKrhyVXB2uuDtbcTCBfB2tOBoz627Cajbb15XI5Knj5oHJAZQTWDkJg4POoWrWqbfL39+eYfkREZBdYBqkAqyEXlpzMvx+J/39C/PNBAOLvCX9P4s4t0yCsd+ZbrRDC8vdHK2C1QFjNEBYzYDFDWC0QFhNgMUGYTRD/fDQbIEwGCLMRVrMBwpgHqykfMlM+ZGYDhDEX1vwcmPNzYDbkFppfpdagXPkK8PaqAJ9qXvD2DoKvry/8/PxsHytWrAg/Pz+WPSIiIrAM0t8cHBzg4uaG25vn4vbmucX6teVyOdQaDdQaRzg5OsHRUQMnRye4urtC66qFq2sluLi4wNXVFe7u7tBqtbapXLly8PT0tE1OTk68WpeIiOgxsAwSAEClUuHQgQM4e/ZsgfmFFSu5XA6ZTGab5HI55HI5FAoFZDIZFAoFHBwcoFAobJ8rlUqoVCoolUoolUqo1WrbxHH2iIiIpMO/wmQTFBSEoKAgqWMQERFRMeJ9r4iIiIjsWIkog3PmzEGVKlWg0WjQrFkzHDhw4IHLr1q1CjVr1oRGo0G9evXw+++/F1NSIiIiorJF8jK4cuVKDBs2DOPGjcORI0dQv359dOzYEenp6YUuHx8fjx49eqB///44evQoIiIiEBERgZMnTxZzciIiIqLSTyaEEA9f7Olp1qwZmjRpgtmzZwMArFYr/P398e6772LkyJH3LP/6668jJycH69evt81r3rw5QkJCMH/+/Id+Pb1eD61WC51OBzc3t6J7I0RERETFoKi7jKR7Bo1GIw4fPozw8HDbPLlcjvDwcOzbt6/Qdfbt21dgeQDo2LHjfZc3GAzQ6/UFJiIiIiK6Q9IyePPmTVgsFnh7exeY7+3tjdTU1ELXSU1NfazlY2JiCoxL5+/vXzThiYiIiMoAyc8ZfNpGjRoFnU5nm65evSp1JCIiIqISQ9JxBsuXLw+FQoG0tLQC89PS0uDj41PoOj4+Po+1/D8DGxMRERHRvSTdM6hSqdCoUSNs27bNNs9qtWLbtm0IDQ0tdJ3Q0NACywPAli1b7rs8EREREd2f5HcgGTZsGCIjI9G4cWM0bdoUM2fORE5ODvr27QsA6N27NypWrIiYmBgAwNChQxEWFoZp06ahS5cu+Omnn3Do0CEsWLBAyrdBREREVCpJXgZff/113LhxA2PHjkVqaipCQkKwceNG20UiV65cgVz+/zswW7RogeXLl+Pjjz/G6NGjUaNGDcTGxqJu3bpSvQUiIiKiUkvycQaLG8cZJCIiotKsTI0zSERERETSYhkkIiIismMsg0RERER2jGWQiIiIyI6xDBIRERHZMZZBIiIiIjsm+TiDxe2fkXT0er3ESYiIiIge3z8dpqhGB7S7Mnjr1i0AgL+/v8RJiIiIiP67W7duQavVPvHr2F0Z9PT0BHDnziZFsQHLEr1eD39/f1y9epUDct+F26Vw3C73x21TOG6X++O2KRy3S+F0Oh0qV65s6zRPyu7K4D+3ttNqtfzGug83Nzdum0JwuxSO2+X+uG0Kx+1yf9w2heN2Kdzdt+t9otcpklchIiIiolKJZZCIiIjIjtldGVSr1Rg3bhzUarXUUUocbpvCcbsUjtvl/rhtCsftcn/cNoXjdilcUW8XmSiq65KJiIiIqNSxuz2DRERERPT/WAaJiIiI7BjLIBEREZEdYxkkIiIismN2UwZjYmLQpEkTuLq6wsvLCxEREUhKSpI6luTmzZuH4OBg24CeoaGh+OOPP6SOVeJ8/vnnkMlkiI6OljqK5MaPHw+ZTFZgqlmzptSxSoTk5GT06tUL5cqVg6OjI+rVq4dDhw5JHUtyVapUued7RiaTISoqSupokrJYLPjkk08QGBgIR0dHVKtWDZMmTSqy+82WZllZWYiOjkZAQAAcHR3RokULHDx4UOpYxW7Xrl3o2rUr/Pz8IJPJEBsbW+B5IQTGjh0LX19fODo6Ijw8HOfOnXvsr2M3ZTAuLg5RUVH4888/sWXLFphMJnTo0AE5OTlSR5NUpUqV8Pnnn+Pw4cM4dOgQ2rVrh27duiExMVHqaCXGwYMH8c033yA4OFjqKCVGnTp1kJKSYpv27NkjdSTJZWRkoGXLllAqlfjjjz9w6tQpTJs2DR4eHlJHk9zBgwcLfL9s2bIFAPDqq69KnExaU6ZMwbx58zB79mycPn0aU6ZMwRdffIGvv/5a6miSGzBgALZs2YKlS5ciISEBHTp0QHh4OJKTk6WOVqxycnJQv359zJkzp9Dnv/jiC3z11VeYP38+9u/fD2dnZ3Ts2BH5+fmP94WEnUpPTxcARFxcnNRRShwPDw+xcOFCqWOUCFlZWaJGjRpiy5YtIiwsTAwdOlTqSJIbN26cqF+/vtQxSpyPPvpItGrVSuoYpcLQoUNFtWrVhNVqlTqKpLp06SL69etXYF737t1Fz549JUpUMuTm5gqFQiHWr19fYH7Dhg3FmDFjJEolPQBizZo1tsdWq1X4+PiIqVOn2uZlZmYKtVotVqxY8VivbTd7Bv9Np9MBQJHd5LkssFgs+Omnn5CTk4PQ0FCp45QIUVFR6NKlC8LDw6WOUqKcO3cOfn5+qFq1Knr27IkrV65IHUly69atQ+PGjfHqq6/Cy8sLDRo0wLfffit1rBLHaDTixx9/RL9+/SCTyaSOI6kWLVpg27ZtOHv2LADg+PHj2LNnDzp16iRxMmmZzWZYLBZoNJoC8x0dHXkU4i4XL15Eampqgb9PWq0WzZo1w759+x7rtRyKOlxpYLVaER0djZYtW6Ju3bpSx5FcQkICQkNDkZ+fDxcXF6xZswa1a9eWOpbkfvrpJxw5csQuz1N5kGbNmmHJkiUICgpCSkoKJkyYgGeffRYnT56Eq6ur1PEk89dff2HevHkYNmwYRo8ejYMHD+K9996DSqVCZGSk1PFKjNjYWGRmZqJPnz5SR5HcyJEjodfrUbNmTSgUClgsFnz22Wfo2bOn1NEk5erqitDQUEyaNAm1atWCt7c3VqxYgX379qF69epSxysxUlNTAQDe3t4F5nt7e9uee1R2WQajoqJw8uRJ/g/jb0FBQTh27Bh0Oh1++eUXREZGIi4uzq4L4dWrVzF06FBs2bLlnv+d2ru791oEBwejWbNmCAgIwM8//4z+/ftLmExaVqsVjRs3xuTJkwEADRo0wMmTJzF//nyWwbssWrQInTp1gp+fn9RRJPfzzz9j2bJlWL58OerUqYNjx44hOjoafn5+dv89s3TpUvTr1w8VK1aEQqFAw4YN0aNHDxw+fFjqaGWS3R0mHjJkCNavX48dO3agUqVKUscpEVQqFapXr45GjRohJiYG9evXx6xZs6SOJanDhw8jPT0dDRs2hIODAxwcHBAXF4evvvoKDg4OsFgsUkcsMdzd3fHMM8/g/PnzUkeRlK+v7z3/gapVqxYPod/l8uXL2Lp1KwYMGCB1lBJh+PDhGDlyJN544w3Uq1cPb731Ft5//33ExMRIHU1y1apVQ1xcHLKzs3H16lUcOHAAJpMJVatWlTpaieHj4wMASEtLKzA/LS3N9tyjspsyKITAkCFDsGbNGmzfvh2BgYFSRyqxrFYrDAaD1DEk1b59eyQkJODYsWO2qXHjxujZsyeOHTsGhUIhdcQSIzs7GxcuXICvr6/UUSTVsmXLe4arOnv2LAICAiRKVPIsXrwYXl5e6NKli9RRSoTc3FzI5QX/DCsUClitVokSlTzOzs7w9fVFRkYGNm3ahG7dukkdqcQIDAyEj48Ptm3bZpun1+uxf//+xz7v324OE0dFRWH58uVYu3YtXF1dbcfTtVotHB0dJU4nnVGjRqFTp06oXLkysrKysHz5cuzcuRObNm2SOpqkXF1d7zmf1NnZGeXKlbP780w//PBDdO3aFQEBAbh+/TrGjRsHhUKBHj16SB1NUu+//z5atGiByZMn47XXXsOBAwewYMECLFiwQOpoJYLVasXixYsRGRkJBwe7+dPzQF27dsVnn32GypUro06dOjh69CimT5+Ofv36SR1Ncps2bYIQAkFBQTh//jyGDx+OmjVrom/fvlJHK1bZ2dkFjrpcvHgRx44dg6enJypXrozo6Gh8+umnqFGjBgIDA/HJJ5/Az88PERERj/eFiuaC55IPQKHT4sWLpY4mqX79+omAgAChUqlEhQoVRPv27cXmzZuljlUicWiZO15//XXh6+srVCqVqFixonj99dfF+fPnpY5VIvz222+ibt26Qq1Wi5o1a4oFCxZIHanE2LRpkwAgkpKSpI5SYuj1ejF06FBRuXJlodFoRNWqVcWYMWOEwWCQOprkVq5cKapWrSpUKpXw8fERUVFRIjMzU+pYxW7Hjh2FdpfIyEghxJ3hZT755BPh7e0t1Gq1aN++/X/6GZMJwaHOiYiIiOyV3ZwzSERERET3YhkkIiIismMsg0RERER2jGWQiIiIyI6xDBIRERHZMZZBIiIiIjvGMkhERERkx1gGiYiIiOwYyyARERGRHWMZJCIiIrJjLINEREREdoxlkIioCNy4cQM+Pj6YPHmybV58fDxUKhW2bdsmYTIiogeTCSGE1CGIiMqC33//HREREYiPj0dQUBBCQkLQrVs3TJ8+XepoRET3xTJIRFSEoqKisHXrVjRu3BgJCQk4ePAg1Gq11LGIiO6LZZCIqAjl5eWhbt26uHr1Kg4fPox69epJHYmI6IF4ziARURG6cOECrl+/DqvVikuXLkkdh4joobhnkIioiBiNRjRt2hQhISEICgrCzJkzkZCQAC8vL6mjERHdF8sgEVERGT58OH755RccP34cLi4uCAsLg1arxfr166WORkR0XzxMTERUBHbu3ImZM2di6dKlcHNzg1wux9KlS7F7927MmzdP6nhERPfFPYNEREREdox7BomIiIjsGMsgERERkR1jGSQiIiKyYyyDRERERHaMZZCIiIjIjrEMEhEREdkxlkEiIiIiO8YySERERGTHWAaJiIiI7BjLIBEREZEdYxkkIiIismP/BxLazuQe5NbIAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x_start = l_in + l_junction # x coordinate of the starting point of the waveguide bends\n",
"\n",
"x = np.linspace(\n",
" x_start, x_start + l_bend, 100\n",
") # x coordinates of the top edge vertices\n",
"\n",
"y = (\n",
" (x - x_start) * h_bend / l_bend\n",
" - h_bend * np.sin(2 * np.pi * (x - x_start) / l_bend) / (np.pi * 2)\n",
" + w13 / 2 - w1/2\n",
") # y coordinates of the top edge vertices\n",
"\n",
"# adding the last point to include the straight waveguide at the output\n",
"x = np.append(x, inf_eff)\n",
"y = np.append(y, y[-1])\n",
"\n",
"# add path to the cell\n",
"cell = gdstk.Cell(\"bends\")\n",
"cell.add(gdstk.FlexPath(x + 1j * y, w1, layer=1, datatype=0)) # top waveguide bend\n",
"cell.add(gdstk.FlexPath(x - 1j * y, w1, layer=1, datatype=0)) # bottom waveguide bend\n",
"\n",
"# define top waveguide bend structure\n",
"wg_bend_1 = td.Structure(\n",
" geometry=td.PolySlab.from_gds(\n",
" cell,\n",
" gds_layer=1,\n",
" axis=2,\n",
" slab_bounds=(0, t),\n",
" )[0], \n",
" medium=si\n",
")\n",
"\n",
"# define bottom waveguide bend structure\n",
"wg_bend_2 = td.Structure(\n",
" geometry=td.PolySlab.from_gds(\n",
" cell,\n",
" gds_layer=1,\n",
" axis=2,\n",
" slab_bounds=(0, t),\n",
" )[1], \n",
" medium=si\n",
")\n",
"\n",
"# plot the top waveguide bend to visualize\n",
"ax = wg_bend_1.plot(z=t / 2)\n",
"ax.set_xlim(2, 10)\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "fecdf772",
"metadata": {},
"source": [
"Lastly, define the straight input waveguide using [Box]((../_autosummary/tidy3d.Box.html)."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "37f3f2e2",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:04.403908Z",
"iopub.status.busy": "2023-03-27T23:47:04.403632Z",
"iopub.status.idle": "2023-03-27T23:47:04.426202Z",
"shell.execute_reply": "2023-03-27T23:47:04.425595Z"
}
},
"outputs": [],
"source": [
"# straight input waveguide\n",
"wg_in = td.Structure(\n",
" geometry=td.Box.from_bounds(rmin=(-inf_eff, -w1 / 2, 0), rmax=(l_in, w1 / 2, t)),\n",
" medium=si,\n",
")\n",
"\n",
"# the entire model is the collection of all structures defined so far\n",
"y_junction = [wg_in, junction, wg_bend_1, wg_bend_2]\n"
]
},
{
"cell_type": "markdown",
"id": "051768d5",
"metadata": {},
"source": [
"Define the simulation domain. Here we ensure sufficient buffer spacing in each direction. In general, we want to make sure that the structure is at least half a wavelength away from the domain boundaries unless it goes into the PML."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f0cef4aa",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:04.428769Z",
"iopub.status.busy": "2023-03-27T23:47:04.428500Z",
"iopub.status.idle": "2023-03-27T23:47:04.451219Z",
"shell.execute_reply": "2023-03-27T23:47:04.450498Z"
}
},
"outputs": [],
"source": [
"Lx = l_in + l_junction + l_out + l_bend # simulation domain size in x direction\n",
"Ly = w13 + 2 * h_bend + 1.5 * lda0 # simulation domain size in y direction\n",
"Lz = 10 * t # simulation domain size in z direction\n",
"sim_size = (Lx, Ly, Lz)\n"
]
},
{
"cell_type": "markdown",
"id": "4eaa0e1e",
"metadata": {},
"source": [
"We will use a [ModeSource](../_autosummary/tidy3d.ModeSource.html) to excite the input waveguide using the fundamental TE mode. \n",
"\n",
"A [ModeMonitor](../_autosummary/tidy3d.ModeMonitor.html) is placed at the top output waveguide to measure the transmission. A [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) is added to the xy plane to visualize the power flow."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "dbf57f31",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:04.454505Z",
"iopub.status.busy": "2023-03-27T23:47:04.454128Z",
"iopub.status.idle": "2023-03-27T23:47:04.481248Z",
"shell.execute_reply": "2023-03-27T23:47:04.480571Z"
}
},
"outputs": [],
"source": [
"# add a mode source as excitation\n",
"mode_spec = td.ModeSpec(num_modes=1, target_neff=n_si)\n",
"mode_source = td.ModeSource(\n",
" center=(l_in / 2, 0, t / 2),\n",
" size=(0, 4 * w1, 6 * t),\n",
" source_time=td.GaussianPulse(freq0=freq0, fwidth=freq0 / 10),\n",
" direction=\"+\",\n",
" mode_spec=mode_spec,\n",
" mode_index=0,\n",
")\n",
"\n",
"# add a mode monitor to measure transmission at the output waveguide\n",
"mode_monitor = td.ModeMonitor(\n",
" center=(l_in + l_junction + l_bend + l_out / 2, w13 / 2 - w1 / 2 + h_bend, t / 2),\n",
" size=(0, 4 * w1, 6 * t),\n",
" freqs=freqs,\n",
" mode_spec=mode_spec,\n",
" name=\"mode\",\n",
")\n",
"\n",
"# add a filed monitor to visualize field distribution at z=t/2\n",
"field_monitor = td.FieldMonitor(\n",
" center=(0, 0, t / 2), size=(td.inf, td.inf, 0), freqs=[freq0], name=\"field\"\n",
")\n"
]
},
{
"cell_type": "markdown",
"id": "725eee9e",
"metadata": {},
"source": [
"Set up the simulation with the previously defined structures, source, and monitors. All boundaries are set to PML to mimic infinite open space. Since the top and bottom claddings are silicon oxide, we will set the medium of the background to silicon oxide. \n",
"\n",
"In principle, we can impose symmetry to reduce the computational load. Since this model is relatively small and quick to solve, we will simply model the whole device without using symmetry."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9a4ec279",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:04.483609Z",
"iopub.status.busy": "2023-03-27T23:47:04.483432Z",
"iopub.status.idle": "2023-03-27T23:47:04.867253Z",
"shell.execute_reply": "2023-03-27T23:47:04.866650Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAHWCAYAAAChaFm7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqvklEQVR4nO3deXwb1b028GdGu2XJi+Q1dhZn3xOyEgJhSVmashYoFFqWFt7S0ALpbUvaAoVeSCkt0NICpfcWeilQlrJTlkBCSCAJWSF7nN1xvMmxJVuWNSPNef8wku14iWXLHsl6vh/0IVpm9LPOjPX4zJkzkhBCgIiIiGiAyXoXQERERKmJIYSIiIh0wRBCREREumAIISIiIl0whBAREZEuGEKIiIhIFwwhREREpAuGECIiItIFQwgRERHpgiGEiAbMxx9/DEmS8PHHH+tdChElAIYQIoq7xx9/HM8884zeZfTK888/j0cffVTvMgAAmqbhd7/7HUaMGAGr1YopU6bghRde6PHy9fX1uPnmm5GTkwO73Y6zzjoLmzdv7vS1b775Jk455RRYrVYMHToU99xzD0KhULx+FKJOSbx2DBHF26RJk+B2uzv0eGiaBkVRYDabIcuJ+TfQN77xDWzfvh2HDh3SuxQsXboUv/3tb3HTTTdh1qxZeOONN/DOO+/ghRdewFVXXdXtspqm4fTTT8cXX3yBn/70p3C73Xj88cdRVlaGTZs2YfTo0dHXvvvuu1i0aBHOPPNMXH311di2bRv+8pe/4Oabb8YTTzzR3z8mpTCGEKJ+4vf7Ybfb9S5DF12FkGSQKCGkvLwcI0aMwM0334w///nPAAAhBBYsWICDBw/i0KFDMBgMXS7/0ksv4Vvf+hZefvllXH755QCAmpoajBkzBhdccAGef/756GsnTpwIk8mEjRs3wmg0AgB+9atf4YEHHsDOnTsxbty4fvxJKZUl5p8iRAmmvLwc3/ve91BYWAiLxYIRI0bglltugaIoAIBnnnkGkiRh1apV+OEPf4jc3FwUFRVFl3/88ccxceJEWCwWFBYWYvHixaivr2/3HqWlpfjmN7+J/Px8WK1WFBUV4aqrroLX642+Zvny5Zg/fz4yMzORnp6OsWPH4he/+MVJ6+/JcsFgEPfccw9GjRoFi8WC4uJi/OxnP0MwGOywvn/+85+YPXs20tLSkJWVhTPOOAMffPABAGD48OHYsWMHVq1aBUmSIEkSzjzzTABdjwl5+eWXMWPGDNhsNrjdblx77bUoLy9v95rrr78e6enpKC8vxyWXXIL09HTk5OTgv/7rvxAOh0/6GbzxxhtYtGhRtA1HjhyJ3/zmN+2WPfPMM/HOO+/g8OHD0dqHDx/e5Tqvv/766OtOvP36178+aU0nq1dVVfzwhz+MPiZJEm655RYcPXoUa9eu7Xb5V155BXl5ebjsssuij+Xk5ODKK6/EG2+8EW3XnTt3YufOnbj55pujAQQAfvjDH0IIgVdeeaVPPwdRd4wnfwlRajt27Bhmz54dPb4+btw4lJeX45VXXkFTUxPMZnP0tT/84Q+Rk5ODu+++G36/HwDw61//Gvfeey8WLlyIW265BXv27METTzyBDRs24NNPP4XJZIKiKDjvvPMQDAbxox/9CPn5+SgvL8fbb7+N+vp6ZGRkYMeOHfjGN76BKVOm4L777oPFYsG+ffvw6aefdlt/T5bTNA0XXXQR1qxZg5tvvhnjx4/Htm3b8Mgjj2Dv3r14/fXXo6+999578etf/xrz5s3DfffdB7PZjPXr12PFihU499xz8eijj+JHP/oR0tPT8ctf/hIAkJeX12V9zzzzDG644QbMmjULy5YtQ1VVFf74xz/i008/xZYtW5CZmRl9bTgcxnnnnYc5c+bg97//PT788EP84Q9/wMiRI3HLLbd0+zk888wzSE9Px5IlS5Ceno4VK1bg7rvvhs/nw0MPPQQA+OUvfwmv14ujR4/ikUceAQCkp6d3uc7/9//+HxYuXNjusffeew/PPfcccnNzo495PJ5ua4twOBywWCwAgC1btsBut2P8+PHtXjN79uzo8/Pnz+9yXVu2bMEpp5zS4bDX7Nmz8dRTT2Hv3r2YPHkytmzZAgCYOXNmu9cVFhaiqKgo+jxRvxBE1K3vfve7QpZlsWHDhg7PaZomhBDi6aefFgDE/PnzRSgUij5fXV0tzGazOPfcc0U4HI4+/uc//1kAEH//+9+FEEJs2bJFABAvv/xyl3U88sgjAoCoqamJqf6eLPfss88KWZbF6tWr2z3+5JNPCgDi008/FUIIUVpaKmRZFpdeemm7n0eI1s9CCCEmTpwoFixY0OF9Vq5cKQCIlStXCiGEUBRF5ObmikmTJolAIBB93dtvvy0AiLvvvjv62HXXXScAiPvuu6/dOqdPny5mzJjR/YcghGhqaurw2P/7f/9PpKWliebm5uhjixYtEsOGDTvp+jpTWloqMjIyxNe+9rV22wGAHt2efvrpdnWUlJR0eA+/3y8AiDvvvLPbWux2u7jxxhs7PP7OO+8IAOK9994TQgjx0EMPCQDiyJEjHV47a9YsMXfu3J7++EQx4+EYom5omobXX38dF154YYe/FIGW7vG2brrppnbH6T/88EMoioLbb7+93V+kN910E5xOJ9555x0AQEZGBgDg/fffR1NTU6e1RHoE3njjDWia1uOfoSfLvfzyyxg/fjzGjRsHj8cTvZ199tkAgJUrVwIAXn/9dWiahrvvvrvDX9gnfhY9sXHjRlRXV+OHP/whrFZr9PFFixZh3Lhx0c+nrR/84Aft7p9++uk4cODASd/LZrNF/93Q0ACPx4PTTz8dTU1N2L17d8y1n8jv9+PSSy9FVlYWXnjhhXbbwfLly3t0O++886LLBAKBaK9IW5HPKRAIdFtPT5eP/L+r157sfYj6godjiLpRU1MDn8+HSZMm9ej1I0aMaHf/8OHDAICxY8e2e9xsNqOkpCT6/IgRI7BkyRI8/PDDeO6553D66afjoosuwrXXXhsNKN/61rfwP//zP/j+97+PO++8E+eccw4uu+wyXH755d2eadKT5UpLS7Fr1y7k5OR0uo7q6moAwP79+yHLMiZMmNCjz+Nkuvp8AGDcuHFYs2ZNu8esVmuHGrOyslBXV3fS99qxYwd+9atfYcWKFfD5fO2eazvuprduuukm7N+/H5999hlcLle75048ZNMTNput0/E4zc3N0efjsXzk/1299mTvQ9QXDCFEcdSXX9h/+MMfcP311+ONN97ABx98gB//+MdYtmwZ1q1bh6KiIthsNnzyySdYuXIl3nnnHbz33nt48cUXcfbZZ+ODDz7o8kyJniynaRomT56Mhx9+uNN1FBcX9/rniqfuzgbpTn19PRYsWACn04n77rsPI0eOhNVqxebNm/Hzn/88pp6lzvzxj3/ECy+8gH/+85+YNm1ah+crKyt7tJ6MjIzoNlRQUICVK1dCCNGul6miogJAy5iN7hQUFERf29aJyxcUFEQfP7GdKyoqomNQiPoDD8cQdSMnJwdOpxPbt2/v1fLDhg0DAOzZs6fd44qi4ODBg9HnIyZPnoxf/epX+OSTT7B69WqUl5fjySefjD4vyzLOOeccPPzww9i5cyfuv/9+rFixInq4pCsnW27kyJE4fvw4zjnnHCxcuLDDLdJTMXLkSGiahp07d3b7fj09NNPV5xN57MTPp7c+/vhj1NbW4plnnsFtt92Gb3zjG1i4cCGysrI6vDbWw0qrV6/Gf/3Xf+H222/HNddc0+lrCgoKenR78cUXo8tMmzYNTU1N2LVrV7t1rV+/Pvp8d6ZNm4bNmzd3CFjr169HWloaxowZ0249GzdubPe6Y8eO4ejRoyd9H6K+YAgh6oYsy7jkkkvw1ltvdfglDbTM29CdhQsXwmw2409/+lO71/7v//4vvF4vFi1aBADw+XwdZqecPHkyZFmOdpMfP368w/ojXxCddaVH9GS5K6+8EuXl5fjb3/7W4bWBQCB6ps8ll1wCWZZx3333dfhya/vz2e32Dqcgd2bmzJnIzc3Fk08+2e5nePfdd7Fr167o59NXkR6UtjUqioLHH3+8w2vtdnuPD89UVFTgyiuvxPz586Nn2HSmN2NCLr74YphMpnY1CiHw5JNPYsiQIZg3b167Onbv3g1VVaOPXX755aiqqsKrr74afczj8eDll1/GhRdeGB0DMnHiRIwbNw5PPfVUu9OVn3jiCUiSFJ1jhKg/8HAM0Uk88MAD+OCDD7BgwYLo6asVFRV4+eWXsWbNmnankJ4oJycHS5cuxb333ovzzz8fF110Efbs2YPHH38cs2bNwrXXXgsAWLFiBW699VZcccUVGDNmDEKhEJ599lkYDAZ885vfBADcd999+OSTT7Bo0SIMGzYM1dXVePzxx1FUVNTtqZo9We473/kOXnrpJfzgBz/AypUrcdpppyEcDmP37t146aWX8P7772PmzJkYNWoUfvnLX+I3v/kNTj/9dFx22WWwWCzYsGEDCgsLsWzZMgDAjBkz8MQTT+C///u/MWrUKOTm5kYHubZlMpnw4IMP4oYbbsCCBQtw9dVXR0/RHT58OO64447eNls78+bNQ1ZWFq677jr8+Mc/hiRJePbZZzsNkTNmzMCLL76IJUuWYNasWUhPT8eFF17Y6Xp//OMfo6amBj/72c/wr3/9q91zU6ZMwZQpUwD0bkxIUVERbr/9djz00ENQVRWzZs3C66+/jtWrV+O5555rd2hq6dKl+Mc//oGDBw9G5zW5/PLLMXfuXNxwww3YuXNndMbUcDiMe++9t917PfTQQ7joootw7rnn4qqrrsL27dvx5z//Gd///vc7nCJMFFc6nplDlDQOHz4svvvd74qcnBxhsVhESUmJWLx4sQgGg0KI1lN0OzuNV4iWU3LHjRsnTCaTyMvLE7fccouoq6uLPn/gwAFx4403ipEjRwqr1Sqys7PFWWedJT788MPoaz766CNx8cUXi8LCQmE2m0VhYaG4+uqrxd69e7utvafLKYoiHnzwQTFx4kRhsVhEVlaWmDFjhrj33nuF1+tt99q///3vYvr06dHXLViwQCxfvjz6fGVlpVi0aJFwOBwCQPR03RNP0Y148cUXo+vLzs4W11xzjTh69Gi711x33XXCbrd3+Pnuuece0ZNfZZ9++qmYO3eusNlsorCwUPzsZz8T77//fod6Ghsbxbe//W2RmZkpAHR7uu6CBQu6PN32nnvuOWlNJxMOh8UDDzwghg0bJsxms5g4caL45z//2eF1kdOXDx482O7x48ePi+9973vC5XKJtLQ0sWDBgi630ddee01MmzZNWCwWUVRUJH71q18JRVH6/DMQdYfTthMREZEuOCaEiIiIdMEQQkRERLpgCCEiIiJdMIQQERGRLhhCiIiISBcMIURERKSLlJqsTNM0HDt2DA6Ho1dX/CQiIqKuCSHQ0NCAwsLCbi+sGZFSIeTYsWMJcyEuIiKiwaqsrAxFRUUnfV1KhRCHwwEA+NnPftbuaqeKokSnbzYajcjNzYXJZBrQ2hRFiV5rIzMzE2azeUDfH2hJsDU1NQAAi8USvYT8QPN6vdHriOTk5OjSa8X2aMX2aMH2aMX2aJVq7aGqKjweD4D2F3sUQkBRFASDQTzyyCPR79uTSakQEvnAbDYb0tPTAbRcwEuSJMiyDE3TIMsy0tPTYbVaB6wuRVHg9/ujO5GqqsjIyBjQHVvTNNTW1sJut8NisaC5uRmyLPd4Q4qXhoYGGAwGZGdnIxgMQlVVuFyuHnXrxQvboxXbowXboxXbo1Uqtkfk/WRZjv6cmqYhGAzCYDBEv2d7GsZSemBqMBhEKBSC0WiEzWaD2WyGEAL19fUdrhDaXxRFgcfjgclkgtvthtvthslkgsfjgaIoA1JDZIdWVRVutxsulwtOpxM+nw8NDQ0DUgPQskP7fD44nU64XC643W6oqora2lq2B9uD7cH2AMD2aCtR2iMYDEIIAbPZHHP4SdkQ0jaARC5pbTAYYDQaEQqFBmRDarsBRdKzLMtwuVwDtiGduENHNiCHwzGgO3bbHTry14zZbB7QHZvt0Yrt0YLt0Yrt0Yrt0eLEAGI0xn5wJWlDyG9/+1tIkoTbb7895mVVVe0QQCJkWUZWVla/b0idbUBtaxiIDamrHTpioHbsznboiIHasdkerdgeLdgerdgerdgeLYQQfQ4gQJKGkA0bNuCvf/0rpkyZ0qvlNU3rNIBERLq2+mtD6m4DiujvDelkO3REf+/Y3e3QEf29Y7M9WrE9WrA9WrE9WrE9WsSjByQi6UJIY2MjrrnmGvztb39DVlZWr9Yhy3KXASSivzaknmxAbevsjw2ppzt0RH/t2D3ZoSPYHq3YHi3YHq3YHq3YHi36sz3C4XBcAgiQhCFk8eLFWLRoERYuXHjS1waDQfh8vnY3AD0+/TbeG1IsG1BEvDekWHfoiHjv2LHs0BFsj1ZsjxZsj1Zsj1Zsjxb90R719fVxCyBAkoWQf/3rX9i8eTOWLVvWo9cvW7YMGRkZ0VtvJiqL14bUmw0oIl4bUm936Ih47di92aEj2B6t2B4t2B6t2B6t2B4t4t0ekfGUBoOhV+vpUF9c1jIAysrKcNttt+G5557r8RweS5cuhdfrjd7Kysp69d593ZD6sgFF9HVD6usOHdHXHbsvO3QE26MV26MF26MV26MV26NFPNsjKysrrvOgJE0I2bRpE6qrq3HKKafAaDTCaDRi1apV+NOf/gSj0YhwONxhGYvFAqfT2e7WW73dkOKxAUX0dkOK1w4d0dsdOx47dATboxXbowXboxXboxXbo0W82iPes4knTQg555xzsG3bNmzdujV6mzlzJq655hps3bo1bl1D3Yl1Q4rnBhQR64YU7x06ItYdO547dATboxXbowXboxXboxXbo0WitEe7muK+xn7icDgwadKkdje73Q6Xy4VJkyYNWB093ZD6YwOK6OmG1N8bUE937P7YoSPYHq3YHi3YHq3YHq3YHi0SpT2i9fTLWge5k21I/bkBRZxsQxqoDehkO3Z/7tARbI9WbI8WbI9WbI9WbI8WidIeQJKHkI8//hiPPvqoLu/d1YY0EBtQRFcb0kBuQEDXO/ZA7NARbI9WbI8WbI9WbI9WbI8WidIeSR1C9HbihhQMBgdsA4o4cUMKBoMDugFFnLhjD+QOHcH2aMX2aMH2aMX2aMX2aJEI7cEQ0keRDSmSYI1G44BtQBGRDcloNEYT7UDu0BFtd+yB3qEj2B6t2B4t2B6t2B6t2B4t9G4PhhAiIiLSRd/nXE1CQohORyVrmgYhBFRV7fG6VFVFXV0djEYj0tPTUV9fj+rqamRlZUGSpHiW3SUhBOrq6hAKhZCZmYnGxsZoDfE+p7s7fr8fjY2NSE9PBwDU19cjFArBbrcPWA1sj1ZsjxZsj1Zsj1Zsjxaxtoeqql1+h0bWFwuGkDYiISQYDHY6+Vlnr1cUBRaLBWazGZqmIT09HYqiwOfzwWw29/uGJISAoiiQZRnp6enQNA02mw2KosDv98NsNg9I114oFIKqqrDb7dE5W+x2OxRFgRAiLtcYOBm2Ryu2Rwu2Ryu2Ryu2R4vetEcoFIKmaV3WxhDSAzk5OZ3OnqqqKoLBIL7+9a8jIyNDh8qIiIgSl9frxX/+8x9YLJZOe0oiF4rtqZQMISaTqctBN+FwGBkZGcjOzh7gqoiIiBKf0Wjs8ns01kNqHJhKREREumAIISIiIl0whBAREZEuGEKIiIiox052BeBYMIQQERFRjymKEtN8Wt1JyRDi9/v1LoGIiCgpSZKEurq6Dlff7Y2UDSGdXcaZiIiIumc2m9tda6YvUjKE2O32DpdxJiIiopOTJCk6rXtfg0jKhpC2l3FuK54DboiIiAYjSZLgcrn6HERSMoQA7S/jHAkiqqrG5RgXERHRYCfLcp+DSEpO2x7hcDgAtMx1rygKAoEALBaLzlURERElh0gQqa2thcfjQSgUim35fqoraTgcDlitVjQ3N0MI0eU1ZYiIiKijSBCJXIU+pmX7qaakoShKuw8tHA7rWA0REVHy6e3UFyl9OEZRFHg8HphMJrhcLni9Xo4JISIiikFDQwN8Ph+cTifsdntMy6ZsT8iJAUSWZdjt9pgvQ0xERJSq2gYQh8MBSZJiWj4le0JUVYXf728XQCKMxpT8SIiIiGJyYgDpjZT8xq2vr0dGRkaHAEJERJS0lDrgyMvtHxt6BWDOivtb+f1+NDU19SmAACl6OMZoNDKAEBER9UIoFEJjY2OfAwiQoiEkMzOTAYSIiKgXVFVFenp6nwMIkKIhJNaBM0RERNTCZDLFfBZMV1IyhBAREVHvxPMEDoYQIiIi0gVDCBEREemCIYSIiIh0wRBCREREumAIISIiIl0whBAREZEuGEKIiIhIF0kTQp544glMmTIFTqcTTqcTp556Kt599129yyIiIqJeSpoQUlRUhN/+9rfYtGkTNm7ciLPPPhsXX3wxduzYoXdpRERE1AtJcxXdCy+8sN39+++/H0888QTWrVuHiRMn6lQVERER9VbShJC2wuEwXn75Zfj9fpx66qldvi4YDCIYDEbv+3y+gSiPiIiIeiBpDscAwLZt25Ceng6LxYIf/OAHeO211zBhwoQuX79s2TJkZGREb8XFxQNYLREREXUnqULI2LFjsXXrVqxfvx633HILrrvuOuzcubPL1y9duhRerzd6KysrG8BqiYiIqDtJdTjGbDZj1KhRAIAZM2Zgw4YN+OMf/4i//vWvnb7eYrHAYrEMZIlERETUQ0nVE3IiTdPajfkgIiKi5JE0PSFLly7FBRdcgKFDh6KhoQHPP/88Pv74Y7z//vt6l0ZERJQyhBBxW1fShJDq6mp897vfRUVFBTIyMjBlyhS8//77+NrXvqZ3aURERClDURRYrda4rCtpQsj//u//xm1dqqrGbV1ERESpRAiBuro65ObmQpb7NqojqceE9FZ9fT0URdG7DCIioqRjNpsRCoVQW1sLTdP6tK6UDCFGoxEej4dBhIiIKEayLCMrKwuqqvY5iKRkCMnMzITJZOo0iMRzwA0REdFgZDKZ4Ha7+xxEUjKESJIEl8vVIYgIIdg7QkRE1ANms7nPQSQlQwjQ0p3UNogEg0HU1dWxJ4SIiKiHTgwisf4hn7IhBGgNIpExIqqqwmw2610WERFR0ogEEUVRUF9fH9OyKR1CiIiISD8pHUI0TUNtbS1CoRDcbjdMJhPHhBAREcVAURR4PB6YzWZkZmbGtGzKhpBIAFFVFW63GxaLBVlZWZAkSe/SiIiIkkIkgJhMJrhcrpiHNKRkCBFCtAsgkQ9NkiSOCSEiIuqBEwNIb2ZPTZpp2+Opvr4+OpDmxNDBnhAiIqLuqaoKr9fbpwACpGgICYVCKCwsZK8HERFFNashBJSWW7MaRlANIRjSoITCUEJhqGENalhD6KtbWBMIawKa0L76v4AQiP5fCIHIpA9tp3/or4kgzJoXIwLl7R47eGQnFDkjbu8RCjTC09CEsNIM2WCCajIjcLwx+nyTv7GbpTtKyRCSmZnJAEJElAIaAgqO+5tR3xSEtykIb5OChoACX0BBY7OCxqAKf1BFUzAELcnniUpDA2SDr91jW8M1aEJz3N7DEAogqzkICCAkm4BA+5M5lEBsF4hNyRBiMpn0LoGIiOJA0wRqGwOo8jahyteEGl8AnoaW2/HGZqjhvl1gjTojIWw0A3EYvpCSIYSIiJKPtymIo8cbcbS2AeV1jaio96PK28SgMcCEbAAQn/GTDCFERJRwAkoIh2q8OFjjw6EaH454fPAGUnseJxOCUGFGvAIAAMgIAQA0neIAQwgREenO2xREaWU9SivrsL/Ki2P1jUjyIRpxYYCKMfIXmCJ/htHyl3g99H1s1+bGbf3fNj6KAvkQtoZPx5faqagSxYhnyDkZhhAiIhpwzWoIeyvqsOvYcew+dhyV9U16l5RABAqlQ5gsr8U0wxpkohaSpEGCQBpiO/vkZNKleuRLR3GO8RWcId5CmRiJLeEzsEObhSY44/penWEIISKiAVHlbcK2IzXYfrQW+6vqEdLY1dGWA3WYKG/AdMMqFEqHYJIUhIQJjXAiLEzIlDz98r5BYYUPWbCgGSXyLpTIu/B18U/s1GbiS20eSrXJ/Xa4hiGEiIj6zcFqL7YersEXR2pQ5WVvx4naHm4ZJ2+GTfJDQEJA2OEXTpx4aGSSYT0K5EOdr0wA9XAhjNYzQIulvRhn2NLl+zsk71f/khCEDUFhg4QwbGjCDPljTJdXow7u6OEaD9x9+4FPwBBCRERxdajGi40HqrDlUA2O++M3R8Xg0fnhlqCwwitcEF1cUSUsDBgjb+30OQkawsKEz8LnoR450cfHyF/gdMM7CHX5dS/QJBwnPGJAExxoggNGKMhEbfRwTbk8HHvtI7C7eUJcDtcwhBARUZ9VeZuwfl8FNh6oQk1DQO9yElI66jFJ/rzLwy0n04CsLqdbNUJFGho6fU4VJnh72YMRghkNMANCwIJmDDfsQUnWDpwpPsTe5vHYGZiMQ8GR0GDo1foZQoiIqFcCSggbD1RibWkFDtb4Tr5ACpsqr8HFxr/DLnkBSPALR6eHWxJXy+EaRVhgDDfBIjdjWtpGTLJ9gdqQG8/V3ogmLT3mtTKEEBFRTEor6/DpnmPYfKiaE4X1UIUYjj3atK/GfTTBJvkBASiwInmCSMthH6vcDJOsIiRMqA9nYWdgMoKatVfrYwghIqKTalZDWFdagU92l6Oi3q93OUmnWhThxdCPYYcXk+T1mG5YjSHSAaRJjQgLI5qQ3m5AaWckaJDQeeiTEe5mORGdlKwzLYdSugtCLYdibJIfgIAiTNjln4gdzVNxOFjS60MxAEMIERF1o8rbhI93lmFtaQWCoa6/6Khn/MjAeu1crNe+hnzpCKbIn301ONUD+avBqc2wdzo4NUuqQUh0/bWtwoLwCYEgDCPCMCId3k6XkSXx1biUjlfaNUKBDX4YJRWKsOKANh5fqHNRXu2EXzi+mr69bxhCiIiog93HjuOj7Uew42htv116PrVJqBTDUBkeho/Cl2O0/CWmyp9inLwZGdJxCAABYW93uEaDAavDF2KPNr3TNRqgIk8ua/fY2vB52K3N6LKKbxj/gXzpSJuqWk7PNaMZGgyoQw42h07HNm0eqkURDKEAMrXdcTuCxBBCREQAgLCmYdPBaizfdhhHj8d3Zk7qWhgm7NZmYLc2o9vDNQBQK/JxQEzsdD1paEAejrZ7LIi0Ll8PAArMAAALAl8dbmkJPxu1s/CFNg/7tUn9el0ZhhAiohSnhsL4rLQCy7cdRm0j5/XQU2eHa6Yb1iADni7Hg/SVWWpGWBhxQBs/oFO2AwwhREQpSwmF8cmuo1i+/Qh8KX6F2sTT8XDNWHkrjojRcX2XLeEzUKpNiR5uGWgMIUREKSaohvHxrjJ8uP0IGptVvcuhk2h7uCbe1mvnxn2dsWAIISJKEZGejw+2HUYDwwf1ltAAqe9nxgApGkKE4FhvIkodYU3Dmj3H8O7Wg/DysAv1kSQ0SJrKU3R7q76+Hk6nE7Lc+UWCiIgGAyEENhyowtubD/B6LhQ3QpJhCKuAJEMzmPu0rqQJIcuWLcOrr76K3bt3w2azYd68eXjwwQcxduzYmNcVCoVQW1sLl8vFIEJEg9Ku8uN4beM+lNV2flEzak+WJKRZjLBbTLCZjLCajbCaDLCYDLCajDAbZZgMBpgNMoxf3QyyBKPc8n9ZliBLX/0fEr76D5IkQWozp0Z/TtAuq/Vw1hxo99jMnMnQTJlxe49GnxeffXQY4bAGpTkAm90IW5o9+nxDQ2w/YdKEkFWrVmHx4sWYNWsWQqEQfvGLX+Dcc8/Fzp07YbfbT76CNjIzM6EoCoMIEQ06x+oa8e/P92Fnea3epSQEWZKQabfAlW5Flt2KLLsFGWlf3WxmOKxmOGxm2MxJ83XYNUUGQu0vIldQmA2Ys+L2FsdtEjabjLA6rAgGLfD5fLCZjXA4HAAATTn51YDbSppP/b333mt3/5lnnkFubi42bdqEM844I6Z1mUwmOJ1OeDyeDkEkFOp6fn0iokTlCyh4a/N+fLa3AloKjntLt5pQkGlHQaYdeRlpyMuwI9dpQ3a6FQb+odkvIsHD5/O1ux+LpAkhJ/J6W+bBz87O7tXyZrMZbre7XRDx+/1QVY4YJ6LkEQprWLGzDO9uPYhmNTWu7ZJtt2Ko24FhbieKstNR7HIgI82id1kp6cQgEuuJH0kZQjRNw+23347TTjsNkyZN6vJ1wWAQwWAwej/yIUW0DSIVFRXQNC3mQztERHr58kgNXvm8FDW+wTvoVJYkFLscGJ2fiZLcDJTkZjBwJJi2QaSpqSmmZZMyhCxevBjbt2/HmjVrun3dsmXLcO+993b7GrPZDIvFgubmlqmKDYb4nPtMRNRfqrxNeHn9Xuw4OjjHfRRlp2NcYTbGFmRhVH4mrKak/KpKKXa7vcMf+j2RdC1766234u2338Ynn3yCoqLup5hdunQplixZEr3v8/lQXFzc7jUNDQ1obm6G1WpFIBCAovAceiJKTEoojP9sPYiPth9BSBs84z4sRgPGD8nG5GI3Jha52NORZDRNQ21tLSRJgsUSW9slTQgRQuBHP/oRXnvtNXz88ccYMWLESZexWCzdfiANDQ3w+XxwOp1wOBzw+/3w+/3xLJuIKC62HKrGy+v3os4fPPmLk4DdYsLUYTmYPiwHYwuzYTJw8GgyigQQVVXhdrsRCMR2aDBpQsjixYvx/PPP44033oDD4UBlZSUAICMjAzabLeb1nRhAgJazZszmvk28QkQUTzW+AF5ct2dQHHqxmY2YPiwHM0vyMKYgi2etJLkTA4jZbB68IeSJJ54AAJx55pntHn/66adx/fXXx7Quv98PIUS7ABLBOUOIKBGEwhqWbzuMd784BDXcP5dwHwiyJGFikQtzRxdgcrGbPR6DhBCiQwDpjaQJIfG83ovf70d+fn6vzmkmIupv+yrr8fxnu1FRn7yHh/My0jBvTCHmjiqA08Ye5sFECIG6ujpomtanAAIkUQiJJ7vdzgBCRAnHH1Tx2oZ9+GzvMSTjsFODLGHasBycMa4IYwriN0snJRZFURAKhZCbm9vnIQwpG0KIiBLJhgOVeGV9KXxJeJVbp82M08cOwenjhvDMlhQghEBWVlZcxlCmZAghIkoUxxub8cLa3dhelnwDT4dkpWPhpKGYWZIHI8d6pAyz2QyTKbZrxHSFIYSISAdCCKzadRRvbNqfdNOtjy3IwrlThmHCEJfepZAO4nkCB0MIEdEAq/T68c/Vu7C/2qt3KT0mAZg6LAfnTRmO4TlOvcuhQYIhhIhogIQ1DR9uO4J3th5MmtNuJQk4ZXguLpg2AkOy0k++AFEMGEKIiAbA0doG/N+aXSirbdC7lB6RAEwfnotvTB+BAoYP6icMIURE/SisafjP1kN4/8tDCCfJ9V4mF7tx0YwSFGVzKgPqXwwhRET95LDHh2dX70J5XaPepfTI6PxMXDJzFEpyM/QuhVIEQwgRUZypYQ3vbDmA5duOQIvjbM/9pTDLjktmjsLkYrfepVCKYQghIoqjQzVe/N/qXUkx5XqGzYwLZ4zEqaMKIMuS3uVQCmIIISKKAzWs4e3NB/Dh9sTv/TAZZHxt8lCcO3k4LCaD3uVQCmMIISLqo2Tq/Zg5Ig+XzhqF7HSr3qUQMYQQEfVWMvV+FLsc+NbcMRiZl6l3KURRDCFERL1wqMaLf6zeicr6Jr1L6ZbdYsRFM0Zi/tghkCWO+6DEwhBCRBSDZOn9kCTgtNGFuHjmKKRb43OxMaJ4YwghIuqhg9Ve/N+axO/9KHY58O15YzE8h/N9UGJjCCEiOgk1FMabmw9gxY6yhO79sJoMuGjGSCwYV8RTbikpMIQQEXXjQLUXz67eiUpvYvd+nDI8F1fMHYPMNIvepRD1GEMIEVEnlFAYb246gBU7jyCBOz+QnW7F1aeOxSTOdkoDRNPidwVohhAiohPsq6zHs2t2otoX0LuULsmShLMmFOPCU0o44RgNKEVRYDKZYDab+7yulAwhfr8fGRkcsEVE7TWrIby+cT8+2XUUCdz5gaLsdFw7fzyGuZ16l0IpSJIk1NXVxSWIpGwIaWhogMPBy1QTUYtd5bV47tPdqG1s1ruULpkMMhZNG4GFk4fCIMt6l0Mpymw2IxwOw+PxwO129ymIpGQIsdvt8Pl8AMAgQpTimoIqXvm8FGtLK/QupVuj8zNxzWnjkZeRpncplOIkSUJWVhZ8Pl+fg0jKhhBZljsNIvEccENEiW3zoWq8tHYPvAFF71K6ZDUZcMnMUThj3BBInPGUumPOAkbdPCBvJUkSXC4Xamtr+xREUjKEAK3Bo20QUVUVipK4v4yIKD68TUH8a+0ebD1co3cp3ZowxIVrThvHi81RQpJluUMQiVXKhhCgfRBRFAWBQAAWC8+xJxqshBBYvaccr2/cj4AS0rucLqWZjbh8zhicOrpA71KIunViEAmFYtuvUjqEAC1BRFEUNDc3QwgRl1OOiCjxVNQ14rnPdmN/lVfvUro1Zagb3543DhmcdIySRCSIVFRUIBgMxrRsyocQRVHafWjhcFjHaogo3tRQGP/ZegjLtx9GWEvcE2/tFhOunDsGs0fm610KUcz8fn+vlkvpEKIoCjweD0wmE1wuF7xeL8eEEA0iO4/W4l9r96CmIXEnHQOAacNycPW8sXDa2PtByaehoQE+nw9OpxN2uz2mZVM2hJwYQGRZht1uh0jk+ZmJqEfqm4J4ed1ebD5UrXcp3Uq3tvR+zCph7wclp7YBxOFwwOuN7XBnSoYQVVXh9/vbBZAIozElPxKiQSGsaVi5owzvbD2IZjWxD6229H6Mg9PGcWiUnE4MIL2Rkt+49fX1yMjI6BBAiCh57a2ow7/W7kFFfe+OTQ+UdKsJ35o7FjNL8vQuhajX/H4/mpqa+hRAgBQNIUajkQGEaJA43tiMVzeUYtPBxD70AgDTh+fgqlPZ+0HJLRQKwe/3IzMzs8+zjqdkCMnMzGQAIUpySiiM5dsO44Nth6GEEnumY/Z+0GCiqirS09PjctmTpPom/uSTT3DhhReisLAQkiTh9ddf79V6OPUxUXLbcKAS9/57Hd7ecjDhA8gpw3Nx96VzGUBo0DCZTDGfBdOVpOoJ8fv9mDp1Km688UZcdtllepdDRANsf1U9Xvm8FIdqfHqXclLpVhOumjsWMxg+aJCJ5wkcSRVCLrjgAlxwwQV6l0FEA6za24TXN+3DlkOJfa2XiFOG5+KqU8fCwbEfRN1KqhBCRKnF2xTEf7YexJo9x6AlwRw+DqsJV80bh1OG5+pdClFSGNQhJBgMtpuSPXLFXCJKbE1BFR9sO4yVO8sSfsxHxKySPFw5dyzSrSa9SyFKGoM6hCxbtgz33nuvrjX4Qj58WP9hu8cWZi6E0+jUqSKixBVQQlix4wg+2lGW0Fe5bSsjzYJvzxuLKUNz9C6FKOkM6hCydOlSLFmyJHrf5/OhuLhYx4qIqDMBJYSPdx3FR9sPwx9MjvABAPNGF+DyOWNgMw/qX6VE/WZQ7zkWiwUWCy8IRZSo/EEVK3eWYeWOMjQlSc8HALjSrbjmtPEYPyRb71KIklpShZDGxkbs27cvev/gwYPYunUrsrOzMXToUB0rI6JY1Pub8eH2MqzZU45gKLGv8dKWJAFnji/GxTNGwmIy6F0OUdJLqhCyceNGnHXWWdH7kUMt1113HZ555hmdqiKinjpa24APtx/BxoNVCGuJf7ZLW4VZdlx72niMyM3QuxSiQSOpQsiZZ54JkQSn6RFRK00IbCvzYOWOMuypqNO7nJgZDTIumDoc500ZBgMv90AUV0kVQogoeTQ2K/hsbwVW7ymHpyGgdzm9Mjo/E9ecNh55GWl6l0I0KDGEEFHcCCGwt7IOn+45hi2HaxAKJ8ccHyeyW4y4bNZonDq6gNeaIupHDCFE1Ge1jQGs31eJdfsqUONLzl6PiDkj8/HN2aM55TrRAGAIIaJeaWxWseVQFTYcqMK+ynok+2it/Mw0XH3qOIwpyNK7FKKUwRBCRD3W2Kxi6+FqbDlUjT0VdUl3hktnzEYZF0wdga9NHsqBp0QDjCGEiLpVWe/H9jIPvjjiwYFqb1JcSK6npg3LwRVzxiA73ap3KUQpiSGEiNppCqrYW1GHXceOY8fRWtQ2NutdUtzlZaThijljMLHIpXcpREknnlNlMISQLmp8AazfX9FvFykzGw0YnZeJUfmZMBs5s2V3GptVHKiuR2llPUor61BW2zioejvaspoMuGDaCJwzsZiHXoh6SVEUWK3x6T1MyRCiqqreJaQkIQR2HK3Fqt1HseNoLfr7e+49tEw0NTI3A+MLszF+SDaKXY6UPuUyqIZRXteIQzU+HPH4cLDGi+okP5ulJyQAc0cX4OIZI5GRxutJEfWFEAJ1dXXIzc2F3Mcwn5IhpL6+Hk6nE2YzT8EbCE1BFWtLK7Bq99EBP30zFNawp6IOeyrq8Pqm/Ui3mjC2IAuTi92YMjRn0F79VA2FUe0LoNLrR0WdHxX1fhw93oiahqZ+D3+JZmReBq6YMwbD3E69SyEaFMxmMxobG1FbWwuXy9WnIDI4fwOfhNFohMfjgdvtZhDpR96mIN7efACfH6iEEkqMSasam1VsOliNTQerYZQljBuSjVOG52HqUDfSLCa9y+uxgBKCtymI+qYg6vxB1PmbUdsQgKexGZ6GAOr8zSkXNk6U47Th0pmjMH14rt6lEA0qsiwjKysLXq+3z0EkJUNIZmYmVFXtNIjw2jTx4Q+qeOz9rSiva9S7lC6FNIHtZbXYXlYLgyxhXGE2Thmei6nDcmCPQyDRhAAEENY0aKLlfiisISwEwmENqqYhFNaghDSo4TCUkIZmNQQlpCGghL66qfAHQ/AHVfibVTQ0K2hsVpPqyrMDLd1qwgVTh2PB+CKO+yDqJyaTCW63Gx6Pp09BJCVDiCRJcLlcqK2tbRdEhBBQFEXv8pKeEgrj8eVfJHQAOVFYaxmvsuNoLf756S4Yuhk3MiI3AweqvdH7bXOrQEvwYJQdeGajjLMnDMW5U4YN2sNsRInEbDZ3CCKxStk9VZbldkHE5XKhrq6uz4NsUl1Y0/DXj75s9yWdbIQAQt30iGmaGBSTdA0WBlnCaWMK8fVpIzjolGiAnRhEYpWyIQRoDSIejwcejweapsHhcOhdVtLShMDTq3ZgZ/lxvUuhFCBLEmaPzMei6SPgdtj0LocoZUWCSE1NDZqammJaNqVDCMXXv9buwaaD1XqXQYOcJAGzSvKxaNoI5Gak6V0OEfVBSocQTdNQW1uLUCgEt9uNuro6jgnppTc27cfq3eV6l0GDmCxJmFWSh/OnDUd+hl3vcojoK4qiwOPxwGw2x3zGacqGkEgAUVU1OjA1KysLPp9P79KSzkfbj+C9Lw7pXQYNUkaDjLmj8nHu5GHIcbLngyiRRAKIyWSCy+VCQ0NDTMunZAgRQnQIIEDLWTOcNyQ2a0uP4d+fl+pdBg1CVpMBp48bgnMmDuWAU6IEdGIA4Sm6PVRfXx8dSHNi6EjlKb1j4W0K4t+fl2LDgSq9S6FBJstuwdkTinHa2CE81ZYoQamqCq/X26cAAqRoCAmFQigsLGSvRy+ENQ0rdx7FO1sOoFnlhFkUPyNzM3DWhGJMG57DScaIEpimafD5fLBYLJy2vTcyMzMZQHphb0UdXly3B8fq/HqXQoOEySBjVkkezhhfxGu7ECUJRVFgNBr7HECAFA0hJlPyXCMkEfDQC8VbQaYdp40txNxRBXGZIp+IBo4kScjKyorL5J4pGUKoZ44eb8DWQzX4aMcRHnqhPrOaDDhleC7mjSnEyLxMvcshol4ym81xGz/JEEJRaljD3oo6bCvzYFuZB8cbm/UuiZKcLEkYW5CFuaMLMG1YDsxGg94lEVEfxfMEDoaQFOcLKNj+VejYVX6cV2elPpPQcpG/mSV5mDEiF04bT68los4xhKSgo8cbsO1IS/A45PGhm2u1EfWILEkoyc3A9OE5mD48F1l2q94lEVESYAhJAWpYQ2lFHb7kYRaKI6vJgHGF2ZgyNAeTi11It/KMMyKKTUqGkNKKOpi9Ha8RI2lhyCKMu1/5DGFjfK7KGTI04XjmrnaPvVtvgjEc3+mn07qZ1EkNa1DDWlzfj1KPBKDI5cD4wmxMLHJhZF4G5/Mgoj5JyRAyGDUpIb1LoEFGAlCYlY7R+ZkYnZ+JMQXZSLfydFoiih+GECICANjMRgx1OVCSm4GS3AyMyM3gHB5E1K8YQohSkNNmRlF2OoqyHShypWOYy4kcp43XTiKiAcUQkmBCQkFVcAdyzGNglu16l0NJzGiQ4Uq3IteZhlxnGvIy0lCQaUdBlp09HESUEBhCEkxlcBs+Of4oDJIFw2xzMNw2D3nm8ZAkDgCkVmajDIfVDKfNjIw0CzLSLMiyW5BltyLbboXbYUVGmoU9G0SU0BhCEowmwlBFEBo07PF/gNKmFXAaC1BiOx3DbKfCaczXu8SUZzBIsJpaZ/6MfNFLAFr+KUGSWu7LkgRZliBJEmRJgkGWYJRlyLIEk0GG0SDD9NXNbDTAbJRhMRphNRlabmYjbGYj0swm2C1G2K0mpFvMsJg48ygRJb+kCyF/+ctf8NBDD6GyshJTp07FY489htmzZ+tdVtxZJQcgSQhDgU89hs3q8/iy4VXkWcajxDYfRdYZPFyjk7mjCnDHBTP0LoOIKOklVQh58cUXsWTJEjz55JOYM2cOHn30UZx33nnYs2cPcnNz9S6vR0JhBe9W3o1guLHT5zWEIRBGy1/TEoywwGiwQAgBVQRwrHkLjjVvhUV28nANEREltZi/ua677jp88skn/VHLST388MO46aabcMMNN2DChAl48sknkZaWhr///e+61NMbqtYMb6gCgXA9glpjh5uqBWCR0jscy5ckCWY5DXZDDmxyFkKiGXv8H2B57X/jzZr/wraG1+ALVer0UxEREcUu5hDi9XqxcOFCjB49Gg888ADKy8v7o64OFEXBpk2bsHDhwuhjsixj4cKFWLt27YDUEE8mKQ1W2dnp7WSHWWTJAKvshF12wyyltRyu8T2Pt6p/ig9rH8CBpk+gapyanYiIElvMIeT1119HeXk5brnlFrz44osYPnw4LrjgArzyyitQVbU/agQAeDwehMNh5OXltXs8Ly8PlZWd9wAEg0H4fL52t8FEkiQYJQvSDNmwyy6EhYJDgc+wzvs/+LLh33qXR0RE1K1eDSTIycnBkiVL8MUXX2D9+vUYNWoUvvOd76CwsBB33HEHSktL411nryxbtgwZGRnRW3Fxsd4lxV1YqAiE6+DXamGQjBhimYYZzmsxyXGx3qUREdEgFArF7zIhfRrNWFFRgeXLl2P58uUwGAz4+te/jm3btmHChAl45JFH4lUjAMDtdsNgMKCqqqrd41VVVcjP7/y01aVLl8Lr9UZvZWVlXz2j/7XrVRHodExIZFxIdzShIag1oDFcg2bhg82Qjcnpl+GCnPtxvvs3GGs/FxY5fYB+EiIiSiWqqsLv98dlXTGfHaOqKt588008/fTT+OCDDzBlyhTcfvvt+Pa3vw2n0wkAeO2113DjjTfijjvuiEuRAGA2mzFjxgx89NFHuOSSSwAAmqbho48+wq233trpMhaLBRaLpcPjhlAQEPbIpA4DyihbkGbIQhCdnx0DAM2aD0ZhbTc4VQiBkGiGIvwQAMxyGkpsp2O47TQUWqbAIHEGTCIi6n8mkwmNjY0wGo1wOBx9WlfMIaSgoACapuHqq6/G559/jmnTpnV4zVlnnYXMzMw+FdaZJUuW4LrrrsPMmTMxe/ZsPProo/D7/bjhhhtiWo8kNBhDAYSMtgEPIiaDBRcV/A7GcFqnzx8JfI6Vx3+Plt4aCWGhQtH8CEOFUTIjxzwGJWlnYKh1NmyGzIEsnYiICEajEenp6dFxln0JIjGHkEceeQRXXHEFrFZrl6/JzMzEwYMHe11UV771rW+hpqYGd999NyorKzFt2jS89957HQarnkzIaIVFxyDSE0HRiJAWhCTJsBvcGGGbj+FppyLLOIxTcets44EqvLX5QIfHJbRMkxppHVn6aqZUGV/Nliq3mTVVgqHNbKkmw1ezpZoMMBsNsJpaZk21mVpmTLWZW2ZLtVtMSDMbuQ0Qka7sdjuMRmOfg0jMIeQ73/lOr94oXm699dYuD7/0mCQjZLTCGAp0DCJC63uRfSlNkmGUzJAlI0pss3m4JQEF1TDq/EHd3l+WJKRbTSdcO8aMLLsVWXYLstOtcKXbYDMn1VyERJRkIsGjL0EkZX9LCdmAkNHWLohImgpJ5xCSb56E07IWI888nodbqFOaEPAFFPgCCsrrun6d3WKE25GGHKcNeW2uopuXaYfJwBl2iajvTgwiQsR24kfKhhCgfRAxqX5ACGgGfXscTLIVw22n6loDDQ7+YAj+oA+HPe3nx5ElCW6HDUXZ6S03lwPD3A44bR0HcRMRnUzbINLU1BTTsikdQoCWIKLJBshauOUBXoOFBjlNCFT7mlDta8LmQ9XRxzPTLBie48SInAyMyHViuNsJk5FX6yWik7Pb7b2aEDTlQ4gcViBr4ZYgEg5BioQRohRT3xTE1sM12Hq4BgBglCUMczsxKj8TYwqyMCovE2aGEiI6gaZpqK2thSRJnU6L0Z2UDiFyWIEhrCBsMEMzmKFJKgxa/00935+6PVlCJML0bJRsQprA/mov9ld78f6Xh2GUJYzIzcD4wmxMKHJhqMvBs3SIUlwkgKiqCrfbjUCg+8k2T5SSIWR0QRZkWYbPp8DpdEePZymKgqamJtxx+TxkZ2fH5b18IR8+rG8fbBZmLoDT6IzL+nsioISws7wW2454sKO8Fo3NyRm0SF8hTaC0sh6llfV4c/MBOG1mTBjiwpShbkwY4oLFxF4SolRyYgAxm80MIT3h9/shhIDT6exwSpEsD74xITazETNG5GHGiDxoQuBgtRdfHvFgW5kHFfXxmXqXUo8voGDdvgqs21cBo0HGuMIsTB+Wi6nDcmC38JRyosFMCNEhgPRGyoaQ/Pz8Pk83m4xkScLIvEyMzMvEpbNGocYXwLaylkBSWlmHsMYDNxS7UFjD9rJabC+rxfOf7cbYgizMLMnDtGG5nK+EaJARQqCurg6apvUpgAApGkLsdntKBpDO5DhtOHtiMc6eWNx62KbMgx1HediGeiesCewsP46d5cfxwmd7MLnYjTmj8jGxyAXDIOxpJEo1iqIgFAohNze3TwEESOEQQh11dthmy6FqfLK7HGpY30ncKDmpYQ2bD1Vj86FqpFtNmD0yH/PGFGJIFq/yTJSshBDIysrqcwABUjSE0Mm1PWxz5oRivLRuL7aVefQui5JYY7OKFTvKsGJHGYbnODF/7BDMKsnjab9EScZsNsNkis+4L4YQOim3w4Yffm0qtpV58NK6vfA0xDb6mehEh2p8OFTjw78/L8XcUQVYML4IeRmdX1maiBJLPE/gYAihHptc7Ma4gix8sO0w3v/yMA/RUJ8FlBBW7izDxzvLMH6IC2dNKMLEIhfnHyFKEQwhFBOT0YBF00swZ1QBD9FQ3AgAO8trsbO8FvkZaTh74lDMHZXPaeOJBjkOVadeiRyiuXLuGL1LoUGm0tuE5z/bjV++9Cn+s/Ug/EGepUU0WLEnhPrkrAnFaAqqeHvLQb1LoUGmoVnFW5sPYPm2w5g/dggWThqKjDRe6ZdoMGEIoT5bNL0E/qCKlTuP6l0KDULNahgfbj+CVbuOYt6YQpw3ZRiy7Fa9yyKiOGAIobi4Ys4YNAVDWL+/Uu9SaJBSwxpW7TqKT/eU49Qxhbhg6nCGEaIkxxBCcSFJEr5z+ng0KSEOVqV+FdIEVu8ux9rSCswfU4jzpw7nYRqiJMWBqRQ3BlnGTWdNwuj8TL1LoRQQCmv4eNdR3P3KZ3h94z4OYCVKQgwhFFcmowG3LJyKomxOy00DQwlpeP/Lw7jr5c/w/heHoITCepdERD3EwzEUdzazET86bzr+8M5GVPuSY3ZVCUBJbgamj8jF9GG5cFhjn5I4cv1hIQABAU0TEAA0TUATLbdQWCAsNITDAiFNgxrSoIbDUMIaFDWMYCiMZjWMZiWEgBpCQAmhKaiiMajCH1TREFDRFFTBax13FFBCeH3TfqzafRTfmF6CuaMLIHPSM6KExhBC/cJpM+O280/BqxtKsfVwDcJa4n1tShIwKi8T04fnYvrwXGQmybiCsKahIaCgvkmBtymIOn8zjvubUdvQDE9DAJ6GAJqUkN5l6qbOH8Sza3ZhxY4yfHP2KIwf4tK7JCLqAkMI9ZvsdCu+f9ZkeJuCWL2nHGv2HIO3KahrTRajAaPzMzGp2I1pw3KSckCjQZaRabcis5szQxqbFVR5m1DlbcKxOj8q6htRfrwR3oAygJXqq7yuEX96fysmFrlw+ezRyM/k1bOJEg1DCPW7jDQLvjG9BBdMHY6th2rw8a6j2FdVPyDvLUnAUJcT44dkY3xhNkpyM2A0DP6hUOlWM9KtZozMy2z3uC+g4GhtAw57fDjsacDBGi98gzyY7Dhai13lx7Fg/BAsml4CuyU+V/8kor5jCKEBY5BlzCjJw4ySPJQfb8Ta0goElP45o8FsMmB0XibGFmbzS6cNp82MCUUuTChqPUThaQhgf1U99lXWo7SqHlXeJh0r7B+aEFi58yg+31+Fi2aUYP7YIRwvQpQAGEJIF0Oy03H5nNF6l0FouQ6Q22HDnFEFAID6piB2lx/HrmPHsbO8Fo3Ng+fUV39QxQuf7cGaPcfwrbljOvQUEdHAYgghonYy0yyYO7oAc0cXQAiBw54GbCvz4MsjNTh6vFHv8uKirLYBf3hnE2aPysdls0bDaTPrXRJR0tA0LW7rYgghoi5JkoThOU4Mz3HiwlNKUNsYwNZDNdh8qBoHq71JfaqwALB+XyW+POLBRaeU4IzxRTxEQ9QDiqLAZDLBbO57eE/JEOL3+5GRkaF3GURJx5VuwzmThuKcSUNxvLEZGw9WYcP+yqTuIQkoIby4bi/Wllbg26eNwzC3U++SiBKaJEmoq6uLSxBJ2RDS0NAAh8OhdylESSs73YpzJw/DuZOHobyuEev3VeDzfZVJexrwkdoGPPjWBpwxrggXzxgJmzklfz0SnZTZbEY4HIbH44Hb7e5TEEnJvcxut8Pn8wEAgwhRHAzJSsdls0bj4hkjsf1oLT7dcww7jtZCE8l1wEYIYNWuo9h6uAZXzBmNGSPy9C6JKOFIkoSsrCz4fL4+B5GUDSGyLHcaROI54IYo1RhkGVOH5mDq0Bwcb2zGmj3l+HTvsaSbi8TbFMT/rNyO9fsqcdWpY5Gd3vXEcESpSJIkuFwu1NbW9imIpGQIAVqDR9sgoqoqFCW5flkSJarsdCsumjESi6aPwKaD1VixowyHPT69y4rJtjIP9lbU4aIZJThzQjEHrhK1IctyhyASq5QNIUD7IKIoCgKBACyW5JvGmyiRGWQZs0fmY/bIfOyvqsfybUfwZVkNkuVITTAUxsvrS7FhfxWunT8eQ3iFaKKoE4NIKBTbdauSZv7q+++/H/PmzUNaWhoyMzPjtl6HwwGr1Yrm5mYIIeJyyhERdW5kXiZ+sHAKfn3ZqZg/phBGOXl6Fg55fFj25ud4c9N+qGEetiWKiAQRIQSCwdiuD5Y0IURRFFxxxRW45ZZb4r7eth9aOByO6/qJqKPcjDRcM388fnPlaThn4lCYjcnxqyisCbz7xSE88MZ6HKj26l0OUcLw+/29Wi5pDsfce++9AIBnnnkmbutUFAUejwcmkwkulwter5djQogGUGaaBZfPGY3zpgzDh9uPYNWuowiGEv8Pgcr6Jvz+nY04a0IxLp4xEmajQe+SiHTT0NAAn88Hp9MJuz22q1UnTQjpjWAw2K6XIzIIFegYQGRZht1uh0iWA9VEg4jDZsals0Zh4aSh+GDbYXyy+yiUUGIf8hACWLGjDF8e8eDa+eMwtiBb75KIBlzbAOJwOOD1xtZDOKhDyLJly6I9KG2pqgq/398ugEQYjfH9SJxGJy5zXxbXdRINVg6bGd+cPRoLJw3Fe18cwpo95Qhpif2HgachgD++uwXzxw7BZbNHwWoa1L9WiaJODCC9oeuB2DvvvBOSJHV72717d6/Xv3TpUni93uitrKwMAFBfX99pACGixJCRZsG3Th2LX3/zVMwZmY9EPzNWAFi9pxy/eXU9dpbX6l0OUb/z+/19DiCAzj0hP/nJT3D99dd3+5qSkpJer99isXR6yq3RaGQAIUoCLocN1y+YiIWThuLVjfuwq/y43iV167i/GY+9vxXzxhTi8tmjOfU7DUqhUAh+vx+ZmZl9nnVc1z0kJycHOTk5A/6+mZmZDCBESaTI5cCPz5uOnUdr8e8NpThW17uR+APls73HsKu8Ft+eNw6TimOfwIkokamqivT09Lhc9iRpYvqRI0dw/PhxHDlyBOFwGFu3bgUAjBo1CunpsU0eJCV63y4RdWpCkQvjCrPx6d5jeHPzfjQ2q3qX1KU6fxB/Wf4FTh1dgCvmjGGvCA0aJpMp5rNgupI0e8Xdd9+Nf/zjH9H706dPBwCsXLkSZ555pk5VEdFAk2UJp48bgpklefjP1oNYubMM4QQevLq2tAK7yo/jmtPYK0KDQzxP4EiaYxLPPPMMhBAdbgwgRKnJZjbim7NH465L52LCEJfe5XSrvqmlV+T/Vu9EQIltWmuiwSxpQggRUWfyMtLwo/Om4ZaFU+B22PQup1trSytw36vrsL3Mo3cpRAmBIYSIBoUpQ3Nw96VzsGjaCJgMifurrW2vSFMwcce0EA2ExN1TiYhiZDIa8I1TSnDXpXMS/hDN2tIK/Oa19djGXhFKYQwhRDTo5DhbDtHcdNYkZKZ1nCsoUdQ3BfH48i/wzCc72CtCKSlpzo4hIorVKSPyMKHIhTc27ceqXUeRqJeGWr+vEruP1eGaeeMweSjPoKHUwZ4QIhrUrCYjvjV3LH5+4SwUu/o+uVJ/8TYF8fiHX+DpVTvgZ68IpQiGECJKCcPcTvz8wpm4dNYomI2J+6vv8/2VuO/VddhyqFrvUoj6XeLuiUREcWaQZZw7eRh+dclcjCvM1rucLvkCCp5asQ1/W7ENvoCidzlE/YYhhIhSTo7ThtvOn47vnj4eaQk8nfrmQ9W479V1+Hx/pd6lEPULhhAiSlmnji7EPd+ci+nDB/5Cmj3lD6p4etUO/GX5VtT5m/UuhyiuGEKIKKU5bRbcfPYU3Hz2ZDhtZr3L6dL2slrc9+q6r87ySdDTfIhixBBCRARg+vBc3H3ZXMwZla93KV1qVsP419o9+MM7m1BR79e7HKI+YwghIvqK3WLC9WdMxOKvTUWWPXEnOdtf7cUDr6/H25sPIBTW9C6HqNcYQoiITjCp2I27Lp2L+WMK9S6lSyFN4J2tB3H/G+tRWlmndzlEvcIQQkTUCZvZiGvmj8ePz5uO7HSr3uV0qbK+CY/8ZzOeXb2Tk5zRgIjnmCSGECKibowfko27Lp2D08cOgaR3MV0QAD4rrcCv/70Wa0uP6V0ODXKKosQtiKRkCFFV/rVARD1nNRnx7dPG4cfnT4crgXtFGptV/N/qXfjDO5twrK5R73JokBJCoK6uDprW9/FIKRlC6uvroSichZCIYjOuMBu/unQOTh+XuL0iALCvqh73v/45XllfimY1pHc5NMiYzWaEQiHU1tb2OYikZAgxGo3weDwMIkQUM6vJiG/PS/xeEU0IfLTjCH79b864SvElyzKysrKgqmqfg0hKhpDMzEyYTKZOgwgnASKinoj0ipyR4L0i3qYgnl61A79/ZyPKahv0LocGCZPJBLfb3ecgkpIhRJIkuFyuDkFECMHeESLqMavJiKuToFcEAPZXebHszc/x3JpdvCgexYXZbO5zEEnJEAK0dCe1DSLBYBB1dXXsCSGimCVLr4gQwJq9x3DPK59h+bbDUDnRGfXRiUEk1j/kUzaEAK1BJDJGRFVVmM2Je+0IIkpckV6R2y5I/F6RZjWMVzfsw73/XotNB6r0LoeSXCSIKIqC+vr6mJZN6RBCRBRvYwuycdelc3Hm+KKE7hUBgNrGZvzPx9vx4FsbOOsq6SKlQ4imaaitrUUoFILb7YbJZOKYECLqM4vJgG+dOha3X3AKchw2vcs5qUM1Pjz8n814fPkXKD/O+UUoNoqiwOPxwGw2IzMzM6ZlUzaERAKIqqpwu92wWCzIysqCJCX63y5ElCzGFGThV5fOwdkTi5EMv1q2lXlw/xvr8fePt6PG16R3OZQEIgHEZDLB5XLFPKTB2E91JTQhRLsAEvnQJEnimBAiiiuz0YAr5ozBjBF5eHb1TlR6E/vLXQhgw4EqbDpYjbmj8vH1aSPgSoLeHBp4JwYQWY69XyMle0Lq6+s7BJAI9oQQUX8oyc3ALy6Zg/OnDIecBL9nNCHwWWkF7vn3Wjy7ZhdqfAG9S6IEoqpqnwMIkKI9IaFQCIWFhez1IKIBZTLIuHjmSJwyIhf/t3onjibB+IuwJvDZ3mNYV1qB2SPzce6UYSjItOtdFulI0zT4fD5YLJY+BRAgRXtCMjMzGUCISDfFLgfuvGgWLpkxEiZDcvwa1oTAun0V+M2r6/DXj77EwWqv3iWRThRFgdFo7HMAAVK0J8RkMuldAhGlOIMs47ypwzF9eC7++ekulFbW611SjwgAWw/XYOvhGozMzcDCSUMxZVhOUhxioviQJAlZWVl9DiBAioYQIqJEkZuRhjsuOAWf7j2GVzfsQ0BJnqve7q/2Yv+KbXClW3Hm+CLMG1OINAv/yBvszGZz3MZPMoQQEelMkiTMHzsEU4a68dK6vdh0sFrvkmJS29iMf2/Yh7e2HMCsknycMW4IhrqdepdF/SSeJ3AwhBARJQinzYLvnzUZc0d58K+1e1Db2Kx3STFRQho+3XsMn+49hqEuB04bW4hZJfmwmflVQ53jlkFElGAmFbtxd0EW3tlyEB/tOIKwlnwX1jxS24Ajn+3Bvz8vxdShOZg7ugDjCrM5doTaSYph2YcOHcL3vvc9jBgxAjabDSNHjsQ999zDKdaJaNAyGw24dNYo/OLi2RiVl6l3Ob2mhDRsOFCFx97fil/8aw1eWreXZ9ZQVFL0hOzevRuapuGvf/0rRo0ahe3bt+Omm26C3+/H73//e73LIyLqN4VZ6Vjy9VOwbl8lXttQioZmVe+Ses0bULByZxlW7ixDtt2KacNzMH1YLkryMthDkqKSIoScf/75OP/886P3S0pKsGfPHjzxxBMMIUQ06EmShFNHF2DqUDfe3HwAq3eXQxPJd4imreP+ZqzYUYYVO8qQbjVhcrEbE4tcmDDExTEkKSRpW9rr9SI7O7vb1wSDQQSDweh9n8/X32UREfWbNIsJV506FqeNKcSL6/Zgf9XgOKzR2KxibWkF1pZWQJYkjMh1YlxhNsYXZmN4jhOGOMxHQYkpKUPIvn378Nhjj520F2TZsmW49957B6gqIqKBUexy4L8WzcTn+yvx2oZ9qG8KnnyhJKEJgf1VXuyv8uKdLQdhNsoYkZOBMQVZGJGTgRG5TlhNSfnVRZ3QtSXvvPNOPPjgg92+ZteuXRg3blz0fnl5Oc4//3xcccUVuOmmm7pddunSpViyZEn0vs/nQ3Fxcd+KJiJKELNH5mPq0Bx8sO0Qlm87AjWs6V1S3CkhDXsq6rCnog4AIElAQaYdQ11ODHM7UJTtQJErncEkSenaaj/5yU9w/fXXd/uakpKS6L+PHTuGs846C/PmzcNTTz110vVbLBZYLJa+lklElLAsJgMuPGUk5o0pxOsb92PTgSok92iR7gkBHKvz41idH+v2VQAAJADZ6VYUZNlRmJmOvIw05GWkIdeZBoeN1wlLZLqGkJycHOTk5PToteXl5TjrrLMwY8YMPP3003GZs56IaLBwpdvwvTMn4ZyJxXhlfSn2p9BpsAIts7bWNjZje1ltu+csRgPcDhuy0i3ItluRZbciI82MjDQLMmwWpFtNcFjNkGWenaOHpOi/Ki8vx5lnnolhw4bh97//PWpqaqLP5efn61gZEVFiGZ6Tgf/6xkxsPVSN1zftR5W3Se+SdBUMhVFe14jyusYuXyMBsJqNsFtMsFuMsJqMsJlbbhajARaTAWajASaDDJNBhjHyf1mGQZZgkGXIsgRZAmRZggQJkoToacdtpzlP9qjT4G1AMBQGlBBCouNP0xzjtY+SIoQsX74c+/btw759+1BUVNTuOZHkp6kREfWHacNzMXmoG5/tPYZ3thyEN8DJHbsiAASUEAJKCJ4GvatJbIZQAJneJmhSEEI2dHheafLHtL6kOKZx/fXXQwjR6Y2IiDpnkGWcPq4I910xD5fOHAW7JSn+7qQUwi2SiGiQMxsNOHfKMJw+bgg+2n4EK3aWIRBjtzlRf2AIISJKETazEd84pQRnTSzGh9uP4OOdZWhWw3qXRSmMIYSIKMXYLSZcPGMkFk4aihU7Wq7lwp4R6jGhAVLH8SC9kZIhhGNJiIhawsiFp5Rg4aSh+GT3UazYUQYfB7DSSUhCg6SpnQ5MjVVKhpD6+no4nU7ONUJEhJbDNOdNGY6zJxRj7b4KfLT9CKp9Ab3LogQlJBmGsApIMjRD3yaDS8kQEgqFUFtbC5fLxSBCRPQVk9GAM8YVYf7YIfjyiAcfbj88aC6SR3EkyQgbTDCEW3rN+hJEUjKEZGZmQlEUBhEiok7IkoRpw3IwbVgOjnh8WLGzDJsOVCGk8VA2tRCyCWFJ7nMQSclvX5PJBLfbDVVVUVtbC01rvehTKMTBWUREEUPdTlx/xkTc/635uHjGSGSnW/UuiRKEZjAjbDDDEFYgh3s3ligle0IAwGw2w+12w+PxRHtE/H4/VFXVuzQiooTjtJlx/tThOHfKMOw8Wos1e45hW5kHGgf6p7RID4ghGkJi2x5SNoQA7YNIRUUFNE2D3W7XuywiooQlSxImFbsxqdgNXyCIdaWVWLevAhX1sU3XTYNH2yBiVGMb0JzSIQRoCSIWiwXNzc0AAIMhPuc+ExENdk6bBedOGYZzpwzDYY8P6/dVYNPBap7mm4I02dSmN6TnUj6ENDQ0oLm5GVarFYFAAIrCnYeIKFbD3E4Mcztx+ewx2FtZh40HqrD1cA38QR7iHvSEgDHU0gOixXiiR0qHkIaGBvh8PjidTjgcDvj9fvj97FIkIuotWZYwrjAb4wqzcfW8sdhbUY+th6vx5REP6puCepdH8fZVAJGEhpDRBi0kxbR4yoaQEwMI0HLWjNnct4lXiIiohUGWMX5INsYPycZVpwocqW3Al0c82HG0Fkc8vhiHMFLCOSGA9GYG1ZQMIX6/H0KIdgEkgnOGEBHFnyRJ0UM2F55SgoaAgl3HjmP3V7c6P3tJkkvfAwiQwiEkPz+/QwAhIqKB4bCZMXtkPmaPzAcAVHubsLeyDvsq61FaVY/jjc06V0jdMYSCkCD6FECAFA0hdrudAYSIKIHkZqQhNyMN88cOAQB4m4I4UO3FwRovDtf4cKS2Ac1qWOcqCQAkLdzSA2JK6/NF7FI2hBARUeLKSLNg+vBcTB+eC6Dl6ufVvgCOHm/A0dpGlNc1oqLej9qGAMeWDDiBkNHKq+gSEVFqkCQJeRlpyMtIw4wRedHHlVAYVd4mVHmbUO1rQrW3CZ7GADwNzfA1BRlQ+oGQDIAUn/GTDCFERJS0zEYDil0OFLs6HmIPhTXU+YOo8zejvimI+qYgfE1BeAMKGgIKGptVNDYr8CshhMJaJ2unTkmxnYbbHYYQIiIalIwGGTlOG3KctpO+VgmF0RRUEVBCCKhhNKshBNUwgmoYSjgMNaRBCWsIhcMIhQXUsIawpiGsCYQ1AU203IQQEAJf/RsABE68+LBI4v6ZcLMfPp8RkqHldqKAFttZTgwhRESU8sxGA8xGAzI5ZLBbx48fx8vHtsNqtXY6r5Y3xqm2OCkGERER6YIhhIiIiHTBEEJERES6YAghIiIiXTCEEBERkS4YQoiIiEgXDCFERESkC4YQIiIi0gVDCBEREemCIYSIiIh0wRBCREREumAIISIiIl0whBAREZEukiaEXHTRRRg6dCisVisKCgrwne98B8eOHdO7LCIiopSiaVrc1pU0IeSss87CSy+9hD179uDf//439u/fj8svv1zvsoiIiFKKoihQVTUu6zLGZS0D4I477oj+e9iwYbjzzjtxySWXQFVVmEymmNbl9/uRkZER7xKJiIgGPUmSUFdXB5PJBLPZ3Kd1JU0Iaev48eN47rnnMG/evG4DSDAYRDAYjN73+XwAWkJIQ0MDHA5Hv9dKREQ0mJjNZoTDYXg8Hrjd7j4FkaQ5HAMAP//5z2G32+FyuXDkyBG88cYb3b5+2bJlyMjIiN6Ki4sBAHa7HT6fDw0NDQNRNhER0aAhSRKysrJgMpng8XigKEqv16VrCLnzzjshSVK3t927d0df/9Of/hRbtmzBBx98AIPBgO9+97sQQnS5/qVLl8Lr9UZvZWVlAFpCiNPp7DSIxHPADRER0WAkSRJcLlefg4iuh2N+8pOf4Prrr+/2NSUlJdF/u91uuN1ujBkzBuPHj0dxcTHWrVuHU089tdNlLRYLLBZLp89FDsVEDtE4HA6oqtqnREdERJQqZFmGy+VCbW1t9NBMrHQNITk5OcjJyenVspEei7ZjPmLVNogoioJAINBlaCEiIqL2TgwioVAopuWTYmDq+vXrsWHDBsyfPx9ZWVnYv38/7rrrLowcObLLXpCecjgcUBQFzc3NEEL0eaQvERFRKokEkYqKipg7BpJiYGpaWhpeffVVnHPOORg7diy+973vYcqUKVi1alWfey4URWn3oYXD4b6WS0RElFL8fn+vlkuKnpDJkydjxYoVcV+voijweDwwmUxwuVzwer0cE0JERBSDhoYG+Hw+OJ1O2O32mJZNip6Q/nBiAJFlGXa7PeaJz4iIiFJV2wDicDggSVJMyydFT0i8qaoKv9/fLoBEGI0p+ZEQERHF5MQA0hsp2RNSX1/faQAhIiKik/P7/X0OIECKhhCj0cgAQkRE1AuhUAiNjY19DiBAioaQzMxMBhAiIqJeUFUV6enpcbn+Wkp+E8c6cIaIiIhamEymmM+C6UpKhhAiIiLqnXiewMEQQkRERLpgCCEiIiJdMIQQERGRLhhCiIiISBcMIURERKQLhhAiIiLSBUMIERER6YIhhIiIiHTBEEJERES6YAghIiIiXTCEEBERkS4YQoiIiEgXDCFERESkC4YQIiIi0gVDCBEREemCIYSIiIh6TAgRt3UxhBAREVGPKYoStyCSkiFEVVW9SyAiIkpKQgjU1dVB07Q+ryslQ0h9fT0URdG7DCIioqRjNpsRCoVQW1vb5yCSkiHEaDTC4/EwiBAREcVIlmVkZWVBVdU+BxFjHOtKGna7HeFwGNXV1cjKyoLJZALQcphGVVV4vV6dKyQiIko8Xq8XoVAIBoMBGRkZqKuri36XSpIU83CHlAwhHo8HNpsNoVAIx44dg9FohCzL0DQN4XAYr732Gmw2G2S5/zuKQqEQVFWFyWSC0Wjs8rH+pGkaFEWBJEkwm82QJKnTx/qTECI62MlsNkOW5U4f629sjxZsj1Zsj1Zsjxap3B6hUAj19fWQJCn6vRkIBNDY2Aij0YhAIBDT+lIyhEiSBIPBAEmSoCgKVFWF2WyOJri0tDTYbLYBq8fv96OxsRHp6enR++np6bDb7QNWg8lkQl1dHcLhMNLT0+Hz+WA0GqPpdiBYrVbU1dWhsbERmZmZaGxsRCgUatdbNRDYHi3YHq3YHq3YHi1StT1UVYUsy9EQEvl35Ls01kMzKRtCIh+eLMtobm6Ojg8xmUyw2Wwwm80DVo/ZbIbRaITP5wMAZGZmwuFwDNj7R2owmUyoqamB1+uF2WyG2+0ekDTfVm5uLjweT/SQWG5u7oC2BcD2aIvt0VoD26MF26NVqrZH2+9QANEgEgwGEQ6HY1pXSg5MJSIiIv2ldAjRNA3BYBAAYLFYIElS9HjaQGpoaIDP54PT6YTT6YTP50NDQ8OA1qAoCjweT/QvinidfhULTdNQW1uLUCgEt9sNs9msy1lMbI8WbI9WbI9WbI8WbI9WoVAIiqJAluWYx6GkbAiJBJDIICKj0RgNInV1dQO2IbXdgBwOBxwOx4BvSJEd2mQyweVywWKxwO12x+X0q56K7NCqqsLtdsNiscDlcsFkMg3ojs32aMH2aMX2aMX2aMH2aBUJIJIkwWKxwGAwxLR80oWQYDCIadOmQZIkbN26tVfrEEJ0CCBA64DVgZpH5MQNKGIgN6QTd+jIMb7IXxgDsWOfuENHjqnKsjygOzbbowXboxXboxXbowXbo9WJAaQ3Y3KSLoT87Gc/Q2FhYZ/W0fY0qhO7jmRZRmZmZr9vSF1tQBEDsSF1tUNHDMSO3dUOHTFQOzbbowXboxXboxXbowXbo1U4HO5zAAGSLIS8++67+OCDD/D73/++z+vqLIBE9PeGdLINKKI/N6ST7dAR/bljn2yHjmB7tGJ7tGJ7tGB7tGJ7tOrP9mg7L0tfAgiQRCGkqqoKN910E5599lmkpaX1aV09mcSlvzaknm5AEf2xIfV0h47ojx27pzt0BNujFdujFdujBdujFdujVX+0h6qqCIVCcQkgQJKEECEErr/+evzgBz/AzJkze7xcMBiEz+drdwPQ4w8t3htSrBtQRDw3pFh36Ih47tix7tARbI9WbI9WbI8WbI9WbI9W8W6Purq6uAUQQOcQcuedd0KSpG5vu3fvxmOPPYaGhgYsXbo0pvUvW7YMGRkZ0VtxcXHMNcZrQ+rtBhQRjw2ptzt0RDx27N7u0BFsj1Zsj1ZsjxZsj1Zsj1bxbA+j0RidcTweJCGEiMuaeqGmpga1tbXdvqakpARXXnkl3nrrrXY/dDgchsFgwDXXXIN//OMfnS4bDAaj84AAgM/nQ3FxMe65557oFLdtaZoGTdNQUFDQYWPry8bY1w0oHuvq6w4dj3X1dYeO17rYHi3YHq3YHq3YHi3YHq3afoYOhwNVVVXtZkxtq7GxEffeey+8Xi+cTudJ161rCOmpI0eORA+lAMCxY8dw3nnn4ZVXXsGcOXNQVFTUo/X4fD5kZGT0KoREno91Q4rnBtTbdcZzh+7tOuO5Q/dlnWyPFmyPVmyPVmyPFmyPVid+dqFQCBUVFXELIUkxJmTo0KGYNGlS9DZmzBgAwMiRI3scQOIh1q61/tiAgNi61vpjhwZi6+rsjx0aYHu0xfZoxfZowfZoxfZolQjt0VZShJBE0tMNqb82oIiebEj9vQH1ZMfurx06gu3Riu3Riu3Rgu3Riu3RKhHaIyIpQ8jw4cMhhMC0adN0ef+TbUj9vQFFdLchDdQG1N2O3d87dATboxXboxXbowXboxXbo1UitAeQpCEkEXS1IQ3UBhTR2YY0kBsQ0PmOPVA7dATboxXboxXbowXboxXbo1UitEdsl7ujdiIbUm1tLTweDywWC5qbmwdsA4qIvJfP54OiKAgGgwO2AUVEdmyPxwOPxwMA7a4uORDYHq3YHq3YHi3YHq3YHq30bo+UCiGRE4ECgUC3z/t8PphMph6v12Qyob6+Hn6/HxaLBZqmwev19r3gGIXDYRw/fhwAkJOTM2BXUWwr8lkAQGZmJgKBQJefd3/XwPZge7TF9mhfA9uD7dFWT9tDVdXoZ9TZXCGR53p64m1SnKIbL0ePHu3VhGVERETUc2VlZT06ezWlQoimaTh27BgcDkenCS4ymVlZWVmPzm+mvuHnPXD4WQ8sft4Di5/3wDnZZy2EQENDAwoLC3t0OCelDsfIstyjZOZ0OrkhDyB+3gOHn/XA4uc9sPh5D5zuPuuMjIwer4dnxxAREZEuGEKIiIhIFwwhbVgsFtxzzz2wWCx6l5IS+HkPHH7WA4uf98Di5z1w4v1Zp9TAVCIiIkoc7AkhIiIiXTCEEBERkS4YQoiIiEgXDCFf+ctf/oLhw4fDarVizpw5+Pzzz/UuaVBatmwZZs2aBYfDgdzcXFxyySXYs2eP3mWljN/+9reQJAm333673qUMSuXl5bj22mvhcrlgs9kwefJkbNy4Ue+yBqVwOIy77roLI0aMgM1mw8iRI/Gb3/ymx9OFU/c++eQTXHjhhSgsLIQkSXj99dfbPS+EwN13342CggLYbDYsXLgQpaWlMb8PQwiAF198EUuWLME999yDzZs3Y+rUqTjvvPNQXV2td2mDzqpVq7B48WKsW7cOy5cvh6qqOPfcc+H3+/UubdDbsGED/vrXv2LKlCl6lzIo1dXV4bTTToPJZMK7776LnTt34g9/+AOysrL0Lm1QevDBB/HEE0/gz3/+M3bt2oUHH3wQv/vd7/DYY4/pXdqg4Pf7MXXqVPzlL3/p9Pnf/e53+NOf/oQnn3wS69evh91ux3nnnYfm5ubY3kiQmD17tli8eHH0fjgcFoWFhWLZsmU6VpUaqqurBQCxatUqvUsZ1BoaGsTo0aPF8uXLxYIFC8Rtt92md0mDzs9//nMxf/58vctIGYsWLRI33nhju8cuu+wycc011+hU0eAFQLz22mvR+5qmifz8fPHQQw9FH6uvrxcWi0W88MILMa075XtCFEXBpk2bsHDhwuhjsixj4cKFWLt2rY6VpYbI1SKzs7N1rmRwW7x4MRYtWtRuO6f4evPNNzFz5kxcccUVyM3NxfTp0/G3v/1N77IGrXnz5uGjjz7C3r17AQBffPEF1qxZgwsuuEDnyga/gwcPorKyst3vk4yMDMyZMyfm782UunZMZzweD8LhMPLy8to9npeXh927d+tUVWrQNA233347TjvtNEyaNEnvcgatf/3rX9i8eTM2bNigdymD2oEDB/DEE09gyZIl+MUvfoENGzbgxz/+McxmM6677jq9yxt07rzzTvh8PowbNw4GgwHhcBj3338/rrnmGr1LG/QqKysBoNPvzchzPZXyIYT0s3jxYmzfvh1r1qzRu5RBq6ysDLfddhuWL18Oq9WqdzmDmqZpmDlzJh544AEAwPTp07F9+3Y8+eSTDCH94KWXXsJzzz2H559/HhMnTsTWrVtx++23o7CwkJ93Ekn5wzFutxsGgwFVVVXtHq+qqkJ+fr5OVQ1+t956K95++22sXLmyR1c2pt7ZtGkTqqurccopp8BoNMJoNGLVqlX405/+BKPRiHA4rHeJg0ZBQQEmTJjQ7rHx48fjyJEjOlU0uP30pz/FnXfeiauuugqTJ0/Gd77zHdxxxx1YtmyZ3qUNepHvxnh8b6Z8CDGbzZgxYwY++uij6GOapuGjjz7CqaeeqmNlg5MQArfeeitee+01rFixAiNGjNC7pEHtnHPOwbZt27B169bobebMmbjmmmuwdetWGAwGvUscNE477bQOp5vv3bsXw4YN06miwa2pqQmy3P4rzGAwQNM0nSpKHSNGjEB+fn67702fz4f169fH/L3JwzEAlixZguuuuw4zZ87E7Nmz8eijj8Lv9+OGG27Qu7RBZ/HixXj++efxxhtvwOFwRI8fZmRkwGaz6Vzd4ONwODqMt7Hb7XC5XByHE2d33HEH5s2bhwceeABXXnklPv/8czz11FN46qmn9C5tULrwwgtx//33Y+jQoZg4cSK2bNmChx9+GDfeeKPepQ0KjY2N2LdvX/T+wYMHsXXrVmRnZ2Po0KG4/fbb8d///d8YPXo0RowYgbvuuguFhYW45JJLYnujOJ3Bk/Qee+wxMXToUGE2m8Xs2bPFunXr9C5pUALQ6e3pp5/Wu7SUwVN0+89bb70lJk2aJCwWixg3bpx46qmn9C5p0PL5fOK2224TQ4cOFVarVZSUlIhf/vKXIhgM6l3aoLBy5cpOf1dfd911QoiW03TvuusukZeXJywWizjnnHPEnj17Yn4fXkWXiIiIdJHyY0KIiIhIHwwhREREpAuGECIiItIFQwgRERHpgiGEiIiIdMEQQkRERLpgCCEiIiJdMIQQERGRLhhCiIiISBcMIURERKQLhhAiIiLSBUMIESWUmpoa5Ofn44EHHog+9tlnn8FsNre7dDgRJT9ewI6IEs5//vMfXHLJJfjss88wduxYTJs2DRdffDEefvhhvUsjojhiCCGihLR48WJ8+OGHmDlzJrZt24YNGzbAYrHoXRYRxRFDCBElpEAggEmTJqGsrAybNm3C5MmT9S6JiOKMY0KIKCHt378fx44dg6ZpOHTokN7lEFE/YE8IESUcRVEwe/ZsTJs2DWPHjsWjjz6Kbdu2ITc3V+/SiCiOGEKIKOH89Kc/xSuvvIIvvvgC6enpWLBgATIyMvD222/rXRoRxREPxxBRQvn444/x6KOP4tlnn4XT6YQsy3j22WexevVqPPHEE3qXR0RxxJ4QIiIi0gV7QoiIiEgXDCFERESkC4YQIiIi0gVDCBEREemCIYSIiIh0wRBCREREumAIISIiIl0whBAREZEuGEKIiIhIFwwhREREpAuGECIiItIFQwgRERHp4v8D60TSiDcw+GcAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# construct simulation\n",
"sim = td.Simulation(\n",
" center=(Lx / 2, 0, 0),\n",
" size=sim_size,\n",
" grid_spec=td.GridSpec.auto(min_steps_per_wvl=30, wavelength=lda0),\n",
" structures=y_junction,\n",
" sources=[mode_source],\n",
" monitors=[mode_monitor, field_monitor],\n",
" run_time=5e-13,\n",
" boundary_spec=td.BoundarySpec.all_sides(boundary=td.PML()),\n",
" medium=sio2,\n",
")\n",
"\n",
"sim.plot(z=0)\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "f7f50958",
"metadata": {},
"source": [
"Before submitting the simulation to the server, it is a good practice to visualize the mode profile at the [ModeSource](../_autosummary/tidy3d.ModeSource.html) to ensure we are launching the fundamental TE mode. To do so, we will use the [ModeSolver](../_autosummary/tidy3d.plugins.ModeSolver.html) plugin, which solves for the mode profile on your local computer."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "da2af982",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:04.869381Z",
"iopub.status.busy": "2023-03-27T23:47:04.869214Z",
"iopub.status.idle": "2023-03-27T23:47:05.904447Z",
"shell.execute_reply": "2023-03-27T23:47:05.903861Z"
}
},
"outputs": [],
"source": [
"mode_solver = ModeSolver(\n",
" simulation=sim,\n",
" plane=td.Box(center=mode_source.center, size=mode_source.size),\n",
" mode_spec=mode_spec,\n",
" freqs=[freq0],\n",
")\n",
"mode_data = mode_solver.solve()\n"
]
},
{
"cell_type": "markdown",
"id": "1c0322c9",
"metadata": {},
"source": [
"Visualize the mode profile. We confirm that we are exciting the waveguide with the fundamental TE mode."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a2e49017",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:05.906972Z",
"iopub.status.busy": "2023-03-27T23:47:05.906767Z",
"iopub.status.idle": "2023-03-27T23:47:06.522409Z",
"shell.execute_reply": "2023-03-27T23:47:06.521796Z"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAEiCAYAAABjpFhlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsNklEQVR4nOydeZxT1fn/P+cuWWZnX2RXC7iwFBUHFVCoiEu1UreioFL41YJVqXXpV2XRikuruCBoK6Bfma8tVnDHIgJWBSsodatUKQoWBhWYfZLc5fz+uEtyJ8kkN5NMksnz5nVfkJtzz31umHzmLM/COOccBEEQBEEQBEEQBEHkFEK2DSAIgiAIgiAIgiAIIhqasBMEQRAEQRAEQRBEDkITdoIgCIIgCIIgCILIQWjCThAEQRAEQRAEQRA5CE3YCYIgCIIgCIIgCCIHoQk7QRAEQRAEQRAEQeQgNGEnCIIgCIIgCIIgiByEJuwEQRAEQRAEQRAEkYNI2TaAIIjcJhAIIBQKubrG4/HA5/NlyCKCIIjcIBV9BEgjCYIoDGgMmR5owk4QRFwCgQAGDjwC1dWHXF3Xs2dP7N69mwSXIIgOS6r6CJBGEgTR8aExZPqgCTtBEHEJhUKorj6Er3Y/i7KyoqSuqatrwoCBlyIUCpHYEgTRYUlFHwHSSIIgCgMaQ6YPmrATBJGQshIfykr8yTXW9cwaQxAEkUO40keANJIgiIKCxpBthybsBEEkRteTF1ESW4IgCgk3+mi1JwiCKBRoDNlmaMJOEERiODeOZNsSBEEUCm700WpPEARRKNAYss1QWTeCIBKj8/AKacKDxJYgiALClT6618j//ve/uPzyy9GlSxf4/X4cf/zx2LZtm/0+5xx33HEHevXqBb/fj4kTJ+KLL75I91MSBEGkBo0h2wxN2AmCSIyrwSi5MxEEUUC41UcXGnn48GGccsopkGUZr732Gj777DP84Q9/QKdOnew29913Hx5++GEsW7YM7733HoqLizFp0iQEAoFMPC1BEIQ7aAzZZmjCThBEYjIotkuXLsWwYcNQVlaGsrIyVFZW4rXXXrPfDwQCmD17Nrp06YKSkhJMmTIFBw4cSPcTEgRBpEYGJ+z33nsv+vbtixUrVuCkk07CwIEDceaZZ+LII48EYOyuL168GLfddhvOP/98DBs2DE8//TT27duHtWvXZuiBCYIgXEAT9jZDE3aCIBKTQbHt06cP7rnnHmzfvh3btm3DGWecgfPPPx+ffvopAOCGG27ASy+9hNWrV2Pz5s3Yt28fLrzwwkw8JUEQhHsyOGF/8cUXccIJJ+Ciiy5C9+7dMXLkSPzxj3+039+9ezeqq6sxceJE+1x5eTlGjx6NLVu2pPUxCYIgUoIm7G2Gks4RBJEY7kJEuTuxPe+88xyvf/e732Hp0qXYunUr+vTpgyeffBJVVVU444wzAAArVqzA0KFDsXXrVpx88smu7kUQBJF23Oij1R5AXV2d47TX64XX63Wc+89//oOlS5di7ty5+O1vf4v3338fv/rVr+DxeDB9+nRUV1cDAHr06OG4rkePHvZ7BEEQWSWDY8hCgXbYCYJICOO6qwMwBqORRzAYTHgfTdPw7LPPorGxEZWVldi+fTsURXHsHg0ZMgT9+vWj3SOCIHICt/poaWTfvn1RXl5uH4sWLYrqW9d1/PCHP8Tdd9+NkSNHYtasWZg5cyaWLVvW3o9JEASREqnoI+GEdtgJgkiMGzclPTwYjWTevHmYP39+zEs+/vhjVFZWIhAIoKSkBGvWrMExxxyDHTt2wOPxoKKiwtGedo8IgsgZ3Lpxmm337t2LsrIy+3TL3XUA6NWrF4455hjHuaFDh+Kvf/0rAKBnz54AgAMHDqBXr152mwMHDmDEiBHJ20QQBJEpUhhDEk5owk4QRGJ0nnypDbNdMoNRi8GDB2PHjh2ora3Fc889h+nTp2Pz5s1tMpkgCKJdcKOPVnvATrTZGqeccgp27tzpOPfvf/8b/fv3BwAMHDgQPXv2xIYNG+wJel1dHd577z1cc801ydtEEASRKVIYQxJOaMJOEERiUlgdTWYwauHxeHDUUUcBAEaNGoX3338fDz30EC655BKEQiHU1NQ4dtkPHDhg7ywRBEFklRR32JPhhhtuwJgxY3D33Xfj4osvxj/+8Q888cQTeOKJJwAAjDFcf/31uOuuu3D00Udj4MCBuP3229G7d29ccMEFLh+EIAgiA9AOe5uhCTtBEIlpZ7HVdR3BYBCjRo2CLMvYsGEDpkyZAgDYuXMn9uzZg8rKyjbfhyAIos1kcMJ+4oknYs2aNbj11luxcOFCDBw4EIsXL8bUqVPtNjfddBMaGxsxa9Ys1NTU4NRTT8W6devg8/ncPAVBEERmoAl7m6EJO0EQieE8+cyd3J0706233orJkyejX79+qK+vR1VVFTZt2oTXX38d5eXlmDFjBubOnYvOnTujrKwM1157LSorKylDPEEQuYEbfbTau+Dcc8/FueeeG/d9xhgWLlyIhQsXuuqXIAiiXcjgGLJQoAk7QRCJyeDq6Lfffotp06Zh//79KC8vx7Bhw/D666/jRz/6EQDgwQcfhCAImDJlCoLBICZNmoTHHnvM7RMQBEFkhgzusBMEQeQ9tMPeZmjCThBEYjKYMOTJJ59s9X2fz4clS5ZgyZIlrvolCIJoF1JMOkcQBFEQUNK5NkMTdoIgEkOrowRBELGhHXaCIIj40BiyzdCEnSCIxHAXYusmlpMgCCLfcaOPVnuCIIhCgcaQbYYm7ARBJITpOliSYptsO4IgiI6AG3202hMEQRQKNIZsOzRhJwgiMZwnn7mTMnwSBFFIuNFHqz1BEEShQGPINiNk2wCCIPIAK/4o2YMgCKJQcKuPpJEEQRQSGdTHRYsW4cQTT0RpaSm6d++OCy64ADt37nS0CQQCmD17Nrp06YKSkhJMmTIFBw4caLVfzjnuuOMO9OrVC36/HxMnTsQXX3zh+tHTBU3YCYJIDA1GCYIgYkMTdoIgiPhkUB83b96M2bNnY+vWrVi/fj0URcGZZ56JxsZGu80NN9yAl156CatXr8bmzZuxb98+XHjhha32e9999+Hhhx/GsmXL8N5776G4uBiTJk1CIBBI6SNoK+QSTxAEQRAEQRAEQeQV69atc7xeuXIlunfvju3bt2Ps2LGora3Fk08+iaqqKpxxxhkAgBUrVmDo0KHYunUrTj755Kg+OedYvHgxbrvtNpx//vkAgKeffho9evTA2rVrcemll2b+wVpAO+wEQSTGqqGZ7EEQBFEouNVH0kiCIAqJFPSxrq7OcQSDwaRuVVtbCwDo3LkzAGD79u1QFAUTJ0602wwZMgT9+vXDli1bYvaxe/duVFdXO64pLy/H6NGj416TaWjCThBEYsjdkyAIIjbkEk8QBBGfFPSxb9++KC8vt49FixYlcRsd119/PU455RQcd9xxAIDq6mp4PB5UVFQ42vbo0QPV1dUx+7HO9+jRI+lrMg25xBMEkRidJz/IpN0jgiAKCTf6aLUnCIIoFFIYQ+7duxdlZWX2aa/Xm/DS2bNn45NPPsHbb7+dkpm5DO2wEwSRGKskR7IHQRBEoeBWH0kjCYIoJFLQx7KyMseRaMI+Z84cvPzyy9i4cSP69Oljn+/ZsydCoRBqamoc7Q8cOICePXvG7Ms63zKTfGvXZBqasBMEkRhy9yQIgogNucQTBEHEJ4P6yDnHnDlzsGbNGrz55psYOHCg4/1Ro0ZBlmVs2LDBPrdz507s2bMHlZWVMfscOHAgevbs6bimrq4O7733XtxrMg25xBMEkRjuIlES7R4RBFFIuNFHqz1BEEShkMEx5OzZs1FVVYUXXngBpaWldox5eXk5/H4/ysvLMWPGDMydOxedO3dGWVkZrr32WlRWVjoyxA8ZMgSLFi3CT37yEzDGcP311+Ouu+7C0UcfjYEDB+L2229H7969ccEFF7iyL13QhJ0giMS4WfWk3SOCIAoJt7tCpJEEQRQSGRxDLl26FAAwfvx4x/kVK1bgyiuvBAA8+OCDEAQBU6ZMQTAYxKRJk/DYY4852u/cudPOMA8AN910ExobGzFr1izU1NTg1FNPxbp16+Dz+VzZly5owk4QRGJowk4QBBEbmrATBEHEJ4NjSJ7EjrzP58OSJUuwZMmSpPthjGHhwoVYuHChK3syBU3YCYJIjJvawZQBmSCIQsJtbXXSSIIgCgkaQ7YZmrATBJEYrhtHsm0JgiAKBTf6aLUnCIIoFGgM2WZowk4QRGJodZQgCCI2tMNOEAQRHxpDthmasBMEkRiKYScIgogNxbATBEHEh8aQbYYm7ARBJIZWRwmCIGJDO+wEQRDxoTFkm6EJO0EQidG5i9VREluCIAoIN/potScIgigUaAzZZmjCThBEYmh1lCAIIja0w04QBBEfGkO2GZqwEwSRBG6yIFP8EUEQhYTLLPGkkQRBFBQ0hmwrNGEnCCIxtDpKEAQRG9phJwiCiA+NIdsMTdgJgkgMiS1BEERsaMJOEAQRHxpDthmasBMEkRgqyUEQBBEbKutGEAQRHxpDthmasBMEkRhaHSUIgogN7bATBEHEh8aQbYYm7ARBJIbEliAIIjY0YScIgogPjSHbjJBtA4jsMmDAAMyfP79d7vXLX/4SP/rRj9rlXok4+eSTcdNNN8V8b/z48bjyyivb16Bcx3JnSvYgiA4A6WM0pI8xcKuPpJFEB6G9NPLss8/GzJkzM36fRCiKgr59++Kxxx6L+X57/s7IK0gf2wxN2Ikoxo8fD8ZYzGPIkCEp9bl792786U9/wm9/+9s0W5saN998M5YsWYLq6upsm5IfcO7uIIgOCukjEYVbfXShkfPnz2/15ywQCGD27Nno0qULSkpKMGXKFBw4cCATT0kQSZFujXznnXfwt7/9DTfffHMGrHWHLMuYO3cufve73yEQCGTbnPyBxpBthlziiZj06dMHixYtijpfXl6eUn8PPfQQBg4ciNNPP72tpqWF888/H2VlZXjsscewcOHCbJuT+5A7E0HYkD4SDjLsEn/sscfijTfesF9LUnjodsMNN+CVV17B6tWrUV5ejjlz5uDCCy/EO++84+oeBJFO0qmR999/PyZMmICjjjoqHaa1mauuugq33HILqqqqcPXVV2fbnPyAxpBthibsREzKy8tx+eWXp6UvRVGwatUq/OIXv0hLf+lAEAT89Kc/xdNPP40FCxaAMZZtk3KbDIrtokWL8Pzzz+Pzzz+H3+/HmDFjcO+992Lw4MF2m/Hjx2Pz5s2O6/7f//t/WLZsmat7EUQ6IH0kHGR4wi5JEnr27Bl1vra2Fk8++SSqqqpwxhlnAABWrFiBoUOHYuvWrTj55JNd3Ycg0kW6NPLbb7/FK6+8klO/6ysqKnDmmWdi5cqVNGFPFpqwtxlyiSdSorm5GUOGDMGQIUPQ3Nxsnz906BB69eqFMWPGQNM0AMDbb7+N77//HhMnTnT0MX36dPh8PvzrX/9ynJ80aRI6deqEffv2ubJp3rx5kGUZ3333XdR7s2bNQkVFhcOF6Uc/+hG+/vpr7Nixw9V9ChLuIvaIu4s/2rx5M2bPno2tW7di/fr1UBQFZ555JhobGx3tZs6cif3799vHfffdl84nJIi0sXHjRjDGsGbNmqj3qqqqwBjDli1bAJA+dgjc6GMKGvnFF1+gd+/eGDRoEKZOnYo9e/YAALZv3w5FURw/O0OGDEG/fv3sny+CyEW++uqruG7zkQuEr7zyClRVdfyMc85x+umno1u3bvj222/t86FQCMcffzyOPPLIqPFDIqZPn46uXbtCUZSo984880zHBgJg6OPbb7+NQ4cOubpPwZLBMWShQBN2IiaapuH777+POiwR9Pv9eOqpp/Dll1/if/7nf+zrZs+ejdraWqxcuRKiKAIA3n33XTDGMHLkSMc9HnroIXTr1g3Tp0+3J/ePP/44/va3v+GRRx5B7969Xdl8xRVXQFVV/PnPf3acD4VCeO655zBlyhT4fD77/KhRowCAXAeTwVodTfZwwbp163DllVfi2GOPxfDhw7Fy5Urs2bMH27dvd7QrKipCz5497aOsrCydT0gQSZNIH8ePH4++ffti1apVUdeuWrUKRx55JCorKwGQPnYI3OqjqZF1dXWOIxgMRnU9evRorFy5EuvWrcPSpUuxe/dunHbaaaivr0d1dTU8Hg8qKioc1/To0YPyDxBZJZFGduvWDf/7v//rOJYvX47y8nJ069bN7ufdd99Fly5d0L9/f/scYwzLly9HIBBweCbNmzcPn376KVasWIHi4mJX9l5xxRU4ePAgXn/9dcf56upqvPnmm1HeAqNGjQLnHO+++66r+xQsGRxDvvXWWzjvvPPQu3dvMMawdu1ax/vxFoXuv//+uH0myh2SDWjCTsTk888/R7du3aKOX//613ab0aNH46abbsJDDz2Ev//973juuefw7LPPYtGiRfjBD37g6Ktz585RE6yKigo8+eSTeP/993HPPfdg9+7duPHGG3HBBRek5Ep11FFHobKyEs8884zj/CuvvILDhw/jiiuucJw/4ogj4PF48Nlnn7m+V8Ghw4XYGpckMxiNRW1tLQCgc+fOjvOrVq1C165dcdxxx+HWW29FU1NTOp+QIJImkT4yxnD55Zfj5Zdftn+eAeC7777D3/72N4e+kT52AFzpY1gj+/bti/LycvuIFfM7efJkXHTRRRg2bBgmTZqEV199FTU1NfjLX/7Svs9IEC5IpJHFxcW4/PLLHce2bdvQ0NDgWFT8/PPPMWDAgKj+Bw4ciD/84Q9Ys2YNVq1ahffeew/3338/rrvuOowdO9a1vWeccQb69OkTpY//93//B13XozR30KBBAED6mCwpjCGTpbGxEcOHD8eSJUtivh/pmbl//34sX74cjDFMmTKl1X6PPfZYx3Vvv/22O8PSDMWwEzEZMGAA/vjHP0ad79Onj+P1/Pnz8fLLL2P69OloaGjAuHHj8Ktf/crR5uDBg+jUqVPM+5x55pn4f//v/2HhwoV47rnn4PP58Pjjj6ds97Rp03DNNddg165dOPLIIwEYE72+ffti3LhxUe07deqE77//PuX7FQwpxB/17dvXcXrevHkJy53ouo7rr78ep5xyCo477jj7/M9+9jP0798fvXv3xkcffYSbb74ZO3fuxPPPP+/qMQgiHSSjj9OmTcOiRYvw3HPPYcaMGQCAP//5z1BV1TH4I33sAKQYw753717HQo3X6014aUVFBX7wgx/gyy+/xI9+9COEQiHU1NQ4dtkPHDgQM+adINqLZMeQFk8//TQee+wx/OEPf3Ak3zx48CCOOOKImNfMmjULzz//PK699lp07doVRx55JO6+++6U7BUEAVOnTsXDDz+M+vp6lJaWAjD0ccyYMRg4cKCjvaXZpI9JksEY9smTJ2Py5Mlx32+phS+88AJOP/10e9ElHvFyh2QLmrATMSkuLo6KqYyFx+PB8uXLceKJJ8Ln82HFihUxExTxVso0/P73v8cLL7yAHTt2oKqqCt27d0/Z7ksuuQTXX389Vq1ahTvuuAO1tbV4+eWXccMNN8S1ixIqJYbrHDxJEeVtGIzOnj0bn3zySdRK5qxZs+x/H3/88ejVqxcmTJjgmHgQRHuRjD4OGTIEJ554IlatWmVP2FetWoWTTz45Ktsx6WN+40YfrfYAUFZW5jq0p6GhAbt27cIVV1yBUaNGQZZlbNiwwd4t2rlzJ/bs2WOHXBBENkh2DAkAO3bswC9+8QtcdtllmDt3btT7renjk08+iSOPPBJffPEF3n33Xfj9/pRtnjZtGu69916sWbMG06ZNw86dO7F9+/aYCe8sm0gfkyOVMWQmOHDgAF555RU89dRTCdtauUN8Ph8qKyuxaNEi9OvXL2O2JYJc4ok2Y8X8BAIBfPHFF1Hvd+nSBYcPH457/YcffmgnDvn444/bZEunTp1w7rnn2rGjzz33HILBYFwX0pqaGnTt2rVN9ywIUqihaQ1GrSPRhH3OnDl4+eWXsXHjxrir8BajR48GAHz55ZfpeT6CyADTpk3D5s2b8c0332DXrl3YunVrlBaRPnYAMliH/cYbb8TmzZvx1Vdf4d1338VPfvITiKKIyy67DOXl5ZgxYwbmzp2LjRs3Yvv27bjqqqtQWVlJGeKJvODw4cOYMmUKfvCDH+BPf/pT1PuJ9HHTpk12uF1b9fGYY47BqFGjbLf4Z555Bh6PBxdffHFMuwGQPiZLCvqYalhlazz11FMoLS3FhRde2Gq71nKHZAuasBNt4qOPPsLChQtx1VVXYeTIkfj5z3/uiNkEjJ2mw4cPR50HjNiTq666CscccwxmzZqF++67D++//36bbJo2bRr+/e9/4/3338eqVaswcuRIHHvssVHt/vvf/yIUCmHo0KFtul9BkMGEIZxzzJkzB2vWrMGbb74Z5XoWCytzda9evVJ5GoJoFy699FKIooj/+7//w6pVqyDLMi655BJHG9LHDkCKSeeS4ZtvvsFll12GwYMH4+KLL0aXLl2wdetWOzHXgw8+iHPPPRdTpkzB2LFj0bNnTwoVIvICXdcxdepU1NTUYM2aNSgqKopqM2TIEOzevTvm9fv378e1116LM888E+eeey5uvPFGfP31122yadq0aXjzzTexf/9+VFVV4ZxzzokZsmTZRPqYJCnoYzI5PtyyfPlyTJ061ZFgNRa5mDuEXOKJlFEUBVdeeSV69+6Nhx56CLt378aJJ56IG264AcuXL7fbVVZWgnOO7du327ViLW6++Wbs2bMHW7duxeDBg7FhwwZMnz4dH374YVIu1LGYPHkyunbtinvvvRebN2+OmwnSykI+ZsyYlO5TUGQw/mj27NmoqqrCCy+8gNLSUju7cXl5Ofx+P3bt2oWqqiqcffbZ6NKlCz766CPccMMNGDt2LIYNG+b2SQii3ejatSsmT56MZ555BoFAAGeddVbUjgzpYwcgxRj2ZHj22Wdbfd/n82HJkiVxEy4RRK6yYMECvP7663jttdfiLtRXVlbiT3/6E/7zn/9ExRzPnDkTuq7jySefhCiKOPbYYzFjxgysX78+ZVf1yy67DL/+9a9x3XXX4T//+U+r+sgYo9CTZElhDJlKWGVr/P3vf8fOnTujKqUkQ2TukGxBE3YiJrW1tVHZMi0s98m77roLO3bswIYNG1BaWophw4bhjjvuwG233Yaf/vSnOPvsswEAp556Krp06YI33njDMSB988038dhjj2HevHn44Q9/CABYsWIFxo8fj9tvv91RZ9vKEvrVV18ltF2WZVx66aV49NFHbdfBWKxfvx79+vWLKqdExCCDE/alS5cCMEphRbJixQpceeWV8Hg8eOONN7B48WI0Njaib9++mDJlCm677TZX9yGIdJGMPlpMmzYNP/3pTwEAd955Z1R70scOQAYn7ASRjyTSyI8//hh33nknxo4di2+//TaqraWj55xzDiRJwhtvvOHIZbNixQq88sorWLlypR1C98gjj+Dyyy/H0qVL8ctf/tJuyxjDuHHjsGnTpoR2d+vWDWeddRZWr16NiooKnHPOOTHbrV+/Hqeccgq6dOmSsE8CKY0hU8nx0RpPPvkkRo0aheHDh7u+NjJ3SLagCTsRk2+++SbuD+bll1+ODz74AHfffTfmzJnjyOh5yy234IUXXsDMmTPx6aefoqKiAh6PB1OnTsXq1avtDJ719fW4+uqrMXLkSEcd99NOOw3XXXcd/vCHP+DCCy+04/AaGxujEjW1xrRp0/Doo49iwoQJMd2mdV3HX//6V8yYMYOShiRDBifsrSWUAQy3qM2bN7vqkyAySSJ9jOS8885Dp06doOs6fvzjH0e1J33sANCEnSAcJNLIgwcPgnOOzZs3x/z9bulojx49cPbZZ+Mvf/mLPWH/5ptvcMMNN+C8887D9OnT7WumTp2Kv/71r7jpppswefJkDBw4EA0NDQDchc9NmzYNL7/8Mi6++OKYu7q1tbX429/+hsceeyzpPgueDI4hGxoaHDvfu3fvxo4dO9C5c2c7SVxdXR1Wr16NP/zhDzH7mDBhAn7yk59gzpw5AIzcIeeddx769++Pffv2Yd68ea0ucLcHNGEnokhmFfKHP/whFEWJOi+KIv7xj39Enb/uuuuwdOlSbNiwARMmTEBpaWnc3aAHHngADzzwgP36s88+w/fff4+VK1cm+wjweDwAogfPFi+++CJqamocq7BEfDh3keHTRUIlgsg3ktHHSARBgCRJOO+88+LGzZE+5jdu9NFqTxAdlWQ0cvz48Ul/D2688UaMHz8eX3zxBY4++mj06dMHNTU1Mdu2zN/w1ltvgTGG3/72t0ndC0isjytWrECXLl3ws5/9LOk+C51MjiG3bdvm2Di0Kg1Mnz7d/r347LPPgnMed8K9a9cuR4k+K3fIwYMH0a1bN5x66qmO3CHZgCbsRLswaNAgzJgxA/fccw8mTJjg6tqNGzeisrIyrmtSLP74xz+ipKQkbibIe++9F3PmzKGkZcmSwdVRgujIrF27Ft999x2mTZsWtw3pY55DO+wEkTFOO+00nHnmmbjvvvti1nZvjY0bN+LSSy/F8ccfn/Q1f/zjHzFo0CCceuqpUe8pioIHHngAt912W5tKyBUcGRxDJrP4M2vWLEdIRUtaLpAnyh2SDWjCTrQbVqyyW2bPno3Zs2cn1fall17CZ599hieeeAJz5sxBcXFxzHZbtmxJyZaChSbsBOGK9957Dx999BHuvPNOjBw5EuPGjWu1PeljHkMTdoLIKK+99lpK18VLGheLZ599Fh999BFeeeUVPPTQQzHDgWRZxp49e1KypaChMWSboQk70aG49tprceDAAZx99tlYsGBBts3pOJDYEoQrli5dimeeeQYjRoxw5a6eSUgfMwRN2Aki77nssstQUlKCGTNmUDhQuqExZJuhCXuBk0xW4XwiHc/jNka1IODcOJJtSxAdgLboycqVK3Nmom5B+pgh3Oij1Z4gOgAdaQyZjtwSHenzSCs0hmwzNGEnCCIhXDeOZNsSBEEUCm700WpPEARRKNAYsu3QhJ0giMSQOxNBEERsyCWeIAgiPjSGbDM0YU+AruvYt28fSktLqR4t0SHgnKO+vh69e/eGIAjJXURiS8SA9JHoaGRcH632RIeH9JHoaKSkjwCNIdMATdgTsG/fPvTt2zfbZhBE2tm7dy/69OmTVFtyZyJiQfpIdFQypY9We6LjQ/pIdFTc6CNAY8h0QBP2BJSWlpr/EgDQCinREeAA9Iif7WQucbE6SglDCgbSR6LjkWF9tNoTHR7SR6LjkYI+AjSGTAM0YU9A2I2JgQSX6Ei4ctHTzSPZtkRBQPpIdFQypo9We6LDQ/pIdFRch3jQGLLNuAhAIAiCIAiCIAiCIAiivaAddoIgEsJ1Dp6kO1Oy7QiCIDoCbvTRak8QBFEo0Biy7dCEnSCIxJA7E0EQRGzIJZ4gCCI+NIZsMzRhJ+LCEsRccdAqWMHAzSPZtgRRQCTSynyCdD0F3Oij1Z4gCKJQoDFkm6EJO0EQCSF3JoIgiNiQSzxBEER8aAzZdmjCThBEYsidiSAIIjbkEk8QBBEfGkO2GZqwEwSREK4bR7JtCYIgCgU3+mi1JwiCKBRoDNl2aMJeIGQixtJNn+mOi8xWzGjBxnfS6ihRoKRda9zWr00HPHndSuZ5C1YH40E77ARBEPGhMWSboQk7QRAJodVRgiCI2NAOO0EQRHxoDNl2kpqwf/TRR647PuaYYyBJtB5AEB0CjuRXPQts8430kSAKHDf6aLUvIEgjCaLAoTFkm0lKDUeMGAHGGHiSbnWCIODf//43Bg0a1CbjCPe0yX0zHa6acX5GWtrl1qUy6edK9RmS/NluzY6O7CbKefJetS68bzsEpI8dg5S1s026KbTh2kREjI7c2JjEz3Gh6mA83Oij1b6QII3smGQyNDGbOpLqcxWi9iVLJseQb731Fu6//35s374d+/fvx5o1a3DBBRfY71955ZV46qmnHNdMmjQJ69ata7XfJUuW4P7770d1dTWGDx+ORx55BCeddJI749JI0suX7733Hrp165awHeccxx13XJuMIggityB3ptYhfSSIwoVc4hNDGkkQhUsmx5CNjY0YPnw4rr76alx44YUx25x11llYsWKF/drr9bba55///GfMnTsXy5Ytw+jRo7F48WJMmjQJO3fuRPfu3d0ZmCaSmrCPGzcORx11FCoqKpLqdOzYsfD7/W2xiyCIXIIShsSF9JEgChxKOtcqpJEEUeBkcAw5efJkTJ48udU2Xq8XPXv2TLrPBx54ADNnzsRVV10FAFi2bBleeeUVLF++HLfccos7A9NEUhP2jRs3uur01VdfTckYwh2u3HZcu22m6KrJWvmmRfi5WLYnciGK+4ytPk+ytrt0GU3gpxPL1o7iIkU77PEhfcw/MqOdyelO+1W4EO1/Ja9DeuLnLWAdjAftsLcOaWR+k42qPJnWkWxUTuroOtgaqYwh6+rqHOe9Xm/CnfF4bNq0Cd27d0enTp1wxhln4K677kKXLl1itg2FQti+fTtuvfVW+5wgCJg4cSK2bNmS0v3TQSYD6AiC6CBY8UfJHgRBEIWCW30kjSQIopBIRR/79u2L8vJy+1i0aFFK9z7rrLPw9NNPY8OGDbj33nuxefNmTJ48GZqmxWz//fffQ9M09OjRw3G+R48eqK6uTsmGdOA6BSfnHM899xw2btyIb7/9FrruXDJ5/vnn02YcQRA5gs6MI9m2BQrpI0EUIG700WpfoJBGEkQBksIYcu/evSgrK7NPp7q7fumll9r/Pv744zFs2DAceeSR2LRpEyZMmJBSn9nA9YT9+uuvx+OPP47TTz8dPXr0AEtHZnEiKdKXKT22Y0V6XIQMN8xo158WrpbmEhoDi+kmFGVL1DNFP4N7+924jLbiKtrKdklbs+PnCuQSnxykj7lJprUz4T1YIme2dDq7RX8BoyyL8yXlce1IED7k0k0+X3UwHuQSnzykkblPSmPBdP8/xtCUZEMp45HUc7l9DhfuMpH372gamIhUxpBlZWWOCXu6GDRoELp27Yovv/wy5oS9a9euEEURBw4ccJw/cOCAqzj4dON6wv6///u/eP7553H22Wdnwh6CIHIQzhk4T+4XWbLtOiKkjwRReLjRR6t9oUIaSRCFRy6NIb/55hscPHgQvXr1ivm+x+PBqFGjsGHDBrs8nK7r2LBhA+bMmZNR21rD9bJ+eXk51cYkiALDWh1N9ihUSB8JovBwq49t0ch77rkHjDFcf/319rlAIIDZs2ejS5cuKCkpwZQpU6J2h3IF0kiCKDwyqY8NDQ3YsWMHduzYAQDYvXs3duzYgT179qChoQG/+c1vsHXrVnz11VfYsGEDzj//fBx11FGYNGmS3ceECRPw6KOP2q/nzp2LP/7xj3jqqafwr3/9C9dccw0aGxvtrPHZwPWEff78+ViwYAGam5szYU9ClixZggEDBsDn82H06NH4xz/+EbftypUrwRhzHD6frx2tbTss4k/8Rsx5OBCiDtbyDxPBmGi4bdqH1IZDsPtkTDTvIjrtiGlrK8/msF902O20352d1uG0NfpPrM8xuc8/9v9nvsG5C7F16em1aNEinHjiiSgtLUX37t1xwQUXYOfOnY42+TIgJX3MDaK/v/EatlE7k9VPCGBMinF4zUOOOgTB2+oR6xrjsPqMvl9Yf93pYKv6F+tz7KA6GA9X+piCRlq8//77ePzxxzFs2DDH+RtuuAEvvfQSVq9ejc2bN2Pfvn1x6xFnm2xrJBGblPQy5vc9lla4PeLcy42tMZ4tqWdJ+hmS+Exa0cGkf0d1EDI5hty2bRtGjhyJkSNHAjAm2yNHjsQdd9wBURTx0Ucf4cc//jF+8IMfYMaMGRg1ahT+/ve/O2Lid+3ahe+//95+fckll+D3v/897rjjDowYMQI7duzAunXrohLRtSeuXeIvvvhi/N///R+6d++OAQMGQJZlx/sffPBB2oxrSSqF7MvKyhyDf4qXIgj3ZNKdafPmzZg9ezZOPPFEqKqK3/72tzjzzDPx2Wefobi4GIAxIH3llVewevVqlJeXY86cObjwwgvxzjvvuH6WTEL6SBCFR3u4xDc0NGDq1Kn44x//iLvuuss+X1tbiyeffBJVVVU444wzAAArVqzA0KFDsXXrVpx88smu75VJsqmRgLGoef/996O6uhrDhw/HI488gpNOOilm25UrV0btqHm9XgQCgYzaSBAdjUyOIcePHw/eyiz/9ddfT9jHV199FXVuzpw5WXWBb4nrCfv06dOxfft2XH755e2eMCSVQvaMsawmCSCIDoHOwDOUJX7dunWO1ytXrkT37t2xfft2jB07Nq8GpKSPBFGAuNFHs71bZs+ejXPOOQcTJ050TNi3b98ORVEwceJE+9yQIUPQr18/bNmyJaf0EciuRtKiJkFkiQyOIQsF1xP2V155Ba+//jpOPfXUTNgTl1QL2Tc0NKB///7QdR0//OEPcffdd+PYY4+N2z4YDCIYDNqv6+rq0vMABJHHuKkd3NYaw7W1tQCAzp07A8ivASnpI0EUHm5rq1ttW35/vF5vzNJFzz77LD744AO8//77Ue9VV1fD4/GgoqLCcT7bNYPjkS2NBGhRkyCyRXuOITsqrifsffv2zUia/US0Vsj+888/j3nN4MGDsXz5cgwbNgy1tbX4/e9/jzFjxuDTTz9Fnz59Yl6zaNEiLFiwIO32uyVhTEvcVV5nbGF03I4Qu52j7JDYynutwx3ZIjTjnFkSiCEym4RolLVgOpj55bTKXDA4Y4kcz8DC8UPxbE5kr9PG2LaGsWxHVCaM6BJIumVAyxtG3S3fynuk4s6U7GA0El3Xcf311+OUU07BcccdByC/BqSkj9kj9ZI9SZS5jNKU1vQTsPSo5XmW8Lr49sQwsAUt9ClKr/QWlTWt97Xo62y73OhfCztilPFsSb7pYDxSdYnv27ev4/y8efMwf/58x7m9e/fiuuuuw/r16ztEjolsaWR7LWrmGwlj1uPisrRua+OyqDGZGFsPmNkuQk/ilQaOsiftpYHjlTCOJEY54A6uhfHIpSzx+YrrpHN/+MMfcNNNN8X09881KisrMW3aNIwYMQLjxo3D888/j27duuHxxx+Pe82tt96K2tpa+9i7d287WkwQuQk33ZmSPQBjYFZeXm4fixYtSnif2bNn45NPPsGzzz6b6UfKCKSPBFF4uNVHSyP37t3r+D5FTiYttm/fjm+//RY//OEPIUkSJEnC5s2b8fDDD0OSJPTo0QOhUAg1NTWO67JdMzge2dLI1hY14y38WouaL7zwAp555hnouo4xY8bgm2++idk+GAyirq7OcRAEkdoYknDieof98ssvR1NTE4488kgUFRVFJQw5dOhQ2oyLJB2F7GVZxsiRI/Hll1/GbZPMLiBBFBqpuDPt3bvXsZOS6Hs1Z84cvPzyy3jrrbccO7w9e/a0B6SRu+xuvvt///vf8fjjj2PXrl147rnncMQRR+B///d/MXDgwLS6ZpI+EkThkapLfFlZWcLd5gkTJuDjjz92nLvqqqswZMgQ3Hzzzejbty9kWcaGDRswZcoUAMDOnTuxZ88eVFZWJmVPe+kjkD2NTIXKykrHZzhmzBgMHToUjz/+OO68886o9rnsgUQQ2aQQXeLTrauuJ+yLFy92fZN0kI5C9pqm4eOPP8bZZ5+dQUtTJzU3eHcu8GEXTKcLeaSrJovhNp+sW3zYzVJ3nOPQTVdL0/Wcq2BcN90qnS6Z4TJulnu8YJYkMuyOtLelra3Zadtmf0TRNlofcUt30bCbaPgaloqLfCvu8bnsBpWKO1Myg1GjPce1116LNWvWYNOmTRg4cKDj/VGjRrVpQPrXv/4VV1xxBaZOnYoPP/zQjsGura3F3XffjVdffTWp50oG0sf2J12u8MmED8XTT+P65DQ0UqOidazl9YmJcn03X/MW+hbVlkWfszQwvv5Z6OFPy76fpV/OduYDtTQ66jnyQQfjkcks8aWlpXZ4kEVxcTG6dOlin58xYwbmzp2Lzp07o6ysDNdeey0qKyuTyu/RnvoIZE8j22NR89Zbb8XcuXPt13V1dVFhD7lAe4w1w10loWUsWseYpR0OfbJKvkW0TcLF3FmurcX7CcKdWkd3fgrJjAk7uBbGo9Bc4jOhqyllic8Wc+fOxfTp03HCCSfgpJNOwuLFix2F7KdNm4YjjjjCdr1duHAhTj75ZBx11FGoqanB/fffj6+//ho///nPs/YMBJGP6DqDnqSbUrLtLGbPno2qqiq88MILKC0ttd0Ty8vL4ff7UV5e3qYB6V133YVly5Zh2rRpDlf7U045xZFtOR2QPhJE4eFGH6326eTBBx+EIAiYMmUKgsEgJk2ahMceeyypa9tTH4HsaWR7LGqSBxJBxCaTY8hcJBO66nrCvmfPnlbf79evX0qGJMMll1yC7777DnfccQeqq6sxYsQIRyH7PXv2QBDCK1qHDx/GzJkzUV1djU6dOmHUqFF49913ccwxx2TMRoLoiGTSnWnp0qUAjFqakaxYsQJXXnklgLYNSHfu3ImxY8dGnS8vL4+K+2wrpI8EUXik6hKfKps2bXK89vl8WLJkCZYsWeK6r/bURyC7GkmLmgSRHQrNJT4Tuup6wj5gwIBW61Bqmhb3vXTQWiH7lr/EHnzwQTz44IMZtSdduHdRiuHaA7Rw74l0twxnLY523RSM8xGunS1fG21jZ2J3uFTycLZ167zOVcPlnOvgXDXOQQSHAsZV8LAfuvksQsS9BDAmQzBd4hmTbNsE89/hz0Fw2NiSSNsi7Y502Q+7zVv/Nu7L7ddaRJvYLvLRrqGRbqgsoQtXLrpBZdKdiSehzm0ZkPbs2RNffvklBgwY4Dj/9ttvY9CgQa77aw3Sx/YhNTf4TIUPCU4dihGy4zwnOtoLMa437IuvZRY8IpwoUs/0luE+XItykY90nY9ymWdObYx2kxeidDC2i3wM93jjIS1Dop4pH7MlZ9IlPtO0pz4C2dVIWtR0O9ZMNM6MHy4UK1SoNThz6pOBU7esSkM8cmzFGBh3akXY3T1GtaGYOp98laFYNtrnoCO5sMn8HxO6pdBc4jOhq64n7B9++KHjtaIo+PDDD/HAAw/gd7/7XUpGEASR2+Sz2M6cORPXXXcdli9fDsYY9u3bhy1btuDGG2/E7bffntZ7kT4SROGRzxP29tRHIPsaWSiLmgSRS+TzGDIVMqGrrifsw4cPjzp3wgknoHfv3rj//vtx4YUXpmQIQRC5i84Z9CRFNNl27cUtt9wCXdcxYcIENDU1YezYsfB6vbjxxhtx7bXXpvVepI8EUXi40Uerfa7QnvoIkEYSRCGSz2PIVMiErrqesMdj8ODBeP/999PVXUHQ1kydsbNcCi1ceqKzqrMIV3IGAYIgmX/LZg/WOacbPWMihFaysVuumJb7pc4VAICuq9C4Cp0r0HXDJV7TQ9C5AM4FQA9ZPdjPZWWFF5gXjEkQBY/xWpAgMBkik+x/W88RaV9LLLuMuxguoJZ9lt26rtjuV7qutnAVNV/D6QbvdJE3/3JkNbXcQmO4gxodR9mai25Qbmpj5loNTcYY/ud//ge/+c1v8OWXX6KhoQHHHHMMSkpK2s0G0sf00RbdTM6tMzp8KDLre7zwoZYu75Gu7sb7okNLjd4E+z0h8nrz3/H0DIDt9h4O8dEMnTM1SY84b4f8RGR9D+t1tDa2dJc3ssQ73eTDmtbSRd78K6YOhq03H7bVgEUGllM6GA+3tYNzSSNzQR8B0sj2IK52JhM+FHOcGR0u1JpWWu0iiR+aY2oPiwhVNF3kmRlaGT0ea/lMzmpDVohlpL1Om5ya3RJn+GfYRst+pybGdpGPqYVJjAnzQQdbI5/HkKmQCV11PWGvq6tzvOacY//+/Zg/fz6OPvrolA0hCCJ36QgJQzweT8ZjD0kfCaLwaO+kc5mgPfQRII0kiEKkI4whUyGduup6wl5RURGVMIRzjr59+zpS1xME0XHQ4cKdKZmEYO3I6aef3mqSozfffDNt9yJ9JIjCw40+Wu1zhfbUR4A0kiAKkXweQ6ZCJnTV9YR948aNjteCIKBbt2446qijIElp87Dv8LQlK7zjetPNx7gkOkunkV097OZjZVa3sq4LgulezmSIglE/VGQSRMiQmNe8swyRyZC4HOGqGXbbtLN4MkCDAp3p0KBA5QEAgAYVKg9A0Zuh6UEAgKI1Q9UD0LQANCs7KFeN52YSBPPeklgESfRDMl3iJcEPSfBCYj6IkCAxn3lrIco+ANBNFyqd6dBNNyWNK9ChQOVB0z4FGleh6UHbTV4T1CgXeSvbveUaaryO/K8y3UKt11yPcGVqJVtyHmQIzeeEISNGjHC8VhQFO3bswCeffJL2msCkj5mjVc3McPhQ5DlDQ8MaK9ptnK70IpPt/kXIYEyECAkCZAjm9SJkCFww3jfvIUGCwJ3Z6Fu6xhuu76YOmXqkMiNsR4MCXTD+Bgy949CgQbVd3zUo4Fw334t069QMrbN1z3jfChECwu70HGG3VM71+DqIeBU0ItziLfLUHTSfk861pz4CpJG5T7zwIcExxoynlfbY0tRJ0a7wIzh00sIK4TH0yNQUrkHnakSFIbO6EFcB6LYaMOiGZDDdqR0sdrWhSPvgCAc1bTSvsUKaWqJHaKXOFTO00rLZsJO3zGLfImyyVS20bO9IW8wm+TyGTIVM6KprdRw3blxKNyIIIn/hLhKG5JrYxsvyO3/+fDQ0NKT1XqSPBFF4uNFHq32u0J76CJBGEkQhks9jyFTIhK4mVXDwxRdfhKIoSXf66quvorm5OSWDCILIPazV0WSPfODyyy/H8uXL29wP6SNBFDZu9TEfNDJd+giQRhJEodPR9DFV2qKrSU3Yf/KTn6CmpibpTi+99FLs378/JYMIgsg9dJdHPrBlyxb4fL4290P6SBCFjVt9zAeNTJc+AqSRBFHodDR9TJW26GpSLvGcc1x55ZXwer1JdRoIBFIyhkCrsevxShLFjysKxxRZMTqRJdEAQGReOyZchh8A4EURJHjh5cYPlZd74YUMmYkQTRskJkSZyjmgch0a5whyFYoZ4xhkQQRYEwJSA4LccAUJCLVQtEYEgHAMEAsCECAKfsiSUfrAK5VCFkvgE8qM16wEPl4CL/fZdhnPIUCGAIExCBGfkw4OnXMoXIdixm8qUBFkQQSZ8XOqIogga4IqBKHwJuOcHoQuqHbMvcbCZeksewUI4FDteCUrjpOHA6yMv5Ip85bjpY3yOf6oZV1fKyvxtm3bcPvtt7e5f9LHzJNq/HqsOMzwZUZZImeJtnDJS8Ghn5bOGPk+rDhIkcnG64h4SRFGSUwrjh0AJC5DghcSJMjcA1k3z0OADMnQLyvenTEIjJl/x39snQMa59BM7VC5kbFD4zoUqFBNjVGYAoWFoEKFxsy4dqaauTvC8e2AETuqiYodS6pzBZoetHN6ALBj2nUe1r1WddD4cO2cHkYfMXTQ+E/Jm1KXkeRzDHum9dHqkzQye7jXT+u9luPM6PxIgFFuVxQ8EJhs5xsSBS8k5g3nQmIyRDMfkoVulpzUoEDn4bxCKjfyCal6yMgtZJYDZlyFrods1eBcMeLY4z6zNRaWTT13lggWBa+Rs0mIsNHM4RRZXhMwdE+LsNHSRtUsSxw5PrRj7uHMc2TE2yOGFiYmF8aBbSGTY8i33noL999/P7Zv3479+/djzZo1uOCCCwAYseO33XYbXn31VfznP/9BeXk5Jk6ciHvuuQe9e/eO2+f8+fOxYMECx7nBgwfj888/T8qmTOhqUhN2twHyU6dORVlZWUoGEQSRe+gcyWf4zLHfKeXl5Y7XgiBg8ODBWLhwIc4888w290/6SBCFjRt9tNrnCpnWR4A0kiAKnUyOIRsbGzF8+HBcffXVURPlpqYmfPDBB7j99tsxfPhwHD58GNdddx1+/OMfY9u2ba32e+yxx+KNN96wX7tJipkJXU3q7itWrEipcyI2cVc7E2SGN9rEynLszE7MIrJyWrvrgrXTI3jslU8AkIUiyPDDiyL4UAwA8Ol+FMMHn7kLXySJ8EsC/JIAj3l7WQDEFuZqHFB0IKQDIY0joBnroM2qjia9HA16AA1CPQCgXvSjiR2EDh26tUKpG7tUguCBVyoFAPilLigWuqCEVwAAyrRSFDEP/KKEIlGExzTCIzJ4BEBi0UmHVQ4ENY6AZqhAQONoVjU0mTtGjQggIDQjgEYEzc9FEZuh6E3h3Tc9CM3cUbKWd3WoACQjuz0AmJtDjtVU6Mb/GW/p5BOZRRQ5nxk0n3fYM61fpI+ZJWFFjSiS310XInbUrazBkVmOrSoa1g6MtWMUWUFDZj6IXLIrUxj3NrIMy7qxmyNzGR5I8DAZXibCIxr39AqCqV0MsrmdLpk6JrbQ2MgdFp0DHICmG5oLAAoHVJ1D0TlCGkdQN94I6TqCXEOIKwiZO+kKM7K/q8x4be2wa0yBwoJ2hQ+VB6GyoLHjJRh6qeoh4/eMqYc6V6HrRsZmwNyB55akWbon2DtLzmeJscveCrm6y5TPO+ztoV+kkQRR2GRyDDl58mRMnjw55nvl5eVYv36949yjjz6Kk046CXv27EG/fv3i9itJEnr27OnKFotMaB7V0CAIIiHG6mjybQmCIAoFN/potSeI9sJa5Ep28TNeu8jwIWuBEwBEcyNIFvyQBSO00iOUwMtKUMQNTwk/98PHfZBZeGGTc44gFARZCEEWQEBoBAAEeT1CvBkKa4LKJKjM2NSxQhTDmyaaEYrDOZhjIU8AmFHKDbAWXz22nYCxeSUJfshCETzMsFlmRXbIpazLkOzywBwaU9HMmh02BoUGKLqRHFHVmqEiCOjhJUhjOVKN2IuJtzjpbuEyH8mlMWRtbS0YY6ioqGi13RdffIHevXvD5/OhsrISixYtanWCn2lowk4QRELybYe9U6dOYK3F5kVw6NChDFtDEERHJt922EkfCYJoT1IZQ9bV1TnOe73epPNgxCMQCODmm2/GZZdd1mrYzejRo7Fy5UoMHjwY+/fvx4IFC3Daaafhk08+QWlpacxrMq2rNGHPE6JXPMPu8M6kSeEkdJHu8JGJQGTBD4mZCeXMJG4+XoQSbrjElwgeFEsSymSjnzIPQ5kMlMtAiWSsAvpFDpGF3TMBQOEMIZ0hoDE0aQyNqvHj1aBw1CsS6hQPahTzvvDhkChC4woUc8VSNZOEyGIRfFIFAKBU6I7OWnd0YoZtFV4ZpbKAEpmhVGbwi8bNi0QOn8jhEbjhFm+utmqcIagzNGoC6hTjM6wJAXUhAQ2KsXrqUyU06B7IzGMnRAkwEUwIu30aDwpnlIJuucWbJ82EItZqatjLPbxymqpLZ7ZdQXUw6EmuzifbLpMsXrw42yYQmSaZBJ2OECIgKkFnhKu85Q5vucRLgheCIEESimwXeA/zQ2ZF8PIiAICPF8GreyFH/CpVoEJjKkQu2ef9TIJPkOCXBBRJAvymr7tfAnwig0/k8JkbTx6BQ2aALIQ1tkUADThnUDmgcma7xAdN7Q1oAoI6R5NqdNiscjSrOgKajICZvCnINWjQAA54mAxuipa129XMjOSbAaEBCm9CiDfbyZYYRGgQoEZuCAkIJ4Zixu8iZ3iQFfpjaaXewi0+4umcMUV5gRt9tNpnE9JHojU4eKu78ZZ22gmOIdihQ7JgaKOflaNU74ROMCZFnWUvOnlFlIZzziGgAvUKR4OioVYLoUE3xnkNgh/NQh0CLcJCOdfAmQ5uhvIwyKa2aDGsDI+FmanrouC1x8KyWAKv6QXgN70ASrRSlLEilIoySmQRPomZPQH1io7akIqDmjFerRW8RqJRS9K4boR4chXuh2qJd9dzMRTIDamMIfv27es4P2/ePMyfPz9lGxRFwcUXXwzOOZYuXdpq20gX+2HDhmH06NHo378//vKXv2DGjBkxr8m0rtKEnSCIhHCe/Pg5F8bZbpMcEQRBpIobfbTaZxPSR4Ig2pNUxpB79+517IK3ZXfdmqx//fXXePPNN10ntayoqMAPfvADfPnll3HbZFpXacLejrgrrZEo4VysLozdovCqomCvfAp2LI9RWsMq4ebhfvh4EYq5HyXmymOpJKHcK6KTx7Cpi5ejh1dDL38IPYqMnRe/rEBgHDpn0HTjfkFVQpMqoVmVUK9IqDV3sGsUATUKw8GgCE/ATNYUBDRdRUhsQkCsNa43Y45k0Q8/6wQA6KR3RTehFF19hv1dfAydPECFzFEhqyiVNdNmFUWSCr+swiNqEIXwimVQlfBtUxH2NxvP960k4TtRsJM8MQYICjN3zI3rdGhGfBQzEykx3Ti4Dm5+lpzp5k6SYPfDo5LLtfi/i5l8Lvd3lnTOXGT4zP4OezwCgQBCoZDjHGUjzl3cJ5yLR+wEnQ69hLOEmyBIRtlL5rVjHL2sFEW8FEXmTlAJ86FYklAqixDN7++upjpoRs/wmrv1xeaOTanMUOZhKJWM73ixxFEs6SiRdPhFQ8v8og6PoMEj6pBM/WEMEMDtnQdNZ4b3kCYiZOpvQBPRpAloUAU0agLqjRxxaFAZ6hURdSEGc2MKugbonEOCgEHFfgTNDaoGRUO9poTLzgkSmiJiTgGAMw1c0CCEA0nNUm5WWTczxjWBt1GqZNvbKBZu9NFqn4uQPhYgka4wSV+iR13CmJFoUzSnFTL3opj70Uk2xl39SkQMLdMxvFMd6kLGuT1NXvy3WUR1swRPgEEKMbt/Dh0aU6AJSriUrmCV1U0wFm7xe8P2CGCCI4GoDD/8vAxlupHRu5NQhC5eGd39Anr5gb5+Q0Q7eVR8UuvHv2plqI3G74IgDyIgNIBxpz7GJtoDINc0LNOkMoYsKytLi/5Yk/UvvvgCGzduRJcuXVz30dDQgF27duGKK65wfW26dDWlCfuGDRuwYcMGfPvtt9B15y/g5cuXp9IlQRA5DHfhzsRzwCU+ksbGRtx88834y1/+goMHD0a9r2mx3OlSh/SRIAoLN/potc8V2lsfAdJIgig0MjmGbGhocOx87969Gzt27EDnzp3Rq1cv/PSnP8UHH3yAl19+GZqmobq6GgDQuXNneDzG4tGECRPwk5/8BHPmzAEA3HjjjTjvvPPQv39/7Nu3D/PmzYMoirjsssuSsikTuup6wr5gwQIsXLgQJ5xwAnr16pV0gD2RGrFi16PbOMsV2XFFzCiTFhnXbu22W7HaMvdC5jJ8zAOfYKwUFssCSmWgwmOsAHbzaujtD2JQp1r0HmbE71gVjLjCoRub7lCbGIKNIpqbPKht8qE2aKxkHgp64A9KkCPiRVXdg+ZQKeqEEjumyNrtkgQ/imCseJaiGJ28Err6jM+hu8+wp6tHRWdvEOU+I66y1B9EUUkInmINoh8Qi8zdc5kBAlD6QRDsYAUAI65d4aId+xnSBag6R5BLULhZ1o2FoDEVOjdLGZkl8nSmOD9fLkTsLOn2zpLx2vpCOjOA5uIOUUfmpptuwsaNG7F06VJcccUVWLJkCf773//i8ccfxz333JPWe5E+thNp80hy/s2YCMGKaTd1UmSynfPDw/3wci+KzJj2UlFGJ6+IXkUChlcYK+g37PoXitEJ5egMEcZ1PlFAqczQyctQ4eGokA09KJc1lMsqSmQFxbKhNX5ZgdejQpY1iFJ4h50JHFw3nlvXGTRVgKKICIaMX+ONIRmNiox6RUadKqHIKh2nCBAZA+cCQmbCEV3jqBVqcRj7cN0Rw/HBYeN59jWJQMB4HwA0rkKFaux0maXfdCaDQ4dgvubW7xhE6CAT4nsbWf83rXkbWQ+dg95GHY321EeANDKbJIpNN2iZrCd8zvpOW99vywMRiIjhdngphr+/XoHhmPIGDN/wY+gLjZJXnd7qBKAcAU1Ckyqg0cy74dU8aGaSob9cDudlglOzre5ZixzxVpuWY2MB4XMCBEPbuQQvjPGwTxBRIgvo6gUGlwRx6jF7AQAl95+P5nM+wBf1XnvsZowPNXBz95xDMz4T7vxMXBND82i82Drbtm3D6aefbr+eO3cuAMNFff78+XjxxRcBACNGjHBct3HjRowfPx4AsGvXLnz//ff2e9988w0uu+wyHDx4EN26dcOpp56KrVu3olu3bknZlAlddT1hX7ZsGVauXJmSWwCRPlomnDNokWApIgmd5RIvwnCJl7jp8sgleGBMpn3WAE9kKJYYSs3BYidZQ/eiZnTu3ghpUKllgFnkXAdvMgaaUqMKT70Kb41x+OqNAZ3IdAA+aFxGwHTfbFQEFCkyfLzEdlGy6sZLghc+M6lTiSCjRBZQZiYq6ezR0dWjooe/GZ2LmlFaZtQL9leokDsxCKUSWLEM5jNr0csiIDB02ncY3QPGwkCjKqFJE9BkJhRpVhkCggAvExHkljuXBwqCYObKhAgZGlONz9v+JdHyl1rL0hxi627yeUS+xbBH8tJLL+Hpp5/G+PHjcdVVV+G0007DUUcdhf79+2PVqlWYOnVq2u5F+ph9knGjdyy6ORY4w6WKDBd5GRK8kM2FPA/3wMs98Jtt/JIxES+TwwnimrSDKBY7wcd9KJGNdmUeAZ28DF28HF09Gjp7DM2s8IRQ7gui1B+Ev8g45ylRIfkAochccATATK2yMnxylYMrHFozoDYa7wWbJDQ1eVDf7EVJ0Au/aC7KMhkMAnTOoJj6G9JkNGh+CIKMkC6gyBwJFEsMTZKAkG6cCOkeKFCgwgsNhn0aU8C4Yn9Ouq7bi5fW52gtXvIELvAdZfEy32LYI2lPfQRIIwmiEMnkGHL8+PF24tTY/SXu8KuvvnK8fvbZZ90Z0YJM6KrrCXsoFMKYMWNc34hoHyJ30wGYK4pixMqkaK9aAoAMGTIkeAQBHjNzsU80ssBbE/YKTwgVxc3w9QRYbyO2HKJo7JCoOlizscstNASh1wYg+EMQ5BCYYGWRNwaKTZqAetW4R7HMUCRK8GgeezHBsliEDK85QPZLAooloFw2+qqQjZ31zkXNKO/UDH9XY3VT6iJC7OQFK/cBxT7AjHmHaEzYvT1rUf6dMbmvaPahRpFQJJlZ4iXAZ2ZXls14JAmisbhh2qZChMCdn6UORO0sdVTyOYb90KFDGDRoEAAjbsgqp3HqqafimmuuSeu9SB9zjcgdmcQLnJZeGteI9g57pF56mAyPYFzrExn8EoNP1O0JuzVZlZkIv2S0K5aBMpmjQtbQxaOgq8/UIn8AZWUB+MsVyIZTEcRy0Vh0LJKNBUcAkARAYOGSHKoOHlQhNSmQzWB1T60CX50KX60CT70G0fQKAAAdMlRdQLNmfDcbFAFezaiKwcDhM7XaKwrwiQzN5vN5uPEbQoRs65zIZKhMtGM3BQjQ4yxeOuLaHRvmHUsr8zmGvT31ESCNzDYxd9ljxLFzcLCI6g6RcescAljEd1jnKjSuQuSK7ZWoCEE0swDqVWMs902jiLXflOHZQW/hvZoKAMB+4Us0aN8hpDVCURuh6SHTHCtWXQPnqu2NE17c08N2I3oHmnMFTFOhw3T/ZAwhxcpVEq4gwpgEQLQrgwiCB2KjB9IhPzxiMYq+MGKdO73wGo6Vj0CDEkINNytosEaoCEI1a8PruuGRyRG9yx5+rcfwLOpYWhiPfB5DpkImdNX1hP3nP/85qqqqcPvtt6d0QyL9OAehkefD7vCO0m8RiUFEbuyuy4IAs4qbXWaoyJywl8oKikpCELt6gO6djUaiOZBUVCBoCBYamyEUNYF5GuERmgHd3JFRAwiqEuoVGSXmJNkvGgsEHtULkVk/hoa9EvNCNne6faKAIomhWLJcSFWU+4IoKQ3C31mD3M0cNPYoBqsoAsqLgWI/4PM67BS77UdRqTFILq5VUCxp8FseBYIASQBkgUEyB7QilyAxCaLpKhXprRB2oRUBMxlK5P+Fe1fQ3IeDJR1XlEvxmQAwaNAg7N69G/369cOQIUPwl7/8BSeddBJeeuklVFRUpPVepI/5RdT3GWE9FZkUVy+txU2PyOAROLwCh2xO2BkzFx2ZCJ/ZzvJYKpc1VHhDqPAbWlRe3oyirirkzgKELmZCznIfUOwFSnyAbC48SmKLCbsGFgyBNQbA6oy+hNIAhIPmYikL17LVuICQLqBRZSiWLC8qY0FB4rJhu6n9XtHQQSshp6QxiFwySjZZi5c8aEzS45TMY0iggR0QN/potc8V2lMfAdLI/KCFWzzXzVC/8OYEhx4u5SgI0HUFGgsixJoBAAKX0chkSObCnhrgOBySENI1hFi4RKTAZGOpVJDs5HIwddcIK2zpuZg6DCwiVMrpWWW3aeE6DwAaVPwndAgKFDSbZYibUYuQ3gDNLHepcdWenHPzOQwPoyQTznVwV/h8HkOmQiZ01fWEPRAI4IknnsAbb7yBYcOGQZZlx/sPPPBASoYQBJG76Dw8V0imbS5x1VVX4Z///CfGjRuHW265Beeddx4effRRKIqSdr0ifSSIwsONPlrtc4X21EeANDIXiLvLDjh22q0Jo9U2HMNu7LJbGxY6N0JiVD0Exowd6BAEQAB0s2JPkAch6x4IYGhmxqRXg2Ln+mm5yOfYlU4TTq8BwIrLt0J3rBBGHeaChOktEBSaEGRN0LgCBcaChKI3IaQ3QNGMBVNND0LTQ+BctfvjXDGfw/II0KO9BIyGMW3tSOTzGDIVMqGrrifsH330kR24/8knnzjeo+QhGSRBAiUgOomSfT5ipdAqvGEnVgKDyASIDJDMXRWPYLhIFlllhmQV3lINQqdS8M6mS7y5Uw5VA2s2BAxeLyCKYAAEVYccNITM16SgqCmEYskLv2jtnDN4BAESRNsFNWyvCNnc7fKIzLTFELciSUWRV4GvRIXUSYDQxSixwSqKgC5lQHkpUFwEbtVrNO1k5T54yoxfJMUeBT5Bh9d2A+WQGSAy47MAAIkLELgQ8TkZrrIt49bjxW4CQKL4zXwin92ZbrjhBvvfEydOxOeff47t27fjqKOOwrBhw9J6L9LH/CC+V1LEToupkxI3EhMBgAQBEhPsEm6yYB4M8JoaxSBAMvOCeExNtTSsVFJR6gmhpNjYlfFXGLvrYjcfWBejVBw6FQMlxUCRD/CaCTmtSY01sFNVoDkANDaD+Q1dYx5zFx5B+LUQFNMFNKCKaFAkFEsifKKleYBshh/Jgg7J9A6QGIckwH4+kQmQuACJSxBY2AXekcvDTNbn2tuoA5HPLvHtqY8AaSRBFCL5PIZMhUzoqusJ+8aNG1O6EZEZoiaQLTPG226Kov23YE5GAUCEaE7ame0WKTJAFjg85sqoR1Ih+gGUeIHSEgAANyfeTFPBPabbuCQBug4oKoSmEHi9EY8kF2nweRX4JM2eJFsDXTFi8cCy2cjcaQ6IGeARAZ85GPZLKnxeBVIJh1Aqg5WaE/PyYqC8FLysFCgujpiwGzaxUr/xDAC8HhVeUYfHsoWZtkQMVC1XWDshVcSigmNhJC0rgcllR7ZXubOw8prP7kx79+5F37597df9+/dH//79M3Iv0sf0kL76663cw8w/0dId0qGh5iKdHb8N0VzYsya0Yb2UhfB3WOACRCGsqZaG+UTNyAJfZExupXJAKJfBOvmNiToAVJQBpcXgxcXGIigAmBoLqwRWSAH8QTBzkdS+r6oDiga5WYGvwbiHv1mFTzS012PaIwkMkvmshu3WhN04RPt3AbOf3/qdwcxF1liLlwAAnvnJeja1MBb57BLfnvoIkEbmCi13z8NvWPHsEXHYEIydaRZuAiiAGSaj27HnzthtjStQBWNxMsjqIQk+yNyLZtQCgO1SrupBR6y35RofW0NS1ZXo7PdWXD63Xf1V6Dzs3h9EAwAjXErjClQetHfdNT0IRWu2bbV213Wugptt7N31eDH4RqMoS3NF19JJPo8hUyETuppSHXaLb775BgDQp0+fNhlBRJJ4Jz21XiMHoZGlLRgYMzZmrBYSA0QWznosyxoEHwO8Mri/yGwkAYyBaxqYmaCI6zpYIAj4A0CRB8xvJvLwapAkHbKg2wND2cyhJEGIih1lEOydblEAZBaOD5VFHZKsQ/DByATvNwe0fp95+MH9fsBnJlwSRWOQ65PBvOYgW9TNXSXY92DM+MUlmEJhDlEdn5lg2drxtDQh+ezONGDAAJx66qm4/PLL8dOf/hSdOnVql/uSPmaReDvorehry1j2liWAjL/DegmEJ+yGXur29UaG+fDEV2bGpNgraka5Nq/RVvALYEWyoWPF5opicRF4aYm58GjqmKm39uAuFALzyOAAmGrubCsK0BwEawxB8KuQfYaHlEfSjPsKHKLDbmYsLLCwFjIW1kLreS0tjPfZ2QvDEdUzkvIuytN8HrHIZ5f4bOkjQBqZC8ScuEe5x+umC7xmtjVeh13kZWNeysLu5ZoehCqEoAqGB2ZI8EJiXghMhmLWAlb1ZihaMzQ9ZE94jdvr5qRXj+1GHjHJjTe5dbj9RyxCWJNzawHCXnywetcBFXAkj+PQDZd3rkI3czPp5uTciuOPSpQHJEyW19Lejkw+jyFTIRO66np2qOs6Fi5ciPLycnvFoKKiAnfeeSd0vWP88iUIwom1OprskUts27YNJ510EhYuXIhevXrhggsuwHPPPYeglSwxjZA+EkTh4VYfc0kj21MfAdLIXIVH/Amf5BH1uHT74OBG7DlXAa6C8yA0vRmaHoCqNdlHSK1Hs3IYzcphNIW+R0PoAJqU79CsHEKzcggBpRYhtQGq1gRND0DnQeg8CM6DZr+aaY+1U82Tmqy3fCbHs8R4Bm4euhmHrmkBKGoTAmotAmqtbWvQtDekNkCJsNs4msF5EFwPGRN1c6HBqNMe2/4oGzsw+aqPqZIJXXU9Yf+f//kfPProo7jnnnvw4Ycf4sMPP8Tdd9+NRx55hLJ+pkqG47asHSMgvMMkQHDuGpk7R9YhAJAEDkngYIwbrlCSaOz0SJIRUylJgCiCyx5w2QOIkuG6KYnG1pJkHEwCBNHYgYr8OrIW7ueRRDqkGztaHIK56y+IOpgRdB9xiOCybNzf4zHss2z0eIzYeomBSQyC4LQFMD0MHM9v7TCJEFrE2Cf/uWfGWyIbWKujyR65xMiRI3H//fdjz549eO2119CtWzfMmjULPXr0wNVXX53We5E+djxiff8tvYj8t6UdxjUCGDP2dwytMzRVZByCwCHIgCDDqK8ui4BHCmuWRwYsTbXOeb1OXfN6jfe9XlPzzPOyBHgsreNgEodolpwTGbdtFSJtZbC1MPJ9oYUWWkR6G0X+bolFLG3viLjVx1zSyPbUR4A0kiAKkXzVx1TJhK66dol/6qmn8Kc//Qk//vGP7XPDhg3DEUccgV/+8pf43e9+l5IhBEHkLh0hYQhjDKeffjpOP/10XHPNNZgxYwaeeuopLF++PG33IH0kiMIjn5POWbSHPgKkkflArB1f5jhlZna3C7Ob5de4Gnb+ZgLgyBEi2jlCYmZRT+D63pptyT4PC/vAO5+BW6XXjGfQLNt1w3YFIgxX90gPEGdN9bAnQOSNo3fTC5WOMIZMhXTqqusJ+6FDhzBkyJCo80OGDLELwxMuseNrMtW9Fk4WYgqKHiEsluOOVbeXc0N2VN16zYz4RFUzshNbMAZoGphiJByBphrJkFQN0HRANUVZBXSNQeOC7erCAXBTzGLFO+qmsOmWPXZNYQZdE8A11ejfvAdUDUxRwEMKIIcAwcqaZMawaxq4avapO22JXNWz9DV8/+gamsnSkTIkcyQfup+rv5K++eYbVFVVoaqqCp988gkqKyuxZMmStN6D9LHjEUsDIncAWmqHcY0OzsPDM0tTNc6g6wxmGKShSYoGhFQjBh0wNFQJgSkyuKVj1u+IyBh2JQQEg0Z7wLheUYGQoXVcNTVTE6BxZtzb0rdIreOIqYVhu1sOOs2yRzyxNnakShmt4UYfrfa5RnvoI0Aama8krh3eQily8Ic86WfIQdvznY4whkyFdOqqa1+14cOH49FHH406/+ijj2L48OEpGUEQRG7DwewV0kRHrsUfPf744xg3bhwGDBiAp59+Gpdccgl27dqFv//97/jFL36R1nuRPhJE4eFGH91q5NKlSzFs2DCUlZWhrKwMlZWVeO211+z3A4EAZs+ejS5duqCkpARTpkzBgQMHku6/PfURII3MV1isP2bCSeOQIDA5fAheCIIfolhsHmWQpArIUmdIUgUkqQKiWAxB8BttmQzGJPMw+4zxp12eIYbtYVv9Dputw2F3HPsLmXweQ6ZCJnTV9Q77fffdh3POOQdvvPEGKisrAQBbtmzB3r178eqrr6ZkBBGJtSOR3ri/yB11jnAmTx3c3MEO31nlsHdkAEBRROgBDgQVsGYju2dkWTeYSRRYc8CoDdwcBJpC4M3GbrweBFRVgKILUMxde0U37qlG7NQ4MnJyK9MooHAGxbJFE6AqAvQAwAMqWLOZwMG6tyyDCQK4lbzGKjUXUMCDxrqdphm2qC1ykXDzk7E+l5afWbK7Sh0RK91Msm3d8NZbb+H+++/H9u3bsX//fqxZswYXXHCB/f6VV16Jp556ynHNpEmTsG7duqT6v+uuu3DZZZfh4YcfzviAkPQxR+B6zEzxlu7Fiqu29cf8jussUiej9RIANG4dhteOdT1nOnRu6BdgapjOENREKIoILWi01Zt1CE2KoWONRjZlQ8MYuM7BrN3zWGXdgkGwxqbwdY0BoCEI3qxAb+ZQAoZGh1TRuK/OoDnsNlRN47G10HpeSwvj7ZZHlmNyRQfyQHKjj1b7ZOnTpw/uueceHH300eCc46mnnsL555+PDz/8EMceeyxuuOEGvPLKK1i9ejXKy8sxZ84cXHjhhXjnnXeS6r899REgjcwHYk4uHV6ggrOd7f4u2y7wQsTk23otMAmS4IWqG+O2yOzwOlfBLDd1rhou8rYffthFPtK2ZF3MHc9jP0fEM9i/K4xnsGwXBENDRcEDXbdKtlm/J1REZpJHRFZ72z7mdJNnMcwtFDf5TI4hc5FM6KrrCfu4cePw73//G0uWLMHnn38OALjwwgvxy1/+Er17906LUUTycOiOwWfkoMoeSDGYmSqNv3Wm2wNQjWvQwaFxDsW8VOOAojOEzPidkCpBawbQEATqzbqUkplsSNXAmq0BYzNQ3wjUN0OvD0JvNDpUmgQEgjICqohgxIRd0QENmnNibNXuNEVM4UBIAwKaYUuzKiEQlFHUoECqV8FKzMUCbyMgiYYsa1q4frFlZ32z8QwAgiEJQU1AyLKFm4sUujGItT7HyIUNHuEWGxbsdMlK63FP9uksCjvnzA6ZSKatGxobGzF8+HBcffXVuPDCC2O2Oeuss7BixQr7tdf6/02CPXv22AkOMw3pY3qIWyM4nffgulGGyPoes/C5sB2aQwc0aNA4t3XCmKgbeqnoYR3Wme7QVEvDApqIZkVGUZPxq1euDUHwKmCeZrs8JgBDV4MhwOsxXsuyZbT5vmosUDY2A/XGIioON0CvDUCrUaE0AIFm4x7NioSAZmhvyIog0jlU81kN243PWY3QQuP5eHjKzsILGtbn0vLzND6zFCfwLsi1Qa4bfbTaJ8t5553neP273/0OS5cuxdatW9GnTx88+eSTqKqqwhlnnAEAWLFiBYYOHYqtW7fi5JNPTth/e+ojQBpJEIVIJseQuUgmdDWlOuy9e/fOWmKQJUuW4P7770d1dTWGDx+ORx55BCeddFLc9qtXr8btt9+Or776CkcffTTuvfdenH322e1ocZqIs2PkaMJ1MCY4BqCAcxJvTNXDk2Rjsq5D48YgDgBCuoCADjRpxmS3WZEQrBfhO9wM4dBhoyPRnAgr4R12NDYDtU3gBxuhHw5COWz0F2j0oCnkQaMqodmceAc0hpCuQYUWNRnm0KCYu1whjSOgC2gyr2tSJTQFZRQ1SJAOGwNdABAEc2ivakAgCObzOuzktQGE6ow+GkMyArpgLx4ENYaQzs2BuPG5qNChMtUepOqmXbEGqeEEKuEBa0cjk6ujkydPxuTJk1tt4/V60bNnT5c9G7TnYBQgfcwHLK2Mdd7+t6mTKlOgwvAWUrkOlev2hN1aeFQ4EDQ1ikOHChUK1xEyNdXSsHpVQnHIA2+j0Z8o6WCSCiAAwWwrhFSgIQCU+MITdUk00rZbW/uqBgRDQGMAvC5g3Lc2AO1gCMohjuYaDxqajBruDYoHjZqIRpUhoFmax6FAhwbF9DayJuwMqh65IKGHtdDUab3FhNxYGI72POpIOTwSkckd9kg0TcPq1avR2NiIyspKbN++HYqiYOLEiXabIUOGoF+/ftiyZUtSE/b21kcguxpJxCbZXXW7rbmrbjSL3pUWmARR8EISjEVH0UUddh0iOBQwOxmdeW9rMZWHF3RbW7xLbmc9nBjPeg5B8EAUPJAFPwBAEv1J1GGXjDrsLFyHnXEdgBi2sYX9kTbm2iJkuim0HfZM6GpSE/aPPvoIxx13HARBwEcffdRq22HDhqXFsFj8+c9/xty5c7Fs2TKMHj0aixcvxqRJk7Bz50507949qv27776Lyy67DIsWLcK5556LqqoqXHDBBfjggw9w3HHHZczO9sYaGLUcgHKu2bvs9mTSdPPUzAGoxoyBpaLr9g5RQOMIaECTaryuV2Q0NXhQ8n0AwrdmUhirppGqGy7wANAQhF4bgH44hND3OpoOG4PNugYfaoIe1KsiGsxESM0aR0jjCDFDBA2MQZ/Kg1BM+wKajiaVodG8rlaRUBTwwlevQpR0QDCukfQmiCENrDkEFDcDPnOgKxoDXe27AJrqjV8cDYoHjaqIZmvwqnOoOoeic3tnX2OqubRhiLO1a+T4LFMZpObpINZNqQ2rXV1dneO81+t1tTMeyaZNm9C9e3d06tQJZ5xxBu666y506dIlpb7SDelj/uJccNMAJtnfYY2rkGLpJXSETN/ykMYRMhf/rLAdzg3dCHINAbNdo8pRrzL4FBE+wQMpchefB+APKZBNTyWxPgRWLIMVyWCyuTAqCS0m7Dp4UAVvUqDXGxql1epQ6hiaaj2orffjcMD4rh0OyahVjAl7o+n7HtR0KFyDKiiG7aY5QQ1QTC0EABUcGlOhQYXGw1rYctJuPXfk34WE21JEbjXy448/RmVlJQKBAEpKSrBmzRocc8wx2LFjBzweDyoqKhzte/TogerqarePkTFyRSOJaBJP1AGr+K/TddxwHzf6ECAIHsPlXTQnuYIHkuCHLBQBADzMD4n5IHMvmsVaAECA1YExASFzCGh59jDoAGRwrgDMmvjCnLjrYftMF/mYWe3jTNaj3fjDzyEwDwRBgiT4IIt+SOaE3SeWQxMUqDwI3dRBTQ9C0ZqhM/N3gx4C44IxaTfh5jTVaT/CE3fzGVra2xEn76mMIQknSU3YR4wYgerqanTv3h0jRowAY8zO8B0JYwyalrkY3wceeAAzZ87EVVddBQBYtmwZXnnlFSxfvhy33HJLVPuHHnoIZ511Fn7zm98AAO68806sX78ejz76KJYtW5YxOwmio8GRfCIQq13fvn0d5+fNm4f58+e7vvdZZ52FCy+8EAMHDsSuXbvw29/+FpMnT8aWLVsgiq3XgW4PSB8JorBxo49WeyB5jRw8eDB27NiB2tpaPPfcc5g+fTo2b97cJpvbk1zRSIC8kCzihhu12Im22zp21M14dfO1tSMtCl7IouHZ4xFK4BFK4GflAIAiXgpZ9xhTZnPirwtGCKQkmDHsVrw7JGg85PQYtTEn7a6J9qgy7ifaz8GYYO6wyxAFL7xCCQDAx8oABmhcgQJjYVVhTWBMgKIF7P40vaV1ijEft9YI7NJ1Ea0iq39YdiXwHMhHUhlDEk6SmrDv3r0b3bp1s/+dDUKhELZv345bb73VPicIAiZOnIgtW7bEvGbLli2YO3eu49ykSZOwdu3aTJqaVSJ3jMAM90UhwgWecw0aFHvnWIECBSpCumTvGgU0hmaNod7cYa8JeVDT6EdZdQDSPtMl3hIZVQdvMl2EGlXo9RpCNUBzjQc1dcbq5KFmH2pCHtQq4R32RkVHk6YixEK2i5GBuTvFjF37ZlVHoyqiVjGuK5YkeAUvZMF0VTfF0h9UITc3Q6gPgRU3g/nMpHiyscMerNZR22j8IqkNyWhQBTSZC6EBFQioHCFdt13xVWZ8TrqdEE8zEy9Fx9wXwo5SKquje/fuRVlZmX0+1d31Sy+91P738ccfj2HDhuHII4/Epk2bMGHChJT6TCekj7mMpXvOcZExUNOBFvk/LL00rtGgcSVKL0NcQUg39CWgCWhWOQJaOEknY0adYYVraDbLTjYqAupEBlkQIbFw2RpFFxDSRJQGgvCbO+WeQxqkogCEogCYbPYpscjHMcq2KRxaM6A2mp5CTTKamjyob/aiNujF4ZCxa3QwKONQSECtwtBobqUHNB1BhKBxBRwMATs8iCOgGVoIACGuQGHG89tx/Fyx49gNk2IlpGu5227VMO6YWpnqDnuyGunxeHDUUUcBAEaNGoX3338fDz30EC655BKEQiHU1NQ4dtkPHDiQcghRJsgFjQTIC4kgsgXtsLedpCbs/fv3t//99ddfY8yYMZAk56WqquLdd991tE0n33//PTRNQ48ePRzne/ToYScuaUl1dXXM9q25igWDQQStmGxEu6zlCkYMpjUQtQad0QNQa0Jpu/EwCQIUqMx4rUJFiKum+6axW+nTGBpVoF40BnGHQhKKm/wo+TYE33/qjc7NjU2ucJjhSFCbGIKNEpqbPKht8qE2aAw+vg968H1QwuEQQ03I+CY2KDqauIKA0ADNzBhq2KlC1YMIiEanDXoZGhQRdZLxXD5RgMgkAH4ouoCAavwcljYHUVQfgqdYhehXIRaZA12ZAQJwuLoI3zYW2c9TpxrPCJju+bqOINdsV3yFhQy3eOtzg2KHGER+vk5avtY6zGQ+ldVRqwxRuhk0aBC6du2KL7/8Micm7KSPuQUHj797ZLcxknVGJpmztdKMSRREGTpXoLIgFNNlMgQvgpDRzI3XHlVAvcJQpwj2hL1INEI1AiyABtVsFxIgMgEAg8bDyTebNBGNqoySoBfFjYbW+GUFXo8KWdaMsB8Yiw1M4ODmdbrOoKkCFEVEMGT8rDWGZDQqMuoVGXWqhFrFXHBVBNSEGGpDHHXmhL1BVxAQmqFDgUfQ7cXLRpWjWdXRbLp1BlkIIRaCwoJQufH/rnNj8h6O3dRTzuXRUXaRUt1hT1UjdV1HMBjEqFGjIMsyNmzYgClTpgAAdu7ciT179tgZ2HOBXNBIgLyQLJJzg49uFx5rGrvSjIXj1Y0M8B5Ilgu8UIJidEK53hkAUIpiFAmSkbvI3AhpZnVgTGzRd/heRthhqjvqMR6xhVu/dZ/IezMmQIBguPmbuu/lRSjhpVCgoJk1AgCahMMx76HpYRd+MBn2LrthQItddsB28e/gu+y0w952XCedO/3007F///6o1cja2lqcfvrpGXdnyjSLFi3CggULsm2GTXS2ZEu4ojPDxxyAQnPsAmtchejYMQpCYR6EuISAbghno8IgCSIkU8BFJkBkXnBUoOF9Iw7cLysQGIfOGTQz9j2oSmhSJTSrEuoVCbWK0V+NIqBGYTgYBA4GdPNcCPWsHkHeAFUP2c/GuQ5Vb0aTGeNUj1IcDkoQTeHkYAjpIhpVAbWKiFJzUaC0UUVRjQq/rMIjahCFsMAHVQnfNhVhf7Nh+8GQiJoQQ4NifLZNqm7sOHHV3tlXEITCA3bsqrWY4Ixh16MyIsfOkNwi1jMPRTiXVke/+eYbHDx4EL169YrbZuTIkUkn/fjggw/SZRrpY3thbZnbOBcrjTatJ+psmaTT+O5q0C13Ta5AgwCBK1BhePKEmAwJEkRzh13QGPQgR0AT8U2jcW6gPhRBFoLMZWjM8lrSUW96CWmcIWQmqGtUGWoVESWSDL9o/Gz4RR0eQYNH1O1Yd8YAwVxmAABNN3b0g5poV/MIaCKaNAENqoBGTYC5YY8GFahXOOoVI1cJYERyluvl6IJOePm/HgQ1ayFVQ72moMmcnAeFIEKsGSoP2DHsGlegc8XhtdXS0yi1XB7JVcvIRVLdYU+GW2+9FZMnT0a/fv1QX1+PqqoqbNq0Ca+//jrKy8sxY8YMzJ07F507d0ZZWRmuvfZaVFZWtppwLlv6CGRPI9vDCykfFjSTo4VuRrjDA+FJbjhZm2C7kXuY4VnpZSUo1svRCYZbeQ+fDz2LGAIaUFNjlgdmmq0luq46x1a2RqRv04ODR0ymjeeMXGxkZqWQll5DIiQM8nRGg6LhO90Yc3JBt136AUBnKnSm2PXcjUYqOMSoZ4g5GY+Iy49sZ9md72RyDJmoNDDnHPPmzcMf//hH1NTU4JRTTsHSpUtx9NFHt9qv2/CZTOuq6wk75zymQQcPHkRxcbFrA5Kla9euEEURBw4ccJxvzfWrZ8+ertoDxi/HSIGuq6uLijMjiEIjk2Lb0NCAL7/80n69e/du7NixA507d0bnzp2xYMECTJkyBT179sSuXbtw00034aijjsKkSZPi9hkp1oFAAI899hiOOeYYe9dp69at+PTTT/HLX/7SnbEJIH0kiMIjkxP2b7/9FtOmTcP+/ftRXl6OYcOG4fXXX8ePfvQjAMCDDz4IQRAwZcoUBINBTJo0CY899lirfWZLH4HsaWR7eCHlzIJmK7jaXW+x82y5Vhox3+EJu8AkiEyCwGR7V1rmXvi5D6VmpYs+xQLOPaIWJ2w8F/pCo0TrZ28dhX8eHoVdDRL2Nen4LmBMfmu0ZtQItWhkNQjotQjoxsKHqjUjpDVCMzd5ND0AXQ+CcdXOzG7YKoEJHgjMmFwLggeS6IMs+CGLxs+YVyiBX+iEEl6BTnoFAKCz5EOPIgn9ioFh5QGMGfoNAKDk/sl49ZwPsG6/F0q94UEQQDGCaIIkGPfQeBACl6EjHIsf9oANvwZDiwXL9HkQ5DKZHEMmKg1833334eGHH8ZTTz2FgQMH4vbbb8ekSZPw2WefwefzxezTbfgMkHldTXrCbn0IjDFceeWVjlgrTdPw0UcfYcyYMSkZkQwejwejRo3Chg0b7A9F13Vs2LABc+bMiXlNZWUlNmzYgOuvv94+t379+lZdxdqSyToRrdYWTtuOUYt6uEyHxlUwbq6EcgEak+zEGQITIVgibNURVo27WzvnIZ2hURVxMOTHV43GZ+MXOURz98j6cimcIaQbpYOatHBm9waFo14x3DFrFENoD6MetcL3aFYPQ7UKpHMdHAoUrRnNkuFudFjwgWkC1GZDZAOajLqQgIMyQ6kswy8aP8JFogc+kcMjcEgMYFa2d84Q1BkaNQF15o5TTQioC+loMN1D61UVDXoITawZAWas/Bq7SkGo3NhZs7KD6giHF4RXgZPIjhz3vehsoblIJt2Ztm3bhtNPP91+bU0Ip0+fjqVLl+Kjjz7CU089hZqaGvTu3Rtnnnkm7rzzzla/p/PmzbP//fOf/xy/+tWvcOedd0a12bt3rytb40H6mBmScW9PDt0hsdbAiZnnAaOChs5V+yupQwAEgHFnYkOdaVAEQ8eCvAgNqheyGv5VqkaUzAyag0hBM2qah3QBzZoRzw4AfonBJwrmYfThEThkBsiCnVM4rLXW58KZWTM9IsO7buxeBTSGoM5tN/dm0809oOkImG7sCjdKVCrQsauhybY9CAVBFkKzYJwLsAYovAkh3hzhEm+UMoosb+T0LIr0PLLyAaQvfj0Xd5tSdYlPhieffLLV930+H5YsWYIlS5Yk3Wd76yOQfY1sD2hBkyBik8kxZGulgTnnWLx4MW677Tacf/75AICnn34aPXr0wNq1ax05kiJxGz4DZF5Xk56wl5cbmR455ygtLYXf77ff83g8OPnkkzFz5syUjEiWuXPnYvr06TjhhBNw0kknYfHixWhsbLQ/0GnTpuGII47AokWLAADXXXcdxo0bhz/84Q8455xz8Oyzz2Lbtm144oknMmonQXQ0uIvVUbfrDuPHj4+ZMdji9ddfd9dhC1avXo1t27ZFnb/88stxwgknYPny5W3qHyB9JIhCxo0+Wu1zhfbQRyD7GtkeXkjtvaDpluQWP2NtCoVd3+2+mGBnVw+3Mv4Y/xYhRNwvqHN8XlsCecKLqAsZ4Wx7mrz4b7OImhBHk6ojpBsLfEEWsktJGvmDrEXQ2JsjsRbxIsNDrdeRru46DHd2FSqCZohoQJfRoAj4PihgZ70PDR8b+RQ6//h97GoogsbDn6HIJQiCaC/oMojhMIGI5Kau8xh10Hj2TI4hW2P37t2orq7GxIkT7XPl5eUYPXo0tmzZEnPCnkr4TEsyoatJT9hXrDBcWAYMGIAbb7wxo65L8bjkkkvw3Xff4Y477kB1dTVGjBiBdevW2S5Le/bsgSCEBWTMmDGoqqrCbbfdht/+9rc4+uijsXbt2rzM7hm90xTeMYpMaGF8py1BUu2NetWxkauDC1Zddg0aU6AIQSjc2DUKcD8aQj7UK1aWYRFFogifxOAxP19JAFokLoZuJI2HonMENB0h89vZrGpo0hU0IoB6wYhNb8RhNGoHEVBroemB8DNyFYrWhGblkNGpDChCAE0wEjnVBktRFPKiSJDgE0X4zJ0qj8AgCwJE5nRU4BzQOBDSOQJqOJ60SVPRZO6UB1gAzUIzAqwRIW7sLCl6k7nDbuwqaXoQqh4ydtnNXaqomPYkdpVSFd1si7Wb/bFcc+7y+/145513ouKV3nnnnbjuUG4hfcwC4ZTv5olwfg9bL+14RcslMTJW0dBIwYw31HUVEJweSgKXjbrqZm4LVQhCYs0IsgYAQCOTIQleCBAh8vCvUwEiRCZBMs8FIEPWZHg1GZ6QCK9gDPJkwdBUj8ggm/81ImOmvjL70YQW42zd1DVNN/4GrPrpgKrrRhJNK9O7rkHhOoIwMr4DZhUMpkKFambHNzRLYyoUHoAK83n1oO1dZCUH1bixu27VG7Z23O3fO1y1dTBqsOrI92FpWv7Grlu49R/IJY1sD30Esq+R7eWFRBBENKmMIVvmgEhlQcwKX3ET2pJK+ExLMqGrrmPYI7f8s8GcOXPiiuumTZuizl100UW46KKLMmwVQXRsOGfgPEl3piTbtRfXX389rrnmGnzwwQd2wpD33nsPy5cvx+23357We5E+EkTh4UYfrfa5QnvqI5BdjSQvpBgkkR0++pLYoZnG0p9VaSeIRtaMQ4o5zagHaoIiPqqpsNsHNKBe0c1klyE0mCGJDaweTaiFwpug6kE7DFHXFSQThshbOFWHK4Ao4cVXJiOEBgiCaDsV6LqOYMCPekVGdZOIT0VriiShUdVQE1JQy40QzoDQZCfgjLxPbKywqvD7HSmhXDKkMoZsGU4yb948zJ8/P92mZYRM6GpSE/Yf/vCH2LBhAzp16pQwC166M4oSBJF98nmH/ZZbbsGgQYPw0EMP4ZlnngEADB06FCtWrMDFF1/c5v5JHwmisMnnHfZM6yOQOxpZcF5IBJEjpDKG3Lt3r6PsZSrhJlb4yoEDBxyVhQ4cOIARI0bEvCaV8JmWZEJXk5qwn3/++fYHFZkFj0iNuImUEiSec5akMDJLxkqkBDtbpgAdANcjS71pEAQV3HSBVFnQrDPchJC5utkkeOHlRZBhlEHzal7Iqgw5KJm1hAEJLOoZODhUcGhchwIVQWa42CsshIDQiCCaEOKGK2lAr0NIa4QSkfHTSFYkQNMDCKr1dr+qGERIMK6rF0rgQwm83A+v4oUcMtz2RYiQYNQ6jlz71c1eFa5BM59ZYQqCLAjFtC/IDPd3yw0eCCeZs0rOWS6gYXdPgFsu8Y7V3kg3UPNvu+5mJMm7gebCCmwulXVLhYsvvjhtg8+WkD5mFveJ5wzddFzHdaBFqEykWzxgZD7Wdd0uyWPpps4VO/OxqAehCpL9WmCyEbVp/g0AjBlqxCBCFCx9kiFyCTK8kLgEWTfPaxKMQnGCra0iGCQmmKXc4j+3Dg6Nc+imdmgR2qtCh8bMnS4oUAUVCoL2OQ0KdK6ZaefCiTQ1buxg2aWKuGq4w3NnkrnkdTAyFisJd/gE5IIWxiKTWeLbg0zqI5BbGkleSKkTGS4ERIwrYSY31sMJLCEAmqAgYIYZ1qhFxpgtYtrBoSMEFSEWRFAIIGCGGoV4ExTeBEVvhqYHoZiJiTU9BE0PRYyxNMTXEB3cShAMAToXoprqghEjb419m8U61HI/ZN0LOeiBhHDCUQUKgiyAgBC2MaQ3QNEt24wxY8sSl2E7WyNxpvh8j2NPZQxZVlbmmLCnwsCBA9GzZ09s2LDBnqDX1dXhvffewzXXXBPzmlTCZ2KRbl1NasIe6cKUbZdPgiDaHw4k/asif3+lpAbpI0EUNm700WpfSJBGEkRhk8kxZGulgfv164frr78ed911F44++mi7rFvv3r0di4cTJkzAT37yE3tCnih8Jhu4jmHfu3cvGGPo06cPAOAf//gHqqqqcMwxx2DWrFlpN5AgiOxjrI4mt8uZC7tHnTp1atXtMpJDhw6l7b6kjwRReLjRR6t9NsmWPgKkkQRRiGRyDNlaaeCVK1fipptuQmNjI2bNmoWamhqceuqpWLdunSP5265du/D999/brxOFz8Qi07rqesL+s5/9DLNmzcIVV1xhp8o/7rjjsGrVKlRXV+OOO+5wbUQh0qpbPBAz87F1HYAI1/hIb2rLFdQqMyGAcd0oLWG6LulMhRDh3siYCJU1QxS8duZjkcloZDJEyw2UGS6gIpPtmu0CD5f04BGuPCpTTPcow9UIgJ1tXdODdqZhRW+GqgWg6QFw0w3d8FPVoetBqBF9q3oQitAIAJDEOjQxLwQmQ2LeCBtlMAgO+4znNdKgcOjQuWZ+SopdMgQw3N2N5CGqbZ8OPSoTsuXqxM1zsbPCR/yf2e5jqbvD5wr5tsO+ePHirNyX9DEztOoWH6WZQKRbvAWLdFO0dTMcdsQh2pppdCdAh2qW6jFCYzQmgelh7RMEwxXeLueDcHkfp5u8ABGycY4JEGC61AuicZ4b7xvXm8WReDi4J1LPwk+oO85pUAwXfqbbLu9GO0PvONdszbNKHNkunBEapjnc3bWw9ln3MzPCt14dw/xsY7rBR/4fRZDjYUGtkW877NnSR4A0Mh+Ipbec62BMNN/XAa5Cb1F9SNcV6IIZdiMEEWC1aBSMUAiJ+WwdDN9Hs3VI4wo0swKP5V5uVebR7NBEFdwMybHuCW4FPkZoPXSAs4gSbkbFJM4idIyrEIUQVNaMoGBkIxfNMWVLO40+dHusaF2v6UFoPNLmeBUzYn/Gkb13dDI5hkxUGpgxhoULF2LhwoVx23z11VdR51oLn4lFpnXV9YT9k08+sTPe/eUvf8Hxxx+Pd955B3/729/wi1/8gsSWIDog+RbDPn369Kzcl/SRIAqPfIthz5Y+AqSRBFGI5NsYMhUyrauxazO0gqIodvKQN954Az/+8Y8BAEOGDMH+/fvTax1BEDmB7vLINXbt2oXbbrsNl112Gb799lsAwGuvvYZPP/00rfchfSSIwsOtPuaaRraXPgKkkQRRiOSzPqZKunXV9Q77sccei2XLluGcc87B+vXrceeddwIA9u3bhy5duqRkRKFiu7cnnTEeiHSNZ2Axsx9Htm3NzRMABCZBYwKY3mxnPmZMgMikKBdPBsF2iTJ6N900I75enGu2i2Q487DqyLIOALoeMt2HguA8IoMm5wBU6KabPNd06LoKVQgY99QaIQreKBsF0yXesD9so2WT8ZmFsxhzaKbrkmG/ZW/YFVRv4c6k226hzgyl8V3hrf8nx3stiePGk2suoJwn77mfax7+mzdvxuTJk3HKKafgrbfewu9+9zt0794d//znP/Hkk0/iueeeS9u9SB8zR6t6CbQSTgTEzBoPHWBC3JAicEMLGQ+7u4dd5K3CvQFTFyNd4g2dZExwuMQbGhrWUuO8GHapt8J5YulY3EfWnPoLDVzXTU0L656leQ59s86bmm2db5nx3cr27swQDYcOOt0+XepgAsHINS2MhRt9tNrnCu2pjwBpZM4RNdY0TzuqEllNrZrjhk5aO366rkOHCkGQbPd1QWg2wnvMShmWzgHhOu4t9cgK1eQwxn3W304X8/A4DVyNqw+G/Vb4IqBDA4MOrpnjPmbYKkSOdSPGubFqzVt6GbYldqiQNc6NqY1xa7W3Tj7oYGvk8xgyFTKhq6532O+99148/vjjGD9+PC677DIMHz4cAPDiiy/abk4EQXQsOBj0JA/uqgRX5rnllltw1113Yf369fB4PPb5M844A1u3bk3rvUgfCaLwcKOPuaaR7amPAGkkQRQi+TyGTIVM6KrrHfbx48fj+++/R11dHTp16mSfnzVrFoqKilIygiCI3CafV0c//vhjVFVVRZ3v3r27IytoOiB9JIjCI5932NtTHwHSSIIoRPJ5DJkKmdBV1xN2ABBFEaqq4u233wYADB48GAMGDEjJACKJjPFATDdPbrlOtsh+7Lw8vpsnAHCmArZLZ8jsQoACRLkJRRLprulwaUeEC2aEC6XlLhSZ3ZNzBeBhdyfrc+DQANOtijPdyHzMwy78qhaAIEi2K6plo2V7PCKz2be0L9I1yyDaNdQgjvsnkLas8Lno+uQmrijX4o8qKiqwf/9+DBw40HH+ww8/xBFHHJH2+5E+ZpZWM8YDrWSND2umBeMRP9lMsN2/wwjGt5GblTeYYGgonLqDCC2yzkdqUdgl3unubof0tGjr7Lu1R9Wj/q230KyWLu+Ovx0hPkBL9/dYbZJxgTeuS5AFOYlRWS5qYSzcxl3mkka2tz4CpJG5TWRIZXRVIiA8ttTNsEBww4Wca+FwS003NdFsEmscCbQIVWyhKy3DEA2XfL3FWEuP1hKz4lB4jKyCQzAz3Zs2cNUMERUcOm7ZGotY9kU+h1UtozU3+I5QNSgV8nkMmQqZ0FXXLvGNjY24+uqr0atXL4wdOxZjx45F7969MWPGDDQ1NaVkBEEQuY2V4TPZI5e49NJLcfPNN6O6uhqMMei6jnfeeQc33ngjpk2bltZ7kT4SROHhVh9zSSPbUx8B0kiCKETyVR9TJRO66nrCPnfuXGzevBkvvfQSampqUFNTgxdeeAGbN2/Gr3/965SMIAgit+Euj1zi7rvvxpAhQ9C3b180NDTgmGOOwdixYzFmzBjcdtttab0X6SNBFB5u9TGXNLI99REgjSSIQiRf9TFVMqGrjLdWbT4GXbt2xXPPPYfx48c7zm/cuBEXX3wxvvvuu5QMyVXq6upQXl4OQETcVL1polU3T7tRrDYt3Dwj+2nh6mN0EdlejOlO7myTnItmy2zp0W6XmrMN1w33IDubcUQWaMtlFMx8hkgbIrPWR9uZHNGupC1d5m1frhjPZpxM0gXe6CChRe3n/skBaKitrUVZWVmrLa2f/wVH3wqf6Euq94AWwLwvFiXVf3uyZ88efPLJJ2hoaMDIkSNx9NFHp/0epI/tT0Z0E4ipnUZXTv1seS7aXT7cRyx39+hwI9fr6AAQ5Z7Z8nwsN/b42mfRshJG+NrWXeAj2jmNjP8AcftpbzKrj0BuamR76CNQWBqZC/rYkoR66dDKZMaWRruwboXDJVtqWbyQxejQQ8CpPc5xl6PqhKkpkbph22k/ixBxrjX39/i2R9sXttH5XkcPk0xeH4GONYZMhXTqqusY9qamJvTo0SPqfPfu3cmdiSA6KB0hYUi/fv3Qr1+/jN6D9JEgCo98Tjpn0R76CJBGEkQh0hHGkKmQTl11PWGvrKzEvHnz8PTTT8PnM1ZLmpubsWDBAlRWVqbFKIIgcot8Sxgyd+5c3HnnnSguLsbcuXNbbfvAAw+k7b6kjwRReORb0rls6SNAGkkQhUi+jSFTIdO66nrC/tBDD2HSpEno06ePXT/zn//8J3w+H15//XXXBhAEkfu4SQSSCwlDPvzwQyiKAgD44IMPwGK6RCPu+VQhfSSIwsNtoqRsa2S29BEgjSSIQiTfxpCpkGlddT1hP+644/DFF19g1apV+PzzzwEAl112GaZOnQq/35+SEYRBzBicqEYRP8kxSr1FluIAIku+tSxdBPs850a8juM7wkW0JLlSFxZxYntaluOIS0QZJq6BOcoyqeBcsEsshYm2uXValKOLeo6WcUYdNWYzMW4SgeTC0zz00EN27NOmTZva7b6kj+2PI/dF3EbmT2WMUm/hflroG9fMPiPaxdBPq3tLH407iY4vQriUUOw4zvhx663Fs8fWz1h6zFs+a0SZytavjY7HDPeZhP6FO47/Xtz+8ge3iZKy/aTZ0keANDLbJFUW09XY0mgX1k813L7FD3pyceEt7huzJJqVRyM6ft16zcAidF83Wwh2ziQWod3huPb4tse0zXHT1kq3xbi2g2tiS/JtDJkKmdbVlOqwFxUVYebMmem2hSCIHCXfVkdHjhyJ/fv3o3v37hg0aBDef/99dOnSpV3uTfpIEIVFvu2wZ1MfAdJIgig08m0MmQqZ1tWUJuw7d+7EI488gn/9618AgKFDh2LOnDkYMmRI2gwjCCJ34GDgSWa5TbZdJqmoqMDu3bvRvXt3fPXVV9D19ouKIn0kiMLCjT5a7bNJNvURII0kiEIj38aQqZBpXXU9Yf/rX/+KSy+9FCeccIKdIGTr1q04/vjj8eyzz2LKlClpNbBQybybp7N9VDvbNQiw3DKTy9yYrAtl2KUppjuTdYq1sC/CTdXpyhRpc6KySK25bsZxM43ppBPPNarjuTpxJL/qmQtPNmXKFIwbNw69evUCYwwnnHACRDF2yMR//vOftN2X9DF7uA4pAlrVzpYuoMb1sfUz2lVeRaQOhaVaiP39iBGClDpazLMJXU/thrFc6l3on3Gz+O8l7Df/cKOPVvtski19BEgjc4GEWhlTJxOPLZ39xdARV9+RGONFFx05XP8jXOPD7wOIGFdaRIVBJW1jJIUbHhSPfBtDpkKmddX1hP2mm27CrbfeioULFzrOz5s3DzfddBOJLUEQWeeJJ57AhRdeiC+//BK/+tWvMHPmTJSWlmb8vqSPBEHkOtnSR4A0kiCIjkmmddX1hH3//v2YNm1a1PnLL78c999/f1qMIggit8jH+KOzzjoLALB9+3Zcd9117TIgJX0kiMIj32LYgezoI0AaSRCFSD6OIVMhk7rqesI+fvx4/P3vf8dRRx3lOP/222/jtNNOS5thhEFKbp72BbFdexyuQPZJpxtlTLfPJEnKfTJZ3ygXrkyAO3emcH+t2ZKgrwJx/cznDJ8rVqxot3uRPuYGLb9vrrQzZobkyL5jhNxEucrHuD7KbT6S6BAk9yShe65Cflz0XSA6GI98yxIfSXvqI0AamWu4Cr+0iDO2NPqzSEXH3OtMa5oS9WxRVZbijY/TSIFro0U+jyFTIRO66nrC/uMf/xg333wztm/fjpNPPhmAEX+0evVqLFiwAC+++KKjLUEQ+U+hrI62FdJHgig88nGHPVuQRhJE4ZHJMeSAAQPw9ddfR53/5S9/iSVLlkSdX7lyJa666irHOa/Xi0Ag4O7G7Qzj3E0aCEAQkls1Y4xB02Inv8kn6urqUF5eDqPGd3YzF7a6Ahrzgtbat/7/6PpeEbjdYY/VPur+Uc8S2/5U7C68HXYOQENtba1dMzIe1s//DQNuhVfwJdV7UA/gwa8WJdV/R4P0MTdxpQut6iaQsvbErbWeXP+JoR329JBZfQRII5OhI2hkvugjkG6NBHJhh90i5rMl9QxpoENpI+BGH4H2GUN+9913Dq345JNP8KMf/QgbN27E+PHjo9qvXLkS1113HXbu3GmfY4yhR48eSdmXLVzvsLd3+Q8iTNJunvYF7t09w/eKpA1Z11uxJRlXJsB8ziiXrETuWC0R4NZVPrpzd4KaPwKcGNphTw7Sx9zElXa2qptAyq6gPHryEduO9PwMudOf1DQ8vTbkL7TDnjykkblJmzUSSEonkzOm9S+IW12J6fafSM+SmdCnoIktbSoUMjmG7Natm+P1PffcgyOPPBLjxo2Lew1jDD179nR3oyyT6lI+QRAFBHd5EARBFApu9ZE0kiCIQiIVfayrq3McwWAw4X1CoRCeeeYZXH311WCtLLo0NDSgf//+6Nu3L84//3x8+umnbXm8doEm7ARBJMRaHU32IAiCKBTc6qMbjVy0aBFOPPFElJaWonv37rjgggscrpwAEAgEMHv2bHTp0gUlJSWYMmUKDhw4kOanJAiCSI1U9LFv374oLy+3j0WLFiW8z9q1a1FTU4Mrr7wybpvBgwdj+fLleOGFF/DMM89A13WMGTMG33zzTZqeNjPQhD2P4TH+JL6IJz6i0BMcSfQdw/ZUnjPp54j5DCl8Fq32Gd/OjubulOaPysFbb72F8847D7179wZjDGvXrm1xb4477rgDvXr1gt/vx8SJE/HFF1+k7+GIgsO1drr6gU+kl+GDQzOPdP4x+nRjR1LPmu7PtAPhVh/daOTmzZsxe/ZsbN26FevXr4eiKDjzzDPR2Nhot7nhhhvw0ksvYfXq1di8eTP27duHCy+8MANPShQKKX2XU/kiuPhytFVX0qr5Lr7EhayNFqn8COzduxe1tbX2ceuttya8z5NPPonJkyejd+/ecdtUVlZi2rRpGDFiBMaNG4fnn38e3bp1w+OPP56ux80IrmPYCYIoPGIM61tt64bGxkYMHz4cV199dcxB5n333YeHH34YTz31FAYOHIjbb78dkyZNwmeffQafL/lETwRBEJnAjT5a7ZNl3bp1jtcrV65E9+7dsX37dowdOxa1tbV48sknUVVVhTPOOAOAUVJo6NCh2Lp1q52JnSAIIlukMoYsKytzlZTz66+/xhtvvIHnn3/elW2yLGPkyJH48ssvXV3X3tCEnSCIhGQyYcjkyZMxefLkmO9xzrF48WLcdtttOP/88wEATz/9NHr06IG1a9fi0ksvdXczgiCINNOeSedqa2sBAJ07dwYAbN++HYqiYOLEiXabIUOGoF+/ftiyZQtN2AmCyDrtkbh4xYoV6N69O8455xxX12maho8//hhnn312ajduJ1y7xJ9xxhlYsGBB1PnDhw/bq7tE9ojnJOmuk8y4MaXDHSgb7kyx7l1wLk5ufgzMjyKVhCEt2b17N6qrqx2D0fLycowePRpbtmxJ08OlD9LH/KVN3+s2a6Yb9/U0hCi1QRcLUv8S4fYjTlEjdV3H9ddfj1NOOQXHHXccAKC6uhoejwcVFRWOtj169EB1dXUGHrZtkEbmJ+059sn2fdzcK9G4sOC10SIFfXSDrutYsWIFpk+fDkly7kVPmzbN4U6/cOFC/O1vf8N//vMffPDBB7j88svx9ddf4+c//3kbHzKzuJ6wb9q0CY8++iguuOACRwxVKBTC5s2b02ocQRC5QSpThlQShrTEGnC2rI+Zq4NR0keCKDxSXVZxq5GzZ8/GJ598gmeffTYzD9IOkEYSROGR4rJz0rzxxhvYs2cPrr766qj39uzZg/3799uvDx8+jJkzZ2Lo0KE4++yzUVdXh3fffRfHHHNMCnduP1JKOvfGG2+guroaJ598Mr766qs0mxSbQ4cOYerUqSgrK0NFRQVmzJiBhoaGVq8ZP348GGOO4xe/+EW72EsQHYn2ShjSESB9JIjCIlVHBjcaOWfOHLz88svYuHEj+vTpY5/v2bMnQqEQampqHO0PHDiQs3WGs6GRBEFkjzQ7ekVx5plngnOOH/zgB1Hvbdq0CStXrrRfP/jgg/j6668RDAZRXV2NV155BSNHjmzD07UPKU3Ye/Xqhc2bN+P444/HiSeeiE2bNqXZrGimTp2KTz/9FOvXr8fLL7+Mt956C7NmzUp43cyZM7F//377uO+++zJuK0F0NFJZHbUShliH1+t1fV9rwNmyRFEuD0ZJHwmisEh1hz0ZjeScY86cOVizZg3efPNNDBw40PH+qFGjIMsyNmzYYJ/buXMn9uzZg8rKynQ/alrIhkbSoiZBZI9M77AXAq6TzlmF6L1eL6qqqnDXXXfhrLPOws0335x24yz+9a9/Yd26dXj//fdxwgknAAAeeeQRnH322fj973/favr+oqKinB3YtycdMY6mIz5TrsI5B09y2TPZdskwcOBA9OzZExs2bMCIESMAGHGf7733Hq655pq03SddkD52PJLVGQaWQue5pWGkqanhRh+t9skye/ZsVFVV4YUXXkBpaakdClReXg6/34/y8nLMmDEDc+fORefOnVFWVoZrr70WlZWVOZlwLhsaCRiLmvv377dL41111VWYNWsWqqqqWr1u5syZWLhwof26qKgoo3bmIx1RNzriM2WTbI0hOxKuJ+wtP8jbbrsNQ4cOxfTp09NmVEu2bNmCiooKezAKABMnToQgCHjvvffwk5/8JO61q1atwjPPPIOePXvivPPOw+23396q4AaDQUfil7q6uvQ8BEHkMZnM8NnQ0OAop7F7927s2LEDnTt3Rr9+/XD99dfjrrvuwtFHH22XdevduzcuuOACdzdqB0gfCaLwyGSW+KVLlwIwdnsjWbFiBa688koAhounIAiYMmUKgsEgJk2ahMceeyz5m7Qj2dBIWtQkiOzSHlniOzquJ+y7d+9Gt27dHOemTJmCIUOGYNu2bWkzLJLq6mp0797dcU6SJHTu3LnVxFM/+9nP0L9/f/Tu3RsfffQRbr75ZuzcubPVGn2LFi2KmcGUIAoZN4k73Wrttm3bcPrpp9uv586dCwCYPn06Vq5ciZtuugmNjY2YNWsWampqcOqpp2LdunU5WYOd9JEgCg+3iY1dtU1it8nn82HJkiVYsmSJi56zQzY0sj0XNQmCiCaTY8hCwfWEvX///jHPH3vssTj22GNd9XXLLbfg3nvvbbXNv/71L1d9RhIZw3n88cejV69emDBhAnbt2oUjjzwy5jW33nqrPWEAjB2kvn37pmwDQXQEMrk6On78+FYHpYwxLFy40OGWmKuQPhYu5EJZuLRnHfZ8J50amSzttahJHkgEERvaYW87rifs6eTXv/617dIVj0GDBqFnz5749ttvHedVVcWhQ4dcuSqNHj0aAPDll1/GHZB6vd6UkmMRREeGxLb9IX0kiPyAJuzZIdcWNckDiSBiQ2PItpPVCXu3bt2iXKNiUVlZiZqaGmzfvh2jRo0CALz55pvQdd0eZCbDjh07ABgZSgmCSB7DnSnJhCGZNaVgIH0kiPzAjT5a7Ym2k2uLmuSBRBCxoTFk28nqhD1Zhg4dirPOOgszZ87EsmXLoCgK5syZg0svvdROFvLf//4XEyZMwNNPP42TTjoJu3btQlVVFc4++2x06dIFH330EW644QaMHTsWw4YNy/ITEUR+QaujuQvpI0FkF9phzw65tqhJHkgEERsaQ7adlOqwZ4NVq1ZhyJAhmDBhAs4++2yceuqpeOKJJ+z3FUXBzp070dTUBADweDx44403cOaZZ2LIkCH49a9/jSlTpuCll17K1iMQRN7CubuDaF9IHwkie7jVR9LI9iVyUfMf//gH3nnnnZiLmkOGDME//vEPAMCuXbtw5513Yvv27fjqq6/w4osvYtq0abSoSRApQPrYdvJihx0AOnfu3Gq9zAEDBjgSV/Xt2xebN29uD9MIosPDwaEn7c5EatvekD4SRPZwo49We6J9WbVqFebMmYMJEybYJfAefvhh+/14i5qLFy9GY2Mj+vbtiylTpuC2227L1iMQRN5CY8i2kzcTdoIgsoebVU9aHSUIopBwuytEGtn+0KImQWQPGkO2HZqwEwSREN08km1LEARRKLjRR6s9QRBEoUBjyLZDE/YEhFdcacmH6CgYP8ut1T6PuoLzpNu76ZfIb0gfiY5HZvXRbd9E/kL6SHQ83Ouj1Z7GkG2DJuwJqK+vN/9Faz5Ex6K+vh7l5eVJtaUMn0QsSB+Jjkqm9NFqT3R8SB+JjoobfQRoDJkOaMKegN69e+Ozzz7DMcccg71796KsrCzbJnVIrHql9BlnDusz3rNnDxhjdnbcZNBdJAxxk3yJyG9IH9sH0sfM0176aLUnOj69e/fG3r17wTlHv3796PubQUgjM4/1GX/22Weu9BGgMWQ6oAl7AgRBwBFHHAEAKCsrIyHIMPQZZ57y8nLXnzGHi4Qh7k0i8hTSx/aFPuPMk2l9tNoTHR9BENCnTx/U1dUBoO9ve0CfceY54ogjIAjuqoLTGLLt0ISdIIiE0OooQRBEbGiHnSAIIj40hmw7NGEnCCIhnCe/6kn5QgiCKCTc6KPVniAIolCgMWTbcefTUKB4vV7MmzcPXq8326Z0WOgzzjxt+Yyt1dFkD6JwoO9u5qHPOPO0pz6SRhYW9P3NPPQZZ55cHUPOnz8fjDHHMWTIkFavWb16NYYMGQKfz4fjjz8er776qutnam8Yp/z5BEHEoa6uDuXl5fhR+VzILDmRVngQ62sfQG1tLcWSEQTRYUlFHwHSSIIgCoP2GEPOnz8fzz33HN544w37nCRJ6Nq1a8z27777LsaOHYtFixbh3HPPRVVVFe6991588MEHOO6445J7sCxALvEEQSSEm3+SbUsQBFEouNFHqz1BEEShkOkxpCRJ6NmzZ1JtH3roIZx11ln4zW9+AwC48847sX79ejz66KNYtmyZ63u3F+QSTxBEQjiMSrLJHDQUJQiikHCjj6SRBEEUGpkeQ37xxRfo3bs3Bg0ahKlTp2LPnj1x227ZsgUTJ050nJs0aRK2bNmSwp3bD9phJwgiIZThkyAIIjaUJZ4gCCI+qYwhrXKIFl6vN2b8/OjRo7Fy5UoMHjwY+/fvx4IFC3Daaafhk08+QWlpaVT76upq9OjRw3GuR48eqK6uTvZxsgJN2AmCSAjnLtyZKC0GQRAFhBt9tNoTBEEUCqmMIfv27es4P2/ePMyfPz+q/eTJk+1/Dxs2DKNHj0b//v3xl7/8BTNmzEjd6ByDXOJT4He/+x3GjBmDoqIiVFRUZNucDsGSJUswYMAA+Hw+jB49Gv/4xz+ybVKH4a233sJ5552H3r17gzGGtWvXuu6DMiATyUDamH5IGzNLNvSRNLJwIY1MP6SRmSVbY8i9e/eitrbWPm699dak7lVRUYEf/OAH+PLLL2O+37NnTxw4cMBx7sCBA0nHwGcLmrCnQCgUwkUXXYRrrrkm26Z0CP785z9j7ty5mDdvHj744AMMHz4ckyZNwrfffptt0zoEjY2NGD58OJYsWZJyHzQYJZKBtDG9kDZmnmzoI2lk4UIamV5IIzNPtsaQZWVljiPZcnINDQ3YtWsXevXqFfP9yspKbNiwwXFu/fr1qKysTPn52gMq69YGVq5cieuvvx41NTXZNiWvGT16NE488UQ8+uijAABd19G3b19ce+21uOWWW7JsXceCMYY1a9bgggsuSKq9VZLjlLLZkJIsyaHyIN6pW0IliwoY0sb0QNrYvrSHPgKkkQRpZLogjWxfcnEMeeONN+K8885D//79sW/fPsybNw87duzAZ599hm7dumHatGk44ogjsGjRIgBGWbdx48bhnnvuwTnnnINnn30Wd999d86XdaMddiKrhEIhbN++3ZGxURAETJw4MeczNhYStHtEEO0LaWP+QDvsBNH+kEbmD5nUx2+++QaXXXYZBg8ejIsvvhhdunTB1q1b0a1bNwDAnj17sH//frv9mDFjUFVVhSeeeALDhw/Hc889h7Vr1+b0ZB2gpHNElvn++++haVrMjI2ff/55lqwiWkJZ4gmifSFtzB8oSzxBtD+kkflDJseQzz77bKvvb9q0KercRRddhIsuusjVfbIN7bCb3HLLLWCMtXqQABCFiu7yD9FxIG0kiNZxq4+kkR0L0kiCaB3Sx7ZDO+wmv/71r3HllVe22mbQoEHtY0wB0bVrV4iimJcZGwsJzjg4S05E3ZQ3InIf0sbsQNqYP7jRR4A0sqNBGpkdSCPzBxpDth2asJt069bNjncg2g+Px4NRo0Zhw4YNdhILXdexYcMGzJkzJ7vGETbchTsTiW3HgrQxO5A25g9u9NFqT3QcSCOzA2lk/kBjyLZDE/YU2LNnDw4dOoQ9e/ZA0zTs2LEDAHDUUUehpKQku8blIXPnzsX06dNxwgkn4KSTTsLixYvR2NiIq666KtumdQgaGhoc9Sh3796NHTt2oHPnzujXr19SfejQwZJ0UyJ3psKFtDG9kDZmnvbWR6s9UZiQRqYX0sjMQ2PI3IAm7Clwxx134KmnnrJfjxw5EgCwceNGjB8/PktW5S+XXHIJvvvuO9xxxx2orq7GiBEjsG7duqhEIkRqbNu2Daeffrr9eu7cuQCA6dOnY+XKlUn1YeXuTLYtUZiQNqYX0sbM0976aLUnChPSyPRCGpl5aAyZG1AddoIg4mLV0BxRfhVE5knqGo2HsKN2BdUYJgiiQ5OKPgKkkQRBFAY0hkwflCWeIIiE6Ex3dbhh/vz5URl1hwwZkqEnIQiCSC9u9dGtRr711ls477zz0Lt3bzDGsHbtWsf7nHPccccd6NWrF/x+PyZOnIgvvvgijU9IEASROpnUx0KBJuwEQSQk0yU5jj32WOzfv98+3n777Qw8BUEQRPrJdFm3xsZGDB8+HEuWLIn5/n333YeHH34Yy5Ytw3vvvYfi4mJMmjQJgUAgHY9HEATRJqisW9uhGHaCIBKS6YQhkiRRGRaCIPKSTCedmzx5MiZPnhzzPc45Fi9ejNtuuw3nn38+AODpp59Gjx49sHbtWlx66aWu7kUQBJFuKOlc26EddoIgEmIlDEn2cMsXX3yB3r17Y9CgQZg6dSr27NmTgacgCIJIP271MZ1JlXbv3o3q6mpMnDjRPldeXo7Ro0djy5YtabsPQRBEqmRLHzsStMNOEERCdGhg0JJuCxjJRiLxer3wer1R7UePHo2VK1di8ODB2L9/PxYsWIDTTjsNn3zyCUpLS9tuPEEQRAZxo49WeyB5jWyN6upqAIjKit2jRw/7PYIgiGySyhiScEI77ARBJISDu1gdNQpP9O3bF+Xl5faxaNGimH1PnjwZF110EYYNG4b/397dx1RZ/38cfx0wRAdiKooZhJuJIgTkLfKHONnXpXORTk23DO9aAS6nVua8z7zJkVrelE4lZ0qWtyt0OQpc3iZhQ6dWTkQceNNQwrVUzvn94c9jJ8FzrnM4h3M8z4e7Ns/V5/C5LnKvfd7X9bk+1+DBg5Wfn6+bN29qx44dnjxFAHCKsXw0npEA4MucGUPCFnfYAdhlNpllcnDlzgfPH12+fNnmlRyO3jlq3bq1unbtqj/++MP4gQKAhxnJR8n1jPy3B2t/XL16VR07drTuv3r1qhITEw3/PABobM6MIWGLO+wA7DKrztAmSa1atbLZHB2M1tbW6sKFCzaDTwDwVkbz0dWM/LfOnTsrIiJCBQUF1n01NTU6fvy4kpOTG+0cAcBZzuQjbFGwo9FlZGQoPT39sW0KCwtlMpl08+ZNtx5Lamqq9d3ep06dcmtfkhQdHW3tz93n5llGFgsxdnV0xowZKioqUllZmY4cOaJXXnlFgYGBGjNmjHtOBWhC5KN/56MzGVlbW6tTp05Z/x9dvHhRp06dUnl5uUwmk6ZOnapFixZp3759Ki0t1bhx4/TMM8/Y/XcGeBvy8UnMR8mdY0h/QcGORrdq1Srl5uZaP6empmrq1Kk2bfr376/KykqFhYW5/XgmT56syspKxcXFub2vn3/+WTt37nR7P55mttQZ2oyoqKjQmDFjFBMTo1GjRqlt27Y6duyYwsPD3XQ2QNMhH8lHoxl58uRJJSUlKSkpSZI0bdo0JSUlae7cuZKkd999V1OmTNEbb7yh3r17q7a2VgcOHFBwcHCjnyvgTuTjk5ePknvHkP6CZ9jR6BwJ0aCgII+9d7tly5Ye6ys8PFxt2rTxSF+eZORVG0ZfyZGXl+fMIQE+iXz073x80N6I1NRUWSwNL8RkMpm0cOFCLVy40NDPBbwN+fjk5aPk3jGkv+AOuw/bsmWL2rZtq3/++cdmf3p6ul577bV6v1NWViaTyaS8vDz1799fwcHBiouLU1FRkU27oqIi9enTR82bN1fHjh01c+ZM3bt3z/rfv/nmG8XHx6tFixZq27at0tLSdPv2bUm2U5oyMjJUVFSkVatWWaf6lJWV1TulaefOnerRo4eaN2+u6Oho5eTk2BxTdHS0Fi9erAkTJig0NFRRUVFav3694d9bbm6uWrdubbNvz549MplM1s/z589XYmKiNm3apKioKIWEhCgzM1N1dXX66KOPFBERofbt2+vDDz803L8vsqjO0AY0NfKRfPQUo/lIRqKpkY/koyeRj66jYPdhI0eOVF1dnfbt22fdd+3aNX333XeaMGHCY7/7zjvvaPr06SopKVFycrKGDRumP//8U5J05coVDRkyRL1799avv/6qdevWaePGjVq0aJEkqbKyUmPGjNGECRN09uxZFRYWavjw4fXeAVi1apWSk5Ot04oqKysVGRn5SLvi4mKNGjVKr776qkpLSzV//nzNmTPHZmqUJOXk5KhXr14qKSlRZmam3nrrLZ0/f97or84hFy5c0P79+3XgwAFt375dGzdu1NChQ1VRUaGioiItW7ZMs2fP1vHjx93SvzcxG/wDNDXykXz0FKP5SEaiqZGP5KMnkY+uo2D3YS1atNDYsWO1efNm676tW7cqKipKqampj/1udna2RowYoe7du2vdunUKCwvTxo0bJUlr165VZGSkVq9erW7duik9PV0LFixQTk6OzGazKisrde/ePQ0fPlzR0dGKj49XZmamQkJCHuknLCxMQUFB1mlFERERCgwMfKTdxx9/rEGDBmnOnDnq2rWrMjIylJ2dreXLl9u0GzJkiDIzM9WlSxe99957ateunX788Ucnfnv2mc1mbdq0SbGxsRo2bJgGDhyo8+fPa+XKlYqJidH48eMVExPjtv69Ce/QhK8hH8lHT3H2PexAUyEfyUdPcucYcsmSJerdu7dCQ0PVvn17paen270Qk5uba5218WDz9jU/KNh93OTJk/X999/rypUrku7/I8zIyLCZnlOff7/upVmzZurVq5fOnj0rSTp79qySk5NtfkZKSopqa2tVUVGhhIQEDRo0SPHx8Ro5cqQ2bNig6upql87j7NmzSklJsdmXkpKi33//XXV1D6fHvPDCC9a/m0wmRURE6Nq1ay713ZDo6GiFhoZaP3fo0EGxsbEKCAiw2eeu/r2JxVJnaAO8AflIPnqC0XwkI+ENyEfy0VPcmY9FRUXKysrSsWPHdPDgQd29e1f/+9//rI9ZNKRVq1bWmRuVlZW6dOmSK6fodhTsPi4pKUkJCQnasmWLiouLdebMGWVkZLi1z8DAQB08eFD79+9XbGysPv30U8XExOjixYtu7VeSnnrqKZvPJpNJZrOx6TMBAQGPTL+6e/euQ301Rv++iOlM8EXkI/noCUyJhy8iH8lHT3FnPh44cEAZGRnq0aOHEhISlJubq/LychUXFz/2ew8u2jzYOnTo4Mopuh0F+xNg0qRJys3N1ebNm5WWllbvMz7/dezYMevf7927p+LiYnXv3l2S1L17dx09etQmlA4fPqzQ0FA9++yzku7/Q09JSdGCBQtUUlKioKAg7d69u96+goKCbK5y1qd79+46fPiwzb7Dhw+ra9eu9U6BckV4eLj++usvm6tvnnjHpi9jwRD4KvLRGPLROBadg68iH40hH53jTD7W1NTYbP9dILEht27dkiS7K+7X1tbqueeeU2RkpF5++WWdOXPGtZN0Mwr2J8DYsWNVUVGhDRs22F0s5IE1a9Zo9+7dOnfunLKyslRdXW39bmZmpi5fvqwpU6bo3Llz2rt3r+bNm6dp06YpICBAx48f1+LFi3Xy5EmVl5dr165dun79ujWw/ys6OlrHjx9XWVmZbty4Ue8VxenTp6ugoEAffPCBfvvtN33xxRdavXq1ZsyY4fwvpgF9+/ZVy5YtNWvWLF24cEHbtm17ZHES2LJYzIY2wFuQj8aQj8YZzUcyEt6CfDSGfHSOM/kYGRmpsLAw67ZkyRK7/ZjNZk2dOlUpKSmKi4trsF1MTIw2bdqkvXv3auvWrTKbzerfv78qKioa7ZwbGwX7EyAsLEwjRoxQSEiI9XUY9ixdulRLly5VQkKCfvrpJ+3bt0/t2rWTJHXq1En5+fk6ceKEEhIS9Oabb2rixImaPXu2pPvPfRw6dEhDhgxR165dNXv2bOXk5Oill16qt68ZM2YoMDBQsbGxCg8PV3l5+SNtXnzxRe3YsUN5eXmKi4vT3LlztXDhQrdMz2rTpo22bt2q/Px8xcfHa/v27Zo/f36j9/MkYbonfBX5aAz5aBxT4uGryEdjyEfnOJOPly9f1q1bt6zb+++/b7efrKwsnT59Wnl5eY9tl5ycrHHjxikxMVEDBgzQrl27FB4ers8//7xRztcdTJb63qUAnzNo0CD16NFDn3zyyWPblZWVqXPnziopKVFiYqJnDq4JpaamKjExUStXrvRYn4WFhRo4cKCqq6sfeV+nr6mpqVFYWJjahvZSgKmZQ98xW+7pz79O6tatW2rVqpWbjxCwj3ysH/noGmfyUSIj4V3Ix/qRj67z5BgyOztbe/fu1aFDh9S5c2fDxzpy5Eg1a9ZM27dvN/xdT+AOu4+rrq7W7t27VVhYqKysrKY+HK+0du1ahYSEqLS01O199ejRo8Erxb6M17rBF5GP9pGPruO1bvBF5KN95GPjcOcY0mKxKDs7W7t379YPP/zgVLFeV1en0tJSdezY0fB3PcXxS8LwSklJSaqurtayZcsUExPT1Ifjdb788kv9/fffkqSoqCi395efn29dMfRJunNisZhl0eNf9fLvtoA3IB8fj3xsHEby8UF7oKmRj49HPjYed44hs7KytG3bNu3du1ehoaGqqqqSdP9xjxYtWkiSxo0bp06dOlmfg1+4cKH69eunLl266ObNm1q+fLkuXbqkSZMmGerbkyjYfVxZWZmh9tHR0Y+8kuJJ1qlTJ4/299xzz3m0P8+pM3DNkxWQ4R3Ix8cjHxuLkXy83x5oauTj45GPjcl9Y8h169ZJuv8Iw79t3rzZuo5BeXm5AgIeTiqvrq7W5MmTVVVVpaefflo9e/bUkSNHFBsba6hvT6JgB2DX/Sue3GEHgP8yko8P2wOAf3DnGNKRi0iFhYU2n1esWKEVK1YY6qepUbADsIuCHQDqR8EOAA1jDOk6CnYAdplllsnRsOWVRQD8iJF8lMhIAP6FMaTrKNgB2MXVUQCoH3fYAaBhjCFdR8EOwC6LxfFFQIy0BQBfZzTzyEgA/oQxpOso2AHYdf+9mI5d9eQdwwD8iZF8fNgeAPwDY0jXUbADsMvIFCWmMwHwJ8ZXNSYjAfgPxpCuo2AHYBdhCwD1o2AHgIYxhnQdBTsAu4ys2skKnwD8idHMIyMB+BPGkK6jYAdgF1dHAaB+3GEHgIYxhnQdBTsAuwhbAKgfBTsANIwxpOso2AE4wEiAErYA/InRzCMjAfgTxpCuomAHYBdXRwGgftxhB4CGMYZ0HQU7ALtYMAQA6seicwDQMMaQrqNgB2CXxWKRo9OU7rcFAP9gJB8ftgcA/8AY0nUU7AAcUCfJ5GBbwhaAPzGSjxIZCcC/MIZ0FQU7ALvuP1PkWNhydRSAPzGSj/fbk5EA/AdjSNdRsANwgJEBKWELwJ8YK9jJSAD+hTGkqyjYAdhn5A4SV0cB+BODd9jJSAB+hTGkywKa+gAAeD+LwT/OWLNmjaKjoxUcHKy+ffvqxIkTjXwWAND4jOajMxlJPgLwVd6Wj19//bW6deum4OBgxcfHKz8/39lT8xgKdgAOMBvcjPnqq680bdo0zZs3T7/88osSEhI0ePBgXbt2rbFOAADcxGg+GstI8hGAb/OefDxy5IjGjBmjiRMnqqSkROnp6UpPT9fp06edPjtPMFl4uh9AA2pqahQWFiapmUyOLhgii6R7unXrllq1auXQd/r27avevXtr9erVkiSz2azIyEhNmTJFM2fOdPLoAcB9nMlHyXhGko8AfJEnxpBG83H06NG6ffu2vv32W+u+fv36KTExUZ999plDx9gUuMMOwAFGpjIZuwZ4584dFRcXKy0tzbovICBAaWlpOnr0aCOfBwA0NqPTPR3PSPIRgO/znnw8evSoTXtJGjx4sNfnKYvOAXCQsUK8pqbG5nPz5s3VvHnzR9rduHFDdXV16tChg83+Dh066Ny5c8YPEwA8zvhkRUcyknwE8GRo/DGkM/lYVVVVb/uqqipDx+dp3GEH0KCgoCBFRERIqjO0hYSEKDIyUmFhYdZtyZIlTXMSAOAGzuYjGQnAHzCGbDzcYQfQoODgYF28eFF37twx9D2LxSKTyfZ5pfrurktSu3btFBgYqKtXr9rsv3r16v8HPQB4H2fzUXI8I8lHAL7K3WNIZ/IxIiLCJ/OUgh3AYwUHBys4ONhtPz8oKEg9e/ZUQUGB0tPTJd1fNKSgoEDZ2dlu6xcAXEU+AkDD3JmRzuRjcnKyCgoKNHXqVOu+gwcPKjk52S3H2Fgo2AE0uWnTpun1119Xr1691KdPH61cuVK3b9/W+PHjm/rQAKBJkY8AUD97+Thu3Dh16tTJOqX+7bff1oABA5STk6OhQ4cqLy9PJ0+e1Pr165vyNOyiYAfQ5EaPHq3r169r7ty5qqqqUmJiog4cOPDIwiAA4G/IRwCon718LC8vV0DAwyXb+vfvr23btmn27NmaNWuWnn/+ee3Zs0dxcXFNdQoO4T3sAAAAAAB4IVaJBwAAAADAC1GwAwAAAADghSjYAQAAAADwQhTsAAAAAAB4IQp2AAAAAAC8EAU7AAAAAABeiIIdAAAAAAAvRMEOAAAAAIAXomAHAAAAAMALUbADAAAAAOCFKNgBAAAAAPBCFOwAAAAAAHih/wPpUY/umuTwlAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f, (ax1, ax2, ax3) = plt.subplots(1, 3, tight_layout=True, figsize=(10, 3))\n",
"abs(mode_data.Ex.isel(mode_index=0)).plot(x=\"y\", y=\"z\", ax=ax1, cmap=\"magma\")\n",
"abs(mode_data.Ey.isel(mode_index=0)).plot(x=\"y\", y=\"z\", ax=ax2, cmap=\"magma\")\n",
"abs(mode_data.Ez.isel(mode_index=0)).plot(x=\"y\", y=\"z\", ax=ax3, cmap=\"magma\")\n",
"\n",
"ax1.set_title(\"|Ex(x, y)|\")\n",
"ax1.set_aspect(\"equal\")\n",
"ax2.set_title(\"|Ey(x, y)|\")\n",
"ax2.set_aspect(\"equal\")\n",
"ax3.set_title(\"|Ez(x, y)|\")\n",
"ax3.set_aspect(\"equal\")\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "7e904938",
"metadata": {},
"source": [
"Now that we verified all the settings, we are ready to submit the simulation job to the server."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "15e791dd",
"metadata": {
"execution": {
"iopub.execute_input": "2023-03-27T23:47:06.525276Z",
"iopub.status.busy": "2023-03-27T23:47:06.525074Z",
"iopub.status.idle": "2023-03-27T23:48:54.178263Z",
"shell.execute_reply": "2023-03-27T23:48:54.177662Z"
}
},
"outputs": [
{
"data": {
"text/html": [
"
[08:47:49] Created task 'y_junction' with task_id 'fdve-3c931e74-ee4c-4867-b548-b7a34edbb2eav1'. webapi.py:139\n",
"
[08:48:05] Maximum FlexCredit cost: 0.171. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:286\n",
"cost after a simulation run. \n",
"
\n"
],
"text/plain": [
"\u001b[2;36m[08:48:05]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.171\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=48270;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=883307;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"