{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Tidy3D first walkthrough\n", "\n", "Our first tutorial focuses on illustrating the basic setup, run, and analysis of a ``Tidy3D`` simulation. In this example, we will simulate a plane wave impinging on dielectric slab with a triangular pillar made of a lossy dielectric sitting on top. First, we import everything needed." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [], "source": [ "# standard python imports\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import h5py\n", "\n", "# tidy3d imports\n", "import tidy3d as td\n", "from tidy3d import web\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, we initialize some general simulation parameters. We note that the PML layers extend **beyond** the simulation domain, making the total simulation size larger - as opposed to some solvers in which the PML is covering part of the user-defined simulation domain." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Simulation domain size (in micron)\n", "sim_size = [4, 4, 4]\n", "\n", "# Central frequency and bandwidth of pulsed excitation, in Hz\n", "freq0 = 2e14\n", "fwidth = 1e13\n", "\n", "# apply a PML in all directions\n", "boundary_spec = td.BoundarySpec.all_sides(boundary=td.PML())\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The run time of a simulation depends a lot on whether there are any long-lived resonances. In our example here, there is no strong resonance. Thus, we do not need to run the simulation much longer than after the sources have decayed. We thus set the run time based on the source bandwidth." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Total time to run in seconds\n", "run_time = 2 / fwidth\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Structures and materials\n", "\n", "Next, we initialize the simulated structure. The structure consists of two [Structure](../_autosummary/tidy3d.Structure.html) objects. Each object consists of a [Geometry](../_autosummary/tidy3d.components.geometry.Geometry.html) and a [Medium](../_autosummary/tidy3d.components.medium.AbstractMedium.html) to define the spatial extent and material properties, respectively. Note that the size of any object (structure, source, or monitor) can extend beyond the simulation domain, and is truncated at the edges of that domain. \n", "\n", "Note: For best results, structures that intersect with the PML or simulation edges should extend extend all the way through. In many such cases, an \"infinite\" size `td.inf` can be used to define the size along that dimension." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Lossless dielectric specified directly using relative permittivity\n", "material1 = td.Medium(permittivity=6.0)\n", "\n", "# Lossy dielectric defined from the real and imaginary part of the refractive index\n", "material2 = td.Medium.from_nk(n=1.5, k=0.0, freq=freq0)\n", "# material2 = td.Medium(permittivity=2.)\n", "\n", "\n", "# Rectangular slab, extending infinitely in x and y with medium `material1`\n", "box = td.Structure(\n", " geometry=td.Box(center=[0, 0, 0], size=[td.inf, td.inf, 1]), medium=material1\n", ")\n", "\n", "# Triangle in the xy-plane with a finite extent in z\n", "equi_tri_verts = [[-1 / 2, -1 / 4], [1 / 2, -1 / 4], [0, np.sqrt(3) / 2 - 1 / 4]]\n", "\n", "poly = td.Structure(\n", " geometry=td.PolySlab(\n", " vertices=(2 * np.array(equi_tri_verts)).tolist(),\n", " # vertices=equi_tri_verts,\n", " slab_bounds=(0.5, 1.0),\n", " axis=2,\n", " ),\n", " medium=material2,\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sources\n", "\n", "Next, we define a source injecting a normal-incidence plane-wave from above. The time dependence of the source is a Gaussian pulse. A source can be added to multiple simulations. After we add the source to a specific simulation, such that the total run time is known, we can use in-built plotting tools to visualize its time- and frequency-dependence, which we will show below." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [] }, "outputs": [], "source": [ "psource = td.PlaneWave(\n", " center=(0, 0, 1.5),\n", " direction=\"-\",\n", " size=(td.inf, td.inf, 0),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n", " pol_angle=np.pi / 2,\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Monitors\n", "\n", "Finally, we can also add some monitors that will record the fields that we request during the simulation run. \n", "\n", "The two monitor types for measuring fields are [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) and [FieldTimeMonitor](../_autosummary/tidy3d.FieldTimeMonitor.html), which record the frequency-domain and time-domain fields, respectively. \n", "\n", "[FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) objects operate by running a discrete Fourier transform of the fields at a given set of frequencies to perform the calculation \"in-place\" with the time stepping. [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) objects are useful for investigating the steady-state field distribution in 2D or even 3D regions of the simulation.\n", "\n", "[FieldTimeMonitor](../_autosummary/tidy3d.FieldTimeMonitor.html) objects are best used to monitor the time dependence of the fields at a single point, but they can also be used to create \"animations\" of the field pattern evolution. Because spatially large [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) objects can lead to a very large amount of data that needs to be stored, an optional start and stop time can be supplied, as well as an `interval` specifying the amount of time steps between each measurement (default of 1)." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [] }, "outputs": [], "source": [ "# measure time domain fields at center location, measure every 5 time steps\n", "time_mnt = td.FieldTimeMonitor(\n", " center=[0, 0, 0], size=[0, 0, 0], interval=5, name=\"field_time\"\n", ")\n", "\n", "# measure the steady state fields at central frequency in the xy plane and the xz plane.\n", "freq_mnt1 = td.FieldMonitor(\n", " center=[0, 0, -1], size=[20, 20, 0], freqs=[freq0], name=\"field1\"\n", ")\n", "freq_mnt2 = td.FieldMonitor(\n", " center=[0, 0, 0], size=[20, 0, 20], freqs=[freq0], name=\"field2\"\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Simulation\n", "\n", "Now we can initialize the [Simulation](../_autosummary/tidy3d.Simulation.html) with all the elements defined above. A nonuniform simulation grid is generated automatically based on a given minimum number of cells per wavelength in each material (10 by default), using the frequencies defined in the source." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Initialize simulation\n", "sim = td.Simulation(\n", " size=sim_size,\n", " grid_spec=td.GridSpec.auto(min_steps_per_wvl=20),\n", " structures=[box, poly],\n", " sources=[psource],\n", " monitors=[time_mnt, freq_mnt1, freq_mnt2],\n", " run_time=run_time,\n", " boundary_spec=boundary_spec,\n", ")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can check the simulation monitors just to make sure everything looks right." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 <class 'tidy3d.components.monitor.FieldTimeMonitor'> \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e\n", "\u2502 :class:`Monitor` that records electromagnetic fields in the time domain. \u2502\n", "\u2502 \u2502\n", "\u2502 \u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e \u2502\n", "\u2502 \u2502 FieldTimeMonitor( \u2502 \u2502\n", "\u2502 \u2502 \u2502 type='FieldTimeMonitor', \u2502 \u2502\n", "\u2502 \u2502 \u2502 center=(0.0, 0.0, 0.0), \u2502 \u2502\n", "\u2502 \u2502 \u2502 size=(0.0, 0.0, 0.0), \u2502 \u2502\n", "\u2502 \u2502 \u2502 name='field_time', \u2502 \u2502\n", "\u2502 \u2502 \u2502 start=0.0, \u2502 \u2502\n", "\u2502 \u2502 \u2502 stop=None, \u2502 \u2502\n", "\u2502 \u2502 \u2502 interval=5, \u2502 \u2502\n", "\u2502 \u2502 \u2502 fields=('Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz'), \u2502 \u2502\n", "\u2502 \u2502 \u2502 interval_space=(1, 1, 1), \u2502 \u2502\n", "\u2502 \u2502 \u2502 colocate=False \u2502 \u2502\n", "\u2502 \u2502 ) \u2502 \u2502\n", "\u2502 \u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f \u2502\n", "\u2502 \u2502\n", "\u2502 bounding_box = Box(type='Box', center=(0.0, 0.0, 0.0), size=(0.0, 0.0, 0.0)) \u2502\n", "\u2502 bounds = ((0.0, 0.0, 0.0), (0.0, 0.0, 0.0)) \u2502\n", "\u2502 center = (0.0, 0.0, 0.0) \u2502\n", "\u2502 colocate = False \u2502\n", "\u2502 fields = ('Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz') \u2502\n", "\u2502 geometry = Box(type='Box', center=(0.0, 0.0, 0.0), size=(0.0, 0.0, 0.0)) \u2502\n", "\u2502 interval = 5 \u2502\n", "\u2502 interval_space = (1, 1, 1) \u2502\n", "\u2502 name = 'field_time' \u2502\n", "\u2502 plot_params = PlotParams( \u2502\n", "\u2502 alpha=0.4, \u2502\n", "\u2502 edgecolor='orange', \u2502\n", "\u2502 facecolor='orange', \u2502\n", "\u2502 fill=True, \u2502\n", "\u2502 hatch=None, \u2502\n", "\u2502 linewidth=3.0, \u2502\n", "\u2502 type='PlotParams' \u2502\n", "\u2502 ) \u2502\n", "\u2502 size = (0.0, 0.0, 0.0) \u2502\n", "\u2502 start = 0.0 \u2502\n", "\u2502 stop = None \u2502\n", "\u2502 type = 'FieldTimeMonitor' \u2502\n", "\u2502 zero_dims = [0, 1, 2] \u2502\n", "\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\n", "\n" ], "text/plain": [ "\u001b[34m\u256d\u2500\u001b[0m\u001b[34m\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 \u001b[0m\u001b[1;34m<\u001b[0m\u001b[1;95mclass\u001b[0m\u001b[39m \u001b[0m\u001b[32m'tidy3d.components.monitor.FieldTimeMonitor'\u001b[0m\u001b[1;34m>\u001b[0m\u001b[34m \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u001b[0m\u001b[34m\u2500\u256e\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[36m:class:`Monitor` that records electromagnetic fields in the time domain.\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[1;35mFieldTimeMonitor\u001b[0m\u001b[1m(\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'FieldTimeMonitor'\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'field_time'\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mstart\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mstop\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33minterval\u001b[0m=\u001b[1;36m5\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mfields\u001b[0m=\u001b[1m(\u001b[0m\u001b[32m'Ex'\u001b[0m, \u001b[32m'Ey'\u001b[0m, \u001b[32m'Ez'\u001b[0m, \u001b[32m'Hx'\u001b[0m, \u001b[32m'Hy'\u001b[0m, \u001b[32m'Hz'\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33minterval_space\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mcolocate\u001b[0m=\u001b[3;91mFalse\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[1m)\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mbounding_box\u001b[0m = \u001b[1;35mBox\u001b[0m\u001b[1m(\u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'Box'\u001b[0m, \u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mbounds\u001b[0m = \u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mcenter\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mcolocate\u001b[0m = \u001b[3;91mFalse\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mfields\u001b[0m = \u001b[1m(\u001b[0m\u001b[32m'Ex'\u001b[0m, \u001b[32m'Ey'\u001b[0m, \u001b[32m'Ez'\u001b[0m, \u001b[32m'Hx'\u001b[0m, \u001b[32m'Hy'\u001b[0m, \u001b[32m'Hz'\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mgeometry\u001b[0m = \u001b[1;35mBox\u001b[0m\u001b[1m(\u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'Box'\u001b[0m, \u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33minterval\u001b[0m = \u001b[1;36m5\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33minterval_space\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mname\u001b[0m = \u001b[32m'field_time'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mplot_params\u001b[0m = \u001b[1;35mPlotParams\u001b[0m\u001b[1m(\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33malpha\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.4\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33medgecolor\u001b[0m=\u001b[32m'orange'\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mfacecolor\u001b[0m=\u001b[32m'orange'\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mfill\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mhatch\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mlinewidth\u001b[0m=\u001b[1;36m3\u001b[0m\u001b[1;36m.0\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mtype\u001b[0m=\u001b[32m'PlotParams'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33msize\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mstart\u001b[0m = \u001b[1;36m0.0\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mstop\u001b[0m = \u001b[3;35mNone\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mtype\u001b[0m = \u001b[32m'FieldTimeMonitor'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mzero_dims\u001b[0m = \u001b[1m[\u001b[0m\u001b[1;36m0\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 <class 'tidy3d.components.monitor.FieldMonitor'> \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e\n", "\u2502 :class:`Monitor` that records electromagnetic fields in the frequency domain. \u2502\n", "\u2502 \u2502\n", "\u2502 \u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e \u2502\n", "\u2502 \u2502 FieldMonitor( \u2502 \u2502\n", "\u2502 \u2502 \u2502 type='FieldMonitor', \u2502 \u2502\n", "\u2502 \u2502 \u2502 center=(0.0, 0.0, -1.0), \u2502 \u2502\n", "\u2502 \u2502 \u2502 size=(20.0, 20.0, 0.0), \u2502 \u2502\n", "\u2502 \u2502 \u2502 name='field1', \u2502 \u2502\n", "\u2502 \u2502 \u2502 freqs=(200000000000000.0,), \u2502 \u2502\n", "\u2502 \u2502 \u2502 apodization=ApodizationSpec( \u2502 \u2502\n", "\u2502 \u2502 \u2502 \u2502 start=None, \u2502 \u2502\n", "\u2502 \u2502 \u2502 \u2502 end=None, \u2502 \u2502\n", "\u2502 \u2502 \u2502 \u2502 width=None, \u2502 \u2502\n", "\u2502 \u2502 \u2502 \u2502 type='ApodizationSpec' \u2502 \u2502\n", "\u2502 \u2502 \u2502 ), \u2502 \u2502\n", "\u2502 \u2502 \u2502 fields=('Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz'), \u2502 \u2502\n", "\u2502 \u2502 \u2502 interval_space=(1, 1, 1), \u2502 \u2502\n", "\u2502 \u2502 \u2502 colocate=False \u2502 \u2502\n", "\u2502 \u2502 ) \u2502 \u2502\n", "\u2502 \u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f \u2502\n", "\u2502 \u2502\n", "\u2502 apodization = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec') \u2502\n", "\u2502 bounding_box = Box(type='Box', center=(0.0, 0.0, -1.0), size=(20.0, 20.0, 0.0)) \u2502\n", "\u2502 bounds = ((-10.0, -10.0, -1.0), (10.0, 10.0, -1.0)) \u2502\n", "\u2502 center = (0.0, 0.0, -1.0) \u2502\n", "\u2502 colocate = False \u2502\n", "\u2502 fields = ('Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz') \u2502\n", "\u2502 freqs = (200000000000000.0,) \u2502\n", "\u2502 geometry = Box(type='Box', center=(0.0, 0.0, -1.0), size=(20.0, 20.0, 0.0)) \u2502\n", "\u2502 interval_space = (1, 1, 1) \u2502\n", "\u2502 name = 'field1' \u2502\n", "\u2502 plot_params = PlotParams( \u2502\n", "\u2502 alpha=0.4, \u2502\n", "\u2502 edgecolor='orange', \u2502\n", "\u2502 facecolor='orange', \u2502\n", "\u2502 fill=True, \u2502\n", "\u2502 hatch=None, \u2502\n", "\u2502 linewidth=3.0, \u2502\n", "\u2502 type='PlotParams' \u2502\n", "\u2502 ) \u2502\n", "\u2502 size = (20.0, 20.0, 0.0) \u2502\n", "\u2502 type = 'FieldMonitor' \u2502\n", "\u2502 zero_dims = [2] \u2502\n", "\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\n", "\n" ], "text/plain": [ "\u001b[34m\u256d\u2500\u001b[0m\u001b[34m\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 \u001b[0m\u001b[1;34m<\u001b[0m\u001b[1;95mclass\u001b[0m\u001b[39m \u001b[0m\u001b[32m'tidy3d.components.monitor.FieldMonitor'\u001b[0m\u001b[1;34m>\u001b[0m\u001b[34m \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u001b[0m\u001b[34m\u2500\u256e\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[36m:class:`Monitor` that records electromagnetic fields in the frequency domain.\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[1;35mFieldMonitor\u001b[0m\u001b[1m(\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'FieldMonitor'\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m-1.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m20.0\u001b[0m, \u001b[1;36m20.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'field1'\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mfreqs\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m200000000000000.0\u001b[0m,\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mapodization\u001b[0m=\u001b[1;35mApodizationSpec\u001b[0m\u001b[1m(\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u2502 \u001b[0m\u001b[33mstart\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u2502 \u001b[0m\u001b[33mend\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u2502 \u001b[0m\u001b[33mwidth\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u2502 \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'ApodizationSpec'\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mfields\u001b[0m=\u001b[1m(\u001b[0m\u001b[32m'Ex'\u001b[0m, \u001b[32m'Ey'\u001b[0m, \u001b[32m'Ez'\u001b[0m, \u001b[32m'Hx'\u001b[0m, \u001b[32m'Hy'\u001b[0m, \u001b[32m'Hz'\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33minterval_space\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mcolocate\u001b[0m=\u001b[3;91mFalse\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[1m)\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mapodization\u001b[0m = \u001b[1;35mApodizationSpec\u001b[0m\u001b[1m(\u001b[0m\u001b[33mstart\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[33mend\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[33mwidth\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[33mtype\u001b[0m=\u001b[32m'ApodizationSpec'\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mbounding_box\u001b[0m = \u001b[1;35mBox\u001b[0m\u001b[1m(\u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'Box'\u001b[0m, \u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m-1.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m20.0\u001b[0m, \u001b[1;36m20.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mbounds\u001b[0m = \u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m-10.0\u001b[0m, \u001b[1;36m-10.0\u001b[0m, \u001b[1;36m-1.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[1m(\u001b[0m\u001b[1;36m10.0\u001b[0m, \u001b[1;36m10.0\u001b[0m, \u001b[1;36m-1.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mcenter\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m-1.0\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mcolocate\u001b[0m = \u001b[3;91mFalse\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mfields\u001b[0m = \u001b[1m(\u001b[0m\u001b[32m'Ex'\u001b[0m, \u001b[32m'Ey'\u001b[0m, \u001b[32m'Ez'\u001b[0m, \u001b[32m'Hx'\u001b[0m, \u001b[32m'Hy'\u001b[0m, \u001b[32m'Hz'\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mfreqs\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m200000000000000.0\u001b[0m,\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mgeometry\u001b[0m = \u001b[1;35mBox\u001b[0m\u001b[1m(\u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'Box'\u001b[0m, \u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m-1.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m20.0\u001b[0m, \u001b[1;36m20.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33minterval_space\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mname\u001b[0m = \u001b[32m'field1'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mplot_params\u001b[0m = \u001b[1;35mPlotParams\u001b[0m\u001b[1m(\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33malpha\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.4\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33medgecolor\u001b[0m=\u001b[32m'orange'\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mfacecolor\u001b[0m=\u001b[32m'orange'\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mfill\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mhatch\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mlinewidth\u001b[0m=\u001b[1;36m3\u001b[0m\u001b[1;36m.0\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mtype\u001b[0m=\u001b[32m'PlotParams'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33msize\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m20.0\u001b[0m, \u001b[1;36m20.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mtype\u001b[0m = \u001b[32m'FieldMonitor'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mzero_dims\u001b[0m = \u001b[1m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1m]\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 <class 'tidy3d.components.monitor.FieldMonitor'> \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e\n", "\u2502 :class:`Monitor` that records electromagnetic fields in the frequency domain. \u2502\n", "\u2502 \u2502\n", "\u2502 \u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e \u2502\n", "\u2502 \u2502 FieldMonitor( \u2502 \u2502\n", "\u2502 \u2502 \u2502 type='FieldMonitor', \u2502 \u2502\n", "\u2502 \u2502 \u2502 center=(0.0, 0.0, 0.0), \u2502 \u2502\n", "\u2502 \u2502 \u2502 size=(20.0, 0.0, 20.0), \u2502 \u2502\n", "\u2502 \u2502 \u2502 name='field2', \u2502 \u2502\n", "\u2502 \u2502 \u2502 freqs=(200000000000000.0,), \u2502 \u2502\n", "\u2502 \u2502 \u2502 apodization=ApodizationSpec( \u2502 \u2502\n", "\u2502 \u2502 \u2502 \u2502 start=None, \u2502 \u2502\n", "\u2502 \u2502 \u2502 \u2502 end=None, \u2502 \u2502\n", "\u2502 \u2502 \u2502 \u2502 width=None, \u2502 \u2502\n", "\u2502 \u2502 \u2502 \u2502 type='ApodizationSpec' \u2502 \u2502\n", "\u2502 \u2502 \u2502 ), \u2502 \u2502\n", "\u2502 \u2502 \u2502 fields=('Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz'), \u2502 \u2502\n", "\u2502 \u2502 \u2502 interval_space=(1, 1, 1), \u2502 \u2502\n", "\u2502 \u2502 \u2502 colocate=False \u2502 \u2502\n", "\u2502 \u2502 ) \u2502 \u2502\n", "\u2502 \u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f \u2502\n", "\u2502 \u2502\n", "\u2502 apodization = ApodizationSpec(start=None, end=None, width=None, type='ApodizationSpec') \u2502\n", "\u2502 bounding_box = Box(type='Box', center=(0.0, 0.0, 0.0), size=(20.0, 0.0, 20.0)) \u2502\n", "\u2502 bounds = ((-10.0, 0.0, -10.0), (10.0, 0.0, 10.0)) \u2502\n", "\u2502 center = (0.0, 0.0, 0.0) \u2502\n", "\u2502 colocate = False \u2502\n", "\u2502 fields = ('Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz') \u2502\n", "\u2502 freqs = (200000000000000.0,) \u2502\n", "\u2502 geometry = Box(type='Box', center=(0.0, 0.0, 0.0), size=(20.0, 0.0, 20.0)) \u2502\n", "\u2502 interval_space = (1, 1, 1) \u2502\n", "\u2502 name = 'field2' \u2502\n", "\u2502 plot_params = PlotParams( \u2502\n", "\u2502 alpha=0.4, \u2502\n", "\u2502 edgecolor='orange', \u2502\n", "\u2502 facecolor='orange', \u2502\n", "\u2502 fill=True, \u2502\n", "\u2502 hatch=None, \u2502\n", "\u2502 linewidth=3.0, \u2502\n", "\u2502 type='PlotParams' \u2502\n", "\u2502 ) \u2502\n", "\u2502 size = (20.0, 0.0, 20.0) \u2502\n", "\u2502 type = 'FieldMonitor' \u2502\n", "\u2502 zero_dims = [1] \u2502\n", "\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\n", "\n" ], "text/plain": [ "\u001b[34m\u256d\u2500\u001b[0m\u001b[34m\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500 \u001b[0m\u001b[1;34m<\u001b[0m\u001b[1;95mclass\u001b[0m\u001b[39m \u001b[0m\u001b[32m'tidy3d.components.monitor.FieldMonitor'\u001b[0m\u001b[1;34m>\u001b[0m\u001b[34m \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u001b[0m\u001b[34m\u2500\u256e\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[36m:class:`Monitor` that records electromagnetic fields in the frequency domain.\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u256d\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256e\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[1;35mFieldMonitor\u001b[0m\u001b[1m(\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'FieldMonitor'\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m20.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m20.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'field2'\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mfreqs\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m200000000000000.0\u001b[0m,\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mapodization\u001b[0m=\u001b[1;35mApodizationSpec\u001b[0m\u001b[1m(\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u2502 \u001b[0m\u001b[33mstart\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u2502 \u001b[0m\u001b[33mend\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u2502 \u001b[0m\u001b[33mwidth\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u2502 \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'ApodizationSpec'\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mfields\u001b[0m=\u001b[1m(\u001b[0m\u001b[32m'Ex'\u001b[0m, \u001b[32m'Ey'\u001b[0m, \u001b[32m'Ez'\u001b[0m, \u001b[32m'Hx'\u001b[0m, \u001b[32m'Hy'\u001b[0m, \u001b[32m'Hz'\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33minterval_space\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m)\u001b[0m, \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[2;32m\u2502 \u001b[0m\u001b[33mcolocate\u001b[0m=\u001b[3;91mFalse\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[1m)\u001b[0m \u001b[32m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[32m\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mapodization\u001b[0m = \u001b[1;35mApodizationSpec\u001b[0m\u001b[1m(\u001b[0m\u001b[33mstart\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[33mend\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[33mwidth\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[33mtype\u001b[0m=\u001b[32m'ApodizationSpec'\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mbounding_box\u001b[0m = \u001b[1;35mBox\u001b[0m\u001b[1m(\u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'Box'\u001b[0m, \u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m20.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m20.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mbounds\u001b[0m = \u001b[1m(\u001b[0m\u001b[1m(\u001b[0m\u001b[1;36m-10.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m-10.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[1m(\u001b[0m\u001b[1;36m10.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m10.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mcenter\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mcolocate\u001b[0m = \u001b[3;91mFalse\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mfields\u001b[0m = \u001b[1m(\u001b[0m\u001b[32m'Ex'\u001b[0m, \u001b[32m'Ey'\u001b[0m, \u001b[32m'Ez'\u001b[0m, \u001b[32m'Hx'\u001b[0m, \u001b[32m'Hy'\u001b[0m, \u001b[32m'Hz'\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mfreqs\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m200000000000000.0\u001b[0m,\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mgeometry\u001b[0m = \u001b[1;35mBox\u001b[0m\u001b[1m(\u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'Box'\u001b[0m, \u001b[33mcenter\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m0.0\u001b[0m\u001b[1m)\u001b[0m, \u001b[33msize\u001b[0m=\u001b[1m(\u001b[0m\u001b[1;36m20.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m20.0\u001b[0m\u001b[1m)\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33minterval_space\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m, \u001b[1;36m1\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mname\u001b[0m = \u001b[32m'field2'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mplot_params\u001b[0m = \u001b[1;35mPlotParams\u001b[0m\u001b[1m(\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33malpha\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.4\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33medgecolor\u001b[0m=\u001b[32m'orange'\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mfacecolor\u001b[0m=\u001b[32m'orange'\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mfill\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mhatch\u001b[0m=\u001b[3;35mNone\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mlinewidth\u001b[0m=\u001b[1;36m3\u001b[0m\u001b[1;36m.0\u001b[0m, \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[33mtype\u001b[0m=\u001b[32m'PlotParams'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33msize\u001b[0m = \u001b[1m(\u001b[0m\u001b[1;36m20.0\u001b[0m, \u001b[1;36m0.0\u001b[0m, \u001b[1;36m20.0\u001b[0m\u001b[1m)\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mtype\u001b[0m = \u001b[32m'FieldMonitor'\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2502\u001b[0m \u001b[3;33mzero_dims\u001b[0m = \u001b[1m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1m]\u001b[0m \u001b[34m\u2502\u001b[0m\n", "\u001b[34m\u2570\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u256f\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for m in sim.monitors:\n", " m.help()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Visualization functions\n", "\n", "We can now use the some in-built plotting functions to make sure that we have set up the simulation as we desire.\n", "\n", "First, let's take a look at the source time dependence." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACq7ElEQVR4nO2deXwU9d3HP7Ob3c1BDiAhIQqEQ0EUQfExYrWiREDRamtVLIpSi61K+yhWK31a8ap41VpbWqoV1FbF2qo9VDxQtCoFRakXoiCIAkk4DLmTPeb5Y3bO/f1mZmOWXJ/365XXZmd/szOzS3Y/fL6XoqqqCkIIIYQQ0uMJdPUJEEIIIYSQzoHCjhBCCCGkl0BhRwghhBDSS6CwI4QQQgjpJVDYEUIIIYT0EijsCCGEEEJ6CRR2hBBCCCG9BAo7QgghhJBeAoUdIYQQQkgvgcKOEEJ6KIqi4PrrrzfuP/DAA1AUBVu3bt0vx6+oqMBFF120X45FCPEHhR0hhPRifve73+GBBx7o6tMghOwnKOwIIaSXcMEFF6ClpQXDhg0ztlHYEdK3yOrqEyCEkI4Si8WQSCQQDoe7+lS6BcFgEMFgsKtPgxDShdCxI4SkTUNDA6644gpUVFQgEolg0KBBOPnkk/H222/b1j3++OOYOHEicnJyUFxcjPPPPx/bt2+3rZk8eTImT56ccoyLLroIFRUVxv2tW7dCURTceeeduPvuuzFy5EhEIhF8+OGHAICPPvoI55xzDkpKSpCTk4PRo0fj//7v/2zPuX37dnz3u99FaWkpIpEIDj30UCxdutTXNS9btgwnnXQSBg0ahEgkgrFjx+L3v/99yrqKigqcdtppWLVqFY466ijk5ORg3LhxWLVqFQDgiSeewLhx45CdnY2JEyfinXfeSbnufv364dNPP8W0adOQl5eH8vJy3HjjjVBV1fUcnTl2FRUV+OCDD/DKK69AURQoimK81tdffz0URfF8DgBQVRU333wzDjzwQOTm5uLEE0/EBx98IDyHuro6XHHFFRgyZAgikQhGjRqF2267DYlEwvXcCSGdAx07Qkja/OAHP8Bf//pXzJs3D2PHjsWePXvw2muvYcOGDTjyyCMBaAJhzpw5+J//+R8sWrQINTU1+PWvf43XX38d77zzDoqKijp07GXLlqG1tRWXXHIJIpEIBgwYgHfffRfHH388QqEQLrnkElRUVGDz5s345z//iV/84hcAgJqaGhxzzDFQFAXz5s1DSUkJnn32WVx88cWor6/HFVdc4Xrc3//+9zj00EPxjW98A1lZWfjnP/+Jyy67DIlEApdffrlt7aZNm/Cd73wH3//+93H++efjzjvvxOmnn44lS5bgpz/9KS677DIAwKJFi3DOOedg48aNCATM/2fH43FMnz4dxxxzDG6//XasWLECCxcuRCwWw4033uj7tbr77rvxwx/+EP369TNEbmlpqe/9da677jrcfPPNOPXUU3Hqqafi7bffxtSpU9He3m5b19zcjBNOOAHbt2/H97//fQwdOhRvvPEGFixYgJ07d+Luu+9O+9iEkDRRCSEkTQoLC9XLL79c+nh7e7s6aNAg9bDDDlNbWlqM7f/6179UAOp1111nbDvhhBPUE044IeU5LrzwQnXYsGHG/S1btqgA1IKCArW2tta29utf/7qan5+vfvbZZ7btiUTC+P3iiy9WBw8erO7evdu2ZubMmWphYaHa3Nzses2ix6dNm6aOGDHCtm3YsGEqAPWNN94wtj333HMqADUnJ8d2jn/4wx9UAOrLL79su24A6g9/+EPbdcyYMUMNh8Pqrl27jO0A1IULFxr3ly1bpgJQt2zZYmw79NBDha/vwoULVdFXgPM5amtr1XA4rM6YMcP2ev70pz9VAagXXnihse2mm25S8/Ly1I8//tj2nNdee60aDAbVbdu2pRyPENK5MBRLCEmboqIirFmzBjt27BA+/tZbb6G2thaXXXYZsrOzje0zZszAmDFj8PTTT3f42GeddRZKSkqM+7t27cKrr76K7373uxg6dKhtrR5qVFUVf/vb33D66adDVVXs3r3b+Jk2bRr27duXEkZ2kpOTY/y+b98+7N69GyeccAI+/fRT7Nu3z7Z27NixmDRpknG/srISAHDSSSfZzlHf/umnn6Ycb968ebbrmDdvHtrb2/Hiiy+6nmdn8+KLL6K9vR0//OEPbaFbkcP5+OOP4/jjj0f//v1tr3FVVRXi8TheffXV/XjmhPRNGIolhKTN7bffjgsvvBBDhgzBxIkTceqpp2L27NkYMWIEAOCzzz4DAIwePTpl3zFjxuC1117r8LGHDx9uu6+LosMOO0y6z65du1BXV4d7770X9957r3BNbW2t63Fff/11LFy4EKtXr0Zzc7PtsX379qGwsNC47xSY+mNDhgwRbv/yyy9t2wOBgPFa6hx88MEAsN961Ono7+VBBx1k215SUoL+/fvbtn3yySd49913bcLbitdrTAj56lDYEULS5pxzzsHxxx+PJ598Es8//zzuuOMO3HbbbXjiiSdwyimnpPVciqIIiwLi8bhwvdU584ueuH/++efjwgsvFK45/PDDpftv3rwZU6ZMwZgxY3DXXXdhyJAhCIfDeOaZZ/CrX/0qpTBAVpkq2y66/kwjKpwA5K+7HxKJBE4++WRcc801wsd1cUoIyRwUdoSQDjF48GBcdtlluOyyy1BbW4sjjzwSv/jFL3DKKacYfdQ2btyIk046ybbfxo0bbX3W+vfvLwxF6k6RF7qz9f7770vXlJSUID8/H/F4HFVVVb6e18o///lPtLW14R//+IfNjXv55ZfTfi4/JBIJfPrppzYh9PHHHwOArVLYDzIBp7ttdXV1tkIW5+uuv1effPKJzUXctWtXitM4cuRINDY2dug1JoR0DsyxI4SkRTweT8kpGzRoEMrLy9HW1gYAOOqoozBo0CAsWbLE2AYAzz77LDZs2IAZM2YY20aOHImPPvoIu3btMrb997//xeuvv+7rfEpKSvD1r38dS5cuxbZt22yP6U5YMBjEWWedhb/97W9CAWg9tgjdabM6a/v27cOyZct8nWNH+O1vf2v8rqoqfvvb3yIUCmHKlClpPU9eXh7q6upSto8cORIAbHlvTU1NePDBB23rqqqqEAqF8Jvf/MZ2/aIK13POOQerV6/Gc889l/JYXV0dYrFYWudOCEkfOnaEkLRoaGjAgQceiG9/+9sYP348+vXrhxdffBFvvvkmfvnLXwIAQqEQbrvtNsyZMwcnnHACzjvvPKPdSUVFBa688krj+b773e/irrvuwrRp03DxxRejtrYWS5YswaGHHor6+npf53TPPffguOOOw5FHHolLLrkEw4cPx9atW/H0009j/fr1AIBbb70VL7/8MiorKzF37lyMHTsWe/fuxdtvv40XX3wRe/fulT7/1KlTEQ6Hcfrpp+P73/8+Ghsbcd9992HQoEHYuXNnx19MCdnZ2VixYgUuvPBCVFZW4tlnn8XTTz+Nn/70p9L8NRkTJ07E73//e9x8880YNWoUBg0ahJNOOglTp07F0KFDcfHFF+Pqq69GMBjE0qVLUVJSYhPIJSUl+PGPf4xFixbhtNNOw6mnnop33nkHzz77LIqLi23Huvrqq/GPf/wDp512Gi666CJMnDgRTU1NeO+99/DXv/4VW7duTdmHENLJdF1BLiGkJ9LW1qZeffXV6vjx49X8/Hw1Ly9PHT9+vPq73/0uZe1jjz2mHnHEEWokElEHDBigzpo1S/3iiy9S1v35z39WR4wYoYbDYXXChAnqc889J213cscddwjP6/3331e/+c1vqkVFRWp2drY6evRo9ec//7ltTU1NjXr55ZerQ4YMUUOhkFpWVqZOmTJFvffeez2v+x//+Id6+OGHq9nZ2WpFRYV62223qUuXLk1pLzJs2DB1xowZKfsDSGkRI7qmCy+8UM3Ly1M3b96sTp06Vc3NzVVLS0vVhQsXqvF4POU5vdqdVFdXqzNmzFDz8/NVALbWJ+vWrVMrKyvVcDisDh06VL3rrruEzxGPx9UbbrhBHTx4sJqTk6NOnjxZff/999Vhw4bZ2p2oqqo2NDSoCxYsUEeNGqWGw2G1uLhYPfbYY9U777xTbW9v93ydCSFfDUVVuyBrlxBCiJCLLroIf/3rX9HY2NjVp0II6YEwx44QQgghpJdAYUcIIYQQ0kugsCOEEEII6SUwx44QQgghpJdAx44QQgghpJdAYUcIIYQQ0kvokw2KE4kEduzYgfz8fOm4HUIIIYSQ7oCqqmhoaEB5eTkCAXdPrk8Kux07dmDIkCFdfRqEEEIIIb75/PPPceCBB7qu6ZPCLj8/H4D2AhUUFHTx2RBCCCGEyKmvr8eQIUMM/eJGnxR2evi1oKCAwo4QQgghPQI/6WMsniCEEEII6SVQ2BFCCCGE9BIo7AghhBBCegl9MseOEEIIIfuHRCKB9vb2rj6Nbk0oFEIwGOyU56KwI4QQQkhGaG9vx5YtW5BIJLr6VLo9RUVFKCsr+8r9dSnsCCGEENLpqKqKnTt3IhgMYsiQIZ6NdfsqqqqiubkZtbW1AIDBgwd/peejsCOEEEJIpxOLxdDc3Izy8nLk5uZ29el0a3JycgAAtbW1GDRo0FcKy1I+E0IIIaTTicfjAIBwONzFZ9Iz0MVvNBr9Ss9DYUcIIYSQjMGZ7P7orNcpo8Lu1Vdfxemnn47y8nIoioKnnnrKc59Vq1bhyCOPRCQSwahRo/DAAw+krFm8eDEqKiqQnZ2NyspKrF27tvNPnhBCCCGkh5FRYdfU1ITx48dj8eLFvtZv2bIFM2bMwIknnoj169fjiiuuwPe+9z0899xzxprHHnsM8+fPx8KFC/H2229j/PjxmDZtmpF0SAghhBDSndi6dSsURcH69eszfqyMFk+ccsopOOWUU3yvX7JkCYYPH45f/vKXAIBDDjkEr732Gn71q19h2rRpAIC77roLc+fOxZw5c4x9nn76aSxduhTXXntt518EIYQQQkgPoVvl2K1evRpVVVW2bdOmTcPq1asBaP1w1q1bZ1sTCARQVVVlrCGEEEII6Sx6WnPlbiXsqqurUVpaattWWlqK+vp6tLS0YPfu3YjH48I11dXV0udta2tDfX297YcQ0v1IxFV8uS0GVVW7+lQIIX2UyZMnY968ebjiiitQXFyMadOm4f3338cpp5yCfv36obS0FBdccAF2795t7LNixQocd9xxKCoqwsCBA3Haaadh8+bNXXL+3UrYZYpFixahsLDQ+BkyZEhXnxIhRMBLt9Xhj6fuxEfPtnT1qRBCOhlVVdHenOiSn3T/s/jggw8iHA7j9ddfx6233oqTTjoJRxxxBN566y2sWLECNTU1OOecc4z1TU1NmD9/Pt566y2sXLkSgUAA3/zmN7tk4ka3alBcVlaGmpoa27aamhoUFBQgJycHwWAQwWBQuKasrEz6vAsWLMD8+fON+/X19RR3hHRD3nmkEQDw0m1f4pBT2dCUkN5EtEXFr4/e3iXH/t+1ByCc67+dyEEHHYTbb78dAHDzzTfjiCOOwC233GI8vnTpUgwZMgQff/wxDj74YJx11lm2/ZcuXYqSkhJ8+OGHOOywwzrnInzSrRy7SZMmYeXKlbZtL7zwAiZNmgRAa3I4ceJE25pEIoGVK1caa0REIhEUFBTYfgghmScR61hItXkP50oSQrqOiRMnGr//97//xcsvv4x+/foZP2PGjAEAI9z6ySef4LzzzsOIESNQUFCAiooKAMC2bdv2+7ln1LFrbGzEpk2bjPtbtmzB+vXrMWDAAAwdOhQLFizA9u3b8dBDDwEAfvCDH+C3v/0trrnmGnz3u9/FSy+9hL/85S94+umnjeeYP38+LrzwQhx11FE4+uijcffdd6OpqcmokiWEdA92b4riz9+pwZHf6YevX1HU1adDCOliQjkK/nftAV127HTIy8szfm9sbMTpp5+O2267LWWdPtf19NNPx7Bhw3DfffehvLwciUQChx12WJcUXmRU2L311ls48cQTjft6OPTCCy/EAw88gJ07d9rU7PDhw/H000/jyiuvxK9//WsceOCB+OMf/2i0OgGAc889F7t27cJ1112H6upqTJgwAStWrEgpqCCEdC3vP9WEaLOKNX9swPE/KoQSYPd5QvoyiqKkFQ7tLhx55JH429/+hoqKCmRlpcqmPXv2YOPGjbjvvvtw/PHHAwBee+21/X2aBhkVdpMnT3ZNWBRNlZg8eTLeeecd1+edN28e5s2b91VPjxCSQXIGmJkeuz6OYtAY93mRrIQlhHRHLr/8ctx3330477zzcM0112DAgAHYtGkTli9fjj/+8Y/o378/Bg4ciHvvvReDBw/Gtm3burSvbrfKsSOE9B5iraZQa97rnTMXbbELu0ScQo8Q0vWUl5fj9ddfRzwex9SpUzFu3DhcccUVKCoqQiAQQCAQwPLly7Fu3TocdthhuPLKK3HHHXd02fl2q6pYQkjvoa3RFHPRFm9h11ZvXxNrU3tk2IYQ0rNZtWpVyraDDjoITzzxhHSfqqoqfPjhh7Zt1ihERUXFfotK0LEjhGSE9kbzQyza6v2B1tpgF3ZOB48QQog3FHaEkIzQ3mQKtZgPkRZvs9+PtVHYEUJIulDYEUIyQluDxbHzIexi7fY1MR8uHyGEEDsUdoSQjNBmcez8hGLjTmFHx44QQtKGwo4QkhHaLTlzftw3p7Bjjh0hhKQPhR0hJCNYXbp2H1WxKaFYn47dmj/WY9WddeyDR0g3hX+b/kgkOmeUItudEEIygtWB81U84Zi840fYxaMqXr17HwDgsG/moXhkKL2TJIRkjFAoBEVRsGvXLpSUlEBR2L5IhKqqaG9vx65duxAIBBAOuzdz94LCjhCSEeJR83dfOXbR9IsnWurM/+E274kDFHaEdBuCwSAOPPBAfPHFF9i6dWtXn063Jzc3F0OHDkUg8NWCqRR2hJCMYHXs/OTLpRRP+BB2zXvixu/1O+MuKwkhXUG/fv1w0EEHIRqNei/uwwSDQWRlZXWKq0lhRwjJCFYHrkPFE36EnWVUWf3OWBpnRwjZXwSDQQSDwa4+jT4DiycIIZ2OmlCRsOgsPyLNWTzhFHoimveaLl1jDR07QgihsCOEdDpxR9QlEU2/eCIeS8+xY3sUQgihsCOEZACn2+YsjBDu41iT8JGS01pv6ZXHhsaEEEJhRwjxR7Q1gaiPfnSAIKzqQ6R1RAxaxRxHkBFCCIUdIcQHakLFA9+qwZIpO7Hr43bP9U6RlvARVu3QPhZh5yePjxBCejsUdoQQT9oaVNRti6G1PoH1f2nyXO9023y5bynCzvu8bI4dQ7GEEEJhRwjxpq3JWqTgHY5NLZ7wPoZePKEE9OdgKJYQQtKFwo4Q4klbgynm2pvSD6umUzwRztMadPoJxVpdPoZiCSGEwo4Q4gOrmGtv8uHYdSCsqu8TytU+lnwVXDAUSwghNijsCCGetDdaQrHN/h27QHK2TTqOXSgnDceOoVhCCLFBYUcI8aSt0eLY+RF2SbctbLhv3vskkoMjQtmK7TncsIZiKewIIYTCjhDiA2v4NZ1QrJkvB6iqu/DSHbqs7DQcu1Z7KNbrGIQQ0tuhsCOEeNLWmF7xRMxRCAF459mpSccuHWHnzOVjnh0hpK9DYUcI8aS9sWPFE3ohBOAdju1QKLbNeZ/CjhDSt6GwI4R40m7pXZeIpTYTdqL3rdMLIazbpPvoodhIUtil2e4EAGItFHaEkL4NhR0hxJO4Y4pYtNndtdNFmu6+Af4dOyMUm2a7EwCI+2irQgghvRkKO0KIJ6kNhz3WJwVWIEsxWp545cwl4nYx6Muxcwi7hI/qW0II6c1Q2BFCPEkRdh6hWDVu9rELhvzlzOnFFaZj53EMVU0Rdn7aqhBCSG+Gwo4Q4olTMHkJO6tjZwo7f2IwK+Jv8oQaB9RkRNispHXfhxBCejsUdoQQT5zOmGfxRMx07PxOn9DFYMhnuxNrqFYv0qBjRwjp61DYEUI8cRZPeFe4areBoOnYefexszco9iy2sDwfhR0hhGjsF2G3ePFiVFRUIDs7G5WVlVi7dq107eTJk6EoSsrPjBkzjDUXXXRRyuPTp0/fH5dCSJ8kpRFwOo5dKPkcPoWa37Cq9fnM+bLu+wBabt7WN1rRtDvuvZgQQnoYWZk+wGOPPYb58+djyZIlqKysxN13341p06Zh48aNGDRoUMr6J554Au3tpj2wZ88ejB8/HmeffbZt3fTp07Fs2TLjfiQSydxFENLHiTlz7DxFmvZ40Jpj5yUGnVWxPoWgErD0vvPh2G16qQVP/e8eFB4YxCUryj3XE0JITyLjjt1dd92FuXPnYs6cORg7diyWLFmC3NxcLF26VLh+wIABKCsrM35eeOEF5Obmpgi7SCRiW9e/f/9MXwohfZZ0q2L1nnRKllZAYd3mtY/fPnZ2V9D/tIqPnm0GAOz7go4dIaT3kVFh197ejnXr1qGqqso8YCCAqqoqrF692tdz3H///Zg5cyby8vJs21etWoVBgwZh9OjRuPTSS7Fnz55OPXdCiElKI2DPPnamYxcIatvUhD/HTnff9PvSYyTPIZClIJjlf76sVWB6nRMhhPQ0MhqK3b17N+LxOEpLS23bS0tL8dFHH3nuv3btWrz//vu4//77bdunT5+Ob33rWxg+fDg2b96Mn/70pzjllFOwevVqBIPBlOdpa2tDW5s5VLK+vr6DV0RI30TPqQuGNEHl2cfO2qA4+Sfplf9m5NglhZ3qMZLWGu71m8cH2Ct8m/Ym0K849TODEEJ6KhnPsfsq3H///Rg3bhyOPvpo2/aZM2cav48bNw6HH344Ro4ciVWrVmHKlCkpz7No0SLccMMNGT9fQnorujsWzgugpS7ho49dMkwaBBSfoVg1+Xgw7LPdSTS1CbKfMWTWoonG6jiFHSGkV5HRUGxxcTGCwSBqamps22tqalBWVua6b1NTE5YvX46LL77Y8zgjRoxAcXExNm3aJHx8wYIF2Ldvn/Hz+eef+78IQogh5ML9fBZCWB275KeMV2jVCMWGfebk6ccIKQjqvfJ8hGLbGi2O3R7m2RFCehcZFXbhcBgTJ07EypUrjW2JRAIrV67EpEmTXPd9/PHH0dbWhvPPP9/zOF988QX27NmDwYMHCx+PRCIoKCiw/RBC/GMIu7zkVAifc18DIa2XHWA6ciJUVTWEWjBZ4K4mtO3SY8TM8HDA53QLAIi2mDHeWCtz7AghvYuMV8XOnz8f9913Hx588EFs2LABl156KZqamjBnzhwAwOzZs7FgwYKU/e6//36ceeaZGDhwoG17Y2Mjrr76avznP//B1q1bsXLlSpxxxhkYNWoUpk2blunLIaRPogu7SL+ksGt3W21vUKwk3TQ3x86aT6fn2AHuYtDqChrFEz5CsVYxF6WwI4T0MjKeY3fuuedi165duO6661BdXY0JEyZgxYoVRkHFtm3bEAjY9eXGjRvx2muv4fnnn095vmAwiHfffRcPPvgg6urqUF5ejqlTp+Kmm25iLztCMoCaUC05dn5DsXphg+nYuRVPWB/T8+UALRwbkHxK6e5c0NoE2UcoNtqiCn8nhJDewH4pnpg3bx7mzZsnfGzVqlUp20aPHi0NweTk5OC5557rzNMjhLhgbW1iOHZ+mwcHzRw71cWxs7p5VsdO264I9rD2sbOMLfOaRxtVbSLSGpYlhJDeAGfFEtJHaaiJ+RI2ttFduR1w7PRQrMuhrGLLbyg2bi3QyPLXoNjp0DHHjhDS26CwI6QPsuX1Fvxh6k787dLdnmutbUf0UGzMK8cuKcgCIQWKn1CsxbHT2504t6fsEzWLJ4Ih+zYZTiHHHDtCSG+Dwo6QPsjKW+qgxoHP32rzXBu3CLJQtr9QrLWPnTF5wjUUq90qAXtOnVvLE1vxhF4V65Fj53QomWNHCOltUNgR0gexOmGe/eUsjYCNsKrPHDtt8oR3XzrV2tBYUaAYYlC+T9x2Xh0MxVLYEUJ6GRR2hPRBFMUMd7Y1uufZGf3lQmYum/d4MFN06SLNNayqh26Tz++nqbF1pJjfUKxT2DEUSwjpbVDYEdIHsYYkW/e5CzubM+ZDpAFix861J13y+XQRGPAxhixumTzh27FrdRZPsCqWENK7oLAjpA9iHavlJeysbUX0CQ9+HTtbVayr+6bd6iJQ8ZOXFxOEiD0Ep9Oxa2colhDSy6CwI6SPEY+qtupQb2Gn3VoFlPdIMe1WCSpQ9LCqj6pY3REMBPw3NbaGiN1cQQCItzlCsRR2hJBeBoUdIX2Mtga7kGvxCsUaM1kVX1MktMetjl1SdLn1sXPm2Bm97+TCqyMh4pij/55XPz5CCOlpUNgR0sdwCrv2Rv/5ckFdcHk5drYcO+99jMrb5Fqz4MLtGGbxhG/BmTyO30bLhBDS06CwI6SP0dbgKCBo8xJpqe6bX8dOCcJXuxMzdKvd6qFY93YnybU+K28BIJYUdsbMW49iC0II6WlQ2BHSx3A26fUaq2UKKGu7Ew8xmDxEIKj4CpOqslCs6z66y2c9hutpIZG8lnBestEyHTtCSC+Dwo6QPoYzz8x534mo+tSreEK1tC9R0mh3ood6/Y0h024DIYsr6HFeel5eWA/FevS9I4SQngaFHSF9jJhjipiXY2cIO2uDYi9nTBddQX+FDbqA0wWdMYbMpXgiYXXssvT17uelO3SGY0dhRwjpZVDYEdLHcAo57xw77TZoLZ7wEERGaDWgWMKqLsdwtjvxVTxhrvWTxweYYWUjx67dfT0hhPQ0KOwI6WM488o8c+xs48F8Fk8kBMUTfsKqWXqDYv/7KEFztqxnKJaOHSGkl0NhR0gfI2WslmeOnXYbsM5k9cyxS+5jaVDsGlaNiR07X6FYa688T8fO3u5EjXtX0hJCSE+Cwo6QPka6jp0edrW1O/HMsbM4dj72sQpB663rPpYxZH4bFBuOXa750UfXjhDSm6CwI6SPoQs5PXzplWMXtzYb9tmgWC9iCATgr0GxLgSNqlj/+wR8hnuB1Bw7gHl2hJDeBYUdIX0MPfSaXaD9+fuuis0yBVTcK8fOlv/mo0GxxX2z3vodQ+an7x2Q2u7Euo0QQnoDFHaE9DF0IZddmBR2vvvYWQSUixhSEyqQfNja7sRVpEly7FyLJ2ICx85njl0wYl4LmxQTQnoTFHaE9DHSdez08GUwpLU8AfyNBwP0qtjkdtewqnZrVsXq27336UhVbDCkIBhmk2JCSO+Dwo6QPoYu5CL5SWHnc1ZsIEtBwEdVrNWZCwR8hmJT+th5h2JVa1Ws7gr67GMXDCkIhvzPi635qB1PX7sHTXs8DkAIIV1MVlefACFk/6ILuZxCvzl22m0wpPjsSWc+n1YVm7pddgxjVqwfl8/aoNhvtW7U6thp2/yEYh/6do22NqriG78s9lxPCCFdBR07QvoYurCL5PsLRcbTnBVrc+yCCgIBP7Ni9fXarT+Xz3IMn6HYmBGKBbJ8hmKtvfS+3OZRNUIIIV0MhR0hfYx4UtiF+yWnL3iIIbNIQbE1AlZV8X42xy5gtjBxz5czxaN2LO3Wd4Nin8UThmMXVhDQQ7Eejt2+7eaTZufzI5MQ0r3hpxQhfYyY0fJD+/NPeOSYGc2DLY4dIA/HWp05vxWrakq7E/djWJ9PE5z6Ni/HTrtNJ8eudZ9pQTbuYo4dIaR7Q2FHSB/DnJfqLxRprVjVq2IBedgzYQnFKgEzTKr6aVCcTig2Zu6jr/cqntD3CYZgjEfzcuzaGs0LaqimsCOEdG8o7AjpY+gOnd6kNxHzP8c1YBN24vWqM6yqu2k+mw3rx7I+l/g45j5+c+x0EatV+OrX7yHsGswTj7aonC1LCOnWUNgR0sfQxU3IOi/VR8hTCSj2UKxE4Jjrzf0A/82Gtdv0WqT4rYq1hpWNnnwe9RBWxw4Aos0UdoSQ7guFHSF9DNFYLc9JEtDEkGL5xJCJQdWS+6bd6tt9NChO7uOr4MKSl2edbuHmPsatPfl8NEEGgLZG++PtTS7WIyGEdDEUdoT0MfRigZDPeanWfnGKYrp2MqGmCys9X86Pm5bi2AX0Y7jsI6iK9T6Ofk7meXkVT1hDsQDQ3kTHjhDSfaGwI6SPobtzWRHFcODcxI11dBdgunYyAWWIp4CjwtWPY2fk2KXRxy7LHiL2M5M2aJ1765Vj5wjFtjfTsSOEdF/2i7BbvHgxKioqkJ2djcrKSqxdu1a69oEHHoCiKLaf7Oxs2xpVVXHddddh8ODByMnJQVVVFT755JNMXwYh3ZZNL7dg9R/qpb3lrMSt0xdC3pWxRijWOe5LJuwcjp3ix32LOfbxFYo1z0vfz3sf7VYTg/7y8tobHKFY5tgRQroxGRd2jz32GObPn4+FCxfi7bffxvjx4zFt2jTU1tZK9ykoKMDOnTuNn88++8z2+O2334577rkHS5YswZo1a5CXl4dp06ahtbU105dDSLejZV8cT/5wN177zT7sWN/uud46L9WY/eorFJt07DwcONVRPOFHQOn76AUNfqZVWHP5bKFYP0Ualp58Xo6d06FjKJYQ0p3JuLC76667MHfuXMyZMwdjx47FkiVLkJubi6VLl0r3URQFZWVlxk9paanxmKqquPvuu/Gzn/0MZ5xxBg4//HA89NBD2LFjB5566qlMXw4h3Y7Nq8z/0DTUePdZ0/u2BXw26bVWn2q37kJND4WmNfdV72PnmDzhJ3yrZJnrvfbRCz4CIcV3Vaw+gk0nylAsIaQbk1Fh197ejnXr1qGqqso8YCCAqqoqrF69WrpfY2Mjhg0bhiFDhuCMM87ABx98YDy2ZcsWVFdX256zsLAQlZWV0udsa2tDfX297YeQ3kLTblNhNdb6EHZGKBa+QrFmjp1261XlaghB3bHTQ7euuW/2tekWXCgBxTv3L64CqnkNfubeAkCs1VkVS8eOENJ9yaiw2717N+LxuM1xA4DS0lJUV1cL9xk9ejSWLl2Kv//97/jzn/+MRCKBY489Fl988QUAGPul85yLFi1CYWGh8TNkyJCvemmEdBta6iyTEWrc7SdVVQ0RpeXYab+75tg5W5EYbpp4vVMIeoVurfsEUvLy0miRou8jm4hheWmClhw71adjF8rR1rPdCSGkO9PtqmInTZqE2bNnY8KECTjhhBPwxBNPoKSkBH/4wx86/JwLFizAvn37jJ/PP/+8E8+YkK6ltc7/yCubuAlZpi/4CcUaYVL3/DfdmVMCjgpX1ybIkmkVPtudaLfuLp81FBywhG89HbuksMsuDNjuE0JIdySjwq64uBjBYBA1NTW27TU1NSgrK/P1HKFQCEcccQQ2bdoEAMZ+6TxnJBJBQUGB7YeQ3kKLZUi99XcRVmcuGE4zFKsLNY+KVdWZk5dms2HrrZsYlDVClh0nbhN21pFi8mMAFmFXkBR2rRR2hJDuS0aFXTgcxsSJE7Fy5UpjWyKRwMqVKzFp0iRfzxGPx/Hee+9h8ODBAIDhw4ejrKzM9pz19fVYs2aN7+ckpDfR8qVpUUU98r9sws53KNYu1IwRYR6h2JT2KC6aUz+GMYbMmCThr92J9TgyoWbdbquK9Zg8kSLs2insCCHdlyzvJV+N+fPn48ILL8RRRx2Fo48+GnfffTeampowZ84cAMDs2bNxwAEHYNGiRQCAG2+8EccccwxGjRqFuro63HHHHfjss8/wve99D4BWMXvFFVfg5ptvxkEHHYThw4fj5z//OcrLy3HmmWdm+nII6XZYc+y8muca1a+KJp4CvqpitVtnlau8eCJ5iICjoXFMy/FTFEW6T0caFCtZ/pxEa6sTRVEsQtBf8USkgKFYQkj3J+PC7txzz8WuXbtw3XXXobq6GhMmTMCKFSuM4odt27YhEDCNwy+//BJz585FdXU1+vfvj4kTJ+KNN97A2LFjjTXXXHMNmpqacMkll6Curg7HHXccVqxYkdLImJC+gHXklVfFZsJSEasoZrsT9z52TmcsuV2aY+ccKWZ9zN5M2DiGw7HzapGiJlSzrUpKkYbsOvTz0a45qAtBj5FiupDLYY4dIaQHkHFhBwDz5s3DvHnzhI+tWrXKdv9Xv/oVfvWrX7k+n6IouPHGG3HjjTd21ikS0mOxTkLwdOzazakTgClu0ml3onj1sUvJfbPPcQ0IhF2qSHMP31qPHXAUaciqXFMEqlFskZ5jF6ewI4R0Y7pdVSwhxD+qqiLaYgqNaLPqOlbMOnXCeus+Uky7dRYpePWxc7Y7cdtHdRZoeLqC5u9OZ1BePKGvc/TKcyvQSKjGa5ZdoK2nY0cI6c5Q2BHSg4m1mU13AU2kxF2miukCTh8lZuTYuewjLVKQzopNrnM0KHbfxxG+9QjFWsWb7/Oy5NhZb93anVhFnNnuRLqcEEK6HAo7QnowVrdOxy0cqwu7rLC/ggPtMe1WSXNWrNPh87WPURXrHoq19tBTnO1OPBoUB9Nw7GzCjlWxhJAeAIUdIT2YaDK/LiuiICtbn4zgItKSYUWzgMC7+lQvhnDmpskbFMtDsTIRZTQ19ivSLG1QnGLQ07FLupVG8YSbY9dqunyhXPaxI4R0fyjsCOnB6I5dKEdBONd75FXcEY403DfXqljt1nDgvGayJtcbPekUxdKXTrKPZL6sV4GG9Rr0a5Lm/jly7BQfTZB1xy4YVpAVYY4dIaT7Q2FHSA8m2qIppVCOglBS2EWb/Ys0P46dUQzhFIOysKqj2EL7XT+++z6Gy5dl3556Tsl1ARh98bwaFOuiVnfqfDl27RZHlMKOENID2C/tTgghmcHq2OkOmVsOmLOAQPEhbpz5b16zYhOOSRX6PnGontMqjKpYo6mx+9gyxfJfU0M8ysRgTA8RJ48R8iFqLVXEel4i250QQrozFHaE9GB0dy6Uo0DvcuImPMw8s3QcO+3W70xWZ76c9nvyMek+Hay8tbqCHn3pzOIJfb1261oVq/f9C8PIYWTxBCGkO0NhR0gPxnDscgOGaHMLFabOcU1ud21Q7MzL85oVK3LTFMDFsTPEoO4KGqFYr7531mMkH/NqUOwcW+aSY2dO6lAQTDp2LJ4ghHRnKOwI6cFYc+z0XnSuws7IM3O0/HCripU2D/Zqd2Ju89ondb6su+gyHD7LJ5hX7p+RXxhytHpxEbWx5GsaDCnIiujbKOwIId0XFk8Q0oOJJt2jrGx/yf1xR7sTr6IGINWxMydPSNYLwqRec1xTW6rYj51yDKPyVhSKlZyX4zp8haEts3X1KR1qXO4kWlmztB4v3fql6yQQQgjpbOjYEdKD0UWcLuqs20SojsIGXwUEjhw7v/3iUkOx8jCpM7Qa8JoV6xCC1t+9GhQbs2VD7usBs6FzMKwYwk7bDsPBE7HzvTa8etc+AMC4b+Wh5OCwfDEhhHQidOwI6cHE02zHEXeGI73akKiqKboceXnyQgj7esDiwEmcLqfLpxhVseLrEOfY+XTsnAUafoSdJcfOul3Gltdbjd/3fuaSxEcIIZ0MHTtCejD63NIsq+hIo92JVwGB1THzW7HqHCnm6ziOggvP4glhVSyS5+WR+5flXC8+J8AMXQfDii2fz0vYNe02X7gvt1LYEUL2HxR2hPRgjMkI1lCsS9VmSusSr1w2i+gxQ7Ee+zhGigGmYPPr8nkJQaPy1tErD3CpinXMvNVz8txEmi6SgyHt+ZWgJhD1/nYymnabL9yXdOwIIfsRCjtCejDWUGxyAIN7g+Kow7HL8hBQljBlaihWtk9ynTVM6lnYoO/jCMV6VtGa2zwFZ0oo1n6+Iqw5doAWko3FVc/KWKuwa/nSxRIkhJBOhjl2hPRgrMUTfvqsmU16/Tl2qsCx8wzFihoUe8yXVR0uny4EZcUT4rFlPsVjyuQJb8dOP5+gXnDhEYpt3mOeeGu9fHYvIYR0NnTsCOnBiKti5eudc191kROXhBatxQ66w+U5RUI4Uiz5mKx4QtYrzyMnLyAq0PBwH/XzD3q4lYD5umRZHDtA9c6x22OqSwo7Qsj+hMKOkB6MkWMXVoCktnMvntBunY6dTKRZRU9K/ptHHztbjzmfLp9TPHqGYm2Onfs+Tpcv4GNOruHYJZ06veWJTAjrz6ePegMo7Agh+xeGYgnpZsTaVXyystnXhIO44diZrlLUNRQrzrGLe7UVCQKK4m/yhDOXDfBRPOGoitVFobSPnUu7E8/cP58VwYCZY6e/trrAc3Ps2pvtj7Xuo7AjhOw/KOwI6Was+NlePPW/e/DWgw2ea2Md7WPnuyo2KdJsRQruAkrUY85w4KQNhx3n5em+CcSjV4NiZ/GEH8dOn9QRsoZi3V3R9ib7RcbbgWgrxR0hZP9AYUdINyLWrmLDM80AgNV/qPdebwnFBpPDDdwS+2V97LxahOjOnraP/phHyNO6T0AuBm1NkB2TJ7x65aUV7nW2Owm5u5VAqmPnJxTb3qTtk10YMMRmWz3HihFC9g8UdoR0IxqqTZURzlNcVmrozlEoWzGFipuwcwg1XeDFZZMnBP3iPN03R1jVuo+oeMIabtXXmaFb92MIR4pJ8wXF7U6gyvfRX0sjxy4p8NzEs+7YRfIVRPppF9LaQMeOELJ/oLAjpBvRWGsqmeY9CbQ1ugsCm2PnM7EfSM2x8+5Jl+qMec19FeXYidw0+3QLexNk7fFUEZUQji3zV9ShHyNocRRl+xgNig3HLrndVdhpj4VzAwjnJvMemynsCCH7Bwo7QroRjbV2AdBS50/YZUUUX6JDF3a6qAl6OHZ6uxPrOC3v4gntVhQmFRVDWJ/HcNMC7qLLEI+WdR3NsXPdRx8p5syxcxHPbUnHLpynIKQLuxaGYgkh+wcKO0K6EY21dhvMa2qByLFzz7HTbnVRo3iO7tLXmdsUz9Yl6VXF2kKxelVsUPy48xjCkWKypsbGtdtHigHyEWHG5ImkaPYT7o7qjl2/AMK52gU5K2UJISRTsI8dId2Ixl12teTl2MXbtdussIJYOqHYoN2xkzlWqqOKVvs9+VhHesyJRJrlkvV9rPl5mtNmzzd0TpEAfDQoduQL2hw7r7y8pAjMShaouIdik45droJ4O0OxhJD9C4UdId0IZ8+zli89hJ2R3G/NsfPR7iTpQHm5bwmB+2YIKJkz5tIiRSS6bNMt9KpYi5smrKQVOIkBz1CsfZ2iKFCC2nPJxGDc2dDZx2ts5NjlBYwcvSgdO0LIfoKhWEK6Ea2Othjejp3ejsNf81xDdDlnxcrEUFLY2Oe+eoRv9cIGQV6esCrW5tgl11sdO1HxhFt/Pang1M/FvJag0aBZlmNnzzE0w93iYwBmeDyUrSCkh2KZY0cI2U9Q2BHSjWhLtsXIHaD9aTbvlefYqapq5syFFF+iw2xQrN0GPSpJXee+SqdIJNcFUsWgyH0znD/FnG5hy7FzqaRNZ6SYMxQL+Be2Rujah3jWmxFn5ViKJxiKJYTsJyjsCOlG6MKuoFxTHHpYT4Q1ly4r7C8UazpQdgElK7hwhi+135NiUOaMCQobjHYnwhw7QbGFYs6+Fe0jOi/DSZT2vkvuY2u27FU84mgP46d4osWsVNbbnbB4ghCyv6CwI6QboQu7/DJNsTjHU1mxirFAyJ+bpIsbs92JPzFkC8V65bIZve/MbW4un+G+OT6NXPcRNEHWxZe0qCMmcB/9OnZJQZdljBQTLgfgCMXmaCfIHDtCyP6CxROEdCP0CQUFhrCTC4KYZV5pMGROnkjEtDCtHta0ogsYxWhQnNwuDauKQrEeTY0FYVIjFOvqvtnP12iRItrH0WwYMIWkp0i19tcLuTt2caPvn329m3iOtSYdu2zzOO0MxRJC9hP7xbFbvHgxKioqkJ2djcrKSqxdu1a69r777sPxxx+P/v37o3///qiqqkpZf9FFF2kVbZaf6dOnZ/oyCMkoakJFW4MmCgzHzkUQ6Ll0SlATOHooFnAJLTqrPLO8QpGwrQPcW5cA7nl54skTqe6bto/83ESOnWd/PUdY1X5eHo6d7nAmXVG3XoG6sAtlK8jKYYNiQsj+JePC7rHHHsP8+fOxcOFCvP322xg/fjymTZuG2tpa4fpVq1bhvPPOw8svv4zVq1djyJAhmDp1KrZv325bN336dOzcudP4efTRRzN9KYRklPYmFUh+/+eXJXPsXEJ4qQPqUx9zkpIz5nNag2juq1dbEcVWPKHdulXFWnPyrPfdRorZRJpXKFaUL6hXxUoKTpwj2PzkMUYtjl0ooq3XxR4hhGSajAu7u+66C3PnzsWcOXMwduxYLFmyBLm5uVi6dKlw/cMPP4zLLrsMEyZMwJgxY/DHP/4RiUQCK1eutK2LRCIoKyszfvr375/pSyEko+j5dMEQkNM/mZvlkmOntzoxBtRbHDuZ8NAFjO6GWR07VZWLLptjlyUPq1q32wobXNw0Q6QF7KHYgEsxhN442RZW9Vs8YWt3knxMIlLjjmITPyPFTGEXMMKxet4dIYRkmowKu/b2dqxbtw5VVVXmAQMBVFVVYfXq1b6eo7m5GdFoFAMGDLBtX7VqFQYNGoTRo0fj0ksvxZ49e6TP0dbWhvr6etsPId0N3Z0LWYbHu1fF6uOuLBWuiv6YeB+nA2V1vNzmuNpcLj2XzcvlE+zjtxDCur84x05QeZslX289L7vL5yEGHaHroD55ol3+vhg5dhEFWWk4dmpCRfUH7Wipcx8jRwghbmRU2O3evRvxeBylpaW27aWlpaiurvb1HD/5yU9QXl5uE4fTp0/HQw89hJUrV+K2227DK6+8glNOOQXxuPgDcdGiRSgsLDR+hgwZ0vGLIiRD6JWT4VwF4bxkY1s3YZeszDSEnaJ45oA5c+Zs81JFUyGMsKq5zXtWbPIY1uIJl2kVZrGFfbvRIkUoBpPHsFbFeghOocvnWRWbfijWyLHLUdJy7F646Uv86dwa/OuavZ5rCSFERreuir311luxfPlyrFq1CtnZ2cb2mTNnGr+PGzcOhx9+OEaOHIlVq1ZhypQpKc+zYMECzJ8/37hfX19PcUe6HXqhRChXQThPMbbJKlydjh0ABMMK4u2q1FFKcewsYko0k1UYinVx0qzHsLUicWlQLGporB1HHvIVNyh2DxEL3Uev4hFHu5OAj1Cs1bFTE/6F3X8fbwIAbH2jFbF21cidJISQdMioY1dcXIxgMIiamhrb9pqaGpSVlbnue+edd+LWW2/F888/j8MPP9x17YgRI1BcXIxNmzYJH49EIigoKLD9ENLdaDccu4Dh2CVi8p5phrALm9u8csBkVbGAeGKFsPebR/GEOMcuuY+oeEIQVgUsBReivDzBeSleFa5GwYV/x87Z7sRPVWzUWhXrMxTb1mhXo7s/dlGOhBDiQkaFXTgcxsSJE22FD3ohxKRJk6T73X777bjpppuwYsUKHHXUUZ7H+eKLL7Bnzx4MHjy4U86bkK4ganHsQpYeaPqIKidCx84jVOjt2DnWCwoOvGayipoaB9xEmiDcaz1H4XkZTY0FUyRkIWKhSPWXY6dfSzCcXh87v6HYvVvsQm7PpxR2hJCOkfGq2Pnz5+O+++7Dgw8+iA0bNuDSSy9FU1MT5syZAwCYPXs2FixYYKy/7bbb8POf/xxLly5FRUUFqqurUV1djcbGRgBAY2Mjrr76avznP//B1q1bsXLlSpxxxhkYNWoUpk2blunLISRjtFty7AJZiiFsZG6PkWMXtgq75GNSYafd6oJGCSiWXDbBeoGb5tX7TXfgRFWxbmHV1AbFLlWxwmMkH/Nod5LWfNkUxy4p7CShW1VVDREXjCjIiiSrmz0cu/od9ots3M0CCkJIx8h4jt25556LXbt24brrrkN1dTUmTJiAFStWGAUV27ZtQ8CSAf373/8e7e3t+Pa3v217noULF+L6669HMBjEu+++iwcffBB1dXUoLy/H1KlTcdNNNyESiWT6cgjJGFFLVSyg5Wi1x1Sp2yNy7IxJChLDRw8tBiw97wJZmkgUhSNVhxC0/u7V1NhWcOFaCCFrUJx83K33nWBsmXe7E8s+Ljl2qqoKGhTrI8XchTOQHD+WTA32cuya9jqEXQ2FHSGkY+yX4ol58+Zh3rx5wsdWrVplu79161bX58rJycFzzz3XSWdGSOb59N8t6D8sC/2HhlzXWYsnAC2U196kujh2urAzt3mFYsXFEAriUCVVsQJnzKOtiCoI37oVXCQEOXmAx0gxwXW4OXxA+vmC1rCx2StQu5X2CbSOeYsAejGKGtf2sYpwK8177BfZuIvCjhDSMfbLSDFC+iqfvNSCv126G49fskvoPFmxtjsBYOTZpePYeQoPkbjRCwIE4kbUisSzrYiox5yPqlgl4D8UK5qIYUyekLzOwkpalz52ccv1GcUmhiMqPoZ1fm9WWLHNi3Vz7Zr3aCdQPEq7iMZaCjtCSMegsCMkg7z1UAMAYN8XcXz+VpvrWqNBcY4ZigXkc0ZFOXZu7ThUVZU6doD7hAdRKNareMLavsStYlVWFesaihW4fMbkCWmIWNSgWH5e1ufxO3nCmAaSpQnTYBhGBxm3ytjmvdoFFR8Utt0nhJB0obAjJIN8+ZmpAGo2uFc6xpLVr6EcMxQL+HHszG1BF0fJKlSCgpYfcZFjJwrFehUciCZPuI0UEzQbBix5eaL8N9E8WheRZn0eoUgVhaEtr0fA0e5EHorV15lNo42WJ26OXTLHbkCFdqC2ego7QkjHoLAjJEO0NSTQtMv8gq77XGIlJdGdOT0E69UDzexjlzr7VCQ8REIF8BA3bg6frDJUVKTgki8nCpFaj+k2Ukx4DGnxRHoi1ah8Vcxr9iqeMPIeLe+Jn152bQ3aRRYN0d6Y1oaEcHYvIYR4QWFHSIbYu9Xu0HkJO2v/MwCeTo/THbL+LhZ25u+iJr0ix05UsRrwKp4QCDXFJawqypez3ncLk4omT0j72BntTsxtbiJVdz2DFhHsFYqNCZpG++ll19aoPVZQHjTOVc+5JISQdKCwIyRD1O+0K4x9X3g4dpYZo4BFEKTh2Lnl2FkFkj3PTF7YYDp25jY3wQVY3DRbuxOXPD5BFa31vmvvO9sMW/0x9z52tlCsjxw7mwj2qDrWHbssgWPn1suuvUm7oLyBQSPc28pwLCGkA1DYEZIhmpItK0oO1r6pm/a4VzpGDcfOXjzhlWMXsOXYabeiHDtrU12rOxZ0EzdG+DKNPnaGm2Zuc213IgjdWs9RWEkrbJzckeIJF8dO0PMvK+nEyapiOxKKVVXVcOzC+QFE8rULb91HYUcISR8KO0IyhN6yomS0pgzaG+XNhgEg5syxS95G02p34hKKjZrCRlFSR4QJK2mFTX0tj7tWrFp7zOnP51IV6wzFusyXFY86sx8/5Tgu/fXc2p0EhY4dhDlwovC4V9uaaIsKJB+K5CnILkwKOzp2hJAOQGFHSIbQx0INHB4yxFDzXrlrp3/xp+TYeY0Uswq7sFyk6eLF2SRXd+xEoks0hstaiSoOrQry8nQ3zcWxSymecO19J3Ls9OdzHw8mEqnueXzmNqvIE7l8HXHs2hvNa8nKVhAp0F44vaCCEELSgcKOkAyhO3b9SoPIHaipA7f+ZEaOncOxkwmCRJoNinVh4+wXp2TJ55+6iSFAIohcHbvUY6iCnDzreYpDxEjZx6t4QjwrVg/Fyl8vu2NnPi56jTtSPNHWqL1gkbwAFEVBdgEdO0JIx6GwIyRD6CIud0AAuQMCyW0ujl2L3bELJXPtZMIu1p4qIvz0sbMKFet9VwElEGlAqlCzNkFWBIUN4lmx9jU6Rl6eUAzq+6SGYqGmhohVVRU3NTZGiqUeQ1Q8YRXR6Tp2suIJvXAi3E9bZwo7VsUSQtKHwo6QDNFalxR2/YPI7e/HsXM0KPYonhA5dq5Vsbr75pgQbYgbUY6dS5GC9pzO9ZZ11iIFl7CqMbZMNlJMGL4VOInW83IKzrh4ndtIMdHrZf1d5NgZVbGW98TbsUsWTuRpH8e6sPPTpHjne234+MVmaZUuIaTvQWFHSAZQVRUtSWGXXRRAJF/7cpflTSXiqpEzl+UsnpA6dtqtrUGxjz52zrYiriFPYx9zm/V3Z2GDVdgJp0IIiy1SRZr1vrBAQzB5wnZejmuxCje/I8XiAsdOURRzH6Gw027Ty7FLhmKTjp1RFesh7BqqY3jkglr8/Yo9WPenBte1hJC+A4UdIRkg2mJWwOb2N1tY6PlUTqxuTsrkCU/HztzmmmOnu1wh+3YjFCscKabdBpzFE4r9cWO9dbqFz6kQotCt9b6byyeaIgGkVsZahZvIfXQbKRZ0vl66ePYbivVw7NqbnI6dtt5L2H38QoshvDc82+y6lhDSd6CwIyQD6G5dMASEchVE+umVjhL3zeLm6ILOq01GTDRSzBh5lbpelDOm3U8+7tYvThK+dVbS2hw7m+hyGw+mP6e4QbEoFOtWeQukhohtUzcEeXnCObmy18ulV6CweMIQ6GKhpov9cJ49x84rFPvFO23G77UboqyiJYQAoLAjJCPo+XU5/YNQFMUIxbZLHDujOXFEMcKLXiE8PSdOnGMnCi1KQp5ujp0ubgIS0eV07GS5bC7TKkQizXpfeF6C4omAzbFzhmIlTqLL1I24JCdRdzjdcuzSCsU26aFY7YIjPqti935qT4rcvUky54wQ0qegsCPEJ6qq4pW76vDkD3e5VrcCQPOXyfy6ZLNZw7GThWIdFbHW370mT9gdO+3WVaQ5HSiX6lNRkQIgD5NaBZWoKtbNsUupinWZSasKRKqtv56zqEM/T8WRl+fWx04Xzs4qYr3yWBiK1W6z0mhQbBRPpFTFyoVdPKpi71btBAaO0C6Cwo4QAlDYEeKbTS+1YO3SBmx6uRWrflnnulYPi+UkhV24n/uXtbOHHWBpk9HiMb7KlmPnXRUbdDhQikv/N3NWrDh8m+KMScaW+ZoVK6mK9ZtjZz2v1OIJWYGGXKSZVbHiUGynOXZGKDb5n4BkPmZ7s7zStX5nHImY9twVX8sGAEPoEUL6NhR2hPjk4xdbjN8/fbVVOmweMAWcHlYzvqwb3XPssnI64Nj5HSmmNyiW5dgJXD55YYNYEKkW9806tsy1wlXQUsV6X1hJK6iKtZ5navFE8jwkbqW4IlgSinULd7sVTwjyHgFTwOmuri7wZGF7AGhKTjXJKwmgoFw7wYZqCjtCCIUdIb7ZttZMVm/5MoHdm+WhL92x0yscs/V2J9Icu2QPO4FjJxV2gpFihpvULq9wdYYWXV2ruFjcBCSiy1gvy5dzcQWd4tG1klYiBmXXImrbAljzC1OPIWp3Yr0vckVdiyc8Hbtku5NkSLa9SZX+56FpV3KqSUkQ+WXaRdVXu6cHEEL6BhR2hPigeW8cjTXaF2fJwZp62rNJ7pAYjl3SqQvr7U4klYsxS/GETshjpJibY+ceWrRvd3WtBO1OAGvvO/t60UQIwD2sqkqqYl0raY3zsm9XJM6gaLasdX+3kWKpjp18H9dQrEBsA0Bbk8Ox62d+LMvCsY1JYZdXHERBUtg1UNgRQkBhR4gvdn2i2TOFBwZRdphmx7g6dg5hZxZPiL+oox0JxQpGihlukkh0JE83pa2Iy/QFqSCSCLWEpMJVlpNnO4bEsXMTnM5QrNSxk7VUcZ08od2mOJwueYyi4ol0HbussGKIR1k41gzFBpE/WHtxm3bFOYGCEEJhR4gf9iQrDksODmPgSO1bd+8WubDTHbtsI8fO/HIXDo9vkRdPxFpVqKq8fYndsdNuRT3WVK+wqs8GxdbnSHXG7I8b612KJ2RVsTJX0Hpc2bSKlBCxrNXLV8ixE0+eEFQqe4TU9eKYUI75cay7drqb50QXdv2Kg8gbEEAwpDmbupNHCOm7UNgR4oO6LzT7pv/QLBQe4J3TpDciNhy7PPNPTZRnJ6yKtfwuajgsGl/llv8lyxlzrYqVCCJZ8YThjDmLGlzanciqYo2pEK7FE47zkoWIpQLV27Fzvl56VbHQFRW4qF65kqawM4+ju3cyx65xl7Y9ryQAJaCgX6m/cGysTcX6vzRi53ttrusIIT0XCjtCfFC/Q/vCLCgPIj/5Jdro8iVqOHbJdieBLMX44hbl2Rk5dtnmn6Q1304UxhPn2Gm3aeWMufRyk+bMSYSaZ7NhkTMmq4r1M1LMGSb1CBHL3EpVJNJkOYmGY5d6XqJpIJ7CTi+csQg7r9C9tXgCAArKtJOs3+leGbty0Zd44cYv8fCsWmx/h+KOkN4IhR0hPti3Q/vCLCzPQn6p9iXauDsuFCqApSo23/wTM+bFCsaKGY5djtV9M8WNM/E+EVcN8SLMsRPOik2ul1R5CuelSooUZCFMI/dNUq3q7tiJ9xGNFDNat0hy+VLOK3ltKe1RgnpOougY2q2sQXG67U7iMmHXnNqcWg/F6lMpnBg5dsXaC50/2Nuxa/4yjveebAKgvQ9r/lgvXUsI6blQ2JE+y6aXW/D493dhwzPeA9TrtycduwOCyB0YgBLUBEnzHvEXr9nHzurCyFueiKpiFUWRuj1WUSGsihU1KI6KHSjFT56ZLBTrM+Tp5r7JK2n1feROYupxxI6dsV5S4So6hnHtIft2fR9xKFa7tRVPhOWOXTyqGgIylGv5t+ISio1HVTTv1UOxSWGnu8g1cmG3+eUWqHHzPwJb32iVtt8hhPRcKOxIn2Tvlij+fuVubH29Ff/6yR7UfCjpHgtNiOlCrbA8C4Gggn5Jp6ShJtXqUVVV6Ni5tTwxqmKzHe5QWOz2WHPuRCPFXIfaO/PMfEyecIou6eSJNIsatGNIwrfGPqnnJcux6/DkCddZsZK8PGFVrEuD4rbUIhhriD2U7a94Qh9npwSB3P7aOj0k27hbLuy+eFv7R3PU7HwUDclCPAqGYwnphVDYkT7Jmw82mIn/KvD2Iw3StfXJMGx2YcCYCtDPpXdYtMV0YfTJE4CZNyWaPhET5FkB8h5oVsfO6kK5iQ5pnpkxeSJ1H6P6NKXKVbyPfCKEnz52zmO4hIhl5yXJ/TNCsbJ+fGmFYrVbYSjWpUGxmkg9jl44oQTs+7gVT7Qk5xDnFAWM1zVvUFLY1cqF3c53NRFXPiGCA47QDrbjv/L/0BBCeiYUdqTPEY+q2Pi8Fn792uUFAIBPVrYICw4AYF+ycEKvhgUsoS/BF6newy6Q5UyI1ycKCBw7QbsTwPyyd4bxEkbhhH10l5H/5ebYhZyOXfJxYTgyuUaSm5Y6uiv9cK9UDHZopJikWlfq2MnPSxa6Noon0mxQDKS+j9bCCev7aBZPpP5b0d3jnCLz41t3kJskjl20JYE9W7QXpeywMMrHRwAAO9bTsSOkt0FhR/ocO/7bhrZ6FbkDAqj8XgEiBQraGlTUbBC7F/XbtS9EfSYnAOQP0kOxqV+k1h521i/rcK6eEC9y7MShWF0UOEeE6XNHU0Sa7r6J3CRpLze5m2aESX1OqzDy5WTjwUSFENLxYPA8r9QRYfpxxEUd0nYnLo5dSrsTlwbFMVEfO4sT56xuFhVOANZ5sanvY8s+e8U1APSzOHainod7t8QAFcjpH0DewAAGj9dOaud77dICIEBLK3j7kQb8/crd2PiCdy4qIaTrobAjvQI1oeKLt9tQ85F3aEmf+TrkfyIIhhQceKTmXnyxTuxeGBWxFsfOrW+Ys4edjp4cL3TsBFWxgLxVhi7cssJy0eH8gpcJFcWt3Yl0dJesrUjycaeT5jrdInmMlBw7l0paiYCUOnYxd/EodN9k7U70PnbCqljt1lo8YSuCaXc6duL33a3QprUu6dhZhJ1eHRtvB9rqU89Ln5xSPDIERVFQMiqEUI6C9iYVez6VN9p++8+NWHlLHT5+oQX/uHIPPqa4I6TbQ2FHejzR1gQe//4uPDq7Fg99uwYv3fal6/rPk8Ju6NHZAGCEpWo+FH/B7UtWxBZaHDvdIRGFvpxTJ3QMF6bFxbGLOISapKJS75fmrNi03k8RXfqkihT3zcW1kjUPDtgfN48pcdL0l0IVCE5ZgYafkWIphSDifcyq2E5oUJxmKBaQjxUTTZ0ArO1OUo/RKnDssiKK8e9NNH3iy63av+0BI7KMayo9VHPtaj4Q/7tva0zg9d/vA6D1bwSAlbfWSWfeEkK6B/tF2C1evBgVFRXIzs5GZWUl1q5d67r+8ccfx5gxY5CdnY1x48bhmWeesT2uqiquu+46DB48GDk5OaiqqsInn3ySyUsg3ZhVd+7DZ6vbgOR36bo/NWLTqhbh2libih3v6sJOE3SDxmhqqFbi9unFE9ZQbO6ApLDbIxd2TsfOSIh3ceysDYoBeSg2IWhO7LzvdJRM1yqNHLs0c+Zkfe+sTllqKxJJSxVZE+SECqjux3FW0poVwfbtsipa6zbZSDHhdA9B8QQABLV/aqmOnWDqBGD+WxE5dmYo1n4x/QbJhV3d59oLUDTEvJjSsdq/+2pJRfiGZ5rRVq9iwPAsfPcfZeg3KIjGmjg+/GeTcL1OIqZi29pWbH2jlSKQkC4g48Lusccew/z587Fw4UK8/fbbGD9+PKZNm4ba2lrh+jfeeAPnnXceLr74Yrzzzjs488wzceaZZ+L999831tx+++245557sGTJEqxZswZ5eXmYNm0aWltbM305ZD+w6+N2vHJXHf559R68s7zBdbB5zYZ2rH+sEQBw9h9K8D9z8gEAb/xunzDXaMd/2xBv10Yx9a/QvuQGjda+hfdujRnJ7FasUyd08gZqfzp6PzErbYZjJ/6ydsuxSwnFShw70TgxwO4upRYQJPdxunw+wqSpYlAcJpX1pLM6fimiy6sQQhLudT6v7bykxROS9S6OXWpDZ+3W+e9STZjV0H4dO1k1dMTNsROEYgEzHCsq6BEJu7KxumMnF3YAcPhZeQhlB3DU7H4AgDcfaBCOedOP/dA5NXjsu7vw+CW7cP9pO7GdBRqE7FcyLuzuuusuzJ07F3PmzMHYsWOxZMkS5ObmYunSpcL1v/71rzF9+nRcffXVOOSQQ3DTTTfhyCOPxG9/+1sAmlt3991342c/+xnOOOMMHH744XjooYewY8cOPPXUU5m+HJJE+xJz/994Iq6i9iNNeL32231Yu7Qe29a2SpO1o60JrPplHR78dg3WLm3AR88248Wb6/DQOTXSfnEv31YHqMCYU3JRcWw2jp6Tj1COgpoPo9j6RuoXip5fN/R/so3ChrySAHIHBKAmgN2f2G2Y9qYEWurMHnY6uQO1L9GWukTK69DaIHHsjOIJf7NiAesAeft60TgxwB5mlTl2KeFIlzwzr2pSZ2Nfr550on3k7U7c1zuf13rfWUlrClTHMZL3hZM6JFWxZhNoZ0GLed+Z+yhzXvXiCef77truRBCKBdzTA+o+17bZHTtN2NVujKb+G96XMHrcHXxyLgBg/Nn9EO6nYO+WGLauTv3bam9O4LGLa7Hr4ygi+QpyBwZQvyOOx+bU4uMXxbl5akLFxy8241/X7MGfZ9Xgr5fuwn/urXfN+9P327c9hj2bo9i3PYa2xoTwP3KE9EWyvJd0nPb2dqxbtw4LFiwwtgUCAVRVVWH16tXCfVavXo358+fbtk2bNs0QbVu2bEF1dTWqqqqMxwsLC1FZWYnVq1dj5syZKc/Z1taGtjbzg6i+PvOjdF5fvM+caJD8zFbsn93mfefjjoXydV7PqwjXG/vBcT/lec1covZmFdGWBKLNKqIt2g8UrTq08MAsFJQHUTA4C1kRLRS56+Modr7XLqzqyx0QwKFn5GH82XnoP1Szj3b8tw3P/myvVr0HYNSJ2Rh0SBjrlzdi9ydRPPbdXTjvwUGGKwFoLUo+f6sNWREFX7+yMPncQRz2zTy880gj3v1bI4Z/Ldt27G1rNVd3SDIMq19nyegQPlvdhtqNUQweZz6mF05kFwRsQk3rIaaJjOYvE0aDWMDq2ElCsc0Cx64lvapYI5fL4b4pAcWYiuF07PTQYXpVsfY1xnEkjX29Jk8A/ufLGk6ipKWKcB9JvqB0goaLWylrUCwLxcqaRgMuOXbS4gm9QbGgeGJfarsTwJxC4XTsWveZDbatwm5ARRZCuQqizSr2bImi5CAzfrx1dSvUODBwRBYKD9D2CecFcNgZeXj74Ua880hDyt/WK3ftw94tMfQrDeK8BwchpyiAZ366F5teasE/5u/B9JtUHHZGnrH+i7fb8NKtX6bktm75dyv+fc8+lBwcwkFTcjBwRAiqqjUD37M5it2btNuoI1c1kKWJ3ZyiAHL6BxHppyAe1dzueJuKaKuKWJv2E29Xtd6BWQoCIe09DgQt4/X0l11VoSYAVdV+oN/2MJzfEV1GdzmPDDDsmGyc/LP+XX0aADIs7Hbv3o14PI7S0lLb9tLSUnz00UfCfaqrq4Xrq6urjcf1bbI1ThYtWoQbbrihQ9fQUZr3xvHlZ+4DuXs8qtbuo6EmDqwTLwnlKigfH0b/oVloqUvgs/+0oXlvAm8ua8CbyxpQMjoENa5i9ybttcorDmDqwgEYdWIOAOCwM/KwfE4tvvwshr9dtgszlw1COC+AtsYEXr69DgBw1IX5Njft8G9pwm7TSy1o/jKO3P7aF160JYGd72rfvkMtwg7QwrGfrW7Dro32LxnrKDErgaCCnKIAmvcm0LwnbhN2hmPnEHahpGMXFTp2kgbFslCsxLHTt8XiamqoMC4WKmZVrP15VFWVOl1KQLyPfLasS4hYOh5MP2/HeVlDsU730Wir4nASJccwHE5V28caDvYKxTpdLqv4drp8surmqCHoJcUTjdq0CmvbnNZ92guQ4tiViB07PQybOzBguMaA9p+A0rFhfPFWG2o+tAu7La9pOarDj8+xPdcR5/XD2w83YvOrraj7PGYIxW1rW7F+uZYSceovBqDoQG37GXcNxHPXf4n3n2rCs/+3F9vXt+GA8RFserkFn6xsSV6rggnn9EPZuDCadsfx6Sut+Ow/rdj1cRS7PpY7d8GQVnQSbU0g3q69X817Eskxf738s5d0OwaOkDcH399kVNh1FxYsWGBzAevr6zFkyJCMHvOoC/NxyIw8I8nbCBMY9+3rjfuqfJu5j+S5ZPeduxmPq6nn4twH2pdlKDeAcK6CUK6CUI72eyKh9Xjbtz2G+h1x1O+MIRHXxNzAESGUjQ2j5OCQ7cs3HlXx6b9b8d/HG7HltVZDSClBYOxpuTjx6iLkFJmqoPCALJxzXwkeuaAWNR9G8eT/7sbpdwzEylvqUL8jjsIDg6j8Xr7ttRw0JozSsSHUfBjFh/9qxlEXaI9//mYbEjEgvyxocy4AoPggzfravcn+RbJvZ7JwYnDqn0ruwCCa9ybQ5JgXm65jpyZUs02GoyrWOo7KiizHDnARHpIqT9Plkoc85RMeUq8FELUhMX+XhkmlI8WcIs0ioKQjxezbpVM3rIIzDgSt5ylpdyJ17CyFE4oicewkws46JxYw/62oCW1N2PK4NBQrcexE+XU6pWNDmrD7oN1w09SE9jcKACOOt7tyAypCGH5cNra81orXf7cPMxYNRFtDAiuu2wsAGH9OHoYdY+4TyFIw/ab+yC4M4K0HG/Du401493Gt+EIJAOPOysNx8wqRN9D8mz/yvHy07Ivjkxdb8MW6NtR9EUMgqCB3QAADR4ZQfFAIJaNCKBqSZfxbjrZoKRMt+xJordN+b2tMIBhSEMrW2s0EI9ptKFtBMKwgEddyIhMxFYm4dhuPJt0tRbvV/00qgeR7qnQj98snPdFh7Ik4/x67kowKu+LiYgSDQdTU1Ni219TUoKysTLhPWVmZ63r9tqamBoMHD7atmTBhgvA5I5EIIpGI8LFM0X9oCP2H7tdDdgn9ioNGuxA/BEMKDjopBwedlIOG6hhqNkShKEDpoWGb62Wl/7AQzvpdCZbPqcW2/7Rh8fE7AGgftqfeMtDmQuiM+1Yeaj6sw3tPNGHi+f2gKAo2v6I5BCO+np3yxVs8KinsPonaHBL9S7HwwNRzyxsYwO5PgGZHZWyrpI+d0e7EkRAftYTnpLNiJSPFZI4doKYID5lQMatiHet9FCnI9kkZ3WUNxTr3kTUolowhs95PdRIl+0jm5Fr3T8RU2+spm9Qhy7GTtToB3EKxYqc2lKMYof72JhXh3OR1qKpZPCELxe7yL+z0AopqSwFF7UdRNO9JIJSr4IAjU/+2v3Z5Aba81ooP/9mMsaflYv1jTdj3RRwF5UFMvqooZb2iKDjx6iKMPCEb7/61CY21cZQcHML4c/oZf3dOcgqDOPysfjj8rH7Cx52EcgII5QRQMNh7LSG9nYxKzHA4jIkTJ2LlypXGtkQigZUrV2LSpEnCfSZNmmRbDwAvvPCCsX748OEoKyuzramvr8eaNWukz0m6J/llWRh1Yg5GTs6RijqdssPCOOePJRgwXPtyyh0QwBm/Gmg0F3ZyyCl5CIY1oVbzgSbWPn1VcyFGfj0nZf3AEVmAohVDNFscuH3JL8X+Q8WOHWAOZdcx+ow5HTtJg2L7IHh/To8pIlJOy6zadDhwRlWsLLToLISw7C8LxaYUNkiKLRRFkbcvkfTKk603cu6UVGdMei1xiXh0qSKOy/r+Sapi9eIJZ+EEYHFeZe1OHO+7oigI6yPoLAUU0RZTsEtDsbvshQTujl1qAYXu1g07Jlt4LYPHRXDYmZrS/Ov3d2PTSy0IhoBv/HKg8Z8XEUOPzsZptw/EzAcGYcpP+0tFHSHkq5HxUOz8+fNx4YUX4qijjsLRRx+Nu+++G01NTZgzZw4AYPbs2TjggAOwaNEiAMD//u//4oQTTsAvf/lLzJgxA8uXL8dbb72Fe++9F4D2gXfFFVfg5ptvxkEHHYThw4fj5z//OcrLy3HmmWdm+nJIF1I+PoLv/qMMTbsTyO0fSAkpWskuDODgk3Ox4elmvPtEI8apeajfGUdWRMHQylQxGMoJoGhIFuq2xbB7U9Qo0vhym/6lmPollJtseeIMxcqS2/UvvURM+4LXvzSjlubEzpYfWZL+Z4bokDp2qY6SdPappODANZdNFvKUVLgCWtg0HncZQybL43OGiCXiUdtH7NjJc/+sa5zCNrlGVjzhFILt9sdt+4Qljp1eFZuTuk8kL4C2+ritl53+b8s5hxjQqrsB7T8BbQ2q0W7HTdjZCig+jaLk4LDpbDvCsFaq/q8/2hpUfLKyBbkDAph24wBb0REhpOvIuLA799xzsWvXLlx33XWorq7GhAkTsGLFCqP4Ydu2bQhYEmWOPfZYPPLII/jZz36Gn/70pzjooIPw1FNP4bDDDjPWXHPNNWhqasIll1yCuro6HHfccVixYgWys+UfRKR3oCiKp7unM+5bedjwdDM++HszPn9Tq4o+qConpcu/TvGokCHshh2TDTWhGl+KIscuT+DYqaqKlrpkcrtT2FnypNqbEsgK60Ud8i93IxQry7FzEXapoVjtNrWXW/LcncLGmsvmN+Qp6UkHJMOzUTXVgZNVxUp65ckqda3nmSIeZbNig1reFFSXSlqnEO5IKFbi2Jn9C1P/TWoFFHFb6L7F8p8Gp1sZyg5oc4/rVTTuihuOsZuwUwJacdNnq9vw2Zo2hHIDWoGRAoycnOpsG8fKCeDMXxejrTGBUI4ifC8IIV3DfimemDdvHubNmyd8bNWqVSnbzj77bJx99tnS51MUBTfeeCNuvPHGzjpF0gsZenQEQ46K4PO32rB3SwxKEDh6Tr50fclBIWx6qcUooGisjSPern2xFwxOFZO5A5JNivc4QmVJ0eVsIBvIUpCVrSDWqmpOTbIyPtqs7e/MrwO+WijW6XTJp0hI8uUsQidVdCXXSAobnO6b9TlSqm8lFateIs15TtbjylqkiM4rENSu1XkcPdSaUkkbsj/uXC96T7Jkjp2kzQ0gnj4hGidmpV9xEG31MTTtiqN4ZAjR1gQaksUUov+cAEDFsdn4bHUbNr/SYpzf0MqIr/9A6W1ZCCHdB/5Vkl6Loig47Y6BGHJUBPllQUy7vj8GjRF86yaxFlAAZhi2oDxLGPbVHTvrWDFbqCxX8GUtyLNzc+yyJMUTMaOPnZtjJwktOvaR5aVZW5043SFFFr6VuILatuSalKpYSSWt20gxyESaYjsPHcPlE7yPsskbZihWvD61j136jp1RPCH4tyKaPuEl7PIG2Qso6j6PASoQyVeQ01+8j96AeNt/2vDvX+8DABxySq5wLSGk+9Mn2p2Qvku/kiBmPjDI11pryxNVVVG3TR6GBazFE6bycAuVAckv8L32L2vZODFAPnnCmBUrbHeihwrt2+OSJr3Spr4uuWxmvzjHPnq+nMhNC2gxz9SqWP08ROvdeuX5D8XKGhTb9pE5nClVseL1MZcWNNKqWEnxBCCePtEiGSem06/YLuz0Xpr9h4WE/x4BoOjALIw8IRubX9GKJvJKAhhDYUdIj4WOHSFJ+g/LQjCsia66z2PYs0VTRlJhZ4Ri40YVot6KQuaoGC1PmgWOnaBtiyEIUhw77VYkImShQlkxgFQMuQgovamx36pYt+PI8vJkDp+b4JSGlV1y/+TTKrRbZxWxzBHVHbssgYsqHSnm4tYa0ycaRY6dOEzarzQp7Kqdws79//AnX9cfBxwZRuGBQXzjzmJhCyFCSM+Ajh0hSYIhBYMOCWPnf9ux8912Y9TRoEPEbRl0xy4R08ao5RQGTUelSPzFa7gwFsfOzbXJkhVPROWtNQzHTlIMkNq+Q1YV6xLylLhpRoWrqHhCz7HzGVqV5uS55NjJCkH0YzjDqtZtUpdP9nqlE4qVOHYxQ9iJiidSw/ZeoVh9/Ne+7dqb6VfY5Zdm4TsPlbquIYT0DPjfMkIslI/TcvA+f6sNtR9ptljpIeK8vKywgkiypYReQNHi17GzfFm3t4ib1ALWUKz/4gmvHDtn8+AOOXay4glJgYb1uNJWJCnTKiSVt0Z7FLfzchzDLffPM8fOZ/GEy3tiOq/27e6hWN2x8x+K1Ud51X2RnrAjhPQeKOwIsaCPQ3r3r01oa1ARyVcwcKS8kWrugGSeXbKAwuhhJxN2yST5qGWsWMyteEISio27FE94VcUGHZcjK4RwzbHzKFIQummSOa4yodaRUKw8X9D+nMLjOPvSRcUOp9En0LE+5pL36Dl5wnfxhLiVjo7e0mTfF3GoCRVffqbZigOGsRkwIX0FCjtCLAytjNgEVsWx2ULxpGNWxiYdO48vXj13SRiKdauKlTp2HehjJ2k2LHPSXFuXpIRVk8/p5qZJ5rjK+tjJ8+VSz0smHt2dRPsaQOtHKH+9ZDl22q3o34tIoCfilhnBPosnmr/Ufs+VVLgWDA4iGNIc3poPo2jara3vX0HHjpC+AoUdIRZCOQFMPD85n1IBJl4g73sHmNMn9CbFsjmeOmaOnajdSeo+QX3yhEPYxVxEhNSxk1bFJh935qW5hi+TayTFE+L8N3HDYVVWFSttd+J2XpLcPz0MLSqeEOQY2qZuOMwur1CscKSYwLHT33fAo3jC2qBY//clEXaBLNNhfv/vTQC0MCz7zRHSd+B/4whxcNwPCzFoTBjZhQEcMMF9TJIZitW+cL2S282qWOsXfAcaFLs0w/XsYydxoBIxzanS22Ik3AoOvFqRiJwx6XxZ/XFFuD61ilYuHmXHcA/fph7HOmc3ZbZuSPx66e+R8D0RvI/6KDko5vtsRTQrtuVLXdjJmweXHBxC7UdR/PfxRgDAoDEMwxLSl+B/4whxoAQUjJ6Wa+TbuZFnzIvV1IlXcntI5NjpfewEeVbGxAKpsPNfFWv0sZOEYgG7O5ZwcbkUaf6bfJ+ArLBBUhUrHSnmNo9WNsPWT4Niy+tl/T2leMJy37rO7T0RCXRjTmy2Iuwx5yyeSMRU6RxiK4MPj9jObcj/cNQiIX0JCjtCvgJGk+KksNMFnu7kOTFy7JpTQ3JuVbHOkVfuOXbJNVGxM5bSvsMS0rQKIn896ezbjbYi0gbF8vmyqVWx+jH8Vfe6HyM9x84axk6dFWv+bn2NfbU7sQi7mF44IXjfARizXlvr9fxNvcpE/h8HABg12S7kRp5AYUdIX4LCjpCvgD5Ps7FWa1KsJ6vnSeZsuuXYhQU5dtYQnbW5rZF0L8qxkxRPxI0+duLqU8AuaAxnTOByebYuEe6jr0mzKlYmHtNogmwWgvjLy4u7zMm15jXaHDuXSmU9zG4tgnET9IDpyrXVq0jEVbOVTkFA+Prq5JdlofLifEABJn2/AAWDmXFDSF+Cf/GEfAXyyzQlUV8dR3ujaiTH9ytxb3fi17GzJuLH2lWEcrTf/Th2VpGmqqrcsbOIBKuIMnu/pV5HoAP5b0bFaspIMbHLp8iKLVzCvV6TJ1zFoMV9038PZKXOybW+fnbHTrsVFk8IQupewk537ADNtWv5UrsIWeGEla9fWYRjLikwwrmEkL4D/+oJ+Qrowq55TwJ1yW7/kXxFWOEKmHlTUYtjF3MpnghkKYbTFbfMi3UrnhC147DljEmcMcDR8sOtSEEmoAz3zWUfmVDzWa3rdgzZ5An3WbGp16L/LnLfFEUxc/ksr3HMrUFxtins9PFzRm6l5N9KIEsxCiha9yXMwgmX/DorFHWE9E34l0/IVyCnKGB8aVe/r1k2ecXyikXXkWIS50bk9vjpY2cvBrDkjDkbFAcUQEHqPm4FB7JWJEa+nCj/TV8jCcVKqmJTiidcZ8Um10hapIhDsfbnBeTjxHSMymO/xRNh033UX2O9eEIk6HX0XLqWuoRnDztCCAEo7Aj5SiiKgoLBmpr4/E3NUssvdRF2aTYoBsTNbWMu+Vyi4gm3Kk9AUkDgo+BA1lZEEc5klVS5Stw0mSvoJh6lkydchJpbVawsl80Qz36LJyziTRfo0WbthdDFvgi9bY7NsXNpdUIIIRR2hHxF9Dmcm19p0e5XyPuGGY5ds6BBca74z1GvjI3bHLvkY67tTlJFGiBrE5IqolSXggNv0SU4hpGXZ99uti9RhOuh2tuqqJL2KNZ9UgWn+BjattR94h6Onb5dlGMnFNuW8Kyeh9muF81I3nfAFHYtdQm01PnPsSOE9F34CUHIV2TgCE3ItTdqX9RuA9f1vKdEzHTdjFwrSUhOGIqNujl2qVWxRshQcRc39lCsS8hTVjzhEvI0Q6uyBsWO9bbcv9TfhQUaukBNK3ybGlZNGHNi3R0722vsMnlCUZQU51V37ET9C3Wss4gNx86l1QkhhPATgpCvyIDhdiHXf6hc2FnDre1NCagJs5JWHorVbmPtqWG/LGHxhHZrc+wkA+2NfYz2JVaXz/6YcL1MQPksuLCKvJTiCUuo1Xoc1a0Niy44nePUXNud2M9d219+DMDMU7QeJ+ZS0AKkjhXTK6PdhJ3eTqdpTxyNu7SLkLXSIYQQgMKOkK/MgRPtDWDLJ0i+2aEJBT3fqr1JNcdKQS7s9HCrHopVE+aAerfiCaub5FYIoW23rwMsYdU0GhS7CiiBY2fd35kzp0iqdY18OaFjpx/Dvt3tWnRXThUUm3gWT/jMsQNS5/7qxRNuodi84uRkk10JNNRoF+GWw0kIIRR2hHxF+g/NQvFBmoVz4FER5BS6f/EaveyaEsaXOxR5daRzaoFVsIlz7LRbW182D6FiVJPGUvcRti7xqHB1rViNp64XHcfqFIocO6F4lPaxk1+/qHFy3Muxy0oVz17CLpSdbHXTojt23qFY3Z1r3BVHoy7syth+lBAih58QhHQC37ynGFtXt2LE8d7jm8J5ATTv1URdNNfMrxPNCwUsA+STwsE6gcLdsUsjtOjSy00YihUUWwAeve8E476sYiolx85yX/WZYycTnGazZX9iUBe1QUkdjKgJtFvxBGA6srqwMx07F2GXbJ2z59OosR8dO0KIGxR2hHQCRUOyMGFIP19rrZWxWU3a73ojWhFZjlCsNddOJDwMN0kUWpRoAmGeWcLF5ZIJKEmFq/XYCVuFq/Vxl8bJgqpYv9W91vMU75M8RiwNIZxm8QRgCjt9RqyRYydpUAwABZYG2IBWEWsdM0cIIU4o7AjZz+iVse1NKrIi2hd2pJ/8y91ZTakLCNG4K8DiJnXEsbOIQT3nTDS6yxBDkp507uFbyzHiqY+b983j+nUSpYLTLfdPUBEc9xDCwj52HsUTqY5dso+di2NXeEAWAlnmuekV2IQQIoM5doTsZ6w5dm3JFiluwi5otDvR7rtNOADEI8U8+7IJerm5tzsRNwJ2y7ETVdJanTi3vDzrebnOoxUUgWj33fYRhGKj9sec6NXFcWtVrFeOnUPYmVWx8vc+kKXYqqyLR/H/4oQQdyjsCNnPhJMirq1RRXuj9/SBLEeDYrdh84B4pJjqURUrakVihFVF0xqMkWKynnSipsbJ57WJNMvjImdQMFbMdR5tIPU6rMcR9aUThqFdii0AMxSbSKd4Ihly1SuhjRw7l/cegFGYo/0ur7gmhBCAwo6Q/U52gfZF3rovgTZd2KUTivV07GBbB5jOkrSPnUDcqD4KDlL62Lnlvwnmy6ouIk07L/lEDL9TJKz7C0edCcLQRvGEZ4PiZAsaVXWdBgJYHLtme1WsWygWAA4/q1/yeYEx03Nc1xJCCH19QvYz2QVJx64+YUyb8BeKtefYyXK5RI6dUTwhqdgUihvXClekrNf2ST4uzH+TV8WKetJZj2PvfecyUky/Dp/zaK3bVFGDYsnrZczjTT6v9XXI8qyK1U4u6iMUCwAVx2bjG78ciILyIHKKWBFLCHGHwo6Q/UwkKexa6xNGD7OIW1VsSihWPk4MkDh2yZChzIESNRx2a2qseIRixZMnks8rqIoVCUHbcUSOndsxJJMnhAUXgpFi3rNi7aFY67g3aT/CbHPyhJpQjVw7L8cOAEZPy/VcQwghAEOxhOx3dMdOC8Umv9xdQ7HarR6KjXmE/EzHLnWkWEBSVGmGPFOLFNwKIVKLJ1zcNIHL59aTTttHEIp1bVBsX2MeRy7UjCpigWMnD8Vqt7p4tvcWFO5i5ti1OCaO+BB2hBDiFwo7QvYz2RbHrq1Bb3ci/3JPCcVG3fulCQfU+3TsVJHocpsikUjfGbPn2Lm3FTFCvqLCBlGFq2TyhHteXvK8rNce9XDsHDl2+nsTDItb0ACmgIu2qGhvMsPc7EtHCOlMGIolZD+TXWgKu3Cd3nhWnjulh/Dizj52MvdNNBXBcOzcQ57W9h1muxO3IgX7dtUt/03QY86titb6PLaqWDfBabiCzskTLq1bBNW6Xn3/go6qWKM5sYtIs+bYRS3jxGRCkBBCOgKFHSH7GWsoNpSjqZScIpdQrLR4wl/FJmCt8hQfQxcwwlw2oUgTO2MJXzl2lvUejp3hptlCsS6CMyvVFbSelyJsd5J6LV45ds5QrOnYyUVaONdsTN1ujBNj0IQQ0rlk9FNl7969mDVrFgoKClBUVISLL74YjY2Nrut/+MMfYvTo0cjJycHQoUPxox/9CPv27bOtUxQl5Wf58uWZvBRCOo3cgZqKaalL2EZFyTDanTiEnaz60hAq1mIAveGutCoWyX2sjp12K6xwlRVPuOS/GVWxCZFjJzwt8RgyF8EpCt2qCdWjcXJyH8FIMc92J+12Yefm2Onh9rbGhKUilm4dIaRzyahjN2vWLOzcuRMvvPACotEo5syZg0suuQSPPPKIcP2OHTuwY8cO3HnnnRg7diw+++wz/OAHP8COHTvw17/+1bZ22bJlmD59unG/qKgok5dCSKeROyAAJaCJoIYaTaXkuoRig3pVbLJowsiXkzp22q2a0AROIKh4O3aiBsUurpUsl81tWoUofOtZFStskSLfRz9X0XrredvPy609jPC0zLxHIzyubXcTdnqBjObY+ethRwgh6ZIxYbdhwwasWLECb775Jo466igAwG9+8xuceuqpuPPOO1FeXp6yz2GHHYa//e1vxv2RI0fiF7/4Bc4//3zEYjFkZZmnW1RUhLKyskydPiEZIxBUkNM/YLh1gIdjl2Yo1poXFo9qws4rx044fcGlQbGoDYn1vnB0l6DHnGcfO1H+m59RZ4JeeYBEpAqu3ZwVK2ldEraLbSMUK3l9AXPChM2xy2EolhDSuWTsU2X16tUoKioyRB0AVFVVIRAIYM2aNb6fZ9++fSgoKLCJOgC4/PLLUVxcjKOPPhpLly6FqqqSZwDa2tpQX19v+yGkK8krNlVJIMvfSDFdPMSMRH3xequ40MWZEVr0Ct+Kmge7tS5xTngwQp6iUKx2ayue8Jo8IRgp5lZwIWo2rHo5dqLpFl7FE7qwizrfE7dQrOnYterV0Pl07AghnUvGHLvq6moMGjTIfrCsLAwYMADV1dW+nmP37t246aabcMkll9i233jjjTjppJOQm5uL559/HpdddhkaGxvxox/9SPg8ixYtwg033NCxCyEkA/QrCWLXRi2mWjA4y7Uy0hARej5Xq7uIsLpSRp81r/YdLjl2IpdPEYghwFIV67d4wqUNibaPSHAm9/EZIraGWP3m2HkWTyR71RmVyrpj5xqKNRsUt+zVXgS9kIYQQjqLtD9Vrr32WmHxgvXno48++sonVl9fjxkzZmDs2LG4/vrrbY/9/Oc/x9e+9jUcccQR+MlPfoJrrrkGd9xxh/S5FixYgH379hk/n3/++Vc+P0K+CoUHmAqjf4X7/69SHDsPEREIKikjv/S+bFLHTlB96jqGS//kUGFzy92mVeiVtNZ+cW5C0LpdOFLMRTyqCfO8rK6i6xgyW46ddpt28YRLVWwkzzzhfTu1A1DYEUI6m7Qdu6uuugoXXXSR65oRI0agrKwMtbW1tu2xWAx79+71zI1raGjA9OnTkZ+fjyeffBKhkCSDOUllZSVuuukmtLW1IRJJjU9FIhHhdkK6ikGHhAE0AQD6D/Un7JyOXcjFHQpkaflfhmPnEVpU0syxs25T4+b+rhWrggrXhEu1qnW7qOBCKB4tL6V+Xta+dyJnVHztXo6dvXjCKzyun28oR0G0RUX9du2kIhR2hJBOJm1hV1JSgpKSEs91kyZNQl1dHdatW4eJEycCAF566SUkEglUVlZK96uvr8e0adMQiUTwj3/8A9nZ2Z7HWr9+Pfr370/xRnoMZWPNuVPl4yUzqJI4J08Y7pBkJimgOUrxdtUQKKZjJ14vdK3cihSC1nWpBQjidifarSoIk8qqYoUFF7roEhVoWPLuEgktJOHmPAKmKycK38qKTYziCb1BsY8+doCWSxltUbFvh3aAnEIKO0JI55KxHLtDDjkE06dPx9y5c7FkyRJEo1HMmzcPM2fONCpit2/fjilTpuChhx7C0Ucfjfr6ekydOhXNzc3485//bCt0KCkpQTAYxD//+U/U1NTgmGOOQXZ2Nl544QXccsst+PGPf5ypSyGk0xl0SAiTvl+A7MIAxkx3H/BuzIp1CjtXx04BoJrCw8OxM/LMRLlsohy7gHWdCsAujtzmy3ZkpJi44EJerQskBV1Y8czjM8eppZNjl34fO0CbOtK0O4G6bdobQseOENLZZLSP3cMPP4x58+ZhypQpCAQCOOuss3DPPfcYj0ejUWzcuBHNzc0AgLffftuomB01apTtubZs2YKKigqEQiEsXrwYV155JVRVxahRo3DXXXdh7ty5mbwUQjoVRVFw3A8Lfa3VxUIipokof46ddqs7dZ45dm7hSJFIswhEe8WqWyuS1GO4zXAFrO1OzG1+xKP1vIxzknzaCQs0vHLsHMUTeijWrXgC0PoV7kHMODfm2BFCOpuMCrsBAwZImxEDQEVFhS3xevLkya5tSwBg+vTptsbEhPR2rOG9WJvqWRULmMLLzLHzmC/rUkAgzLFLcez037Vb92kVqftKJ08IGhS7iceALUScFLUu1wFYRK21IthDCDuLJ4wGxR6h2NyB9gvNZiiWENLJ8FOFkG5OllPY+Qj7GUPqjapY+3Ynov5vhugS/PfPGvLURZeqeo3uEjhjHn3shAUXPsSj9bzMvD/xMXRXLm4bwZbe5Am/odjcAfaTyC+VTxwhhJCOQGFHSDcnkKUYrlKsVUXUV46dduvsYycrnnDrFycKRyqKpaWKLuy8GgELWpeoHm6asODCLdwrOC+3FiyAKd7sfey0W1koNqV4wmMaiE7uAPMjVwlo/QwJIaQzobAjpAegD4uPtlhCsR5VsYApPMz2HemHI/0WNlhFocgdE40h05046eSJLEHBhcvkCet5GRXBPqti9ddK+919BFtHiyesjl1eSVD6fhBCSEehsCOkB6DPFI22+A3Fare6qIl7hmLljp20FYneJiShr7fMZPU5x9UonpCINNHoMqP3nWyKhkMMelbFOgpNrL/LHM6U4gmfws7ajJphWEJIJqCwI6QHEMrRHbuE0TOtQ8UTXiPFbBWrHtWkjukWqs2xk89xTQimSEhdQWHFqr9pFfpzG+JR1rrEyLGzhGI9hHBq8YQeihUfQ6fsUHNBfhmFHSGk86GwI6QHYAo7v+1O0iyeyLKvB9xz7ABLwUUidXSXm2OnChw7afGEKC/PZfKEtt3+3F7iUQ+3JiyhWL+TJ+JRrWjEz0gxAIj0C2BoZQRZ2Qq+dpm/djeEEJIOGW13QgjpHKzCLuqr3Yl2m+rY+a+K1feV5r8FtSbIqqNIARC7aQFRuxOjitbrvCz7uEye0LZr52UUT3hMt9DDrfFo6rXLhLD1tY+3++9jBwDf/E0x2htV9BtEx44Q0vlQ2BHSAwjnJnPsmlVEW5KzYnPlhrvp2PkbKSYKebrNfQXkIU/pTFZRvpxHKxIjL882rcI8jnAfR1jZ07GzuJWqqkJRFE+H0yrsYq2qGR73cOwA7b0Muw8bIYSQDsNQLCE9AN2xa94bB5K6KJzr4tg5qmL1W8+qWNGEB+k+4uIJr3w5UYWrzH0TjRTzHhFmD/l6XYdVvOnunlcfu0CWeW5+ewsSQsj+gMKOkB6ALuya9uh2lblNhLMqVr+VOXZGYYO13YlHnpkhuvQ8Pr8zWX1OqrAeOyEYWyadVuF07DzanVivzxm6luUXKopiiLhYm2oWT1DYEUK6GAo7QnoAhrDbrSmhcK4iDHfqBLKcjp1Xjp18XqqXUNOrXFWPsKq53tzmNh4MEI8U83LgnPNlvebR2hy7qP1W1scOMItXNMcuuc1HKJYQQjIJhR0hPQC9j13zHk2lhFzCsIDAsfOsik2uF+S/SR07WchTOkVCUBWbsD+Wegz5eckdO2cfO/loNMDh2Bl9/9wdTsAMu8ZaVaN4gqFYQkhXQ2FHSA9AF3J6KDac5/6nm9LHzkOoGGJI0O7E07HzWaTgJtI8w71pFHU4w8pezqOimCPbElEVqqoa+8iEMGB37PTiCYZiCSFdDYUdIT2ASL72p9pQoykOt8IJwFIVq4diPdqdCEWX3xw7x4QHaSjWsd62j0/3DfBukeIs0vASnICl4XDM3svPVdglw67RVv997AghJNNQ2BHSA8hOCru2eu9WJ4Clj53vUKw9x87qWnlVnzonT8jGg7m2VJEJTlGLlJjPXD7HDFu3uazWsWLWfnYyUQs4HLsoQ7GEkO4BhR0hPYBIvl0w+HXsnKFYz5FiSdFkdcjkOXZIrnWEYj0dPkEoVubY6VMkBH3s5Ll8yXWOBsWujp1lrJhV2Lk6dkkRF21OmKFbj5FihBCSaSjsCOkB6KFYHS9h52y665Uz5nTfrK6a30pa1at1iWCKhGez4UCqy+e74bBxXt6hWOtYMWO0mCI/L8B07Fq+NFWnXuRCCCFdBT+FCOkBZBc4hF2++5+udUyWNWfMreEukNr7DfBTDGHfVz6pInWKhLmPRAwKGhT7nS9rFE94CE7A/npZC03cWsrojl1zUtgpQTp2hJCuh8KOkB5AxCHs8ga4zxm1Fk9YRZqnY+cIXwIujp1DdCU8qlWN0K1IpMkmTwRFYtB+zinnleUonvAoArHuk4h5T+nQ0YVdy5f+egsSQsj+gMKOkB5AtsOhyx3gs3giqhpCRdvuURUbs+fLAW5tRewCyhRpHqHYNESaaKSY5+QJR8GF1zEAe06iOVfXXaSF9FBsnXZBDMMSQroD/CQipAcQzlNsQibXr2PnLAbwKJ5wNhtWAv6bB3sVTwRc8uXSmVaR7uQJf+1Okmtjqq/mxIAlFLs3Kew88h4JIWR/QGFHSA9ACSgoGGwqkxxPx84cKWYNRUrdtJAjFBv1FkNmKxL7rby/nL7O4r4ZFa6yY9inVaiqaplWId4n4JyIoVfFurU7sb1e2jZPx05vGm0Z80YIIV0NhR0hPYTCIaYV5hWKtTtQ2u+uwiYlFOtjnyyH6PIIkYpGinn2yjPanejzaFMfS9nHISD9VMWaDYpNx85tTiwARPppF9q4Sx/zxo9TQkjXw08iQnoI8XbT6Sosd6kEgH2kmC7W3EKLqa1L3EOkgEsum7Q9SvK5bT3pvMRg8hh6GxZrfz2fjZD9VMVaR4oZoVj3lxihPL2PXbJpdA4dO0JI10NhR0gPYcK5/ZK3eZ6zYs0cO2tzYh/CJikC43o40mUf5+gurxmuwikSnr3vxBWu2j7i45gC0l/uH2AtnrBUxXo5do73gKFYQkh3wOP/pISQ7sIhp+aieFQIxaM8svphqYpt9zfQPrXdiQ/HTlI8kc7cV68wqVMM2iZieFTSGi6fR7gXsDt2psPpLtTCefbHWRVLCOkOUNgR0kNQFAWDRvvrgKtXbFob7rr3cdNujZFiPnLsUkZ3+Zz7qia0IghFUYzQqrTZsCN866sNi7OPnYeTCIhz7LyqYsP97EKOVbGEkO4A/4tJSC8kGDEH1OsjslwdO+cIMj9juPR9jFCsR76c5bnM0GryuaSTJ8Rjy5zPZztOyuSJNBoUW0aKeTUodoZindNBCCGkK+AnESG9kKywKeziPiYvWHPp/E5fkI3u8potC1jy8pJ5cAEPMWjmy5nHlk15SGmc7CMUKx4pll4oNqeIH6eEkK6Hn0SE9EKMUGw7fE1SsM6QTcRUXy1CnFWuXi6fdbvZikS771kI4bOlinWflNw/H6FYa7FJuqHYnP78OCWEdD38JCKkF2INxcbaNKGiiz0RAYdj56uPXdAUQ4CPua+W7Sl5edJCCHHrElcn0ejJ538f6wg2IzzsVRWb73Ts3KeBEELI/oDCjpBeiOnY+RR2Fk0Sj5mVoX4mTzjDpPJRXxbxqAu1hLubZo4USw3FykgpnvBxLaIRbN6zYgO28GsuHTtCSDcgo59Ee/fuxaxZs1BQUICioiJcfPHFaGxsdN1n8uTJUBTF9vODH/zAtmbbtm2YMWMGcnNzMWjQIFx99dWIxWKZvBRCehRZVseuNSlUXIWdAiQfTsTSG8PlnMkqbXdidez0SRL6cWTNhp0jxfwUQkhy/2Tj1LTns/ax8z6GTr51zBuFHSGkG5DRdiezZs3Czp078cILLyAajWLOnDm45JJL8Mgjj7juN3fuXNx4443G/dzcXOP3eDyOGTNmoKysDG+88QZ27tyJ2bNnIxQK4ZZbbsnYtRDSk9CLJ9QE0N7s7dgB2qQFfbasn6pYs92Jo0WKx6xYQODYeYwHM9w3fbasi0gzJk84qnXdGxRrt/GovypinbYGs7EehR0hpDuQsU+iDRs2YMWKFfjjH/+IyspKHHfccfjNb36D5cuXY8eOHa775ubmoqyszPgpKCgwHnv++efx4Ycf4s9//jMmTJiAU045BTfddBMWL16M9vb2TF0OIT2KYMT8XRcfXsLO6lqllcvmLJ6QCChFMV3BlGkVXiPF9EKIjjROjtm3C/fJsoRifYxg0zlggvZCFwwOIpRNYUcI6Xoy9km0evVqFBUV4aijjjK2VVVVIRAIYM2aNa77PvzwwyguLsZhhx2GBQsWoLm52fa848aNQ2lpqbFt2rRpqK+vxwcffND5F0JID0R37ACgVRd2YQ9hlxQyatxfjp3RVsQ5k9VHxarqnC8r62PnyJfTb12nSDgqab2OAdhHivmpItY5YX4RKr+Xj1mPlnquJYSQ/UHGQrHV1dUYNGiQ/WBZWRgwYACqq6ul+33nO9/BsGHDUF5ejnfffRc/+clPsHHjRjzxxBPG81pFHQDjvux529ra0NbWZtyvr6/v0DUR0lNQAgqCIU2otNV759gBei87NVk8oW1zzbFzjvtKY1pFwtHHznezYT9FHc7xaH7y8kLmcfz08NPpNyiIr19R5LmOEEL2F2kLu2uvvRa33Xab65oNGzZ0+IQuueQS4/dx48Zh8ODBmDJlCjZv3oyRI0d26DkXLVqEG264ocPnREhPJBhREI+qaYditXYn/gWU4YzposvVsVMQh2rZJ/lckpw5Z46d6jGCzLaPT1cQMBs0W4sn/IRiCSGku5G2sLvqqqtw0UUXua4ZMWIEysrKUFtba9sei8Wwd+9elJWV+T5eZWUlAGDTpk0YOXIkysrKsHbtWtuampoaAJA+74IFCzB//nzjfn19PYYMGeL7HAjpiWSFFbQjHWGn3WrFE/ZtwvXOXDZDdHnn5RlVsQmPvDxZHzu3Yzj38ZOXJ2h34tXHjhBCuiNpC7uSkhKUlJR4rps0aRLq6uqwbt06TJw4EQDw0ksvIZFIGGLND+vXrwcADB482HjeX/ziF6itrTVCvS+88AIKCgowduxY4XNEIhFEIhHhY4T0VnQh11qvCzv39bpY0itjAX8izW/xBKBXs6qpzYN9jhTzNXkiy7mPvt3NsdNurQ2K/eTYEUJIdyNjxROHHHIIpk+fjrlz52Lt2rV4/fXXMW/ePMycORPl5eUAgO3bt2PMmDGGA7d582bcdNNNWLduHbZu3Yp//OMfmD17Nr7+9a/j8MMPBwBMnToVY8eOxQUXXID//ve/eO655/Czn/0Ml19+OcUbIRb0nLoOOXa6uHF17Jw95pLbXT5VFFnDYVnxhNEEGbb1/mbY6vv4KAQJpYZi/fSxI4SQ7kZG6/MffvhhjBkzBlOmTMGpp56K4447Dvfee6/xeDQaxcaNG42q13A4jBdffBFTp07FmDFjcNVVV+Gss87CP//5T2OfYDCIf/3rXwgGg5g0aRLOP/98zJ4929b3jhBiVsHqjp1X8YQ9x07b5suxczYCdg2TareGGEy4i67UQgj784hInTyR3O5aFauvVdOqiiWEkO5GRv9POmDAANdmxBUVFVBV1bg/ZMgQvPLKK57PO2zYMDzzzDOdco6E9FZCObpjl2xQ7NHuxCZuYt6uVVAyecJXixSH6JJOq5CEYt2Pod3GDcHppypWd+zMqlgKO0JIT4QdNQnppYRy7cIkK9tng+KYP5fLWX3qNXkCSG04bPSlk82XdYZVffWxM51H7Vje+wQtbiVDsYSQngyFHSG9lHCu/c/bs0GxrSrWW9zI+sXJxoMBghFhXvNlUxw+HxWuWfa1fvaxjhSLtScdTg8hTAgh3REKO0J6KU7HTg/Nyghaxmr5qSRNFVDJ7W7FE45WJJ7zZWUOn5tjl+Vw7PyMFAuZ+8Ra/c3WJYSQ7giDDYT0UsIOYRfu5/7/OOus2LivkWLarS6c/IguZ/uShGfxhP25/Yg0a66g9datL50xUqxdRSz5qRiiY0cI6YFQ2BHSSwnn2YVcxEvYWXLmfI0UkxRP+JoKoU+SMCppJesDjpYqCffQrfW84g4n0a0YQnfnYq2q8dxBj9A1IYR0RyjsCOmlOEOx4TyPHDvdtYr5rT7VhV06xRPiwgbZSDFZ3ztfgjN5DGNEmMunnZ5PF2tTjWMyx44Q0hOhsCOkl+IsnvB07IQjxfzk2CVv02hF4rd9ibMJslEI4XIpQVnun8u16I5d1OLYMceOENITobAjpJeSUjyR6y5UbC0/0sqxczYolu9jFkPYb6XFE455tF7tUayP6f3o4j568hmOXatqXBdz7AghPRFWxRLSS7EWT4RyFdcQKQAELC0//ExfCDjanfgJxVrz8lRVNYSaPMcu+dw+26Nox0iujanaMXy4j1YR197EqlhCSM+Fwo6QXoo19OoVhgUslaHW6QsuBQS6ENTFlq8JD5YCDV2sWbc7USwuok2kufaxs4xGi5nbgz5CsVa8RrARQkh3hMKOkF5Kv1JT/XgVTgCmiEtELdMXQvL1zgkPqkchhG2fuOn0ue1jLXhQEz6nSFjanejXAbhfSzCkpLiGdOwIIT0RCjtCeikFg01V5NWcGDAFUazdbyhWu004Z7K65djpYdK4ahROAHKXzyrgNDHop6WK2e4kETW3e81+dQo55tgRQnoiFHaE9FIi+aYwyR3gooSS6MInYQ3Fuoih1JFi9u0irC6f3bGTHcP83TYRw9dIMbNwwrpdhlXIBUPuziMhhHRXKOwI6aUoiilMyg4Le6635di1646dfL0ulNS4v9Yl1sfUuCnStO1iEWUteLCKQddwr1GgodrmxFpfDxHWvnXsYUcI6amw3QkhvZjT7xiIj19sxtHfzfdca47VsjT1dRvD5ZzJalSfyo9hrYrVmw4DcjFozbFLxFV/vfL0Y0QtUydcCid0rKFYTp0ghPRUKOwI6cWMOSUXY07J9bU2mDT14r5Dscn1zj52rsUTSK5VfRVPKAEFUACoyRYpRnsUf8UT5pxY6XIDq0vnJyeREEK6IwzFEkIAONud6ILIO+RpzHFNIxSbsI4t8/jvpRG+tQo1H45dPKb9AOk7dtkF/GgkhPRM+OlFCAFgmRUbhaUq1mW9YyqEn1YkiqDdiVuzYcAu1LwaGmvrk7+oQLzNn3gE7C5dJJ8fjYSQngk/vQghAICssKBBsZ/JE45ZsX5EVyKu+ppUoT2u3aq2HDvv3D9Am/2qHdfbscspMk+cwo4Q0lPhpxchBIB9pJif4gnr6C4A/lqRJAWZGgPUhLcQ1I6TOkki4GOkGABEW/w7djlF5pNmU9gRQnoo/PQihAAwK0Hj7RZh59IlxVrhar11nRVrLZ4wRJo/x85acOEn9w8AYq1a7NarOTEAZBdaRrAVsHiCENIzobAjhACwNij21+7ECJEmNPfNXyg2td1Jeo6dj3m0VscurVCsRdjRsSOE9FD46UUIAWAWSsSj5iguV2fMOe5Ld+BcRJR1DJmf0K1tH4vL51blqiiKIe5iLd5FIDo5/RmKJYT0fPjpRQgBYG1QbM2xk6+3OmPWnnFBFzdNWBXrVTwhcOw8Xb7kc5o5duk5dnkl3iPYCCGkO8IGxYQQAKawi7VbnDGfuWy+HTtrVWzCuyedcx9TPHqJQQBt1lCs+zEAoOSgMIJhYMDwEEZOzvHegRBCuiEUdoQQAKaIizarKdtEWAVZIq4aEyhc898sVbG6EPTsY2eEYi0FGh6hVe28VcRavXMFdfoNCuIHL5Yj3C9gtH4hhJCeBoUdIQSAWQHbbhV2LgLHGg5NRC3tTvzk2MVVo9mwVx87I3xrmzzh4dglhV97S8LznKzkDmAIlhDSs2GOHSEEgCUU22oKOzf3TVEUQ9zF2ixi0FcoFr4cPu35kvtYRoR57aM7btEm77w/QgjpTVDYEUIApLpzStD/VIioVQy6jiETNBv2cNMUa4uUmL9iCP1a2hqTfewiDK0SQvoGFHaEEABAVrZd/ISyvcWQLrDsLp93+NZaCNGRdideglN3H9ub/OfYEUJIb4DCjhACAAjl2MWPU+iJMAoukrlsgHvYUxd9qq0QwssVNBsnG7NivYondMeuQTsvFkMQQvoKFHaEEABAliNc6RR6IoxGwEnHTgkAisuIsEAnOXZe7U6MQpAmhmIJIX0LCjtCCADNGbPOhvUTijVCni3+CiHsOXY+e9KFLC6fTzFoOnbeM28JIaQ3kVFht3fvXsyaNQsFBQUoKirCxRdfjMbGRun6rVu3apV2gp/HH3/cWCd6fPny5Zm8FEL6BKEc8yMhK9v748HZ+84rl02YL+cl7CxjyPzuk5U8j7akY5fFHDtCSB8ho00AZs2ahZ07d+KFF15ANBrFnDlzcMkll+CRRx4Rrh8yZAh27txp23bvvffijjvuwCmnnGLbvmzZMkyfPt24X1RU1OnnT0hfI5StoHWf+bsXzlCsp0gTVbj6HA8Wj1mrYt330R279sak4GQolhDSR8iYsNuwYQNWrFiBN998E0cddRQA4De/+Q1OPfVU3HnnnSgvL0/ZJxgMoqyszLbtySefxDnnnIN+/frZthcVFaWsJYR8NbIseXVZPnLsnMUTXoJLsbpvfosnks+pxlVLHzt/7U50WDxBCOkrZCwUu3r1ahQVFRmiDgCqqqoQCASwZs0aX8+xbt06rF+/HhdffHHKY5dffjmKi4tx9NFHY+nSpVBVVfAMhJB0sLp06Th2eh87z3w5S46d3wbFVpdPjft17Jz3KewIIX2DjDl21dXVGDRokP1gWVkYMGAAqqurfT3H/fffj0MOOQTHHnusbfuNN96Ik046Cbm5uXj++edx2WWXobGxET/60Y+Ez9PW1oa2tjbjfn19fZpXQ0jfwNriJL12J/7akJiTJ/z3pLPm2MV9V8UqrvcJIaS3krZjd+2110oLHPSfjz766CufWEtLCx555BGhW/fzn/8cX/va13DEEUfgJz/5Ca655hrccccd0udatGgRCgsLjZ8hQ4Z85fMjpDeStmPnFHZ+CyHi/vPlDJcvDiSiybYqHnl5zmKJLFbFEkL6CGk7dldddRUuuugi1zUjRoxAWVkZamtrbdtjsRj27t3rKzfur3/9K5qbmzF79mzPtZWVlbjpppvQ1taGSCSS8viCBQswf/584359fT3FHSECQunm2Omh2GZ/M1l1kabG/Pek04VfPGrm5aXt2LF4ghDSR0hb2JWUlKCkpMRz3aRJk1BXV4d169Zh4sSJAICXXnoJiUQClZWVnvvff//9+MY3vuHrWOvXr0f//v2Fog4AIpGI9DFCiIm1xUkojXYnsVa9eMKnSIuZUyQUr3y5UGrvO7+TJ2T3CSGkt5KxHLtDDjkE06dPx9y5c7FkyRJEo1HMmzcPM2fONCpit2/fjilTpuChhx7C0Ucfbey7adMmvPrqq3jmmWdSnvef//wnampqcMwxxyA7OxsvvPACbrnlFvz4xz/O1KUQ0mcI97OEYv1Mnkg3FGs0G07DsUuKOKtj5zkr1hF6ZR87QkhfIaN97B5++GHMmzcPU6ZMQSAQwFlnnYV77rnHeDwajWLjxo1obm627bd06VIceOCBmDp1aspzhkIhLF68GFdeeSVUVcWoUaNw1113Ye7cuZm8FEL6BPmDzOS1foM8EtkABJOiK+pz8oQu4uJRM1/Oc4qEXhUbVdPuY2fcZyiWENJHyKiwGzBggLQZMQBUVFQI25TccsstuOWWW4T7TJ8+3daYmBDSeeSXmiqrYLC3sNMdOt/tTvSqWGsfO58uXzya/uQJ4z5DsYSQPgJnxRJCDPqVmv/XKyj3/n9fimPnlfsWsjh2ft03PY+vzfxPoNc+zlYtnBVLCOkrUNgRQgxyCs2PBKt7JyPgmDyRCcfOKR79HCec53DsfLRuIYSQ3kBGQ7GEkJ5F6dgQRk/LQUF5luGUuaELLNOx8xJp+txX1ffkCaMJcrPVsfMQdrn2/7NG+vH/sISQvgGFHSHEQAko+MYvi32v10OvsdY0x4NFtR/AT1WsXTz6OY61uhcAIvkUdoSQvgE/7QghHUYXZe1NyeIJT8dOu9Val/ibIqE3PW5vThjrvdqdhPPsH23hXIZiCSF9Awo7QkiHcQq5LI+2IoZjF0MafeyS4jEZivVT4WoVduE8BUqAwo4Q0jegsCOEdBhnFayXsLMKQb3K1e/kifamRMpzyLAWT4To1hFC+hAUdoSQDuN027xGd1mFoN9KWj18q4d7vVqqAPZiCbp1hJC+BIUdIaTDOIWc31As4L/gwlkV6ycUa+1bR1lHCOlLUNgRQjqMU8hlRdzXBy0iTp9W4VUI4Wyh4uUKAoCimGsi+ZR2hJC+A4UdIaTDpE54cBdRSkAxqmDN+bL+QrF+j6Ez8YJ+AICDT871tZ4QQnoD7GNHCOkwqY6djzBpSEEsrhrCzmvcl7NYwin0ZJz0k/44bl4hiycIIX0KCjtCSIcJORw7P/lvek6dXuXqtY8zB89PVayOs58dIYT0dvipRwjpMCmhWJ+OHWAWQ3iFVlMcO5+hWEII6YtQ2BFCOkxKKDYNx07VDDsKO0II6UQo7AghHearOHbmfff1zqrYLI+cPEII6ctQ2BFCOkzHHLv0HLiOVsUSQkhfhMKOENJhQjkdqYp13k8vFOvVHoUQQvoyFHaEkA7jFHJerUuA9B27FPFIx44QQqRQ2BFCOowzx86XY+doX+Il1FKbIPs7N0II6YtQ2BFCOoxTyIVyvD9SUkeEeawPKrbjMMeOEELkUNgRQjqMc85r7gDvjxRnU2M/Qs3q2qXToJgQQvoaFHaEkE7Dz/iulNCqD6FmzbPzE+4lhJC+CoUdIaTTUBQfws4qzJTUkWEirMIuks+PLUIIkcFPSELIVyLdYgab+xZWfIlB6z7hPDp2hBAig8KOEPKV8FMwYcVeCJH+MejYEUKIHH5CEkK+EoedmQsAKB3rMRssSUcKIaz7hPP4sUUIITJ8ZLcQQoic435YiIHDQxhxQo6v9aFsU5j5bV1iy7Hrx1AsIYTIoLAjhHwlQtkBHP7tfr7Xd6QnnV3Y0bEjhBAZ/IQkhOxXrGFVv61LwpY2KmE6doQQIoXCjhCyX7EKu+xCfx9BJaPNKgs6doQQIoefkISQ/YrVpcvO9+e+jZ6q5e8VHhi0hWUJIYTYYY4dIWS/0pFmwzlFQVy6qhyBIKAEKOwIIURGxhy7X/ziFzj22GORm5uLoqIiX/uoqorrrrsOgwcPRk5ODqqqqvDJJ5/Y1uzduxezZs1CQUEBioqKcPHFF6OxsTEDV0AIyQRWxy6dnnT9ioPI7R/MxCkRQkivIWPCrr29HWeffTYuvfRS3/vcfvvtuOeee7BkyRKsWbMGeXl5mDZtGlpbW401s2bNwgcffIAXXngB//rXv/Dqq6/ikksuycQlEEIyQHYBmw0TQkimyFgo9oYbbgAAPPDAA77Wq6qKu+++Gz/72c9wxhlnAAAeeughlJaW4qmnnsLMmTOxYcMGrFixAm+++SaOOuooAMBvfvMbnHrqqbjzzjtRXl6ekWshhHQeA0eYjYwDNOAIIaRT6Tb/Xd6yZQuqq6tRVVVlbCssLERlZSVWr14NAFi9ejWKiooMUQcAVVVVCAQCWLNmzX4/Z0JI+lgrYRtr4114JoQQ0vvoNsUT1dXVAIDS0lLb9tLSUuOx6upqDBo0yPZ4VlYWBgwYYKwR0dbWhra2NuN+fX19Z502IaQDDD48jJ3vtmPMKbldfSqEENKrSMuxu/baa6EoiuvPRx99lKlz7TCLFi1CYWGh8TNkyJCuPiVC+jTn/LEEFz1RiqFHZ3f1qRBCSK8iLcfuqquuwkUXXeS6ZsSIER06kbKyMgBATU0NBg8ebGyvqanBhAkTjDW1tbW2/WKxGPbu3WvsL2LBggWYP3++cb++vp7ijpAuJJwbQMnBYe+FhBBC0iItYVdSUoKSkpKMnMjw4cNRVlaGlStXGkKuvr4ea9asMSprJ02ahLq6Oqxbtw4TJ04EALz00ktIJBKorKyUPnckEkEkEsnIeRNCCCGEdBcyVjyxbds2rF+/Htu2bUM8Hsf69euxfv16W8+5MWPG4MknnwQAKIqCK664AjfffDP+8Y9/4L333sPs2bNRXl6OM888EwBwyCGHYPr06Zg7dy7Wrl2L119/HfPmzcPMmTNZEUsIIYSQPk/Giieuu+46PPjgg8b9I444AgDw8ssvY/LkyQCAjRs3Yt++fcaaa665Bk1NTbjkkktQV1eH4447DitWrEB2tpmH8/DDD2PevHmYMmUKAoEAzjrrLNxzzz2ZugxCCCGEkB6Doqqq2tUnsb+pr69HYWEh9u3bh4KCgq4+HUIIIYQQKenolm7Tx44QQgghhHw1KOwIIYQQQnoJFHaEEEIIIb0ECjtCCCGEkF4ChR0hhBBCSC+Bwo4QQgghpJdAYUcIIYQQ0kugsCOEEEII6SVQ2BFCCCGE9BIo7AghhBBCegkZmxXbndGnqNXX13fxmRBCCCGEuKPrFT9TYPuksGtoaAAADBkypIvPhBBCCCHEHw0NDSgsLHRdo6h+5F8vI5FIYMeOHcjPz4eiKBk5Rn19PYYMGYLPP//cc2Bvb6QvX39fvnagb18/r71vXjvQt6+/L187sH+uX1VVNDQ0oLy8HIGAexZdn3TsAoEADjzwwP1yrIKCgj75D12nL19/X752oG9fP6+9b1470Levvy9fO5D56/dy6nRYPEEIIYQQ0kugsCOEEEII6SVQ2GWISCSChQsXIhKJdPWpdAl9+fr78rUDffv6ee1989qBvn39ffnage53/X2yeIIQQgghpDdCx44QQgghpJdAYUcIIYQQ0kugsCOEEEII6SVQ2KXB4sWLUVFRgezsbFRWVmLt2rWu6x9//HGMGTMG2dnZGDduHJ555hnb46qq4rrrrsPgwYORk5ODqqoqfPLJJ5m8hA6TzrXfd999OP7449G/f3/0798fVVVVKesvuugiKIpi+5k+fXqmL6PDpHP9DzzwQMq1ZWdn29b01vd+8uTJKdeuKApmzJhhrOkp7/2rr76K008/HeXl5VAUBU899ZTnPqtWrcKRRx6JSCSCUaNG4YEHHkhZk+7nSFeR7vU/8cQTOPnkk1FSUoKCggJMmjQJzz33nG3N9ddfn/LejxkzJoNX0THSvfZVq1YJ/91XV1fb1vWE9z7daxf9PSuKgkMPPdRY01Pe90WLFuF//ud/kJ+fj0GDBuHMM8/Exo0bPffrbt/1FHY+eeyxxzB//nwsXLgQb7/9NsaPH49p06ahtrZWuP6NN97Aeeedh4svvhjvvPMOzjzzTJx55pl4//33jTW333477rnnHixZsgRr1qxBXl4epk2bhtbW1v11Wb5I99pXrVqF8847Dy+//DJWr16NIUOGYOrUqdi+fbtt3fTp07Fz507j59FHH90fl5M26V4/oDWqtF7bZ599Znu8t773TzzxhO2633//fQSDQZx99tm2dT3hvW9qasL48eOxePFiX+u3bNmCGTNm4MQTT8T69etxxRVX4Hvf+55N3HTk31JXke71v/rqqzj55JPxzDPPYN26dTjxxBNx+umn45133rGtO/TQQ23v/WuvvZaJ0/9KpHvtOhs3brRd26BBg4zHesp7n+61//rXv7Zd8+eff44BAwak/M33hPf9lVdeweWXX47//Oc/eOGFFxCNRjF16lQ0NTVJ9+mW3/Uq8cXRRx+tXn755cb9eDyulpeXq4sWLRKuP+ecc9QZM2bYtlVWVqrf//73VVVV1UQioZaVlal33HGH8XhdXZ0aiUTURx99NANX0HHSvXYnsVhMzc/PVx988EFj24UXXqieccYZnX2qGSHd61+2bJlaWFgofb6+9N7/6le/UvPz89XGxkZjW09673UAqE8++aTrmmuuuUY99NBDbdvOPfdcddq0acb9r/p6dhV+rl/E2LFj1RtuuMG4v3DhQnX8+PGdd2L7AT/X/vLLL6sA1C+//FK6pie+9x1535988klVURR169atxrae+L6rqqrW1taqANRXXnlFuqY7ftfTsfNBe3s71q1bh6qqKmNbIBBAVVUVVq9eLdxn9erVtvUAMG3aNGP9li1bUF1dbVtTWFiIyspK6XN2BR25difNzc2IRqMYMGCAbfuqVaswaNAgjB49Gpdeein27NnTqefeGXT0+hsbGzFs2DAMGTIEZ5xxBj744APjsb703t9///2YOXMm8vLybNt7wnufLl5/853xevYkEokEGhoaUv7uP/nkE5SXl2PEiBGYNWsWtm3b1kVn2PlMmDABgwcPxsknn4zXX3/d2N6X3vv7778fVVVVGDZsmG17T3zf9+3bBwAp/4atdMfvego7H+zevRvxeBylpaW27aWlpSk5FDrV1dWu6/XbdJ6zK+jItTv5yU9+gvLycts/7OnTp+Ohhx7CypUrcdttt+GVV17BKaecgng83qnn/1XpyPWPHj0aS5cuxd///nf8+c9/RiKRwLHHHosvvvgCQN9579euXYv3338f3/ve92zbe8p7ny6yv/n6+nq0tLR0yt9ST+LOO+9EY2MjzjnnHGNbZWUlHnjgAaxYsQK///3vsWXLFhx//PFoaGjowjP96gwePBhLlizB3/72N/ztb3/DkCFDMHnyZLz99tsAOudztCewY8cOPPvssyl/8z3xfU8kErjiiivwta99DYcddph0XXf8rs/KyLMSkuTWW2/F8uXLsWrVKlsBwcyZM43fx40bh8MPPxwjR47EqlWrMGXKlK441U5j0qRJmDRpknH/2GOPxSGHHII//OEPuOmmm7rwzPYv999/P8aNG4ejjz7atr03v/dE45FHHsENN9yAv//977Y8s1NOOcX4/fDDD0dlZSWGDRuGv/zlL7j44ou74lQ7hdGjR2P06NHG/WOPPRabN2/Gr371K/zpT3/qwjPbvzz44IMoKirCmWeeadveE9/3yy+/HO+//363zAX0go6dD4qLixEMBlFTU2PbXlNTg7KyMuE+ZWVlruv123SesyvoyLXr3Hnnnbj11lvx/PPP4/DDD3ddO2LECBQXF2PTpk1f+Zw7k69y/TqhUAhHHHGEcW194b1vamrC8uXLfX1od9f3Pl1kf/MFBQXIycnplH9LPYHly5fje9/7Hv7yl7+khKicFBUV4eCDD+7x772Io48+2riuvvDeq6qKpUuX4oILLkA4HHZd293f93nz5uFf//oXXn75ZRx44IGua7vjdz2FnQ/C4TAmTpyIlStXGtsSiQRWrlxpc2asTJo0ybYeAF544QVj/fDhw1FWVmZbU19fjzVr1kifsyvoyLUDWhXQTTfdhBUrVuCoo47yPM4XX3yBPXv2YPDgwZ1y3p1FR6/fSjwex3vvvWdcW29/7wGt/L+trQ3nn3++53G663ufLl5/853xb6m78+ijj2LOnDl49NFHbS1uZDQ2NmLz5s09/r0XsX79euO6+sJ7/8orr2DTpk2+/jPXXd93VVUxb948PPnkk3jppZcwfPhwz3265Xd9RkoyeiHLly9XI5GI+sADD6gffviheskll6hFRUVqdXW1qqqqesEFF6jXXnutsf71119Xs7Ky1DvvvFPdsGGDunDhQjUUCqnvvfeesebWW29Vi4qK1L///e/qu+++q55xxhnq8OHD1ZaWlv1+fW6ke+233nqrGg6H1b/+9a/qzp07jZ+GhgZVVVW1oaFB/fGPf6yuXr1a3bJli/riiy+qRx55pHrQQQepra2tXXKNbqR7/TfccIP63HPPqZs3b1bXrVunzpw5U83OzlY/+OADY01vfe91jjvuOPXcc89N2d6T3vuGhgb1nXfeUd955x0VgHrXXXep77zzjvrZZ5+pqqqq1157rXrBBRcY6z/99FM1NzdXvfrqq9UNGzaoixcvVoPBoLpixQpjjdfr2Z1I9/offvhhNSsrS128eLHt776urs5Yc9VVV6mrVq1St2zZor7++utqVVWVWlxcrNbW1u7363Mj3Wv/1a9+pT711FPqJ598or733nvq//7v/6qBQEB98cUXjTU95b1P99p1zj//fLWyslL4nD3lfb/00kvVwsJCddWqVbZ/w83NzcaanvBdT2GXBr/5zW/UoUOHquFwWD366KPV//znP8ZjJ5xwgnrhhRfa1v/lL39RDz74YDUcDquHHnqo+vTTT9seTyQS6s9//nO1tLRUjUQi6pQpU9SNGzfuj0tJm3SufdiwYSqAlJ+FCxeqqqqqzc3N6tSpU9WSkhI1FAqpw4YNU+fOndvtPuCspHP9V1xxhbG2tLRUPfXUU9W3337b9ny99b1XVVX96KOPVADq888/n/JcPem911tYOH/0673wwgvVE044IWWfCRMmqOFwWB0xYoS6bNmylOd1ez27E+le/wknnOC6XlW19i+DBw9Ww+GwesABB6jnnnuuumnTpv17YT5I99pvu+02deTIkWp2drY6YMAAdfLkyepLL72U8rw94b3vyL/7uro6NScnR7333nuFz9lT3nfRdQOw/R33hO96JXkxhBBCCCGkh8McO0IIIYSQXgKFHSGEEEJIL4HCjhBCCCGkl0BhRwghhBDSS6CwI4QQQgjpJVDYEUIIIYT0EijsCCGEEEJ6CRR2hBBCCCG9BAo7QkifZdWqVVAUBXV1dV1y/JUrV+KQQw5BPB73XLtixQpMmDABiURiP5wZIb2bV199FaeffjrKy8uhKAqeeuqpLj/e9ddfjzFjxiAvLw/9+/dHVVUV1qxZk/axKOwIIX2CyZMn44orrrBtO/bYY7Fz504UFhZ2yTldc801+NnPfoZgMOi5dvr06QiFQnj44Yf3w5kR0rtpamrC+PHjsXjx4m5zvIMPPhi//e1v8d577+G1115DRUUFpk6dil27dqV1LI4UI4T0CSZPnowJEybg7rvv7upTAQC89tprOO2001BdXY3s7Gxf+yxevBgPPPAA3nzzzQyfHSF9B0VR8OSTT+LMM880trW1teH//u//8Oijj6Kurg6HHXYYbrvtNkyePDkjxxNRX1+PwsJCvPjii5gyZYrv56djRwjp9Vx00UV45ZVX8Otf/xqKokBRFGzdujUlFPvAAw+gqKgI//rXvzB69Gjk5ubi29/+Npqbm/Hggw+ioqIC/fv3x49+9CNb+LStrQ0//vGPccABByAvLw+VlZVYtWqV6zktX74cJ598sk3U/fe//8WJJ56I/Px8FBQUYOLEiXjrrbeMx08//XS89dZb2Lx5c6e+PoQQO/PmzcPq1auxfPlyvPvuuzj77LMxffp0fPLJJ/vl+O3t7bj33ntRWFiI8ePHp7VvVobOiRBCug2//vWv8fHHH+Owww7DjTfeCAAoKSnB1q1bU9Y2NzfjnnvuwfLly9HQ0IBvfetb+OY3v4mioiI888wz+PTTT3HWWWfha1/7Gs4991wA2pfAhx9+iOXLl6O8vBxPPvkkpk+fjvfeew8HHXSQ8Jz+/e9/4zvf+Y5t26xZs3DEEUfg97//PYLBINavX49QKGQ8PnToUJSWluLf//43Ro4c2UmvDiHEyrZt27Bs2TJs27YN5eXlAIAf//jHWLFiBZYtW4ZbbrklY8f+17/+hZkzZ6K5uRmDBw/GCy+8gOLi4rSeg8KOENLrKSwsRDgcRm5uLsrKylzXRqNR/P73vzeE07e//W386U9/Qk1NDfr164exY8fixBNPxMsvv4xzzz23w18Cn332mbFeZ9u2bbj66qsxZswYABCKwvLycnz22WdpvwaEEH+89957iMfjOPjgg23b29raMHDgQADARx99hEMOOcT1eX7yk5/g1ltvTevYJ554ItavX4/du3fjvvvuwznnnIM1a9Zg0KBBvp+Dwo4QQizk5uba3LDS0lJUVFSgX79+tm21tbUA/H0JiGhpaUnJrZs/fz6+973v4U9/+hOqqqpw9tlnpzhzOTk5aG5u7vD1EULcaWxsRDAYxLp161IKm/TPgREjRmDDhg2uz+P29y8jLy8Po0aNwqhRo3DMMcfgoIMOwv33348FCxb4fg4KO0IIsWANfQJaorNom952xM+XgIji4mJ8+eWXtm3XX389vvOd7+Dpp5/Gs88+i4ULF2L58uX45je/aazZu3cvSkpKOnRthBBvjjjiCMTjcdTW1uL4448XrgmHw4aznkkSiQTa2trS2ofCjhDSJwiHw776xaWLny8B2X4ffvhhyvaDDz4YBx98MK688kqcd955WLZsmSHsWltbsXnzZhxxxBGddv6E9EUaGxuxadMm4/6WLVuwfv16DBgwAAcffDBmzZqF2bNn45e//CWOOOII7Nq1CytXrsThhx+OGTNmdOrxhg4diqamJvziF7/AN77xDQwePBi7d+/G4sWLsX37dpx99tlpHYtVsYSQPkFFRQXWrFmDrVu3Yvfu3Z3W6Nf6JfDEE09gy5YtWLt2LRYtWoSnn35aut+0adPw2muvGfdbWlowb948rFq1Cp999hlef/11vPnmm7Y8nv/85z+IRCKYNGlSp5w7IX2Vt956C0cccYTxn6T58+fjiCOOwHXXXQcAWLZsGWbPno2rrroKo0ePxplnnok333wTQ4cOzcjxgsEgPvroI5x11lk4+OCDcfrpp2PPnj3497//jUMPPTStY9GxI4T0CX784x/jwgsvxNixY9HS0oItW7Z02nMvW7YMN998M6666ips374dxcXFOOaYY3DaaadJ95k1axauueYabNy4EaNHj0YwGMSePXswe/Zs1NTUoLi4GN/61rdwww03GPs8+uijmDVrFnJzczvt3Anpi0yePBlubXxDoRBuuOEG299fJo+XnZ2NJ554olOOxQbFhBDSRVx99dWor6/HH/7wB8+1u3fvxujRo/HWW29h+PDh++HsCCE9EYZiCSGki/i///s/DBs2zFdYeOvWrfjd735HUUcIcYWOHSGEEEJIL4GOHSGEEEJIL4HCjhBCCCGkl0BhRwghhBDSS6CwI4QQQgjpJVDYEUIIIYT0EijsCCGEEEJ6CRR2hBBCCCG9BAo7QgghhJBeAoUdIYQQQkgvgcKOEEIIIaSX8P8P2y+ZvfNdkwAAAABJRU5ErkJggg==\n", "text/plain": [ "
[13:03:51] status = queued webapi.py:269\n", "\n" ], "text/plain": [ "\u001b[2;36m[13:03:51]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=310070;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458591;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[13:03:53] status = preprocess webapi.py:263\n", "\n" ], "text/plain": [ "\u001b[2;36m[13:03:53]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=289413;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511469;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[13:03:57] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit cost webapi.py:286\n", " after a simulation run. \n", "\n" ], "text/plain": [ "\u001b[2;36m[13:03:57]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit cost \u001b]8;id=27349;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=954724;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mafter a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
starting up solver webapi.py:290\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=479738;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=533761;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
running solver webapi.py:300\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=407029;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=87774;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "188a77c4d20a48e2aca3f31d34c8d654", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[13:04:05] early shutoff detected, exiting. webapi.py:313\n", "\n" ], "text/plain": [ "\u001b[2;36m[13:04:05]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=795979;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448341;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#313\u001b\\\u001b[2m313\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
status = postprocess webapi.py:330\n", "\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=12386;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=182179;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#330\u001b\\\u001b[2m330\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[13:04:09] status = success webapi.py:337\n", "\n" ], "text/plain": [ "\u001b[2;36m[13:04:09]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=21637;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=623746;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#337\u001b\\\u001b[2m337\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "web.start(task_id)\n", "web.monitor(task_id, verbose=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also use the ``real_cost`` function once the task is complete to check the cost that was actually billed. It may take a few seconds before it is available." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Billed flex unit cost: 0.025\n" ] } ], "source": [ "import time\n", "\n", "time.sleep(4)\n", "print(\"Billed flex unit cost: \", web.real_cost(task_id))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading and analyzing data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After a successful run, we can download the results and load them into our simulation model. We use the `download_results` function from our web API, which downloads a single `hdf5` file containing all the monitor data, a log file, and a `json` file defining the original simulation (same as what you'll get if you run `sim.to_json()` on the current object). Optionally, you can provide a folder in which to store the files. In the example below, the results are stored in the `data/` folder. " ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Simulation domain Nx, Ny, Nz: [156, 157, 104]\n", "Applied symmetries: (0, 0, 0)\n", "Number of computational grid points: 2.6629e+06.\n", "Using subpixel averaging: True\n", "Number of time steps: 3.4930e+03\n", "Automatic shutoff factor: 1.00e-05\n", "Time step (s): 5.7275e-17\n", "\n", "\n", "Compute source modes time (s): 0.1525\n", "Compute monitor modes time (s): 0.0023\n", "Rest of setup time (s): 3.0354\n", "\n", "Running solver for 3493 time steps...\n", "- Time step 139 / time 7.96e-15s ( 4 % done), field decay: 1.00e+00\n", "- Time step 279 / time 1.60e-14s ( 8 % done), field decay: 1.00e+00\n", "- Time step 419 / time 2.40e-14s ( 12 % done), field decay: 1.00e+00\n", "- Time step 558 / time 3.20e-14s ( 16 % done), field decay: 1.00e+00\n", "- Time step 698 / time 4.00e-14s ( 20 % done), field decay: 1.00e+00\n", "- Time step 838 / time 4.80e-14s ( 24 % done), field decay: 1.00e+00\n", "- Time step 978 / time 5.60e-14s ( 28 % done), field decay: 1.00e+00\n", "- Time step 1117 / time 6.40e-14s ( 32 % done), field decay: 1.00e+00\n", "- Time step 1257 / time 7.20e-14s ( 36 % done), field decay: 1.00e+00\n", "- Time step 1389 / time 7.96e-14s ( 39 % done), field decay: 1.00e+00\n", "- Time step 1397 / time 8.00e-14s ( 40 % done), field decay: 1.00e+00\n", "- Time step 1536 / time 8.80e-14s ( 44 % done), field decay: 1.00e+00\n", "- Time step 1676 / time 9.60e-14s ( 48 % done), field decay: 8.05e-01\n", "- Time step 1816 / time 1.04e-13s ( 52 % done), field decay: 3.46e-01\n", "- Time step 1956 / time 1.12e-13s ( 56 % done), field decay: 1.51e-01\n", "- Time step 2095 / time 1.20e-13s ( 60 % done), field decay: 5.29e-02\n", "- Time step 2235 / time 1.28e-13s ( 64 % done), field decay: 1.21e-02\n", "- Time step 2375 / time 1.36e-13s ( 68 % done), field decay: 2.31e-03\n", "- Time step 2514 / time 1.44e-13s ( 72 % done), field decay: 4.89e-04\n", "- Time step 2654 / time 1.52e-13s ( 76 % done), field decay: 1.11e-04\n", "- Time step 2794 / time 1.60e-13s ( 80 % done), field decay: 2.39e-05\n", "- Time step 2934 / time 1.68e-13s ( 84 % done), field decay: 4.75e-06\n", "Field decay smaller than shutoff factor, exiting solver.\n", "\n", "Solver time (s): 1.8709\n", "\n" ] } ], "source": [ "sim_data = web.load(task_id, path=\"data/sim_data.hdf5\")\n", "\n", "# Show the output of the log file\n", "print(sim_data.log)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Visualization functions\n", "\n", "Finally, we can now use the in-built visualization tools to examine the results. Below, we plot the `y`-component of the field recorded by the two frequency monitors (this is the dominant component since the source is `y`-polarized)." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAGJCAYAAAB4oPk1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebwdRZk+/lR1n3PuloQtIUQQQhBBVoWgsisZcAQZREFRVhFUAggMiizDpkN0AGFmHEBcwAFUhK+AgiAoO44KAv5ABHGHAAaU5Cb33rN0V/3+6Krq6urqs93tJHmfz+d8uk91dXd1d/Xy1vO+z8uklBIEAoFAIBAIBAKBQJgQ8OluAIFAIBAIBAKBQCCsSSAji0AgEAgEAoFAIBAmEGRkEQgEAoFAIBAIBMIEgowsAoFAIBAIBAKBQJhAkJFFIBAIBAKBQCAQCBMIMrIIBAKBQCAQCAQCYQJBRhaBQCAQCAQCgUAgTCDIyCIQCAQCgUAgEAiECQQZWQQCgUAgEAgEAoEwgSAji0AgEAgEAmE1xP333w/GGO6///7pbgqBQHBARhaBQCAQCARCD+OKK67AtddeO93N6Arf/va3cfnll093MzL4xje+ga233hp9fX1405vehP/+7/9ue91arYYzzjgD8+bNQ39/P97+9rfjnnvu8db92c9+ht133x0DAwOYO3cuTj75ZKxatWqiDoPQ42BSSjndjSAQCAQCgUAg+LHttttigw02yDFWQgjU63WUy2Vw3pvj5gcccACefvpp/PnPf57upgAAvvrVr+KTn/wkPvCBD2C//fbDQw89hOuuuw5f/OIXccYZZ7Rc/7DDDsPNN9+MU045BW9605tw7bXX4tFHH8V9992H3Xff3dR78skn8c53vhNbb701jj/+eLz44ou45JJL8K53vQt33nnnZB4ioUdARhaBQCAQCISex8jICAYHB6e7GdOCIiNrdUAvGVljY2PYZJNN8I53vAO33367KT/88MNx66234oUXXsC6665buP4vf/lLvP3tb8fFF1+M008/HQBQrVax7bbbYs6cOfjZz35m6r73ve/Fk08+iWeffRYzZ84EAHz961/Hcccdhx//+MfYd999J+koCb2C3hz2IBAIBAKBsMZi6dKlOPbYYzFv3jxUKhXMnz8fn/rUp1Cv1wEA1157LRhjeOCBB3DCCSdgzpw52Hjjjc36V1xxBbbZZhtUKhXMmzcPixcvxvLlyzP7eP755/GBD3wAc+fORV9fHzbeeGN8+MMfxooVK0yde+65B7vvvjvWWWcdDA0N4c1vfjPOOuuslu1vZ71arYbzzjsPW2yxBSqVCjbZZBN89rOfRa1Wy23v+uuvxy677IKBgQGsu+662HPPPXH33XcDADbbbDP85je/wQMPPADGGBhj2HvvvQEUx2TddNNN2GmnndDf348NNtgAhx9+OJYuXZqpc/TRR2NoaAhLly7FQQcdhKGhIcyePRunn3464jhueQ5uu+027L///uYaLliwAJ///Ocz6+69996444478Je//MW0fbPNNivc5l577YUddtjBu+zNb34z9ttvv5btaob77rsPf//733HCCSdkyhcvXoyRkRHccccdTde/+eabEQQBjj/+eFPW19eHY489Fv/3f/+HF154AQAwPDyMe+65B4cffrgxsADgyCOPxNDQEL73ve+N6zgIqwfC6W4AgUAgEAiEtQcvvfQSdtllFyxfvhzHH388ttpqKyxduhQ333wzRkdHUS6XTd0TTjgBs2fPxrnnnouRkREAwPnnn48LLrgAixYtwqc+9Sk899xzuPLKK/Hoo4/ikUceQalUQr1ex3777YdarYaTTjoJc+fOxdKlS3H77bdj+fLlmDVrFn7zm9/ggAMOwPbbb48LL7wQlUoFv//97/HII480bX876wkhcOCBB+Lhhx/G8ccfj6233hpPPfUULrvsMvzud7/DrbfeaupecMEFOP/887HrrrviwgsvRLlcxi9+8Qvce++92HfffXH55ZfjpJNOwtDQEM4++2wAwIYbbljYvmuvvRbHHHMMFi5ciCVLluBvf/sb/vM//xOPPPIInnjiCayzzjqmbhzH2G+//fD2t78dl1xyCX7yk5/g0ksvxYIFC/CpT32q6Xm49tprMTQ0hNNOOw1DQ0O49957ce6552J4eBgXX3wxAODss8/GihUr8OKLL+Kyyy4DAAwNDRVu84gjjsBxxx2Hp59+Gttuu60pf/TRR/G73/0O55xzjil7/fXX2zIGBwYGMDAwAAB44oknAAA777xzps5OO+0EzjmeeOIJHH744YXbeuKJJ7DllltmDCcA2GWXXQAkLoKbbLIJnnrqKURRlNtPuVzGjjvuaNpBWMMhCQQCgUAgEKYIRx55pOScy0cffTS3TAghpZTymmuukQDk7rvvLqMoMsuXLVsmy+Wy3HfffWUcx6b8K1/5igQgv/nNb0oppXziiSckAHnTTTcVtuOyyy6TAOSrr77aUfvbWe+6666TnHP50EMPZcqvuuoqCUA+8sgjUkopn3/+eck5l+9///szxyNlei6klHKbbbaRe+21V24/9913nwQg77vvPimllPV6Xc6ZM0duu+22cmxszNS7/fbbJQB57rnnmrKjjjpKApAXXnhhZptvfetb5U477dT8JEgpR0dHc2Wf+MQn5MDAgKxWq6Zs//33l5tuumnL7Ukp5fLly2VfX58844wzMuUnn3yyHBwclKtWrTJlm266qQTQ8nfeeeeZdRYvXiyDIPDue/bs2fLDH/5w0/Zts8028t3vfneu/De/+Y0EIK+66ioppZQ33XSTBCAffPDBXN1DDjlEzp07t+l+CGsGyF2QQCAQCATClEAIgVtvvRXve9/7cqP8AMAYy/w/7rjjEASB+f+Tn/wE9Xodp5xySkbo4bjjjsPMmTONu9esWbMAAD/+8Y8xOjrqbYtmdG677TYIIdo+hnbWu+mmm7D11ltjq622wmuvvWZ+7373uwEkbmsAcOutt0IIgXPPPTcnXOGei3bw2GOPYdmyZTjhhBPQ19dnyvfff39stdVWXne4T37yk5n/e+yxB/74xz+23Fd/f7+ZX7lyJV577TXsscceGB0dxbPPPttx24Hkuv3Lv/wLvvOd70AqyYA4jnHjjTfioIMOysTk3XDDDbjnnnta/o488kizztjYWIYptdHX14exsbGm7RsbG0OlUvGuq5fb06K6rfZDWDNA7oIEAoFAIBCmBK+++iqGh4czrmDNMH/+/Mz/v/zlLwCS+Bwb5XIZm2++uVk+f/58nHbaafjyl7+MG264AXvssQcOPPBAHH744cYA+9CHPoSvf/3r+PjHP47Pfe5z2GeffXDwwQfjgx/8YFOlvnbWe/755/Hb3/4Ws2fP9m5j2bJlAIA//OEP4JzjLW95S1vnoxWKzg8AbLXVVnj44YczZX19fbk2rrvuunj99ddb7us3v/kNzjnnHNx7770YHh7OLLPj3jrFkUceiRtvvBEPPfQQ9txzT/zkJz/B3/72NxxxxBGZervttlvH2+7v7zdxfy6q1WrGcCxa3xdTV61WzXJ7WlS31X4IawbIyCIQCAQCgdCTGM/H6KWXXoqjjz4at912G+6++26cfPLJWLJkCX7+859j4403Rn9/Px588EHcd999uOOOO3DXXXfhxhtvxLvf/W7cfffdGQbNbVOr9YQQ2G677fDlL3/Zu41NNtmk6+OaSBQdYyssX74ce+21F2bOnIkLL7wQCxYsQF9fHx5//HGcccYZHTGDLvbbbz9suOGGuP7667Hnnnvi+uuvx9y5c7Fo0aJMvVdffbWtmKyhoSETB7bRRhshjmMsW7YMc+bMMXXq9Tr+/ve/Y968eU23tdFGG+UERADg5ZdfBgCz/kYbbZQpd+u22g9hzQC5CxIIBAKBQJgSzJ49GzNnzsTTTz/d1fqbbropAOC5557LlNfrdfzpT38yyzW22247nHPOOXjwwQfx0EMPYenSpbjqqqvMcs459tlnH3z5y1/GM888g3//93/Hvffea9z5itBqvQULFuAf//gH9tlnHyxatCj300zTggULIITAM88803R/7boOFp0fXeaen25x//334+9//zuuvfZafPrTn8YBBxyARYsWeeXPO3V7DIIAH/nIR3DzzTfj9ddfx6233orDDjssZxAuXLgQG220UcvfJZdcYtbZcccdASRulTYee+wxCCHM8iLsuOOO+N3vfpdj7n7xi19ktr/tttsiDMPcfur1Op588smW+yGsGSAji0AgEAgEwpSAc46DDjoIP/zhD3MfoABMHE4RFi1ahHK5jP/6r//K1P3GN76BFStWYP/99weQSGhHUZRZd7vttgPn3Lhw/eMf/8htX3/8+ty8NNpZ79BDD8XSpUvxta99LVd3bGzMKCUedNBB4JzjwgsvzLE/9vENDg7mJOp92HnnnTFnzhxcddVVmWO488478dvf/tacn/FCGzx2G+v1Oq644opc3cHBwY7dB4844gi8/vrr+MQnPoFVq1Z5Ff+6icl697vfjfXWWw9XXnllZltXXnklBgYGMufntddew7PPPpuJ6fvgBz+IOI5x9dVXm7JarYZrrrkGb3/72w1DOWvWLCxatAjXX389Vq5caeped911WLVqFQ455JCOzgdh9QS5CxIIBAKBQJgyXHTRRbj77rux1157GXnzl19+GTfddBMefvjhjMS4i9mzZ+PMM8/EBRdcgPe85z048MAD8dxzz+GKK67AwoULzcf4vffeixNPPBGHHHIIttxyS0RRhOuuuw5BEOADH/gAAODCCy/Egw8+iP333x+bbropli1bhiuuuAIbb7wxdt9998I2tLPeEUccge9973v45Cc/ifvuuw+77bYb4jjGs88+i+9973v48Y9/jJ133hlbbLEFzj77bHz+85/HHnvsgYMPPhiVSgWPPvoo5s2bhyVLlgBIJMavvPJKfOELX8AWW2yBOXPmGBENG6VSCV/60pdwzDHHYK+99sJhhx1mJNw322wznHrqqd1etgx23XVXrLvuujjqqKNw8skngzGG6667zmsk77TTTrjxxhtx2mmnYeHChRgaGsL73ve+ptt/61vfim233dYIiLztbW/L1ek2Juvzn/88Fi9ejEMOOQT77bcfHnroIVx//fX493//d6y33nqm7le+8hVccMEFuO+++0xesre//e045JBDcOaZZ2LZsmXYYost8K1vfQt//vOf8Y1vfCOzr3//93/Hrrvuavr5iy++iEsvvRT77rsv3vOe93TcdsJqiOmUNiQQJhuuvC2BQCAQph9/+ctf5JFHHilnz54tK5WK3HzzzeXixYtlrVaTUqYS7j6ZdykTyfatttpKlkolueGGG8pPfepT8vXXXzfL//jHP8qPfexjcsGCBbKvr0+ut9568l3vepf8yU9+Yur89Kc/lf/yL/8i582bJ8vlspw3b5487LDD5O9+97umbW93vXq9Lr/0pS/JbbbZRlYqFbnuuuvKnXbaSV5wwQVyxYoVmbrf/OY35Vvf+lZTb6+99pL33HOPWf7KK6/I/fffX86YMUMCMHLuRe+4G2+80WxvvfXWkx/96Efliy++mKlz1FFHycHBwdzxnXfeebKdz8NHHnlEvuMd75D9/f1y3rx58rOf/az88Y9/nGvPqlWr5Ec+8hG5zjrrSABty7n/x3/8hwQgL7roorbqd4Krr75avvnNb5blclkuWLBAXnbZZRnJfCnT8+Ce27GxMXn66afLuXPnykqlIhcuXCjvuusu734eeughueuuu8q+vj45e/ZsuXjxYjk8PDzhx0PoTTApW3DzBMJqgCuuuAIDAwM4+uijM+X3338/3vWud2VGonoN3/72t7Fs2TKccsop090UL1atWoWLL74Yv/jFL/DLX/4Sr7/+Oq655prcuW6G5cuX47Of/SxuueUWjI6OYpdddsGll17qHZ38wQ9+gPPPPx/PPPMM5syZg2OOOQb/9m//hjAk4p1AIBDWFvznf/4nTj31VPz5z3/GG9/4xuluDoHQMcjIIqwR2HbbbbHBBhvg/vvvz5QLIVCv11Eul5tK8k4nDjjgADz99NP485//PN1N8eLPf/4z5s+fjze+8Y3YfPPNcf/993dkZAkhsMcee+DXv/41PvOZz2CDDTbAFVdcgRdeeAG/+tWv8KY3vcnUvfPOO7H//vtj7733xmGHHYannnoK//M//4Pjjz8+50NPIBAIhDUTUkrssMMOWH/99VuKkBAIvQoaGl6DMDIykknUR0iCrO2EjITOsdFGG+Hll1/G3Llz8dhjj2HhwoUdrX/zzTfjZz/7GW666SZ88IMfBJAEhW+55ZY477zz8O1vf9vUPf3007H99tvj7rvvNszVzJkzcdFFF+HTn/40ttpqq4k7MAKBQCD0FEZGRvCDH/wA9913H5566incdttt090kAqFr9ObQPgFLly7Fsccei3nz5qFSqWD+/Pn41Kc+ZZLoXXvttWCM4YEHHsAJJ5yAOXPmYOONNzbrX3HFFdhmm21QqVQwb948LF68OKdM9Pzzz+MDH/gA5s6di76+Pmy88cb48Ic/nFEBuueee7D77rtjnXXWwdDQEN785jfjrLPOatn+dtar1Wo477zzsMUWW6BSqWCTTTbBZz/7Wa+q0/XXX49ddtkFAwMDWHfddbHnnnvi7rvvBgBsttlm+M1vfoMHHngAjDEwxoxr4P333w/GWI7huummm7DTTjuhv78fG2ywAQ4//PBc7oujjz4aQ0NDWLp0KQ466CAMDQ1h9uzZOP3009vKzXHbbbdh//33N9dwwYIF+PznP59Zd++998Ydd9yBv/zlL6btm222WeE2jz76aFPP/Z1//vkt29QNKpUK5s6d2/X6N998MzbccEMcfPDBpmz27Nk49NBDcdttt5nr/cwzz+CZZ57B8ccfn3ENPOGEEyClxM0339z9QRAIBAKh5/Hqq6/iIx/5CG666SacddZZOPDAA6e7SQRC1yAmqwfx0ksvYZdddsHy5ctx/PHHY6uttsLSpUtx8803Y3R0FOVy2dQ94YQTMHv2bJx77rlGEvb888/HBRdcgEWLFuFTn/oUnnvuOVx55ZV49NFH8cgjj6BUKqFer2O//fZDrVbDSSedhLlz52Lp0qW4/fbbsXz5csyaNQu/+c1vcMABB2D77bfHhRdeiEqlgt///vd45JFHmra/nfWEEDjwwAPx8MMPG3Wpp556Cpdddhl+97vf4dZbbzV1L7jgApx//vnYddddceGFF6JcLuMXv/gF7r33Xuy77764/PLLcdJJJ2FoaAhnn302AGDDDTcsbN+1116LY445BgsXLsSSJUuM8tIjjzyCJ554IqNsFccx9ttvP7z97W/HJZdcgp/85Ce49NJLsWDBAnzqU59qeh6uvfZaDA0N4bTTTsPQ0BDuvfdenHvuuRgeHsbFF18MADj77LOxYsUKvPjii7jssssAwCRN9OETn/hELiHjXXfdhRtuuCGTWPG1115r2jaNGTNmoFKptFW3WzzxxBN429velnPX3GWXXXD11Vfjd7/7Hbbbbjs88cQTABIJYhvz5s3DxhtvbJYTCAQCYc3EZptt1lLGn0BYbTCNohuEAhx55JGSc+5VVdLqN1p5affdd5dRFJnly5Ytk+VyWe67774yjmNT/pWvfEUCkN/85jellFI+8cQTEoC86aabCttx2WWXSQDy1Vdf7aj97ax33XXXSc65fOihhzLlV111lQQgH3nkESmllM8//7zknMv3v//9meORUmaUgLbZZhujtmTDVV6q1+tyzpw5ctttt5VjY2Om3u233y4ByHPPPdeUHXXUURKAvPDCCzPbfOtb3yp32mmn5idBSjk6Opor+8QnPiEHBgZktVo1Zfvvv3/baksunn/+eTlr1iz5T//0T5l+AKCt3zXXXNPR/h599NGO1xscHJQf+9jHcuV33HGHBGBUmS6++GIJQP71r3/N1V24cKF8xzve0VFbCQQCgUAgEKYL5C7YYxBC4NZbb8X73ve+3Ig+kM+cftxxx2WyoP/kJz9BvV7HKaeckmEOjjvuOMycORN33HEHgCRRHgD8+Mc/ziTas6EZndtuuy2XJLEZ2llP577Yaqut8Nprr5mfzvuhA11vvfVWCCFw7rnn5piQTrPIA0lW92XLluGEE07IxGrtv//+2Gqrrcz5sfHJT34y83+PPfbAH//4x5b76u/vN/MrV67Ea6+9hj322AOjo6N49tlnO267i5GREbz//e/Huuuui+985zuZftBOgsZ77rkH++2337jb0QpjY2Netkyf/7Gxscy0qK5eTiAQCAQCgdDrIHfBHsOrr76K4eFhbLvttm3Vnz9/fub/X/7yFwDAm9/85kx5uVzG5ptvbpbPnz8fp512Gr785S/jhhtuwB577IEDDzwQhx9+uDHAPvShD+HrX/86Pv7xj+Nzn/sc9tlnHxx88MH44Ac/2FSpr531nn/+efz2t7/F7NmzvdtYtmwZAOAPf/gDOOd4y1ve0tb5aIWi8wMAW221FR5++OFMWV9fX66N6667Ll5//fWW+/rNb36Dc845B/feey+Gh4czy+y4t25x3HHH4Q9/+AN+9rOfYf31188sc10KWyGOY7z66quZsvXWWy/jmtot+vv7vXF21WrVLLenRXVto3VNx29/+1scdthhaDQaXa2//vrr4wc/+EHTpK4EApAM7L300kuYMWNGVwNXBAKh9yGlxMqVKzFv3rxJU1qu1+vo32RnPPPgTd5vrLURZGSt5hjPh+ell16Ko48+GrfddhvuvvtunHzyyViyZAl+/vOfY+ONN0Z/fz8efPBB3Hfffbjjjjtw11134cYbb8S73/1u3H333RnmxG1Tq/WEENhuu+3w5S9/2buNTTbZpOvjmkgUHWMrLF++HHvttRdmzpyJCy+8EAsWLEBfXx8ef/xxnHHGGR0xgz7853/+J77zne/g+uuvx4477phb/sorr7S1nVmzZqG/vx8vvPBCzmCfqNxiWp3QhS6bN2+eqafL3ev/8ssvY5dddhl3W1YXPPnkk/j1c39BMK+7Y44f/ileeuklMrIILfHSSy/1zPOWQCBMLl544YWMSNpEon/zPSGWPYWtd/kniBV/nZR9rG4gI6vHMHv2bMycORNPP/10V+tvuummAIDnnnsOm2++uSmv1+v405/+lGM4tttuO2y33XY455xz8LOf/Qy77bYbrrrqKnzhC18AkEig77PPPthnn33w5S9/GRdddBHOPvts3HfffU3ZklbrLViwAL/+9a+xzz77NB09XbBgAYQQeOaZZ7zGhEa7I7D2+dGuiRrPPfecWT5e3H///fj73/+O73//+9hzzz1N+Z/+9Kdc3U5Hjx966CGcfvrpOOWUU/DRj37UW0cbLK2g813NnTsX99xzT2bZDjvs0FG7irDjjjvioYceghAiM4L2i1/8AgMDA9hyyy1NPSBx6bQNqpdeegkvvvgijj/++Alpz+oCFlQQrNNdAs6YkSc4oT3MmDEDAPD8739v5gkEwpqFlStX4k1bbDFp9/jy5cshXnkSwRt3R/ziL3D//fdPyCDt6g4ysnoMnHMcdNBBuP766/HYY4/l4rKklE0/yhctWoRyuYz/+q//wnve8x5T9xvf+AZWrFiB/fffHwAwPDyMgYGBjFT2dtttB865cdf6xz/+gfXWWy+zff0h7HPp0mhnvUMPPRQ/+tGP8LWvfS338Tw2NgYhBAYHB3HQQQfhjDPOwIUXXoibb74585Fun4vBwcGcRL0PO++8M+bMmYOrrroKH/vYx0z8z5133onf/va3OPfcc1tuox1oBkxaKkn1eh1XXHFFru7g4GDb7oMvv/wyDj30UOy+++5GodAH12AqwjbbbAMgcYvs1MWwqH0rVqzAggULUCqVAAAf/OAHcfPNN+P73/++yZP12muv4aabbsL73vc+cw222WYbbLXVVrj66qvxiU98wpzDK6+8Eowxs+5aA8bAeHdMKoHQLvQzdMaMGZg5c+Y0t4ZAIEwmJssleP037wnWvy7YuluAN8bw7vd+ENGqZZPmmri6gIysHsRFF12Eu+++G3vttZeRN3/55Zdx00034eGHH27qAjR79myceeaZuOCCC/Ce97wHBx54IJ577jlcccUVWLhwIQ4//HAAwL333osTTzwRhxxyCLbccktEUYTrrrsOQRDgAx/4AADgwgsvxIMPPoj9998fm266KZYtW4YrrrgCG2+8MXbffffCNrSz3hFHHIHvfe97+OQnP4n77rsPu+22G+I4xrPPPovvfe97+PGPf4ydd94ZW2yxBc4++2x8/vOfxx577IGDDz4YlUoFjz76KObNm4clS5YAAHbaaSdceeWV+MIXvoAtttgCc+bMyTFVAFAqlfClL30JxxxzDPbaay8cdthhRsJ9s802w6mnntrtZctg1113xbrrroujjjoKJ598MhhjuO6667zStDvttBNuvPFGnHbaaVi4cCGGhobwvve9z7vdk08+Ga+++io++9nP4rvf/W5m2fbbb4/tt98eQOcxWa3wla98BcuXL8dLL70EAPjhD3+IF198EQBw0kknmTi+M888E9/61rfwpz/9yeT7+uAHP4h3vOMdOOaYY/DMM89ggw02wBVXXIE4jnHBBRdk9nPxxRfjwAMPxL777osPf/jDePrpp/GVr3wFH//4x7H11ltP6DGtDiAji0AgEAi9jL/+9a8Qrz6D8E3vBWMMfPZbEL32W9x444047LDDprt50woysnoQb3jDG/CLX/wC//Zv/4YbbrgBw8PDeMMb3oB//ud/xsDAQMv1zz//fMyePRtf+cpXcOqpp2K99dbD8ccfj4suusiwCzvssAP2228//PCHP8TSpUsxMDCAHXbYAXfeeSfe8Y53AAAOPPBA/PnPf8Y3v/lNvPbaa9hggw2w11574YILLjAf1T60sx7nHLfeeisuu+wy/O///i9uueUWDAwMYPPNN8enP/1p40IGJEbb/Pnz8d///d84++yzMTAwgO233x5HHHGEqXPuuefiL3/5C/7jP/4DK1euxF577eU1soAkoe/AwAC++MUv4owzzsDg4CDe//7340tf+tKExbCsv/76uP322/Gv//qvOOecc7Duuuvi8MMPxz777JNT9DvhhBPw5JNP4pprrsFll12GTTfdtNDIevXVVxHHMU477bTcsvPOO88YWRONSy65xIiGAMD3v/99fP/73weAjFiKD0EQ4Ec/+hE+85nP4L/+678wNjaGhQsX4tprr80Fxx5wwAH4/ve/jwsuuAAnnXQSZs+ejbPOOmvCGMbVCWw8TBbpFxAIBAJhCrDZju8GW2dTsIENAACMhwg2ehs+cvTxZmB8bQWTvqF1AoFAIEwbvvOd7+DwT5yOvu0P7Wr90Z9fgd/8f09MmConYc3F8PAwZs2ahVf+9jdyFyQQ1lAMDw9j7oYbYsWKFRN6nz/55JN469t2RrjV+8EqabyXlALRcz8AX28LxEt/OWH7W91ATBaBQCAQCAQAACsYd5Wrqbx70fEQCM2wOvb3Zn19Mu4DKSXetsf+4BtsnTGwAIAxjmDeQsR/ud8bp7+2YO2OSCMQCIReBQM4D7r6EQgEAoEwmbj77rshx14D39AfpsBnvgFsYAPM3mpP7/K1AWRkEQgEQg+CIYnJ6uZHIBAIBMJkIY5jvOegw8A33BEsLI65CuYthHjtWW/6mrUB5C5IIBAIvQiScCcQCARCD6Iyf29ANMA32KppPda/Hti687HgbYsgXv/DlLStl0BMFoFAIPQoGOdd/QiEiQaT0vwIBELvYKrvy9HRUcSvPI5go53aGggM5r4NcviveOyxx6agdb0FYrIIBAKhF0FMFoFAIBB6DDO22AOsNAC2zvy26rPyIPgGb8Eue78P8cqXJi0hci9irTKyhBB46aWXMGPGjLXqIhMIhKmDlBIrV67EvHnzxpntfjxGFj3fCAQCgTCxWLZsGcTfnkKw+aKOvqP5htsheuZm3HHHHTjggAMmsYW9hbXKyHrppZewySabTHczCATCWoAXXngBG2+8cdfrMwZisgg9iWauSb0mfa3bQ26OhHbQa/3XRi/04Y22WwQ2NBd8aG5H67GgDD53R7zv0KMhR1+bpNb1HtYqI2vGjETH//nf/x5DP/sOAOD/+587AABjy2sAAB707g1GIBB6D0w9Mzbfb2sAQPmT5+NNW2xhnjcEAoFAIKwJOGr/nfGtO5/sal02sAHegBcntkE9jrXKyNLU5owZMzBjoA8AMBgmp4AHkZqSkUUgENqHNrJmVMoAgLIyrsbvkszAgu6YrB4ejCUQCATCagzWZbzw2uiZsVYZWQQCgbDagIQvCAQCgdBrYLw7I4utfcq3ZGQRCARCj4KMLMLqhk7iRqYi/qUX4lgIqw90f6G+WYzumSwysggEAoHQA2CMgZORRSAQCIReQtdM1tr3PiMjS4FisQgEQm+BJNwJBAKB0FtgrMt44YCYLAKBQCD0Aigmi0AgEAg9BsZ4V14WkmKyCBrMYraYY33LWLRcX8bt+9qKDuqubiCGsHewJvczoP2+xiagT3Zyf3cLBorJIkw9mIgA2fodl12p+cdT0ccV07fRVH58tTg2VrS8sLzFs6Db/bVCt+tNNLq8di0/uFsub/IcL1i3k31OerzUePtF0XJ9DPZyxpP7eqJA6oJtg4wsAoFAIBAIBAKB0BKsy5isKR1M6RGQkeVAj3KzgJuRccadEZNS2lGk8I92+FiDIgbM1+2864v2R66mm7XQ564N0o8wxeiVvtEOfGpERev7GCqXhW66vnufI72/9Tlrh8WeMJC7IIFAIBAIqy3IyCIQCISexDiMLPLSJRAIBMJkgLGu5NhJwn0tRFF8Bg8YglKQqeOr68Zm6P9BKfkvrJFv6ayvR8dZkB8h504dIO2gLqPlZ82K2YqpGI0nAmvtho9B0vD1jXbYLbeOzToX1nHYKW7Vde9n+780zJW+j2LVdnNnTn5cFkN3Ck4EwjjAxlakf3wfRT6XH7usk+W+uJrxuhTZsSh2XI1Vnol30fPuFACESOtKkW7Pty0pvNswy4VALn5LCn9bfP9F7Cxq8pZ16k4ICgZ8vB/Odt2Ca2/io3z9gfNs/JRblxUtZ/nlVvsY4/lt2W1x22Nv07esU+Sub74/ZHbdrD+0Ezto9RFWXdluK1ui6zxZ5C5I0B9sjDPwcjKvP8zaMbKEY8CwmKV1gmwdu7vpj7ecsaX2KWLZ0riy2+Jup1NDTKymSfIIkw/eJODY3CNx+pLPG1DZBy0LmOmfRcYWzwjRZI2rzDJlVBXds/Z/HuTboaHvDfd+FvEEBg+3ABuXhDuBQCAQCJOAbvNkEZNFIBAIhJ7AuGKyyF+QQCAQCBOP7pmstW/QkIysAvCAm5HuoKRHxT1S7mrkXKgA+UC595iRcI9zFFcj+XpZkXhGEYoYLJu9Ejl3J2t9h6WKm7BWa4Lqd6+oyK/u59KQVJ7+Emh2K8ou44whNm6ximXK3RPcLGvFaDUD46wlg8UDnlvGPYIXcMr0vWoEXSbBG8cHYrIIBAKB0FPgnJIRtwkysggEAoFAIAAAeG0lZFBO/qjgYhk4nwrN4lqKYq6KYmDcdVqhZWyVNPPMFyclhYlVSXKCyXTeLE/mWews13VUzJOMGpCNuioTkFHdlOt6smHNW+WmTIcBRHVIPXqjy0QMacVX6boyFrmQADecoFXstV7eLH62aLnt9mVCLAKeLdcDRDwwcVHmwzwsp3V5YGK4WFgyZaxkzatyFqp+yTl4qZyuY/aV9FPJQ9P3ZBCacjCeLAPS5TxM2+KJ2ZJ2GUS2PH9i8mVF8PbjIFMuJc+t482f5enbQNqnWVQDr4+237YWoJis9kFG1jjAAm4eVNxhtCYKhpESopCd0m0QmZgsxaQ1Ya2aMSvN2K3pRNAsAWEBVncGqVeuhQkt9FwD3cZmBBTX3w9uOQTcOC2RWZbELHbFbjVZx2Ww7I8J9wPFbKfRcRO6B2N+lo1AIBAIhOlC1zFZa59nxmpjVi5ZsgQLFy7EjBkzMGfOHBx00EF47rnnprtZBAKBMClgSFwgu/kRCAQCgTAZYIyB86DjHwlf9DAeeOABLF68GAsXLkQURTjrrLOw77774plnnsHg4OC4t++L4ShSMes2maurWGYnOtUj52mdlMFK6zRnsOzlmsFyWRB7E9MRi9VtfFQ3DNZE7r8bTDeDNnn7b7Zh9wR76qq4La1SmPBYWdeVNKYxAYcwCpzpYzpluXS5iZ3yKBh2g27XmyiwCer3BAKBQCBMBFi3TBa5C/Yu7rrrrsz/a6+9FnPmzMGvfvUr7LnnnhO2n25ckoDxuwk2M6708iJZdp9rYGyMrOx+fIbVdBsDLjo1qCbqO7g7V8Tik9dNu3zXopl73nTA30a9zF1ot93fZh7n3QOtpQCyhphrbHUrWKTvWZ9LnnEdnIx8M+2CFYhytLcqgdAVZKkfYmBdAEAcVJKplNCvOGnPq3WETMp1oXsXu4+F/OvSSV3iS5+lUyghHXzgLDB9nasHQRAwUxZwBubGXInYzEsRATotg9omixtpbA3nqcqNFJlYLACQjTpkvZqWWeVpmTWv11dxWjKqZ+KsRCMy86ZM7V8KkSnPp3SxYnkK4rFaxWk1i8/K5iO0Y6+smCyTAoeDB0GunJfCtEyvF5ZN/JW0YrNkaMVcqfgrGTbSMrtt+kvW/oj3xFnJoJTGZOk4Qx6mZTww81L1h1hI886TUpqQJ1/fFxC5vq7rNAPPGB/qvDC3RPX7NJWYee+m90P22R+oGykYWw7RmEADh9wF28ZqY2S5WLEiSZi43nrrFdap1Wqo1Wrm//Dw8KS3i0AgECYCSZ4sMpcIBAKBQFgdsVoaWUIInHLKKdhtt92w7bbbFtZbsmQJLrjggilsmccl0HLz87kJJnWsESgPg6XrFEm3266BrZiryRC7aIcBaofVabad8a7fDpol2Z0suOfcd5ztsFt+WfXi9Vu1o13odhTvw15Q7ErYXBSjYM6kS7DEMaC343cbFFat6XYFbAmG7o2sHj80AoFAIKyeIHXB9rFaHvHixYvx9NNP47vf/W7TemeeeSZWrFhhfi+88MIUtZBAIBDGD85YVz8CgUAgECYFyl2w899qaXKMC6sdk3XiiSfi9ttvx4MPPoiNN964ad1KpYJKpTJFLStGKwZLxrJlgmFb+KJIlj2W7TFXEx3Pk8p3dxpL5a/fjGBoZx/dfGR2y2roiABf0ufxopksuru7lFHqrB3j7QtF6/sZrqJ4LavcI4oBODLvbuJis7JHHGPtcwEnEMaF2tCGeHU0iQ2qxUk8USwAoe5TKS3vCZ3OyRMPbMN9Z7lwn9mBiTFhJn+prsMYwJHOm+WqLODp+gGz4lLUKHrAAwQqD1hYYmY5U/FSLG6k8VtxPcmVBSSxXLHOiZXm0UrXq+fyYMlGPY3TihppzitdFsf+nFnNypx56cuMLprHXnUF5wM5l4zWZjbsD2o7D5avLAgAnQfLzpely0rlXB4tGaRlMkhjqkx+Nx6kud2CsrW8ZOK+YvU9FlkxV3EkEaucU3q5/V1l3we670vZ+t7o5J7wfb/Y3z16ecCtefvesFPTqfn1+mZi5QS+C7tlsroOoF6NsdqYlVJKnHjiibjllltw7733Yv78+dPdJAKBQJg0kIQ7gUAgEHoOnIMFQRe/zk2OpUuX4vDDD8f666+P/v5+bLfddnjssccm4aAmB6sNk7V48WJ8+9vfxm233YYZM2bglVdeAQDMmjUL/f39U9KGPNskjEKZLxbLnrrrZdeRnlisfGxWK1n2dmKy7PrdoFPCp6i+PTLTTh0XvtGeTtioblUkC2FtrxOJf+4bhGzBDMZS5s6ZmyjYvu6dxGbl99X5Ogl8KxbFZLGC+tlYLaMuGKtRbq/aYDZeS9+P3OG77DI31stOMj6tYGQwEQgEAqG3MFUxWa+//jp22203vOtd78Kdd96J2bNn4/nnn8e6667b8b6nC6uNkXXllVcCAPbee+9M+TXXXIOjjz566hvUJkQsPG6Cebl2PS/qsb+uRTnbRpWNdt0FXWQ/yJt/1MWyXREK97+PAm9dp8j1z2dQNTOcuhlB6RauF0WzD3bfEp/hBfiNL9el0DW2mtVphvH2G//6xe6C+XZn69oy71D3CMrJibaNLSN84bgSasMqcC9Oj6NbCXcCgUAgECYF45Rwd5W+i0J7vvSlL2GTTTbBNddcY8pWNy+21cbIkuOMHSEQCITVCiyb9oVAmAq8MhLhD/8YAwCMNtSgn+UlIaQ0Hhz2YEqruKtm4I5ngx5c4IyZwaE0FoWhZC0vqQolrmOu0vlSkMZclUxsVhrnFVjbDwO9vIyAJ7E9QTiYLmdWri2Zxkml+bciEwuV1pOmLpMCTK9nTU0Z4I+lWl2/fXwDpFZcl9QPNyuPlclnZee2YszKY6VjurK5rUxdVRZJazDajrlqSEQqxi7jASTS+Ybu22raiCUaQsdpwcw3rAFwex3hDIYX3S96WScouk/s+8GG7vtvnNWHVavqHe2rGbqPyeIYHh7GrFmzMsXnnXcezj///Fz1H/zgB9hvv/1wyCGH4IEHHsAb3vAGnHDCCTjuuOO6bPnUY7UxsnodzdwEfVLtQFauPcduNZFnb5ZouB13wWbIS4q3I8/uBi13t0zDflC4jJWPrWrFUrXjRjhe98FmLoLMSI3n62hiJdM3HGEH00Y77rnQpdAOQEemjo/R6kQwo1md9vpZM3fBorJ0u67MO9P3iF4O4ZV1B9KXTea+LGC3esJVEComi5QCCQQCgdBDYIx15WXBOcPMmTPx4osvZsqLBOr++Mc/4sorr8Rpp52Gs846C48++ihOPvlklMtlHHXUUV21fapBRhaBQCD0KMhdkNAKS5Yswfe//308++yz6O/vx6677oovfelLePOb3zzdTSMQCGsiuszhqAcNZ86c2VZ9IQR23nlnXHTRRQCAt771rXj66adx1VVXrTZGFjmjdAEZCyN6YScbtiFiYeKxdH1dVzi/pNypI6WJw9IMVXY+/V8XyS9bJysbmq7T/OfC3U63CFgxi+Xm+GFB+uPOjwU88+PlIFOfBQxBmWd+9vpBKfD+GOfj+vm26bbdbpPbZl4O1LFYx5Y7dqt+QV6kxP2Fec95tyjqA532Kbdv6uVJ3/X3bfu/vif0PdLsvsrVERJSSMM42zDri9StoyfAxqMu2P6FX7JkCRYuXIgZM2Zgzpw5OOigg/Dcc89N3nERJhQPPPAAFi9ejJ///Oe455570Gg0sO+++2JkZGS6m0YgENZAMLDEZbDjX2f72WijjfCWt7wlU7b11lvjr3/96wQezeSCmCwCgUBYi6E/0hcuXIgoinDWWWdh3333xTPPPIPBwcHpbh6hBe66667M/2uvvRZz5szBr371K+y5554db++vK6p4/h+JgTZWz6vwxEKaeBW7rBMEzii4/T/gaRyVPW9irjKxKNzEZOnBphJnKCkX8mQ+u34pYNmYLSvvEKByb3nybHEAgVpPq6RxhAiCvqTMThPF9LZYrqwT2KfVjkv3nW67yLu8g8FSn5tyJv+SZ51sfqaJPW73eCTSPifiNGwtVvnDhLXcFgSTEpn4KyAbc+XOA0BDSDTUSg0r5ipdLjIxV2n8VhqnZd8fsRPz5c63gnuv+KYuqpHA6KqxtvfRCox152XBOCvQEfZjt912yw34/e53v8Omm27a8b6nC2RktQEdo9Es9seNxbIVBX1qgtl1BOK6iiFxZNp98uzNVAaLQoN85c2S3HbDgPiYqiIFwXbiruzz3VZsVkE28eaqgxPnjpVjNJ1YHzvGSh+adAOdA2bqubFcdvyWy8f4FAnzyYzzsVkTLeve2fbsym4Mlu+/s3F1z+j8kwCHDHyy7lm1wfx1atLC8eQ7GCcYpkbCfaI/0gnTixUrVgAA1ltvPe/yWq2GWq1m/rtKXwQCgdALOPXUU7HrrrvioosuwqGHHopf/vKXuPrqq3H11VdPd9PaBhlZCu18TOWEK2KZE7xw3ZFkLHLGlTao7FxYRcZVXaTlRaIWWZeslodRWLfzHFj+FWzFJreuNq5s48ZnVBXW8RhSrhHlM5w6kXBvRwTDJ3RRlMxcX+fA2q7pbyafU7EBlndw4znBjGZGVytjK1nWvgCGjYmSg3eNK7fNAQPK3DW81BrGgBKIlYCSNry0scX0fRkE5h4NCnJp9YbsBQBWnMKgnXXr9XrbUrk2Wn2kE3oXQgiccsop2G233bDtttt66yxZsgQXXHDBFLeMQCCsMegyh2OnQk4LFy7ELbfcgjPPPBMXXngh5s+fj8svvxwf/ehHO973dIFisggEAqFH0X1MFvC1r30Ns2bNyvyWLFnSdH/tfKQTeheLFy/G008/je9+97uFdc4880ysWLHC/F544YUpbCGBQFjdwcYVL9wZDjjgADz11FOoVqv47W9/u1rJtwPEZOVgMwqGbXA6hh0c7zJgvsTDtlR7Upb9H0eiKYOly4ul2+35zt2bUhbDl9TWretbP7sdn9ugy2DZbJFmmbzLHOYqZb1as1V+l8KJcb8q8n22ofuC7TaYugKqOk1YrlR+XG9PszHM6qfaLS7LvwjkXQj9jJa/T/kSF090v/N59hexboDU3oF5RitKRdxNYuJYx1Fo1pipcmlGljpxG5wO6BdZV+sCOO6443JGVSsWS3+kP/zww13tlzB9OPHEE3H77bfjwQcfxMYbb1xYrxWbuXS4hr++NgoAiNQzLLT6YdRlLImG/ey0t+uLw3LnAaAc8nQ+4GkslslzlebRCgNuniV2nJa9jp1fK1nOrZxc1ruLARzpvEYnt6g+XfbjUiCNFzIeLToNlyU6JKx8Tm5upnT76fPczcHUbdwPt97rGZElT44mfQ65JcDklgPZc6n/J8vbbqITt6XKCs6liaMSwpxDO/YqXZ7GX+nXQxSL9FxLmcmPBQD1WJhzW49ELubKjsly47AizzVp9zoFnGXuH13m207AGaoj1ba22w6YI7jV/noT1oTVBmRkEQgEQk+iu1wkGuVyuW2pXKD9j3RCb0FKiZNOOgm33HIL7r//fsyfP3+6m0QgENZkdDkAuDbmfSQjqwNoBssXfyXiYrYql2DY+W/HW/kYLLeOT/BCo534l/FqPbiMlS82qxWDlciUFwheqJHFLNvlj9vKsl7+A+OeeKyJFLxwkcZbZctFLHIMmHTaIWJpWC7mxPvZ8VuGuTKJi1mmLkcqjlHEaCWr+wUnxivb31kcVj5xcr5OyroVMVo8loWJihlXDGIs0jgtXhyb5faP6RLAmIqXEn2kr95YvHgxvv3tb+O2227DjBkz8MorrwAAZs2ahf7+/mluHYFAWNPAuo3JWgvzPpKRRSAQCD2IxF1w8vdDH+mrN6688koAwN57750pv+aaa3D00UdPfYMIBMIaja4l3InJImjYI9dFCUrtRMRSZBmstFykjJXKOaL/m3wKsjmDpf8XSbjbaMVABIzl4q3SOBjL37qLe8FmtpoxWLq8iLliGQYrz2ol61g+401UCX3/bfhYrm4hjNS/f38szsddabbLKN5xlovlctnRIGCZGCMgjT1KuVWeK8vLvOcVK5vBH6fl+P3n4raKd+Bnr7KMWrY8y1zlGC0hUFIsVaoEqv4HdmyWmg+y7J9BUKwWuiaCPtJXb3SS/6gd/GOsjpW1CIAVr2vFRnUTh9UK7cS4asRCpm2xc0fZt7y5bQWE2bbOX5QeS0MwBEwx2CYOS5jYIJdZ98Wh2LFP7vNOyPR82TmW7LLIigHK52jKxvvUVfypHfujyyIhzXws/bnMWl07X74lU8YYymHyPA15Om/HyukyO27OzmVm5zoLrRi5wIrrypdZ7cvk32p+LcxxW3m2YvsayHQdk3PLinUT1jUycXEirwSttzvV8O3TjZfUdf6xqo7aSGPidt7lAOBUDBr2GsjI6gDtuQlmXQKTPFmOzLtH5KJY+AJqWizhnv7Pt9n93o+lzAhd+Opk18+7BhYJXdgugq5xxctB5j/jvFB63TasXHqZOyIZ7rxdp2h5pu4E0tetXBAzhrvz8e4zwGzDC0iNgqRvadc2BWWQabc4GQjjQoh6mqARcI0t16jx/W/tQtiOcVVs0NkLsvvK9rukzHUTtI2tQJobKFlPS7nHut/JXO4sn9tgkfHtk+6fTExk/yzCRH+kEwgEAmHNBQPripUiJotAIBAIvYEug4sJBAKBQJgsdOsuuDa+zsjIagI3SamGtFgr103QyLI3UtdA4TBYeddAn/AFnDrtMVeu659PmtvnHtgJmjFYQMLoBIq5yrkLWq6BPuYqqaPXSc97Wrd4mYZ78zdLRNxO4uF2wVqwHJKn7FUzYQXjduiIWWjXQsaFw2ql/c+wNJa7IPS1cNxWmzFa3QpfdNJHU/jcBd1lKaOm7xGX0UrcbqGWqbU1W6WPHTH0iTTCIh63QQGRK5t6dDdaSCAQCATCpKFL4Yu10coiI4tAIBB6EAxT4y5IINioRwL9pWQgouKJsQE6y+XTTrmdD8tensmTZeddUlU5Z7lBPjvex87tVJT7yUUsJPT4UyM36JPAl48qFlY8j867FMtMnJWet2OrxtSgVz0SGNXzagBorB6jHiVlo/U4G5MV6YFdFYcVScR6sDcSpg1mINjOp+W5fvazxk4cq88VDzkCfV5DZgY6A6uP6JisgXKAcpj0of5ygHKQluu6/da8Xk/HbNn5y0oBy8RqAcm1LMrf1S4yuRjVoFwABq7c0oVyvQ8l0rg5DpScmCwhJPrUsdp5zXx5stxyF744usL2F9xb9jq6vwR8fOlAXHSbw3FtHDRc642sTkaq3TgaEYtcLJZOGGuLXcRWMKo9tVmrZgyW/t9Mut2FW8eXcLgTdJJoOCgHhQxWUNYxVbyQuXJZK9+yzAuhRRLidhIXTwTSJLd+sQRpxV25rJeP5SoSX2AxM8t0PJHLbLFYIK7rdmUFMDTLGNfjthIWd8NqdZKoOBNAbOIEfTFiWbbNZbTqQhoGS2+HO+xdUA4cEQx/bJb7XJgWAYzxuAuufe8yAoFAIBB6Cmu9kUUgEAi9CIbOVNcIBAKBQJhsMEtBuhN0s87qDjKyCiBiYWJi3PgMW7bdjcVyY2RkLL3MlT1N1AXh1PEzW3ZZO2gm0958Pb87ha0u6GOw9H/NJgWlbGyWHX+VX+ZntICUufJJuucl25szW8DkCgq4CYY1bGU65jAjPpZLs1u++K3CuC1oJUFulPXSbWdVBoNykIvP0gp+dmxWxq0CncVrddtv7TirpF12DGAytRks/d+9j/TR2tLuttIg4I/Nmsxk1e2CMUZGFoFAIBB6C916WZCEO8GHItchkcmT5ci0W2IXPqPKnrabJ0ujnY/cTmTas+v5t2N/4AbMNYry/10DyhhglmugzzgDsgZVK5n3zP4L5N596/vQjQthkWtgssxx2SxZbmcl9dEv3L4l049+ZQwE1jIgMb5cl0LjDqdFHSxxDHeZbWzpc2cML5l100sWZ40rX76sZugkd1YK9zpJq0zfP8k/19iyy0z/l6kAhjFim7gNumI3LqZXEINAmDwMVUJsvF6ShHqwnHwiBGx88YHt5Juy46zseu4jm7NsXiV30A9AVzmWbPhyX9k5r+x6DSvPlY7dqcZpHFY1SmOudPyVno7WY4w1dFmEldUos7xejxGp5VFDpPP12DyvIlU3jrNxWnGUbEuK2ExlnEuWmAEzqUACMJ7MB2HSB3jATfxVEHCETlqWsBwgVO/9sMTNfLkcmPirGX3JtvrLoYn7G7CW23FaOs6pJBj6zLuZm/NeMnF3/us+3uudLste92Z5toqWm2V2bJa1m6L8Xt3A3kfD+q4cY6WutucD61L4gmKyCAQCgdAz6JbJWvteZQQCgUCYCnQt4b4WemaQkeVAOkxDdlnqJqjrNnMTBJLRdZ9kezKFqdOKwYqlREeh913ItGdFLdwpM1M9mlWUaDgoBd4yIOsaaNSJSqkYhr0OC5jXPRBoLvOe/reW8ebMRFHy2ZawBody4ghqmWY5gWzSYSDPiNgMVLpdx60tZjmXQrcNtjiGu50UsZF31wmLDZ+vVYkYkGW1suxoJ4SOGRFuo64e2bOuoGlHM0Yrf29lt9sX2y6+xW6DwmmlyzhOBRijmCwCgUAg9BooGXG7ICOLQCAQehAkfEEgEAiEXkMi4d7NihPelJ4HGVkFSEQtimOxAJ2M2JVsV77YIpVtd4Uv9Oh682TE+VH/TmKx8uv4hSzcdWzGKlsnmXLGmjJYuryIwbLjr0x9J6bLZq+K5N01WMBzLJXLSvliraZHwl0YdiuNzVLLhE4mHOTYUJ9Muxu3pY8nmwTbbYdiqzR75Sur6/V1P5AWc5XtQ4koRnMxDDuJdq417ficq+3bsY2u8EU2GXG2zJV0bwgBKGl7fc58sVlFxk2zGLyJBmNASEYWYYoxd6hi4l0GSmncS5pvauL25Y/N8sfS2Pu1y/Us93zBtTNw7j6GBKQpS+Jt0nk75xWQxLw01D1ajQT0W6Ck1xexN7+YntZjgbF6Ejs1Wo9NLFatlpQ1arGJuarXIkSNZP9RIy3XcVpxfQyikTzcRFSHiJL5WE3dmCwdq6Vjr4BsTFYQJspJ3JryUjIflPvT+Cv17ggbAmEp2Wa5EqbfSdYJ9uVCqwiei3ULeBprV+Lc5D3TebL6Qm76aIkzlFRlnVsriduDmff1kXZJFV//cJdnYrqcV0TzeK/xeUj4Xkf2NnVM1mgjxmgQjWtfNshdsH2QkUUgEAg9ifGoC659LzMCgUAgTAG6Fr6YhLb0OMjIagKXCbBjsZLl0ozWaAU3V1kmGcmHU9ZaXVDvuRMJ7CRGRlXSiYJb1Hf/F8lk24qCbpyUzWAl/7lhk3hZJyFWdfT2rITFuVisTB2HldIjVYbZsmOy/HWTZQGaYbzMVobhKLnLYlOeMlae9dR/YZirlN2y68pYGsbKjdfS5zCux4VKioz72BjFYJnzquKwJDNskO6jdh9x2aV2YrTc0bzm61gL9RPa3D/JX38yYs2wITfVSoP6njX90IrNKpLhn0qMJyZr+ltPIBAIhDURjHUZX7UWWllkZHUA200QSD6YRT3OlLniFrbwhU+6Xf8vMq58ebJc2HLt3Xwb2uIWrrugmYapsRRow8ljXOk6rnug6xrYzKVQGzyM85wxZS/TcA2oXJ4sj+jFhLsLWoZVzqWslNxmwhLAkK67oGWIceOCmp3axldOwt0xuoA035YLV3yjJTIiGK6cf7afdoJ2+nbWVTE7gOAztuotBCpsw5C797PlNqjPI7dcNKcaSUzWWphYhEAgEAg9C8YYuQu2CTKyCAQCgUAgAADmr9uPQZ3jSA98sZR9n2yFsKLvMN9uux2CsIfB0vgr/T9V8pVWTGkssvNAEuOp47OqkUBN58lSA1OjDY6Kmi9xbpjpIobajdmSQpq8R0HMWw722DmxhDUPJAN50imz5+3YLABmfeZZxwfOLeXhkCNUg65hKc2DNaCmQ30lzKiEaj7EkMqfpfOyDZQCVEJu5vvUfEUNjiYxWWkclh4zDay4QeN94/Rdfert/jSeoSzXL6RZmNVkidRKZ5BeIzYxWRKrwomLySK0DzKyCiBimbvxpCN8YbsLum6Ctvufz2XJrdNowVy141IVMNZW8uE8W5Wu47IVOsDYFqdoxmDpqVvmS0qcLtPMWJj5b4tamIBcD0uVcxNs4jboYiIZLZedcsF9TJbz38d2aZbLZrj0sriRPDiZ5SYIJNfLngfSUaS40Vq8wWZybBGMZAozzUv8J//bYadalWWRF75w+3hd5JMQ5110rbY2cRvU7pdiOlPUs3HEZK19A4YEAoFAmAowUDLiNkFGFoFAIPQgEnfBte+lRCAQCITeBe9yAHBt9H4nI8uBkc22mHNfLJb+78ZiufFWtqhFUVLiRobt8se4+JgBOxZLtT4nqc0dhqEZvDFZZS1gkcZWGVbKw2DpciN04bBdqSBG4GWuAEvcolwy8VRFbFU2NquY0WqVbLhVsuJWsBMOu7AFVPKxWNn/XIjCOprlEvWGiR8yMuQ6CbGSaRX12Iw0tcNcue3TbGXmOGp5JgtoTkHZMVB5djbf14sZMLsDS6csLw7jJiG27xVXwMMXmyVN3NrUSba7ICOLQCAQCL2GbkWZfCkb1nSQkUUgEAg9CMby+eoIhMnGe0/7DgY3mAsgyXcEJK5BJmdhi48rMVmBJwXQ7Wm1X2kt1/NCylQ1WJeJNMegENLkmxINK/dUfSyZRnXENTVfr6IxtiqzvFUcE6E1GA8QlPsBAKX+IQBAUO5DUEnKgrBslpucXqVyOs9ZOrhr9WPTnx058lZucO32t8mAe++5bXD7uA5jGV2xCqI+OnHt6JLJWhsHDcnIKoCMhYnH8MViAUksh8gxWHklQZ/iIGArCbZWE7RH+924l04+xHxxV3Y8jSkLswySZjaCMkeoglR9DBYAhP1hTlVQs1+8pNcNU+n2UimzL26YrDDHMLmsl81QFdV151uhHVarGXPlgvuYrILtCCveysdyAYDg3LBapm82GknbdVJiHoGpeC19jmIn6TPQLBA2XaYZniBUU6VkGDC77/hYrvZVB1vHINoFLoOV9l99b7lJiDWzZTNraVk+NkvLuQcOBewmKJ9cjCdPFoFAIBAIEw9OTFbbICNLwZVsBrJ5iYCsm6Ce5o2j/NQt05/VfnGMYndB1z2wmbHVzPByRQrsXFgmY7oRquDONMgZV6nRZdXJiWOE6r+alkrFgheWkcU9boGZuk2MLG5Ju3cjcOFbJyfP3gbsdUScHdl0jSxuGVluHT26yjjPybzHObdBDqGNq0axMcUC//FkR8Sy2y7FartSWMaM2webubf63QaTeRQsa+0u2Fz4AqaOawAa11rrvrbl3KcLlCeLQCAQCL0GNk1M1he/+EWceeaZ+PSnP43LL798XNuaKpCRRSAQCD0IBiAkJoswxZj/1jdj7pxBAMCMvlQqtV358U6WxR14BHS6T3d5ZM3bUumubHoUCeOGJWKBOFLLYwGh5NgjxebHsUBUT8t0eaNaTZbXxhBVExfCxtgqRNURMw/ALFubEfYNGTfAsC/pd6X+IYR9yjWw0o9SX1+yXA3ehqUAoR7UDbgp52FaFoRaGZkbN7swzMvoBzxrMLjP3FaGwXgMh2Z5EIu2a5e7/T/O9PH03nrpH2OIqiN48YZuW5oFZ929m8Yj5vzoo4/iq1/9KrbffvvuNzINICOrA6QCGIpZkLLQTdCXjLhRUMcOxtfwCQDky1zZ7LzAhS+5cJHsdsAstz7H3c92/ytisGw3QtstEEjdBHm5pLYTmjKXlbKZrRy75Uk83I5ke0fugm3U7YTRsuvq1rsMVs5FECnrpetqt0NZCg07pevrcylUeZyRv09dCJP/tk+6ZrmyjwLbLU7Pu+6ygYCnL0nnf1pHNHEJbJWYOFueZcTK5mEvc0yYq1uRuBSm80DebVDGAiJO5dyBLMNNIBAIBMLaiq7VBbt0F1y1ahU++tGP4mtf+xq+8IUvdLWN6cJaKKhIIBAIvQ/tLtjNj0AgEAiEyUC37ybNKA4PD2d+tVqt6f4WL16M/fffH4sWLZqKw5tQEJNVAHsk35VwN8IXViyVK92ejbdymat83U6SD3czqN4s4bBmHUqc5wQrXEYr7A8t6fY8g5X8L2dir5L13Zis0LBcdgxW5n8QFMq7NxO1yMVv8bwcuRft1rPRgXqUrTRVxGTZ827cVSrAEptzJepRZnuxdb4E14IX2UTOwpyvutUCzYzpZemjwTBXzn1QiiViqSTfC4QvuiWA2km+raGZqDJnOeELfTQpU8YK47VMXJknEbkvZnPyQQYTgUAgEHoLCZPVOUcTMI7h4WHMmjUrU37eeefh/PPP967z3e9+F48//jgeffTRbpo67SAji0AgEHoQ48qTRbYZoUsc+a4F2GwdJZltDSrYYkra7cd1AQayrr2+kClfHJVvO8m2mre1cD0hC+vEMi0TIh0oFdYgqI7JagiJuhYXEhJjSoG0rmKz6pHAqC6LhVk+pga/VlYj1PTyWoRGTcVs1SJVFpv5Ri1Co5rIbEcqZqs+usLMN6ojZr4XpeEZDxCq2KpS36CZLw/MssoHkmklREmlByhXAjNfqgSqLERFDdrO6AvRrwYV+1VZOeAY0PMhR1nFYunlAWcoq8HEksWgBIzlcodyni8Dsq5tzZ7DrVzgisblfOu5+3F3WyRo1uqee220jtFVK/Fg05a2j26FLzgHZs6ciRdffDFTXqlUvPVfeOEFfPrTn8Y999yDPhWXt7qBjCwH9oi1YbBcJTf1gG0mvW6PkttS7fbUpy44HmQeEJ6y5H+acFjHshh1wTLPqwnqJMLW/7A/6TaawQr7s2xV0Fc2sVdhn85bkY/RSmOwshLuqbR7mGOwNAw7ZbNPOQXCNpipbtirIrR48TEAUsVZmcviBn6LOPcCdfufaEQpu6XOXawk3O3YrLikJNxVnFZU9SVwLlIeVEmNY44g1uqCairS/+Wa7sN+5cskQTYyyzR85e3cB0Xy7j51QXcfdSE9sVi6DlPHlSYZN0mf1TmbSkaL1AUJBAKBsKZh5syZbdX71a9+hWXLluFtb3ubKYvjGA8++CC+8pWvoFarIWjnO28aQUZWAYT1JZfLj2UJWDQznPTUzpnlLrPXbRdp/azIQDKfrZsXvsi7CeoRFW5Jr7sy7SVjUIU540obUkFfMhoRlEIE2rhSRpXrLhiUSnn3QOc/40FqBBk3QZ9x5Yhh+GjsiTSmOoVlNBmJBo9xZeqoeWOQ6bqqnJfCVNZdjZi67oO28EXsGKqxdS5ZtbkvdNIOPdiQd5vlde0u6ApfwJTbBpe9LGtcdT/KYN8Pbg4sDd0lEpGZtG32+roNQkrLNVMrUHXdvHGB3AUJBAKB0EuYqjxZ++yzD5566qlM2THHHIOtttoKZ5xxRs8bWAAZWQQCgdCTGA+TRSAQCATCZGCq8mTNmDED2267baZscHAQ66+/fq68V0FGVhP4kg8D2ZFvnxy7PW14hS+ydSYDru+uLUTgcxMEEnEL7siza9dAW7a9iMFK/5eNW6BmtLRLoC18YSTcNcsUardBi61Syww75XET9DJXTp1CTKG7oF3HfdRkmC1dR2Ql3O1yzXLxsKHqJP+FcREMrfmkThwkQhfGBbNqC1/4IWOJ0HHytoUwRDnZr+s2qO8Lm1nVfbIxDtaqGezE35o1S+9D1YaM8IUrQJNMy1wakQ9W4DZIIKyp+OBbZmOIq2eZtJ5Lre5b+53DsveJtP9b89Jax7f5opirZi1xY1Kksw17ubT+63rCaouwQgKktNnuZHksJbRmUSwl6pGO5UoKa5FAVYUX1GKBUZVHq6bKRhsxVqmYrLF6jFVVFculylZVG1hZ1fORN5Yrzc0VO/m7kue+iJLnvIxTV3RfTBfjgXkXsyAAD5N3d6jTrlj5qEp9QTrvia0a6gsxo0/PlzDDKgeS2KkhVTZQClBRMVUDapuVgKNPlVVCjpJ67pZDKxWN6kZJnFU6D6gBKuOpk3ZNjsRA0OVA9l1s2wDMw7oU2QjNTAeXvcncJm7/tu43lrn3WtyHRfeeWq/OhzA8PHGf+5zlvzHbW2/tGzQkI4tAIBB6EIzUBQkEAoHQY+ha+GICXmf333//+DcyhSAjqwl8yYeB7Ah4kQx0o406Ew1b1MKV0LbZK1Mn1LFQOv6KW/Ls+VisZFpqymDp/4bB0qNgjgAGC8tgit0ybFWY/Q8eNGWwAEfcYjyM1lTAx3SpEU8TqxXHufo+RsuURY1MHRZqAYy6YbKYI3jBeGsGS0Naw76ayQ3qOmaMI26ovmMSFCdTW4DCZbXSEbCJvw/Se8uNt0qmDSkRmDLNuul2pXXlZNLM7YLcBQkEAoHQY+g2JmttfJ+RkUUgEAg9iHFJuJO+IIFAIBAmAZwxhN0YWeQuSNCwY2RcVUGbkbKVBt1lbp1u1QSL4CoHAsglUTVxVxaLkMZiZRMNB+UgJ8+ei9HqKxsGqzSY5C2wGaxkWsmpC/JyUtewV2E5x1zl/gdByk6Z2CyHlbLlyKc6BqsV2ojRcn3jmdXvzDKRVRmUcZxuWzFZ5r9islhUMqyWLYkPJEmedbkrm59rXyxM/w+NqqBqh5AI6lrlUMVmcc0OpWqDaZmSP1fb9ilejpflLYrJsqdFcWP2vatZ6yKVQRHLSZdxJwl3wnRg5rM/gVjx98Ll9rsxE6PoUXzVngYMyHoa5BRhm6Ti8D2zWz3Hm8ROZr0f/PM5D4qk0MS7mBgzxgG1Pck4EKhPKuUlIvtCyEC914IQMuhX80mZCEqIdE6uOI3xjuL0u6Ie6zgviWojjeWqWnFdQBLzpWO9qpEwcWF2Ti+dP8yXqyzgqQuYnXtKx0P1hdzETlUCbuKn+qx4qr5SmpuqHKTeM6E1DyT51/RHOo8bQKzeVbHysojrYLpMRGlMUqy8M6QA4jRu0MQvuVNApUXJxzz7/mc8STJ1hL+8aJsoyGXme7+769t14tizvMl3hXtfqLqV/kFURkaL1+sQ3b6bODFZBAKBQOgFMLC1cuSPQCAQCL0LPkXqgmsCVisj68EHH8TFF1+MX/3qV3j55Zdxyy234KCDDprQfcjMKEJ2tMenSuZjrrJ1p0ZNEMgquaUMVnZa5szEYuUTDwdWfiw1ImUxWEASh1XEYJUG+025ib0yDFY5+z8sAUq9yIwsanVBKzdWLulws4TDvRJ71QGYMyplj6S5+bGkxWiZecVkmZxaWkkqKhlWi5tYrGoybcFeZdsjLHVNlRNLxWGJukCg1AXd2KyyyQ3HCmOxJpMI8jFYepq/R/PxW7pOafKa2BbWRjUmAoFAIPQuumay1sLX2WplZI2MjGCHHXbAxz72MRx88MGTui87GXEq3e4zoLJl2kTzuQtOFnwy2a4ARkb4wnETtOXaU6NKS7BnhStsUQttbIU6CbE2xCoVsIoypsrZqTGsSiUwNW8SDbv/AzsZsSPlruEzrFhr42HaIf3uB7bR5ZNuBxKDyrgOKqMq/a/MgkYjNbjUOZPadUcZW5n9OgaXNqhkHBv3wNCUSTMVnjIAKCsXlTJnxgXGdSXU4jCTa2zl71mRE8XIys8n92wyr58D+uzoazIVUu4Mk3tuCAQCgUDoFN0yWeQu2OP453/+Z/zzP//zdDeDQCAQCIQ1Ektv/n+IRsYAtMd2A8mgg+1VYOJA7ZhZD4POPMtb7Ze32aZW7e14nYL9+sr19nkQ+HNDWoONJTUAWQrLGNSDkmqQkpf7wPoHk7JyH2SYlMtKCVINcur4LlnqgwyS7cqgBKkGIGMrXtzkAvOM+yb5pKw4WfVBbJRr44aJmWKNKhAnMT4sUh4SUQNsJJmX9Srk2Eiyr3oVspaWAwCiupmPGw0zWCgakZmKupqPnZgqBT0Q6EOzZd76rWKuOoDw7NtuT2be2W/iOWLpAZg47Hyclq/Nbr+2BwVX1hptH0MrdMtkrY3u76uVkdUparUaarWa+T88PNzR+q50u0aWpcqXJVOY6US7Cbry7Gk5yy1zp5wx4wqYSrdrZotnpNqTadYVMBzsyzFY4WD6QgCSF4TLYBlmS79cwlLqHljSDJbDVgWWs5YbcOyUZ8u6vJG7YRwnel++ZIQO68XiRvrwFOql21AvP8VkybCRslo5l0t1vXnQnsugftCbqerj9dj0nbihXQlVkuSxvKhFfpq6D7rLJuqeaeYuyE2dlMGy/wN5hm5KqSU2jpG/DlebCldsAoFAIBDWJqwGflXdY8mSJZg1a5b5bbLJJtPdJAKBQGgLibsg6+rXKbQr9v/8z/9M/IEQCAQCYY2Bdhfs9EfugmsYzjzzTJx22mnm//DwcFeGlo+d0lM33qqI2ZpM6I8qjrzghR2LBeiEwylzBdiJhsOMVDuQJhy2Y7JyDFbfAACAVRK2i5X7cgwWNzFZKXtlJNs1Y6XZKq66JWM5oYu2mKzVGTZr5cZtafeAoJzI2lp19LnUyYnRqBtWSxQwWeCBcedxHwRpTJZAoFw47DIgYbKExWoBgChlhVPKQlixWMm2XUn3pK9O7n2SFatRMsLMXWbHZPVAMmKwKRO+IFdsgsaff/q7VOSm3J6YEOPMuPExi+3V8zzgmXL9sWUz6b6UCGwSmOOiROOioDzrviWdZTLjHpZjvpEeQ9gfmuPW55UF2Rhp411S0jHR2fetLTJl3skD6r1b6QPrS10LufIQCfW7l/M07ln9VweVtl+57UEI486nvSRkvQpRTVwAZa2KaDRxKY2ryfLGyBgiNR+NVBFVa2Z5rN0A61ooKTbvDBnL9P2hJezHIu85zPQhT3+zP+KLvDSapd6Yiv6WjfdX3lJC5uoLS3TKXpbpb05/ZI4Ro5eLWGJEyd9PBEj4on2sYV+oWVQqFcycOTPzIxAIhNUBjKXulp3+AKBer2N4eDjzs92nCWsGHnzwQbzvfe/DvHnzwBjDrbfeOt1NIhAIazC6ZbJIwp2QgTuylWet0pgsV1VwKuAqCNquQq6qoE4oyMuBJxYrVRnkZgRNJRwe0PFXaaLhIgbL/s/0vI7BMjFZOhlxJWWlFLMidSJHO9FjJ7FYE4UC5b+p3r/uSb5Ei1IqRlCPTnEdUF1R05phtbg+v5rt0skzOTf9Vh+NfiDYrFWewUr2GfbFiOvZEW8dm6X7WKkuUOaasbKZK3sqc/Lukwl9j4qCwCU7jtKNx5xKMHQfk8UAfO1rX8MVV1yRKT/vvPNw/vnnj7tthN7BVKruEggEAutWXZCEL3obq1atwu9//3vz/09/+hOefPJJrLfeenjjG984jS0jEAiEicd4XkrHHXcclixZkimrVCrjbRKhx9Cpq2crQag//PH1nJt5EdxBPV2m+23qLph143LdsjLLWyj/8YAVuva58Cmw+dKzJPMiV0fG0gy0+ISu6iItqwuJsTgtB4CxWGBYpbN42zp9ptw3GBswljvvZc5QqqhB0P4QpcFk0LI8WEJ5sGTKk7IySoOpe792M7TVDYNy+smnz7N9jvQAmq3uZ7v9NUaS+fpIHdFYpOYbZtoYUe6CYxEatdici7rInhf3+N3whseXVzFT5fPsD7gp7w+sVDTWQLJvwNnug27/s5F1QfS4rLahRKnXa9Uv7XPt64duHzSug57wE1+4ihuPq5ePxRJjMpuTczzg3boLEpPV23jsscfwrne9y/zX8VZHHXUUrr322gndl/3wLUpsaqNZ3NZEw/dA0f9dBssssxMOe2KxkjqBURM0zFW/js1S/wf7LBVBh8GypGa5Na92DABGYhZBYMVeubFYmslixUyWRqdSvBMo1doS3eRS8rUvx2TJdJ5nY7MgUmaLBUpxUDNYysfe7IFzw2AZRkvtPxxUvuKWfG4qr9sw/3XfiZWqoPat1+yoKMcI4jRnFmDHYkFNWY7lmmhG2J8cPB+LlSD/IkhfflPnYc1Y9uO1U5TLZXKRJuSwZMkSXHDBBdPdjLUOpc03MQ/aIiOrxNN5IPkoZbqwL0x+AER/iFg9e1FRXgz9IaR+X5dLiCvK2yFURlYYgJcsmX2PkSVKKjYqiiGj5HkfV5LnfdzfQNSnjKiBCHFNvQ+UsYWxCKgm86wagWvFWSFR0sdbcPz6ePWh4vHnc+eH0Dvg6E5giSTcexx77723yfMwFSgKkM0G0WeNK7fOZMA1rjjS/0Xugnr0JijznJugMbr6yjmhi6AvK+EeVCrGmHKNK66Dbq0AXGNUGZc1/T9MjSq9zLgP5t0Fi9zzCo0vWG52Ntw47nZcA9tFGy6EzdoL+NssPe6CxhhTboM6YXFqZEWpvLx2JVTn2STW5UHOXVD/D9T2SoPCvIQDNbKphTDCepQzqkzfUkZ9VOWWwa+27bgLckjYroOTieS+1EaVXWYbW1Pr9ksgTCUmShCKQCCsnWCsOy+LtdDGWr2MLAKBQFibMFU+7OSKvfagUqk0dRv982gDfVy7anXnLujLiefWcddzl3UK38CIPfjpGxC1XQDtdXzugLFM3d4a1nLXRbAIv1tVx6qo+0G9CmeoWNdlIMheo4GAoT9MXQtD5WYY6GkYmNE0FjCjLJsmvJUp0xTFiJW7X6SnYxHGomR+NE6Pe1Sx/GOxRE1tq9biXBRhSLkIropE03NV5izjOlhy3A3t/uZzJ7Tn7f6WeANl+58vH2m3aKVG7ZblPaOauwvm95dMR2KB2gQOKDN052WxRivtFYCMrDZQJMfuf6hPPoOVL08fIIpAMA8b/ZFm3AXLQY5t0ImHEz9ux13QYbZY/2Aqz+4yWL7M9FroQrEpNrNlhC5ct8GM8AXLLOsEmSvR6gEz3uvW7MHbQdu9rbDdBNV/zXhJ100wVlSdCNP96mXqP1MenOBBjsFimiFTTFYgYoRGfjf110/+N8yySLmJBK6oSpmbxMRpnEHeXdA98olOSmyjmVtgujzrQljy1pxcMHTn994NptIVm0AgEAirLxjrLucVxWQRCAQCoTfApi5P1lS7YhN6F/+ox5ilRhUaMuuS7qI1k+VTELWVRou32Q58DEB+3o2X9rMB9vKGVWaLNrRiq5phPCwWkLBDNTX4NWylPNLXZigM0B8kCyojdcN0VdRJLjGg5Ay+2hBSomGYOqDmMFU1i7VbFcWYQEd7g3bPUdG1sAVDbDf1kumHvr6Zru9bnq+T3WenzJaftcovL+qbvrpF0GdzRSOeUCaLexi/9tYjI4vQBuxOXiTdPhkj8Bp54YtkmqXF84IXeprGYCnBCyXbzsulXCyWYbA0e+URtWDOfxn2QZYSBqyTmCwfkyWdm7Kd78CmpFLRBsb7APKwVW7bM8u6OA5mMVk5MQyhz6V6+worJks4giJ6e/a8enlr4Quh/rNGHUGfYqnqSQC0jsni1brpO7ovacWpTH/TfVAnOHVcO+pCel5sk//B70q52wzXZN6/7aJblwzC2gVy9SQQCITeBBlZBAKB0KPoduSPbLO1B+TqSSAQphIM3XlZEJNFaIp2RrenlsFiuamrKqiTwqZTnoub0Xk0Qjsmq1/FYqkAaS3Xzsp9hrFyGS0Th1WqWFLtSj5cMViZmCwdp6VZLq3yqmakBMQ43DN87r9ukbnpmSs72DncxLU+96txHI45HgZuEgyb5ht1wXxMFosS2V3frvX54Gp9HQTNGkr+PWogUEmNw/5sTFbcV0ascqjk+1Q++XVZBVD7+q+rLjiZUu69wFK1g6mMySKsvphoV0/bDchWrrXvxaJ3kS7zLXc9L3zrtQP7/nXbla+bz23lumGljHZaL83nhFyOp16DbnfiwqfELCQ3S3RZgwEldQgBk7l43FjCuAtGEqhaghYAMCYERiORWafX4LtGAYPpyAJp/7H7Y9aDIutNUeQW5ytvrw/blbJus0nbituS/LePscUOZXoMwQQOvXWbXoSELwgEAoHQE0hkcqe7FQQCgUAgpGCsOxGLblKHru4gI6sJhBN0qOEbBZsKFOfHSqeuqqDORK7jsAKLWeAqnsbOjZWWqVisShqLBSh1QZ0fy8NgAQlbJUMlEewwWFIzWzxArEadpB41VFM9GOU7s77BxKJ7nbVTx1PezrPD146i0WS7blFvaTZI6raHAeCa8dF50FRvCNR5ZyLO5xhrllOsrGKw4jhdHwmTBcWEaUaLjyXsFS+Fpu/wsaQOd9UFS9z0QZ5jXtNRPHvE3F42FfDlyUqXTVkzCAQCgUDoeXTrLsjIXZCgIePOCPHJ/hhrpsJku2YUCV7wIP2fGlxZ4YugFBo3Qa6k123BCwDg5T7jOgj1Qa9l2o0hFVZS4yrMCmAYkQEhjVGlz50xrhz3jaSs+NwU3bc8U0d/6DuV1Ibt4liv79lukTHUzCC0ja+iXtWJEAZHejyxTA0Vux0BC8BDnlnRKymhhDOY0G6hyX+uDCpZ7jNGFq9VAaSupHG1jriqDDDTl/L9Lk1UnCwrGwEM3VaGIsGLyZVyn/htTjTGk5OFQOgG65UDzFTPjnLBiFOR+JJe5lNwK1Jz02j10Wa7YxflFbL/6zJ3eV00V3CrC4kS0yp7MnOMdZHfx3RDqwgOBtzkmUryaCUNr+h3f8DB1fNZT22IhoBoJM/mOBaoxcn6o9pdMOZYxZPlI7EwqoO9ADdMwlYXLFnvl0QcTK+T75tl3rkrrFun236c/O9UXbDprqzvA4aqZOnHzTjBu3QXHH9QxuoHMrIIBAKhB9HtaKFamUAgEAiECUfiTUNMVjsgI2s1QtHooS+4mKnRK6ZdtUwy4lT4QrsGmmk5NPM5N8FKOmXGLVAlU3FELhCWcwxWpEZcIiWsEEvLPVAdnzswJqVsK8DWHZMzLI9ezgCG7IhQ0To2TF3WWrCiGVuVCnr46/vW8UG3mVnJe9VlNscaWIHNoRrJC/X10eubRqRS8FLlV2El1RJ9vespk6X7AK8pd0Grvxg3UyfRNS9z0wd1n/Tn0IF32VRIufswlW7ARWAsvb4EwlRhs4ESZimmo9QiiMK8XwKWeedoF2Gm1k+WZ58DurxTiFhmPE2kelCLWLufi3TeqqvL4ki0ZLJ8rJedm6lqiWGMOQIRRRgK+bhyZQ0EHIPq3A2FKWs1FCrGqr+E8mDyDi4NllDqV8/kihK2qqTeDczzYJGxgFDti2ox4lryTmiotByNkQbqI4mHQ22sgVXqpa6PaVUkMKLORbcslz6m11vU6w8Y+oOUbe2zGCw99bFTrZisIEzd24v6c7o87bu6bqf9WTh9RsYi05+lyPZdX3/W5d7ty/QajYoYqHbUvEIwxroSZVobhZzoFU4gEAg9Cq4SEnf6IxAIBAJhMpCIMnX+XuqUyVqyZAkWLlyIGTNmYM6cOTjooIPw3HPPTdJRTQ6IyVpN4PdzL47J0qMshrUK0hEsbiUfTqY6nqZklumYKj3litFCWE6l10NHzMISucgzWMrHXQ1wxVIa5ko6I4m2z3IrPoHBZqx0YJKKs7L+uje3zIlJ5PekRyB8yadd2MSHy3rZMWYuQZKTfS/YftLGtJY+Vr26Pj6htiAstgsuo+VLaqyvt5aCt657rGKxTFnJ6i9lpy9pJjRQIhlBypyaPumVd3aXZeVze4FZmmowdB+TRWYWgUAgECYDHFMTk/XAAw9g8eLFWLhwIaIowllnnYV9990XzzzzDAYHBztvwDSAjCwCgUDoUXTPSpGZRegOm2+xLsK+rPtvEYy7IGcZlynXNZAHDEwr31quaszzpcYC7hWesl2ihFouhbRcqYSpZ1wDG7HlfpUuj+txx+vLWCCuJ3Uayo3LdiEci2WaU0ptazgS+Ifa13YzK1ihRhn14KObe0x5/qFPi1Zwhkp/MoBVHiyhNKjnyygPqfkZiRBVabAP4WAyGFoa6EPYr8Wq1MBXqQKmRKq8WtpCQGrBo0YNop64CUZjySBbY7SKaETNj1RRXzmWnINVyTr1kToaI3q+gdqYci0UElV1Xlodt3ZTfQGJAAsAzAy5cQ3sV+elP2AZ10Dt1qrd1FmQuqkHpSDj4ue69jHOMgOB3Am1aGf9dvo0kBdUc938RCyM2rLtFptxIdTugtZobpG7oMa6q+oYiSLgH02rtQ3WpcdEp6vcddddmf/XXnst5syZg1/96lfYc889O97/dICMrNUQPun2ZJp2fK3opl9sqeob96oKAsnDmCm2Qj+MWUnHWen/FY+aYF6mvYjBiiy5dpe5cp8T7ZIXhrFyeCCtAi4ZyzFVLgMEmVcTbEeIxxdnVRyT5bbQViBsY2cKjFkJNFWbddsNScWBnJ6gYbTUNbWZLC3ZHqrYLJEqR+o+YPqEYbnCXB/Kqwxyqw8qVtXDWuk+TP7LKSgmi0AgEAi9huTd1LmRpXNrDQ8PZ8orlQoqlUrL9VesWAEAWG+99Tre93SBjCwCgUAgEAgAgI133Sx1/20pfGExB9xmEfRovyrjPFPXrN9GdlId/G/+xyId4RfCMFSaeZEiXR43IosNiNN1VN2EORBmu8lUmm0m9YuZhbgeG0YhrscQdb3f2JRpsYi573iDEZEwo2s8Zf2CkKciFf3JQFbYV8mwU6WZiYtUMDDD5KvkgzOTc9k/AFZJlstSxQhSGff+oARwxUwyDqlDC2z3cT3YFjfAhGprrISPGjXI2khSdWwUYiT5UJbV0aTa6Eo0hpPlNusVVWuIVB5FLaYRR6nAA0Q6wqnFOt7/92VGxCMoB+kAnRHwCswHe1AOmjKnyf+UnWJWn9TLDNvHOVgQZLYVlMLMOsZFfgr7trSmdn9tN9VQ3IiwslYHHvtlW/UnE8PDw5g1a1am7LzzzsP555/fdD0hBE455RTstttu2HbbbSexhRMLMrIKkNwsE5RUYByw2So3bsVXx1Z7SqbZm58H+QeCeWiUwkLWgpXSB7Z+aJsHtv6vGBLBAkSxdqtIFtkMVlKeMlmG6VGMi0+Nz4U9iGL4GifQyma4mHmnqdildKWkHCmT1k5wZjN1QJu5Svav/3tispxj1vWagTM73ky9XFiW2coiy2hx9RIJghKgX6TqWqbXVruYlAvZTV4K05eTp5/p/9x1r9AfFWrXvnwjvoTFvZSbZmpAIhYEAoFA6C0w+POItgIHMHPmTLz44ouZ8nZYrMWLF+Ppp5/Gww8/3PmOpxFkZE0QugkC7Gz7LLePvLHFch+yrtHFApaO4JTS0Rvz3xG8SI0t5SLIA/MBbtwE9X819SWAtI2rpDxdpg0Md1BGNJGBsA0qY3CwrOAFl1oMIn0gGKGJIqMLAG/Dd8/nElgkYmG7BBYZkhkjq4Xch33sAVfHbErMgaYlzvnQ553zMDWQ9fWOG6qyGs0LS6kfvyuGUgoL+1JW2tnfF7NJHrOG4FRIuTe7Z3shCTBD5z7sBAKBQCBMJrglVtXpekBiaHWCE088EbfffjsefPBBbLzxxh3vdzpBRhaBQCD0KDgJWBCmGBvttTD9wy3hC+Hx7DDeDEHqHhWW03l7eaDneX79ZtD7FZbbnymLjViDLpNCmNx+Mo4BLeaglgvbhVDkXa5kLCDi/LG6rl12fd+8XidWromlbbYxx4BADUqFpXS+0gdWSUQsuJqyvkHIcjKPUh9EKZmXpX5EPBn8aqgRzWokjAhHQwAN1ZaqcmGMhDQeJUIKMyioP3w5YwjVNkNeRp/KWVXS0zJQnpHU7Qs5SmqUKhTJ+S01xlBpJGIYaFTB6sm8rI5A1NS8mVaBWLl3Rg0zr/vG7PXLJr7XdrvLuOM1CVh1XfW44wJoz9vufsnAoeqTeoA5CNJBSM4zA5Bq42lZEKT9u5O+bf4L49YKEWf7NABE9XTedz822f7AaBX4yvdar9MGtIR7p+h0HSklTjrpJNxyyy24//77MX/+/I73Od0gI2ucKB6BT6bjdXHyjRYUJW5N3AWzDxeXRWABN/72qWuXFslIX5Su4IV2BZRBmHMp0w8ToT4IYyEMcxXFeQYrmaYS7i6j5TJCPmgyx1YqT13ndJ2U5XGXucyW/THrd7lz9u+RYvcxV0CWvSpaZm+31fHHloS7eWendJWqxXJ+h0aSXvebgCNwXD7NtdUv/qBkiZ6oqe4jPMi9vNy+xSwmS8OXlNh2C/QhYGxCZNwTt9v8tov2PdkMdSsQk0UgEAiEXkK3okxthKllsHjxYnz729/GbbfdhhkzZuCVV14BAMyaNQv9/f2dN2AaQEYWgUAg9CCS0cLpbgVhbUNlu91S1VEbzZgsxpMf1ECNGfRRZdZyu64NaZUxe/963pqa5XFsyo1Qg0ylyBHVU2bAZrQ0K2axBelxFogJeBg4ZrMVnGf/W/UAYNXgbIvl0O73Yep2H5YhwkTkoqaaUIsF6mpkshZJjFWTBauGG1hVT4QlRpXIxlgjxiolLLGqGqGqAqJHlYR8I44N6xULmWOyAs4MO1UKAgwoWfM+pRQ71BdiSAlz9JcCDCgxiqGynvahP0zEOCoDzLBelYCjpC99lLSZR3UwxTYyEQFCs5FJm9fdbIv0HFrXRzqspikb7zW0Bg4zDBaQMLN6sJnxdCBS99cgSPuu2891G4v6dnoQ6VT3ZynS49C5P0WUvx/aAeOorFzVfv1Wm+syXrhTu+zKK68EAOy9996Z8muuuQZHH310x/ufDpCR1QS8YITbDspvTFEwvi184Vum25VX2ckKEjDOjWIUd4QvwFNaPEN/JyumU54ts2OxkqmVWFi1UZ+mNEYrH6+Vi8nyMBf6msSaOeR2XJV6aVixWIC6sQueByn7lE/w2w5ccQvvPqz4q2KRj/w5KGK0OGOZ408K9Uo2o6X6qVqUsoh6KpO4LACMZWOx7OuduvmkLx3931Va4jztZ0BW+MJmt4BWDFJW+GIq0Q57xaeI4iImi0AgEAi9BN7ke7T5ep27C67uICOLQCAQehQUk0WYakTrb2ZimjS8o++wRuh5dgQ/N9rPWDoo52GypPPxxeyPK3tkX//XUuNSpAqpKq6H2ctFlC5X63OXIWjFCNjHYDNzepl2tWY8EYay1pFBKi4URdwMcDVMcl5p5us1ibpK4Dui2KfRRoxVan6kHpn54dEGVqi6q6rJdGU1QlUxWVFDoKHqajl5YSde9kjYJkl1VXwWZ0Y2vaSYqrDE0aeYrBl9IYb6EnZnlkqWPHOgZFitwXJo5gdKAQbVfFmdi3JQQqkylGyXpQyaHrsSczYx143FFnvjue7MZjYn4rpa1xNQg8hafZdx40qfqZeRxvcxWfnneGEfl/ljsFlaWMfq3pfSua8MghBRuNK/rAt0zWSthaOGZGR1gPbUyCbW8m4+yl/cIFdl0JV0B/LBoYm7g0WbJysAyEp7S4fB0i8WYbkixI5ku4m/suKw3GVpUuLic6iXmWMXzMQh6Q9Sl9ECS5mjHMtlnULXfaIZfCxTW/FWLRgsIWXL2KNYyuzxJ1tMJhajpS+vPs9uTJbgDDJwri/T19+K0XJcY9Kg9uK+ZMu2u33Qh3yfls7ywlU7Rjv3D4FAIBAIhDy6jslaC1+5ZGQRCARCD2JtkXD/4he/iE9+8pNYZ511prspBAAr+BBKSWhQJmdgsw8kIdPBHIl0wMmUZUR/JITKQdnKG4ixdHCIqQEgzjgCpt2cmSEWgnLKhgSqsUzEFgvgiWsBmjMeBbFm9gCjEXmycj82LOGnepTMj6waQSR1fJWKl2rEGFWxU2ONCCNqfmVVs1QRlivGasVoA6uqybHUxyLUlWpho5ZO62q5iGqIq4mSX6TioGQUQei4NJmPr2MsADcpW0KEKj4s6FOKh2EF5b7kuEuVECXFapWVy3i5P8SQWj5roIR1FMM11BdihmK9BlVwVn8pxICaHygFqCgFw1Cd3+GhQZTVNQzLDCWeXlsACDlr/xoXXV+b9WnzGsdWP4+t/hxbOaa1i1s7fdyELpr/HFwPdFoueYYoQ9q3gfw9WZRjMxISqybwa3+q1AXXBJCR1QXsGCieG3HPPgy6VUTzxYEVDRzYI/LtxIrkFAhN/Ew2iFdtUFVSDx7G02VODJN++AgUx2KZNFUyZW8aiuJ32SE7PqnpqEkmDinPUAhpBVw2ic3q5vZvNxbLhY/BApLz1Ow8AMm5yLNu+gMkbZdh/TTDp/dttish9Qq+QHWojyzDarrKlUGOwWomq6vh9tHAlojMHE2W2ZoIxU4fe5XfV/7+a+e4JgPdjvytLq+ylStX4pxzzsFee+2Fd77zndPdnLUav/71rzE4OIixhkSYfcTn5l3Yz3MJ651gpF+zRpa01msGxtK+rA0+bgnCJG5Lyby+Rbn1AcikANOiCPoDXMboyshigfUBnrqP2c9y/WzSxlQcSzRkanApe8sxspRwRT3GSLSGG1mqY/WXU+GMrJGVtCUMGEr6WypgxvgKrGvd9jXuxMhqcY2FtN/ZavOQZt42strp48z0Y/0/7c9g6bvbrme/itx7smhfkQBGRkaKG9Ihuh4AXF1eTBMIMrIKYEtPB3FzV6ZkWfF0vDLurfal0c4oQcs8E446kv6IltnCzNQVf5CWwIP7QNLuco1YWg+uvOiDXZ78cQ/Wcw2QNfq022Bgy7OP022wSIzCJ2qRqwPplX4HUoNIWNL2hfvMZk7O1FHva7AQYDr5sJF5T6Z2Pma9XuDxI9fIu5Xm83/kUwe0YWx5jJrJ0pOwt99qX/4kydODNemdVK/X8aMf/QhLly5FHMeo1Wq444478IY3vAHHHXccPvKRj2BoaAhBEGCjjTbCe9/7XvT19U13s9c6/L0aGSOLOx957rw9aKafe0LYgkJ6Kk24jED+2V8EztLYD92WMGCWkZWO/QSWEZbOM3D1vEo/WEu5VB4uhPWMNO8yKdP0XNpwkpHJPRULmPm6eujWY4lqpOOrBGpqvqqMqVW1yBhOK6uRia/S8Va1WoRGNVmnbhlRjVqESKkLRmOJalxUG0NcG03a0qgjbiTLRaPmP8gW4KUKACBQtGZQKiOoJOqBYaUfYb+KqSony0uVECuUkfVqJUSpLznvlUpo4rZ0HFcS05XUHaqEJidXJdSGF0efmi8HDGX1Pgk1o8XT+ZAxcJbUNX0BpfQzBa1ZWPvbxbyLDTsVW+9na7k1qKD7SxTL9D5oo4/bOcqApI+b8W2W7ef6+Hz3ZBH0riMhMToWtV6hTTCwruKF18YYYzKyCAQCoQfRrUtGr+LII4/EzTffjLlz56JUKqFUKmHLLbfEfffdhwsvvBD/+7//i1qthjiO8be//Q3bbbcdHnvsselu9lqHpcNVwzKkH38pfLluIoHMaH9kvBOgpq6RlZY3g/2h6TOyQs7Tj22eLwt46gHCLcPRZzRmdAisAbO03am3hm1E1ZXBVBfCGE8mEXAkjIT6aD3GqJZYV9PRempk1esx6rWkbqTZqbpImap6hFgl843ro4j0vDKm4lrVMFVxVPNL7ncAbZyJWLNjFcSNutmn3n+oEic3ygOoqflSOWW6SmWOVZr1qijDqRwYI2ugnErDD+hp2ZKQDzlKysjSxliZc5T1vGWEaVc6jom53kByzbXxHAmBSOcFtsr8RpbaTltGVtpWn5EVakVo5r8ni6CPoRrFqI52Z2wTxgcysrqALS+t562sDRO8j+4+slgHfkY+1iGf78NiOooUbBSEzD9Y7BFPDVvOPVnPcZOzBB7aEaXQ23GbLjv0BWy2D+60px34qrpslQ++85GvpB/S2fMjZb4nph9BTU6Gy2hlxC1aM1iThSRhcTLfjQuuP6k3c6Yw06L7LsfqTTLWIBsLd999N+6880780z/9U27Ztddem/n/hz/8AVtuuSX+8Y9/YL311puiFhIIBAKhJVh376Y16X3WLsjIIhAIhB4EQ3ujlasL1l13Xey4445t1V2wYAHe/OY3Y3R0lIysKcZrow0MhkoqWzMDLQQw7IE1KWQak6QH14SE5lWkR0FVOIGr3NqJHvDQcTmMs5SpAhBoVzJdz4rhSVivLNNluyD6IKy4WJuhq8fCcgdMyxqK2qgJgZqTAHi0FqXxV/XIKleMVSNCrAK1GvUYkYqz0mVRPUasXAxlHJlYKsYCsDBU56DPlMk4YbJC2Q8RJduy469ki9G9TDiBdsELtcgIBwtKqqxk9q/rSRlDxrr96fmVMkCs9htHSs6+IVBTDN2KUogBxXBp9mqgHJo4rYFKaMorSiyjwjlKhsniKAf6GjNTZl931y3Phe3aFzmDvkksXX7eHBNSVivb99M+7fZvwN/HGWMmryXj6cCi3fdd9itpq/ewzDFUI4HahLoLdhcvTEYWwYtmMRy6TCcl9o2Ka06hndis4jiRzlgtXx6Mwrrt0CrN1ldTr8CDw6fYD7MiNsh+OBWyFpbYRV7oQscZtT5frs9zpzC+0qy961sc05Wyeq2k7DMS7s76tstOyrLq7bjrjJ93HW/fKUKzZMSdCGD4BGTcc2cL2biYXnc9llF3W93xhz/8oaP6zzzzzCS1hNAMI7UIUqrcSFb/Y5mPwuw6sUzfOTHS4P80fiVV3hPCJ+6T/s+qp1nzqrwUsIzhxdS6xvCKLMMryrpfJdN0v9wTr2sbjEIg81Fds5QEAaAexcaIqjYEaiootqqMrVoUm7KRemyMMGM4iewHeGCMHJUfiYUIlDEhKyGk7FPr2+cv/cA3x9LB+79d2EZB0hec52iYPq8YY1YaD/u40vZx9Q6PoxijqtyIZwmJhnJZbcTSnMOKKusrcWOElcPAXPuK7gMBN32X8+y1d+OC7G8U99oDyfUvMqjMchMTLXPn3u7rrfo5twyrZD49n0AyqODzUir63tPmdT2KUatPoJHVLZM1YS1YfbAmDZQSCAQCgUAgEAiESULiZcG6+K0++OIXv4jly5ePezvEZDkwMRdxnEpNJwx8bnTdjhPRUu5ToS44HtjMQzMWQrpBs2JyGAugmLkRsj1KWq/XCevgq1q0PmP5uCpfbFYT8clCdBJfpAerEtYsu14wWWNE1nXP9QkLbl+aLIarW/jUBV3pdl8dDVZEMU8yuk7e2ONDhnvttReOPfZYHHLIIejv75/u5hAc6OdLhklVD6AAQOx0TNsdsBU4Z3YQc1JWcH/xJuwZkIzU648Yw54xZkmqcnCzL/WeyNwc+eevLcwRx8IcV2QJINQVE9WIpXEXFEJmmAr3GPpK3LAXDXUwjVgiLKfMiHSe6+5/+3oY1kjni2LMkrFnZr9FzKAPPtZFMzO28q2U0rAndhvd9jZrs54vBcy4/pV04nqnf7ltaUTCOpYYCLPxwiHS6xYEPI1ZBkOzF7TLagHZPmAfn6+/Bz4/Oquvt9PPmyEGEHj6WNG957seE4U1WcJ9IlOLkJFFIBAIvYguXTJWB7z1rW/F6aefjpNOOgmHHnoojj32WLzjHe+Y7mYRAMyshObD3f4mtD+WcxI41kei/cGX+Si1vvfadWcvclFs5j7lUyQE/KqINvR4EgczH9uMM/NRK+0P6FBLhovUjTEWxkgw+bJiK5GtsIw3z/HbxpDeTsAZQq2cx1J3uVLAjOJeyZI3NzFJnJvjTdUXectBG6OSJ9L4M31e6lZZJKRRUEynqVtfLIFIu9gJiYYz0uwev1EFZOl/XRYG3Fx7bYyFATfnKKMmqddHtl+02w84WNoPdB8KOQLt6iolSqquzz1WH7uNdvp6q35uljnr6XvNtClnVKVutTzMC1d1CztXXafr9RomO7UIGVkF4AEzAxBufixfjFaRyqDNdnUTm9XJALqQEqKNjRexDDKOW8u+SpFL7tfNfRN78kFp2M8km73pFvZzqp08Db4P23aT/tn70Ik4u2G4bLjPaB/DZ5QV1Yhdqc2rkqvVKoEjYPqIjPN9pR0GS/fRThQabXaps/uHZaZFZdl1LV/4aWKwgDVP+MLG5ZdfjksuuQQ/+MEP8K1vfQt77rkntthiC3zsYx/DEUccgQ033HC6m0ggEAiEAqwpRNZkpxYhI6sJtNIOZ8mHY/7DzXYdTJa5AhiJSIHZoprmja1mwffdQH/ISv1Ba6YCQg3VSGeamXeXtfFB3IkhFDAGoRPpji+dh6cdnZ/DbgUOuHWdO6o/QVL/Gt0oqbd1vaQs7hPI9yHdt0SspzLXB33oxKXWHfRodh/5hC/ydZuvM51Yk4QvXIRhiIMPPhgHH3wwli1bhquvvhr/9m//hrPOOgvvfe97cfLJJ+Pd7373dDdzrcP6g+WmKTN84gGtUJSgvRu4+/a5WnUzKGfyGtkCEpAZRseXA8kv+JFu12YyXIbQVpOzxRrKoZpaynl9lsBDiTOULCEQQDNZybZCxqCHiZlS/GMybj6IZqVnkawMGSSfh1IN9USW8l5ksVMNkU71uapGcUaBsa7VEi0RkazaZPG5cs8XkGWqfMwlt5IVZ1ksNq6+kSnzFE5mP/chLyxWXLfKGuNtkgFDc4XOwvV68H022alF1tSBUgKBQFitob2TuvmtTvjlL3+J8847D5deeinmzJmDM888ExtssAEOOOAAnH766dPdPAKBQCBY0OqCHf+mu+EedJtapF0Qk9UGtMtQEOtRqJS9cke//QIYWbbDHYnvFnr0x2ZRpEMJaEZBu3HZLIS7LBmq09Kysa6kNqxGxaSAdEbD9Egi04HFzJeVvP1j1R+J7QpftMP+uVV80u25Op7t6LOn6+pTrz+IgfS6tHOZ3WTLPtjnw/7fbHuZ9fXoniNhzKwy44huXWfzv6hPCGH6jnCFL0Tat3LLXP/8cQbn+tx23f/2/ZgXvMgzWOZ+1oHY00Rv9eJLaSKwbNkyXHfddbjmmmvw/PPP433vex++853vYL/99jOjnUcffTTe85734JJLLpnm1q5dmDejYhiJZmJAmf8F25rs/tvqyVG03JvXPZPXyCo37JVsWVfDjvuxczSZ2CHDsljS8xwoqRVTlgoo6ed13ACLxpL5Rg2sXk3mo2Qqq6OQ1eTjT1THIOtJXdGoJxuIGoBitXwiRowHgGKvEJbASuWkjeVEmKavrx+sbyCp2zcAGSZxKWZaqqTzQZ/x6mnENtul47RSKXSBNEbLlDkpXto9x/b/ojgsX59u9gnRqg9PZh9v1r/tZa1eoYwBo3yC82R1sV4vsjqTnVqEjCwCgUAgTCk23nhjLFiwAB/72Mdw9NFHY/bs2bk622+/PRYuXDgNrVu7sX5/aD52C9FkQIpZC+2PV9/HaNGAkW/3RR+VEunHulvZ3k5GBa9gW7l2tDDjuHOszMynA1rGlY1l3fkAgEGARYkRxOI6WL2WzEepASVGVyXtrI5AjK5M5kdWIhoZAQA0VibT+soxNEYSwyoaqyEaTbYb6cTHtRjCJDaWxmNQeQiCBak4QlgJEKoEweFAYmyF/RWUBhODqzyjH6UZg0n5YDJlgzPAB2Ykx9o3iNLAULKvsC9jiAGALJchw2S7EjxN9mslAhbWNdTXTl8N+5p1co1sFPVN16XNTQmm+/pU9/Nkme3KitajDNb+K/HECV8Q2gcZWQVgnIMF2R6cj92QhXEdwlonZbCSMj2Qn43baj0eEht/b3/dLKOlmQTpTAVEveHUUdOobrEU2almNmSSPVHtJCvsYBgST/OY9aJRK5tl7shSKsnuPcy24Xu4tuMS3Gy0JZsq0o8iBouDjSsWyz4fgTU66q/LCo/Vvl5pW01AgvpvMZcFfUJG9Vwfyvctmel7NnwMlo+dLYJ9/9j/k3l/XVvUwpduwa0z3ej2HuiN1hfjpz/9KfbYY4+mdWbOnIn77rtvilpEIBAIhHbRVXxVj7xXizAZqUXIyCIQCIQeROLH3tsvpU6xbNkyzJkzp9DAiqIIjz/+OHbZZZcpbhlBYzBaaZiHlh9FejDEElJgkOl/n3CSXbdgMEVmqAFn2Isxi37hkHpIwZSlo0eSceghB6mXy+bsh0QBG2GX6l1KCT2axkScDjxKNSAVN5JyIHHVE8kglM1eyVrCPsnqKMRYwlpp9kqMrkR9WDNWY6itWKXmR1FbmWyjNpywX/WVddSGk7LReoRRNWI1pqY1IdDQlwXIiZtwACV1iiqco1+NOg3oaTlEZWbCPpVnlFGZmbBSlRlJWWnGACqzhtR8P8ozE4aLD8wAV6wW71fTvgGwSvIRK4MyQsVqgSsx8iCE5Ip5CUqQTM3r68oDpNeV5QY03eur/7VzXdM+qa+lsPp52rd1eAQ8A8+mXG+2nX4OZPu608+TFjn3RZujcExE4Ki1Vbet7bHuBgB7PV54MlKLkJHVBG48RhClDFYyZZ5R8Ky6UDaxaZbicBmt7HY6Z7ZiWcxg2WqDdrwMAMQNxT4IkS7TZWpqYnREBCYiM58s04yWflhL824uYrkSRSDVbueB6DIUzc6HzeQUKew1u7H1+ozlGSzfB652WzCMlj4esEL2xY3Vstuq37++c+E7D62OI3M8zjk35x76P0uvnb6WzrWFFLm+YCsKmr7jxPzZ/c7HptrnI5adxWUVMcL2siK2invruFPrPDqdaqpjs6bypfQ///M/uPjii/HKK69ghx12wH//939PuLGz0UYb4eWXX8acOXMAANtttx1+9KMfYZNNNgEA/P3vf8c73/lOxJ70AISpQTD8CmRJfQAXGTtuGg/r4zP5ELU+UAEA1oeqFQ9UlCxV75UxBvDsBzbAU4OJ24p4+iYPbB846wGY1jOOU64B5zk+ZhuSZt6KVdbeHiI2H9tM6GdmDbKuY6LqEFVlUNXTqRhL4qiikapx92usTMrqK0dRX5m4DlaH66ivTD6Uq8trGB1N9jGsLKfhKMYqpeK3Koqbelt0An2GhsIAQ8NJW2aGAWYqi2xgIDGM+tapoDwjMbz6ZpZRnpEY6uUZAyjNSGK5tLthONgH3q/iu8r9YCrui/cp9iAsg5cTw4uVKpDa+FLBVZIHVr/gyXUGMte6qaFuw73W0jGYbFVGEWf7AwAI0bSfN0sInPNE4YG/n9svcbe/twEWNcA6EGtouT2rSR2t1+NG1mSkFunFODQCgUAgQL3Muvh1ihtvvBGnnXYazjvvPDz++OPYYYcdsN9++2HZsmUTcRgG7gfHn//8ZzQajaZ1CAQCgdA7YEiMh05/PW5jAUhTi9x222148cUX8ZGPfAT/9m//hk022QQHHXQQ7r333s62N0ntXO3gjlDbOX3y+bJSRqtVrh0Bm8lySesso9UtbBZAOMyVqyAoYksRrhFll9UjBMqNIRebFaeMlnRHcrTKoBphYRmGTx2jxfgAQMAlhGLgdL4sTQtpNwavUp4+v03UgnyjJW58VrObvZmLll7m+xB013KTEmfaporcPFsBR1fnIXD+c6QxWW7ftIOyc3lT3BHouJHvC6qPiHpU3JesfmfnzLKnKRPb3g3QitnzqX362Kp2YrK0oqiZ8qkfj2IojrmbaHz5y1/Gcccdh2OOOQYAcNVVV+GOO+7AN7/5TXzuc5+bkjZorGkukqsbor+9CD6YCBhkGIAm94AUVpL6OLLiONPni4nJlCnjI6Wfb2G+/Sq2goWhKWNBCARZloOFYVIOZJgByZIyluxA78g6CJmbT56D6bNRKnU+RIqpiiLzbhRxZFgrGSWMk2zUgbqeryGuKjGKalIWjdUQjSTsUGOkioaar4801LSO+nDqFjimRCyGGwLDSsRCs1f6/0RDX6HhKMawOvxVocSw8uyZqZi0maMN9FcSJq46s4LyzGS+PDiC8mByjUqDfWYaqvmwv4KwL2HAgr6UvUK5oubLYKGa1+yWdd1ZGAJhKS0H1HXVjA/PXmf3+WIxrwDAZJSWA4CIzXWXUZQqNMfaiyNK+3MUpSynnU+yVT+3+rjxnmA87dPGdTL035M++UULojoCOVZtWqcjMNbVc3p1erb/8pe/xDXXXIPvfve7mDNnDo4++mgsXboUBxxwAE444YS2VW/JyCoADxgE9INcPXC126Dqz8kHW/ZD2E1OHMu8e5OLTj2QigQwYmm5ZhmXLlW3Icw0rjsfxPoDWViuYZF/ijg2LmXScTELAvWgZDKjqATYLmqpH7hbB46x5YPrEmgbIEXGll1c5H7VVOyCFSf50+vZr7ciKXfGkDeukO0/Qsr0GNs4D66bYNb90V2m1rWNidhx/dRugrEWt2jk+4LlNugaV7pv2f1N90HXldBGJ4IX5hy0cd/YboL6f7FLYfp/uiTbXYznnVSv1zE8PJwpq1QqqFQquXq/+tWvcOaZZ5oyzjkWLVqE//u//+u+AQQCgUBY45AMAHa+Xq+7zk1GahEysggEAqFHURQw3Q6+9rWv4YorrsiUnXfeeTj//PMzZa+99hriOM75m2+44YZ49tlnu96/D4wxrFy5En19fZBSgjGGVatWGWPQNQoJUw+xfBlkNRFbQJh+InjZJZuR0qPpwsqlGOvBOYvpEqliaWFMljW6YEbx9T5Di8Vg3LRRsxgsLJl8T5ncTy5rgCxDLTPJsfSAUMMwGsmAkx6ESlkMaeWhko2EodKDTaLeQFyrq7IG4lpSrpksUWsgGkvmG9UI9VXJdqMxVW+skbJa9diIWDSkNANTWuSBo7nq7UQgVdeVZpC3IVOBjaCu4tNGUhdg0ZBGRr6slkdjNYSKteOVUspkVZJrFZRLCCo6T1cJQVldTyUBb+fxyrFaUH3AuHKUCq85kL/u0mJkk+VxOh81LDZTlUmR9vPIYrXaiT3Ug6J2H9f9NODZfq6Xa3bLE2dWxJjJ6gji6gQKX2D1cP3rFJORWoSMrCbQo9lSMQo+AYw8g5V3RbLl3BNk3QbbGb23GTHfMj3VLmbN3Ab1QyVWLET6QogSGXfAuITp//pFwkWUMlhOYkMeaJbK44LFs20NGDNugsKVpFfltuK3y2A1E7zoRLo960WQrWSP1LgJgV23QZulym3bKnddCH0CGEJmlznK5wi45S5Y4DbImV2WnRoGETIN2i5gtESjXtgnRD2ymKuUDQWyboOxerHGdVVmmFhkpjb0IXfiSpsVosm7CaZ1ihks/d+4CE9zMuLx4LjjjsOSJUsyZS6LNdWQUmLLLbfM/H/rW9+a+b86uZSsiYhGxxDqD88g/USQxo3Jk29HxumDyjK4RJwy3dIkPhI5T4siMM7Sj2I15aUg7SNhyRhZMrBcxmx3QtvNUEMLKNg7s927tDEl48xHtesuiDhCbFwEY0S1dB7IGlYyihDVlGuhSnUR1xqIo5ThN15j+pBLHKV+bTAyhMr46o8ZhlTSLW14VWOBmk7qKxM1QSBNBCwsgSHfp3giCpS+P3RC5IpqVMiAiirrC1L1QV1WCThC1dawEoCXtKtbauNoL4Y4EoAyLgMrqb2MSuq8RAjUOQrKJUQmf5dSZQwDBMp1UAYed0HbZZQFmWsvfW6vBdc+mViGUxxlDSoow0uf14blCttGH2fccUfnPC0LOLg6Bml3jMDTdzXcjwWpvZXqEMpVdSJgC2t1gl5XF5yM1CJkZBEIBEKvomBksh2Uy2XMnDmzZb0NNtgAQRDgb3/7W6b8b3/7G+bOndv1/n2gvFeTh6lQhyQQCASgu/iqXh1Am8zUImRkFYAFzIy6MDMqlhfAKBuGJhuLZU9tOXe1dTV1hTDagxu/kkq4y3SkSrEH6VTHzIi0TMXW6LiauNEw89yJvzEjd5aEuzTStVkWJOAhdB5ndapMTgkTe8QkAndYw43b5fmxGpfBaSYM0I50e+frJVPf4JQrYuFbt4iZ8bXHZbTsuvr4S5pd1aNfNhuj6jOWrWPqZuT4/dcycYHJxmT5+ovpSy5rVRce6XZX+CI73wpFSYh9whd2LFZaJ1tW5tk+FYR8WgUvUkhLGnjyUC6XsdNOO+GnP/0pDjroIACAEAI//elPceKJJ07ovvbaa68J3R4hgVaHvOqqq/D2t78dl19+Ofbbbz8899xzRi6/E5hnuy7gHIj0w1zkH0oF67cL4Uj28yBQ25HQvIu+F2UswBSzASHS0XvmTPW8ZlHUI40FPD/iD/iFOVwWw7wXlbtfFBvWSkRpniwRaRZEGmZCcg5eyn5y8VKAoKHWr8SQccLIlPW5FtLEt4pGygCKSCJW66XZVWKIRsqemLQt2t0xlm0xh8k5SoUNuHkWMsNO8TBIvdpKgSpLWUde4gh00i3OEITON1QYgJdSCXZzXozQQ/r9JaIYgVpPn1cOIIbyrglj7xeVPlcsCCG1GIUtLOGBjEVeuEJkXWFN37HZL6s/+Rgst38DaR9vBnMfFr2HbPbYhxaCGN2iWyarR22sSU0tstoZWTRaRyAQ1gpIjIvJ6gSnnXYajjrqKOy8887YZZddcPnll2NkZMSoDRJ6GxOpDhkODqZGlO0aaMeCNHG5klKY2Jk0KW/rmCz7Q9X+EPbGrYSWK5jlImbaZ1wHrRiXTFyONuLSjyamjTPJTVsYAMmteV1XTQMeQQSR2T4PtcGRtEXEqeGVcZnUx9ziI3h6B3kmBp0co+0qB2PkBea82i6j2pUORe6CqRXoVexL9xmkxkyAjCImACAupS6CYWhcaLXrKJMxAu1iKASkUMu77dt2TBbLHnfm3hPCfMFLmTf81I6T1eMQvImQVqfoNiar2xZM9nf/ZKYW6fgOPuqoo/Dggw92tbPxYqpyuWiwIJFy5urHnF+ZMzMyrmM92vlNFBIGIGWw0v9JLFb2l0hpx43Y/EQ9yv8ayU826smvXk1+SmVO1quJ8pxSGWQiSlgPESVsiIgR2ueF6x9Tv7SMgyU/lv3p8+SW84JzqJcx5h8psWO0un04dAJ3H/o4M3WYHg1iORar2fHzomVqH/b5zZ1zdU1CzhBypq5XZNhJJiJzbTPXXc+rPqH7iK//2P0rbsSq32X7ot1P0/7beSqDZvdTs/uvzPW9q3/JedHlPMj/9D0/tVDSwt38OsSHPvQhXHLJJTj33HOx44474sknn8Rdd93VVfLFIhx77LFYuXJl2/VPOOEEvPbaaxO2/zUVWh1y0aJFpqyZOmStVsPw8HDmRyAQCL2Iqf7uL0K3ro4dM1krVqzAokWLsOmmm+KYY47BUUcdhTe84Q1d7bxT9FIuFwKBQJh0dM1kdW5onXjiiRPuHmjjxhtvxKc//Wlsv/32LeuuXLkSV199Nc4999xJa89E493vfjf22msvnHfeeZny119/HR/4wAc6TmLZLjpVh1yyZAkuuOCCwu0F683JjLwD2dF3BGE68u6BFHGODXDdsHIqaEVsh81y2IyUL2eWL5cQ53k2yN6myLt5QQgrT6CV8yuO0lQmlgthoOZ5bOVI0vCpFgEZhsIclyPWoI+PKZYGQcqiZHKBGXESDqnPAWPmHEiTQ6SDMXUpUmVTK4ciM8yfSBX3rBxSusw+V3buqIyIiM2+2IynC7vv6fPiipuYHGnpueqkP5jPZ09/YC1ywLm5sSasb3tYWPe+M/3R855w72Fenrg8WQz5weF20I2L4er+3d+xkXXrrbfi1VdfxXXXXYdvfetbOO+887Bo0SIce+yx+Jd/+ReUSqXJaGdXuVxqtRpqtVS2spMRu6zfrnqI6viXsnI1iPPqgmmMFlR5Pk+WLzarnVF8HYPCzX89TWNU6sodQft0a79tk7eoHqdqbya2RsvK1lHSObTq6obUinLqv2zUwWNVpvzHWaQfbEpSVcQI1EMhzSmmjlSfCwCBmxdLu9nrXFIiVdrTyLE+nvdGr/r9An7FQcA6jiaUvp2AuEhd0CR7zqjoubFYafwV08qB6poyNRUN67o7fUDU0/7i9qFUSTDtd6YPqj6p+6g/Jis7bQe2KmCzWCw9LUogbnKMBZ4XsYJms3y5viYabIpisqYKb3vb2/De974Xb3vb2xCGIUqlErbeemucccYZ+OY3v4lHHnkE1WoVQgg888wzmDt37oQLb0wm7r//fjz11FN44okncMMNN2BwcBBA8u564IEHprl1Kc4880ycdtpp5v/w8LCJPSAQCISWKPAaamM1APlvcV/+RmDqcjhOZmqRrmKyZs+ejdNOOw2nnXYaHn/8cVxzzTU44ogjMDQ0hMMPPxwnnHAC3vSmN3XdKB+6yeXSasTOB9slSBtVOimxDvDUAaUsYJnExMkUualbZo2VAGgvYXEz6A/SumAo8+xHqk8AIxUlyAtg6PwdYSPJxs4t4wpQH9rKP9mVcDcf6kHJJCYu8fQYgdSTKeAwBoVQBqo+82ZcictCo8NOxsuYs56C/RCYDulQb1JibUAie+z2MesBqCKD0j5m5hgKtmy7ni/xbB0j1x7X8xLuOv+Ldd2NcWWM8Zr530zwQpebZY4BVdeDg136Orvee1nhi+Kpnk8FL5L1jdiFchG0y6YFUxiTNRW44YYbcPXVV+Oll16CEALVahVf//rXcdddd+HZZ5/FokWLMGvWLARBgEMPPRRHHnnkdDe5Y/zkJz/BJz7xCbzjHe/AD3/4Q2y22WaTvs9O1SGLPmg0gtmbmGd5BjZLAs2S5AcjeKbPpiwIfHmDOhHIUPtnjLVui/2AbMbgWG1NmRtrcEPGpo1SylT4whZCsI/X5OKwGAebRXFyeiEIIXkySCmtfE96wFIGIYR6l8qgZLShGnH63GzEWrY9fXcIO4+WTMtMsz1MNwcz5ArnLJe8njNm3ikhY6nokhFhMuOkYHEDLE7eEzyO0v5kfTswkcrgZ9gwoPPzanKo6bxSdh8J0r7hiyko6B/MYvBsF+y0f+f7tnT6eUvYfdops/u2ht3Hk/ZZbQCK980DBKNj7berBZiUXedwHB4exqxZszJlvvyNwNTlcJzM1CLjEr54+eWXcc899+Cee+5BEAR473vfi6eeegpvectb8B//8R849dRTx7P5cYNG7AgEAqE3sMkmm+Dzn/98puyvf/0rNttsM9x+++1473vfO00tmzhstNFGeOCBB3DMMcdg4cKFuOmmm7D11ltP6j4nWh0ynjUXrFHsWiR5kH6YtvrwsD/EfAaNZ1kr2B+a0t5/UZt8H9H2/hy3OCZl6vKV+cAW+XYWfWjaLnrGNTCAMHmPlGEVlqG18RpxmtNKG061SEAJGWK0UcUqNWBVjQTGlIfAiJqO1WOMqqS/1UaMmvIc0NNGFKcDXSJVr7U9JIzBFAaoKEVAPe0rBRioJMfSXw4wqAad+9W0L+QYUl4+A6UQpSAZqK1wjlJFbZfbBpkaXI3qxuBK8zXGqQueFM3jTBlLTUbtIgkOn6EtbaPb13ds+PqklLlyVtDHW8LapyhqS7P7y2pLzrXTrRqUIIKR9tvWEvnz0N5qAjNnzsSLL76YKZ7u/I2TmVqkYyOr0WjgBz/4Aa655hrcfffd2H777XHKKafgIx/5iMnJcsstt+BjH/vYhBpZ3eRyaTVi1y5MUmInMSkPmElM3EzK3WWyjJsfdDnLrecyWsly5q1jS7qnroNJmWbdUrfB2Mw3qkpyfSwZZQr66ihpty+VuC7od5gNLX4BgIVKQcqMUqlRuLgBzlXmdjXCVHKZLJmyOK6rXGwy2DMzqNPKbTC7rHDRtMNlt/LLWU663j1WZjM2zvvCdg3ULzTtJsilZq2s0UTjJpi/zvq/lnDXfUJY7qWR6ju6L9n9TE9NH/T0V/3f9Ff469jIM1gW++zUac4s6xe/Uqyy7uuU1XJGEn0xA5OGLl9katXVAW984xux3377Yccdd5zupowbeqSzUqng29/+Nr7whS/gPe95D84444xJ3zepQxIIhCmD7M6VXa/TTv5GYOpyOE5mapGOjayNNtoIQggcdthh+OUvf+l9Ob7rXe/COuusMwHNSzGVuVwIBAKhJ7AGuQsW4c4775zuJkwIXInfc845B1tvvTWOOuqoSd/3hz70Ibz66qs499xz8corr2DHHXfsWh1yJetHZWAAgF+JVcJKGySz5RrNxrl8g2ATEUfbrvdShjSw59WUg2UOIGUqpFVmOf1nWBA1IIt0wFCfq0hYTJVml+ox1HgURhsRRpUP9SrNUtUiDNeSAazhsQaWjyUDXitGG1ip5utqgKtejRDpAdRaZGJgI53LsF4z+aKknfvJiCpwMMW68XIFocpdpXNclSohQsValftClPuS5TP6k8HVWQMlrKPmZ/aXMLOSLB+shBhS6w2o0eiE6Up2X+IhSjxxjyyVkvMWWkrlARhSrqqdawAALMtymkE8mRt/yhBRbfShiYr59u2rKI2ZLrZ3zS3PRzMt2FcjBkbDiUwH0C2T1dno35rw3d+xkXXZZZfhkEMOQV9fX2GdddZZB3/605/G1TAfpnK0jgfM5GzQ0KPaJuFeOUCghtx1QsE03iNZx463ah6bpRmoLKPlgyuAka6bigq4AhiGTbCEL9KYLP0QbhhmIhzQsTaKtdIMR60KqVRqWLlPnRftU15WB5YmudWxWVoYRB9XaJ9bfSIcIQyJ1Hdcn1d9j2ZcmNXxFz38On0oGuENz3otcjk237/Ml3GZjc0Cio/HLk9jr7LsZmjFGbmMTeqKkcZfGeGLKPFJkbVqdlqvmj6gY7F0HxF1KxmxK3ih+1Ysc4IXqfBFemztCF4UMVhZ4QvmLMtOtXS7vZ5mrbhydWGcp0kzdVzmFAhd5GB/zRJ6Hn/6058we/bsTNkHPvABbLXVVnjssccmff8TpQ7597EYfWHxM9X2oDOxPdbt0ckzstDroMkz2429za3axnsg87Hqed7ay/2xGJbLos6DBSBWH576HMRWnFQ9kqhGqbsfAIxGsXH7W1mLsGIseZ6uGE3ev8NjdfxjJJmvjTVQV4ZVdbSBmppvjCZB+VF1lTU/hrg+6j8RHSIoJwZ32NeP0sBMNT9k5ivKsOobKKGs5iv9Jaw3qA2uMmYNKEOsXxlmldC4GQ6EAfq0S6LKh1UOWeYdx913GZAq8nlhuXwiOwCQ67sFy71bbdG3fbFuuR3Y9Tt8rWTuF8ujpdU3Tj2SGFV9a0Ig0bHBlKzX+TqT/d1/7LHH4vLLL8eMGTPaqn/CCSfgwgsvxAYbbNBW/Y5N2yOOOKKpgTWZmIpcLgQCgdAbSFwyuvmtDnjooYdw+OGH453vfCeWLl0KALjuuuvw8MMPT3PLusOmm27q/SDfZpttpoTNIhAIhKmBYrI6/aHzd9Nkf/ffeOONbZNCOrVIFLVvsI5L+GI6MNm5XGxwNx5DDTsEiqaSQqSy7pEeHW8dk1UUm9UtsrEtzClLpoZpKAVG+S0nt12tG2ZCx9/oKe9L1QVddisXmxWVABWTpWOzQsX+xdYokhlRMt8lht5J6oqU6YFTJVOkV3Oo81Yjnq1gM1rdMFguOFgab+awmZnjbDESawco676Uxl/pOsywWrlYrCiVa3djsfS1tdUFTSyWkm63+0iOuTJ9K1UX9Em2Z/9PDEvE0TwWS09TVcE0BsueBmVu5s221f94vDdrp1hNDKZO8f/+3//DEUccgY9+9KN44oknTKqNFStW4KKLLsKPfvSjaW7h2ouXVlYxVNbP7fxyIdLnlh0ra1TsPA/LwhF+D9znNnfoLvuvHa/KTf2C5Zm6rGldG7rY795luQNKgchS+gOAKJaoqwrVSBgGSzNaq6qRYa1W1SKsUOzUKlVWG22gVtXzEWqjiXhBY2QY9dEVaj5J8D1RzJULvd24Pora8N8BJOxWaTAZ+a8NzAIAjA3ORGUgSVtQGQgxtjJhr14bKGHIMFnJdKgSGnZrqC80DFbKaHGU1cUJA4ZQXYRQPYdDxlMlRM91Y6yYNHHju5P+LIuX231c5M0E3z2Q1J3Y+wDIqj5yxrx9PrM/1dhqJDA26lEM7RKs65is7t71k/ndP9mpRSbSSZNAIBAIEwaZ+mZ1+utxfOELX8BVV12Fr33ta5ncirvtthsef/zxaWwZgUAgEJqjSyarBwcNb7jhBhxzzDGYPXs2Zs2aBc45vv71r+Nd73oXzj77bNTrdcyaNQsbbLABDj300I6Tyq92TNZUgXGWy5HDYuX/asVm6fkgVDFQzmh9wKQndiQ7TbpdNrSxndH9vBJbPgeRZhFKqiDsF0YJLlT+0ZH5HyHSqoJ6OqbyZg2kDIeJ19GxWX3J6JVmSGRQTnNmaZXBUuJiGurRTglInj2OdBgoZbSkdBZNIrRvvevy49u3G+TeLopGRZv5VLsMnZ10N3AUBHVfCzlLkw83dD4SJ1dJVDfxWb5YLD2NVB/QfUNP40Zk+o5Odq37ls4jE9eF1SeLGK18X24GXyxWel6KYrJg1VHzatTUjbVMkhFnL4hmsXVdORWUlsQ4Xkq9bWg999xz2HPPPXPls2bNwvLly6e+QQSD10YbhnHRLEEmhDYTf6XikazCGPnno31fyzYe5vb9Z2InrYdkYNVz22gzAJz7jyFbpz2PB5uZ0IyEkOk5iIREJNJ5IBG4qKlnYa0hMKoY/1ElZjHaiLFKMVWrqhGqKm6moZbXqhHqqqw+VkU0tipZPrYKUTVhtSaLwWqGuD6aPjeZFcuq5erRlyrjyzQut6biz0b7Qoyq+YHRAANKJGNAxcVWShwVrUwccuOVYU/t69qK/fTBdz2BbF6xpB4y9dzlUsiMN5J03m+6Tjvw9Xsg7fuBU9dl8dzD1rutRTGqqp9NCDxS9m2v12OY7NQiZGQ5cCWbkzLtTqTdBJXLV8BS10EV3eq6DZZ5Xp7dBUd7LoOp4aU3JM36yXLbXTApMwIY6kkR1gWCUrK3SD28Q6USFI01EPYlH9RxtaymWbdBVh6DVIIXObdBZVCxuA5EOjeIdhtM/pd0fhBpuwuat2OyzDK2YmTPXYt0GVOObj+BnUNuWkcjsF4qrlGVug3qKQM3Uu3q2llugsm0UewmWEsSF8bVeq4PxEYAo2HcAnVfcpMSN4TICV343AXdQYVOXAhd2XZ7Xk/txMOum6C+h223QddVWOgrbSUil9MhhrGGYO7cufj973+fS9b78MMPY/PNN5+eRhEAJIp2+kMxtB5C9geg+9FoG1b2vSusez/zUdvi/s649jlJw7klXsMYyxhcup79UarLfcYW4HfL8rl12QaVPn77uKNYGjfBhvoeaMTSGBaNWKKqjQyd26oWpcmEPc+TJKeuOpZSCUKJUJSsL3+uhKcaY6sg4wn8kPZAi1yV+ocQlPvNPJC4EAaKleYB876P9TE2YomxWj6uRfeRWoOhooQxShFDST2PbbfB6bjGscyWQy0zYRnCSgI9Af3dNRYDxrwGVyuMRTFqnvNN8GMiU4uQkUUgEAg9ie783lcHHHfccfj0pz+Nb37zm2CM4aWXXsL//d//4V//9V9x7rnnTnfzCAQCgVCIbpms1ed9NlGpRcjIKgAPeI7BglYoV6NUvBwYaWcj+cySZXrkPJFw12xMluVKR96ZI+eelCXrd+Y2mLIDWUbLTOsxYjVyrxPGRpb7YFxPE80CQOgmJ+6rWmyHmo4lbgssLKlzkQpfSEsuHICVpJgZ10FzzFq6XbuHWNL2KevV+ny0knT3QSBlRLp1BWyFJM8wU/uTpqwI7nGYkVzLLU4zV0a6XY/oQZpzrl0CXeELRDVz7XxugoBishrZPqH7SNwQlrugk4RYM1oyz6q67oLtPnabuQmmdZrXLVsuFr6UDMn/vKvwuNVpusVq9FLqBJ/73OcghMA+++yD0dFR7LnnnqhUKvjMZz6Dj3/849PdvLUa3PK+0GCMZfwE9Sh60W0hHPZaCJkZzY8dJswe9efc8mDgzLxjtccDl2kDAgCxvtf1NgpcRkTOE0SJGlmuf751XFdIIMte2WWawTLH7ZxH/XzWQg/J8caqLQw15cJcV8+icn+IhhYTigSieiIyFdVnGRe8hhYkimqI64mXgWjUINTzXqjE8iJuGN836XmuMJYmp+JBCTwsmXkA4KUKgnKyfx5WUCpn82iFZY7QKiuVdShFgLKqo9mpvhJP58PAnBcbwv6W0Tr46pkdx0CgrpsMGJhejJRlstktm7Uqcqmz91kE2zXQZm41G+n2cyDb191+nv6xG2Q1VHtNec5PO6+kyfqWgZTdpRfpQXfByQYZWQQCgdCrWEONLMYYzj77bHzmM5/B73//e6xatQpvectb8NWvfhXz58/HK6+8Mt1NXGuhE8cCWRc8U2a56Gl06lJl1mvxzWW7TPlcBF23Md1mo6zqxGcBxSqCroockIz7aeNOSGkMudi4rQF63E8KgCnjyZyLgKESpsq6+tiNASGkKWvE6Qd6Xee3lLbroXDm1XpR6pqo9ytikc6rcU47Da9P+c7+kGdgepzUnF8ecDNfChhKOklxoMu4ceuz5zmDMbK4tT63BgaNm5/HVc7nIsd4GlvrcxnlVm4tDtaWiiSQVYvUho9AGmsXsryRFcXSqHD6+nmzPu6OB3TiCmvDZ0wl+1X9lDHwsBMHwxboWl2w999nDz30EL761a/iD3/4A26++Wa84Q1vwHXXXYf58+dj991373h7a72RlRuxtqAZLMNoqbsuUKNMUkjjL63r6PgOUdNslcwxWDbLlUxlGlfVRpvd2KxUEl4aBkuzBnqZnZw4LpBwj8YixH1q1Ks/mcZG7CAZIQuqZbByEq9TGJsVViBNHJBSDtOJA1VsVhhWzAiSPhrhsHjJu0ONVukHqswyW+2gWQysndzYebY2hfuoaNYeI9du1WkmL5+TpDfbUQ9MzjJS7fZUf1ywqJaLxYIViwVk5fh9sVhAct2NhHtD94lkGo1F+TQA1qgrkPS7VjFZRWWt4F6ngLFM7JUuc//re9QXi5VMee65oJ8FWuBjatClS0YPo1ar4fzzz8c999xjmKuDDjoI11xzDd7//vcjCAKceuqp091MAoFAIBSiW3fB3mayJiO1yFpvZBEIBEJPQq4eI3+d4Nxzz8VXv/pVLFq0CD/72c9wyCGH4JhjjsHPf/5zXHrppTjkkEMQBBM44kroGOsPlo1AgY8B8Km5AX7FPcMIOapsPuEMG66KWtH+wyDLWCRtTpmspBy5Y/EhbavVfpt98ijLucdoygq+JX0Dfv58SM3b6mu324ZWbWmFVm3tto2mrIO2+oQsivpmutzqL3p5G+22+4GGZrKEkDn30iiW3r7vczO1UdTHfQxc0b3ntqWZu2N1Ij/3u04V0ttGlk4tcuSRR+K73/2uKd9tt93whS98oattkpHVBvTNqm86PcrNODNxHIF6KWnFMR2blYyuJ+ulKoNZZitgtuS7voGyrE6zEX69jDOWi3dxma26kAhc1qGextNoCe5gTMdgZSXdw2odQZ/LfjiS7uU+ozSIQMUFGSZLqQ0ynlEaBGyVQXUuZUqNa79mN4nvZKAZozXe/bYTJ+YyWGmclf7vUxVUdYyiYMNSE9SxWOpaRMnojKxVm8ZiAUkclpFuV32iYcVh5Rgs9d/ub62SD7fDXmWk152TmE38nT0vucTDjDWNxUr+c8Nc6fjL6UGXfu89jJtuugn/+7//iwMPPBBPP/00tt9+e0RRhF//+tdeNxjC1GPejArqkc+dTE2tD0EfJKwYWsvYSj8IZc4IA7LPVvvZm//QZJlkwiZVharPYH2UZ8Jeig1D03AkH6zSKrKPxTWo2lGN87XVGH62AcBT9Ty7LNDrMxOSBMbScjOR0hwEkyL/EdzJR7F9L6p5ybjZmWTMnCQdPydlGjolZFouRHqeIpkvE9KKKxf+/tIM7jnWZcw6Pak3COB2A7df5Iw/iYzXjV5a1NaJ7Nsmftj5JjDb9dxnPoQBwyifyMDibpms3n6fTUZqEUpGTCAQCL2KVkmHi349ihdffBE77bQTAGDbbbdFpVLBqaeeSgYWgUAgrCZgKiar018vv5uANLWIi/GkFiEmqwAsSBXGjHKgThusExCXg0zOLL2ePS1L1oTBSkfdTWLiLjphyoI1y0WU/K8LibKKl3HVBYNygJLKmaXjbnROJJ03K6rWEKj5ZrFZOp+GzpclNZOlE+IyDq7KQsPf62EZTU1YuUN4NhaL6dEz6zyIbNWm0OdZjxQlrJlTp/VmMs+M1iNueXcIt60M+dGrlMFKWRlXVZBLNUol1DSuI006rK6LOvd2bqxmsVj6f9oHVLyeFcOXUxe0YrGAbA4st292koDYB1/i4aJYLM1o2fe1G4ulYy0zyqLq7Os8WbruVOQiXhMRxzHK5bL5H4YhhoaGprFFBBfr94eoRT71Odv9SpV52CEJmT47bXZIps9sww553IcksiP2LtPAmMPyO89JhmyOJt/rwN6rbosWhrBCgbPuX/azvsDtyVWEZcg+t/V50xoEAXPyGep5k0C+ZjwQmGiY57Rs1CEbyiOhrp7rUQ2IlNJgHAHac0GzB0JAiuYPLsZ1fkueep8Y1eAQCJUnSlgBU/dxWEoUB1mpDFZJcmdJXoJU6yGoWPPKe6VchlDzsZSI9OvL+m7RTFGr/gL4+0jGhdDqI8y5RkBnfcTt27FIJUWK+kjWLynf7gzrVtBuIHu/yYz7qt6///yUAoY+MZFu2GsmkzUZqUXIyGoC49OrPqyE6upM9WgWMONiZIQvlDKTtNwHi6Tbs25Oybz54NRucpaBVuRmFVh17cTEAFDX0qZGwjoVIihpVy/V5rieuguG/TpBcd5tMLTk3IG826AIR8BD9SGlExRzLRtuJSlWN30YJHWldsu0hD2kdo9wXBP0w8k2bJoZV+2Mk9siGO3WbQa9Gbuqz6hCZnn6gWAnHwYsmXZmCV3oh3OsZdpTsQs9r1+2+qUsLNn2Zm6Ceqr7gDakjLtgPTZugsJxE9R9sy580u3ZqTtvIyvPnnW1aXYfucaWfuEG5cDco66boD1AUuQijMnN9ZmF7PJF1sOQUuLoo49GpZJ8mFWrVXzyk5/E4OBgpt73v//96WgegUAgEFqh23dTjzNZk5FahIwsAoFA6EEwrHnCF0cddVTm/+GHHz5NLSEUYTBaiYHyAADLAwFWXxQCTDPnvv7JOKQZgreCiMxyZm2Xq/0Uj2yx3IeZJR9tuyCpMgZpBVUV3D9q/xIsZWwMnWC3j0EaNjvPTGQ2CYuZMLFRccpOiUZe6TWqg0Xp4Jesjph5ABDVUcixVQCAaLSKxkgyGNYYqRpvg8aqhN0S9QiNMTUAVosgVFydHhwTDUvW3eM+wC05fF7i6WCUGskLKiFKavCVl0OUhhLWKuxLBkxKg30oDSZeLeFAH1h/wlDzvgGw/mQQhfUl06B/EDJM1gvDMip6oDXUA64lQOXckiww/UlfA7f1PoaIpZ3A6i+yoL80ec5a90Cmv5jRz2x/MXVbjNbmYuh0+8wGZLaNVpt1u6TNPCJ7v9rgUQ0ctabt6QzdDgD29vtsMlKLkJHlwHb7YzkJd42UrbLl3HWZvQ4LGALVr1zp9mYj8MKwVMis0wquC5brNlgXCZsFpGIFvKyFL0RGzh0AglLebdCWcwcst0HlEiBLJePWoBMaZhgsADKqJ8kPAfPQCrWLoUYsjXR7CnUOHUYL6M7V0gd3M4yNbwCm2aPWzdnBWJ7BcvtGKUjVs5gldAEAsMQuUuELJcGuXU00e1UdaeommExrGcl2wBZKEVbyYZ2EU/cz210Qaj6ZdvOYtRXVfW6CemonHbbXy7BUTdwEgYTBdl2EpwfjYLJ6dMTwmmuume4mEFogGH4FQhlZOuUGANOnmIhTt+SifmYZLGmZZVC5ho21PAf3HnBG0Zn0fIA26//W/r1tYRzmbW+5zUlfW912mPOi3bYbGS8D4+5XHU0Wj62CUPNyZNgYTPWVI2o6hvqKxMiqDddQW5k8n+urGqivTJ7RtbHk+TwaS4yph+xoJFBTz2A9jaREI5OjLOsJA6QCSiFjqKh5PR0IOfrVM3MgYKj0J+/r8ozkO6A8VEJlRmI4VWZWUJ41pJb3ozwjMa60YcYGZ4L3JX2M9w+B6XntbhiUIQMtnlUCmP5+0OEHzrVw+giz+4gQMG8dn1Fu123Vn/X+fG0oqJeDr5/62pJZ7mkXY+n50PdpgWHHGjWw0VF/ewiTmlqEjCwCgUDoVaxhTBaBQCAQVnPINSsZ8WSmFiEjqwO4jFZGHMOJ67BHyUuxHtXXsu7J/1TaPc9W+GKz7NgrG9nkxJrhyW5HS7nH0kpMrPQ+taS7qMeGrWio0X1fbJYt5w4AvJyMkLCSovprVSPnLlWZlnQ3SYp5CMmzTJZmtgI1aiXsgSAdB6cHapQ4hh2ImpNibTKa2Szru4t2SQG9zU7264pbMJYmGtZlJhbLCqBmIh0pTaZZuXbE9UzS4czUkm3Xo6i+WCwgue5uLJbuI6Iem1ishnAFL2CmRbFYzRIQ52XaWdNYLCC5n9xYrBLPJhAPSkHhPWsL3bgCF82Slk8a7JFxAmGKEP3tRfChWckfnqY7kOoel3EEKHbGCCnY2tFWIiJmM2HmYRfkR/m7TbokLSe+VvdKpi0pU8W4xVoBicBDhhnwuGLpY7GeXYl6WtIGqc9PvWbFu44Zd0A9jUbH0PCxVisTRqu6vIbq8qpaXseqkeS5PBxJrFDP5RGlm77KI1bSDuz3VaNNl5mhkGNwJHm/zFqRsGszQ4ahQcVqzSijb53kuPrWqaAyI2GoUnZrBUqK3QoH+o0boZ7yvn5ACWqxciW5JoBhtHLXwnmHJB/zFjslrOui+7E9tT/+O+lHQLYvj6MfJ5M4cyw5oRIhrHsyAAzbl37KM6sN+hhFdQRyrNp+21pByu7Si3SbtG2SMZmpRcjIIhAIhB6ERPqSJBCmCmLFa5D15COfBflPBBlHxogwH1rS+RhknlFfnh1Ms8ty8y0b6ctu6ynzbZPztA2cm7ZqF2EEYWocWi5Zrdy/pIjT82IbWQ2l/lcbQzyWDGo1RpLzG41WUVcGVX14BPVVicGiDava8hpqw8n6K2oRhhvJvoYjgWE9+DUNrsGrIoFarN0Qk7KG4GjIpK2zGgJSGX0iiiGMorF2OW8gridGWjhWRWkwOd6gX7tT9ptBW1auGCPC9EefoW5BSpFxaTXGShxBxk6fFSKpr+ZzcMsK+lTbyCTQym47abenDfb9xdI4rPR8eO4tvT0kA6s65GNiIHOGbdvr9SAmM7UIGVlNwK2R7SwUA1QK0uTDQXbEXJeLWKbKg47SX3NVNLUnKzarE6nrfGyWHZPF1LxWGUxqN6qRUVxzY7PCPvVwrNYycu5AEgSbTNOkxNrnXAeyMi0Dq5MU87rjA59O9TutZI0YpaOVak6zgIKB62Be537wJZ+cCjRjydxFNoMFJMkmc5LtXLMyiiWVsRWLlQZQZ/83MkmHgTQOwGa0msViAYBoRN5YLCDpLzoWy2WwfDFZkxmLpafuveWyVDxgKavlxGKZQG9P+oZpATFZhCnEDjvsgJkzZ0K+/DPwwZkA0ue2DRk1ILU8uGGynH7qjvZbZSxjWAX++Vbw3Re+soJ2pOxVkLZLuwOFpYyUeTpf0D7Nkog4PS9a0bU2lqbMGBtBPJIwVfVhzV6NorZcsVeVMqqlxMgYjZPzPlYLMVZN9vuPuIF/qA/w10WMPqYUXacp/rKsnrXrqfOybhBgvTA5r+uVS+jvT5io/hn9GFg3ibnqWydhtCrrzkBlHc1qDaA8UwliDCqxjP5BMM1kVfpTGXnzHRE07y8izrCsZj5qQMZOnxVxOpjVTr9q0rfbgr09Z9tSiNZtsPqjuT999xbSQTpZHcHw6AQzWWuQuuBkphYhI4tAIBAIBAIAoLF8OUKd8zBMPzxsY0IoRkKzAkWMq/vRB2QHLnyDGL51ugXzGXGcpwaVbWRZhlfm49XaBnPiMqSdMC+qp+chSnMSaqXAuFo3ghZGJXB4FA1jcFVRG1aKgcoVr1GNUFeM1VgsMabO91gszEDWdEHvX7epjzOMxWoAtxEj1OlgRhqoldWArBns4uAet7ZyrEMYquBakbBeBfRgrV7H6pf2NclcD9uIsgYFcgaV+P/be/9gOa7q3vfbu2fmSLZ8ZAskCyH/knVjX66JxZONCpECKY+A/ngULohSqYQ8RBzFENsVl12kZEhFpgi4eFIRP2wQNo8r+Zni4gSeScrAfRgZ27xnuDgm9rOIpRsBupaPkBEB6UjH55yZ6b3fH91777V37+75cWbOzDmzPlVT3b371+6Z3dO991rruxLS8cp3clrlFusE/z4xVrWi5cB9FRm3VgFR1SlyCgYCsrons7NoTvfOkhVhccVk9TO1CHeyChDkz194MRyJKbdWKpEFWMnsJqEj53r/apJuo2OzEmKlKrJk0disUF6sVtj4l0BMVnY9Op4mJjE2UqvFaYtW9ocpqnUnZ1ZaljYjnTcrqs9YpcFsNEpVdULD7OGVEHN/bmr/iI0lw08wRSxaKrs2nUtLBSxbgxxAodYr33JlknqS2CyTA8tTyBNa7lU2AxYsz7KV1AOxWK66oKzPmD/eUCxWutw0bUB6ObFkPTFtJ2/Bgpm20041oVgs870U3CN0WjNWP20VdWMkQ7ntcsmJa/ZBJeJBvsiwJYthGIYZMrq2ZA1nJ6ufqUW4k5URCmz3A+Q1+mVMxVEu+XDIbVAS10Eg7zZYE2FZdzqVSuU6XqHOlnUpzOrjbZO+9LrugvrFVCYqJ3KgO4/6eipLmo6cOwAkWSdLu5qJypTpZOlRPDMySJMUF3SyqF9xnOXS0J0qI+muX5QVlXPPNoV2q8u+d+Td9PrZ6SryFhQo7lxR2fZcG9DXmrn/RUnDjJT6whc08bBJDq2TD+vOFhlZte6BeTdBIHUX1W3BJCHWeVcSVdK5ckUu3LLw90Pxb0fXFdCd1oggiO8mKIjgBZC2YyPV7rkJ+p0twLo46m39/4K+oryRWYaZB2Z/c9bEDMXVvLugTNq3ZIVoZd1qp7zV8URMrU/CnQrhlBnLgHk2FVu6Qn9d1DKi46/0/3AyO+u4ZFMLFgA0Xp0mA1t512xZT5z/1k5CBuYbWr+6VFii3cuJoFZziZ7WIV6dLjxWpdFEnLWxeGzGugtW9W9kXT4Lf5MCS5XSVkYj5CKddmzmiVVJBv6H223zvnWqrLydY4YsWaH2To/fnJnFbC9jshaZu2A/U4twJ4thGGYo6VLBSe/LMAzDML2m23hhXyBnBOBOVhsIbzRNQrsECuNOVOY2mEt+2tQj763dBR3rlTGRtG8RCCUn9i0KxqLVlEbIIK4Wuw2KqpVzB4i7YOZ6JqoVRGNZkGU2OigzyVqdnFiQJI9WTldb/+qmXGhLjZ+o2PFH126c5RYt+n302rIVsl7546tRFJVasNLlvGS7+Q6MQlIdkbQJLoFM6AJA1EhHB+XstPnOfbfBZDZzEZyeLXUTTE+V5NwETeLhpnQELtwpzLSdbkJeDMa6CerydtwFzX4BN0EgtUTpe9S3XEXEWqWTiw9Eul2jwO6CzLwze/qcGQXXokauhLsd7ZdOWfdt1Y91KrNgCc9y5VuqdH11WeRZrqklS1QrxgpAj2NiXYilK903L3CgTKyahKw3zTyQ/sdqq19jKi801Jiacf5rtUeM8rxfAP8/MHLfDQYA9SBIp64HgiTXoq+HvkdEcRZeQH4PakUy6oNLm+Y3oO2x7LdI5+2xqOXVtN2svcpG07FkSc+SpRLpWJhCli5zzQWDYkGrVZf3S0Taa0zaKVAsfCHrTUzP1rs6XwilVFfKt2pIJdz7CXeyGIZhhhLV06BrhmEYhpkzVCK/0/1GDO5kFZAmGvZHzPToejbqIhWUtk4VxGbRkTATH5JtUyOj/taq5Y/o22lRkltfLCBEOCYrXVcTWt5dmcTESTba78doxbXYkXMH8jFZSa2a+lEDxpJlhDAqmYx4HFsRDD2KqS02xsJVN0kHTaJibe3SF9aBRQtwrVrpumzPwFcY+rrLvuqQ5cpZH5VbsIDUemVisDx5ZCtq0bRCF55Fy1itZl51kg4DVsqdxmGVxWIBmUx7Q0u3Wx97IG0vNDUAUB6TVURZ+w3Ls4etXjURIa649xod0QYyVasWsVgiFsZarRlcMuIuH0qjN2DI9IjZ02eNZds8u2JhRvgBEMuAtriQkf7AaLVsw9wiAvdYKAZSxMK5H/1RfBGHY65EzXpRUIuISUFCrFv0mNTSFbKwUSuFnk8a6f+zrDdNbig/9kcfX19jXIuNlb2yNK1TrVGFFZJuksTrEZZk++lkxNOJ6rvioLZeLY0jnJ99F8uy/9zlVWHml41VUFtWNdfix3ZHIrIxVYE4qOZMHTH5rnRsoG53QNjaSY+jLVX0+LLRNG2VWh31vJQSMrOgBS23xKrl/u75+8Cs836Tdu4FoPh+sO+WUbDtu+eSpryeXVdP6NZdcAQHDbmTxTAMM6SwJYthGIZhFibcyfIIjZzlE5Nmo1BJREbIlbettnAJqMSO2KTb5mOz9AgRlXX3p1TOPaU4NqtIZZCew8ZkpdOaUEh0ZnYvFkuP+if1xJFzB4B4SaoAqEc/Ra2CeElqwYormWy4tmRViWWLKg0CQbXBKAr7Eccm6zk8axagLVpKS55H1iqlrVpa5p2O+/hjUO0k+w5FDpTJs/vrfAXBOIqMBcuXZUeSjeIljaCaIADHeuVLt5tYrBkr254Yy1U+FgtIY/KSQCwWkLajVjFZRWU+ZbFYeurfEzYmwO6bi3/UI6hVPZotcpYrGouVLkfGWj3QZMQMwzAMM2yo7mIwu4njapdjx47hE5/4BB5//HGcPHkSa9aswfvf/3587GMfcxINzzfcySoh/xImvPXKmIK126Agpn8gNSP7+5uOWZQl4BMRkWUvdhukcu6UdgJgqQAGFSWg07pUxnUw92Jd0y5j9qVbm+5zboO1ipVzr2Yv+lXXbVBWqq4IRvoF5aa2X+nl0DIJp2LiF5h1qvS1EuELSTo66ffh9qCUUsEOU7tQ18BQ50pvY3JeBTpXaV0T6wKYTRHIhRUSugDS3FdA2rHKCV7k5NrrOTdB87s3tNtLkutwWxdBVdiWNO2JXoTKfNfAqNRNEEgHEgrvNeou6OXJom6CmoEKXmi6dclgGIZhmH7RrSt7HztZhw8fhpQS999/P9avX49Dhw5h586dmJqawt69e/t23lZwJ4thGGZY6eNDiWFCRLHA7GSmFBvIFamkIspxOj5FObEmvpqa9LwNVMmIoD/AITzvklTV1w6U2IEUW1cT+0MU2PRAkqhWIKRW0a3YGJuqfR2KEqtmZ3LleXUw9cv2U1LmlA5VtYqYqNjJpZmHR+bpIRtNq+w6NY0lF7keBfVzDTM/fq6OxlQ6uNaYsTm1prPBr+nEqr3S+Cw6iJoElHbpdTnxrZ7HwNI4IvMCS3XuzCx+rLqkgur56cBpbVkNlSVZXNmyqpmvZNddOX+pmRfVCipL7byelsXCUbVLIK/4J5PEUdbT80m9mcvxljSaJg6LKg3SWDo9wNiq7Tu5tQLxcUXtPjSoR9u9095IDsjQ/emcL6tD9fyauZ6e0LWEe/+eZ9u2bcO2bdvM8rp163DkyBHs27ePO1kLBT3SbcQSYokoca1d+s9dEglo33VJSS1Xmh1vVhkLVpnbYM5iFeW3bRVTmaiQ9SEyy/qPuaolV43YQVrX5nTTuF7pa9VugyILThXVCuIlVs4dAKJKZlUhSYmNC6H5M60614VImHkt6+7/lQiB1JoF5Cxa5poR2cTEnsuZ70YYQimVE7HwoaIWpgz6cqwFpsyCBaTWq8hLMJyXa6/nhS48cQtVn8kJXRg3wWkr2+67CZqkkSQppm4D+gERSo6ZdxdsR/CCzhe7CeppmZsgkN5fxj2w5r14kSl9AQNcN0FdbiSsB2jRUkrNQRablS8YhmGY3qOU7C5eOOvsTk5OOsVjY2MYGxvrRdUczpw5gxUrVvT8uJ3AAQcMwzBDSTZa2M2HYRiGYfqBdhfs9KMkJicnsXz5cudz991397yKR48exb333oubbrqp58fuBLZklWBGuHOxWNYipQUvymKz/MSCodisfLxJPjbLH903Zhhi0epm4D0k797Q7hQ6DkcLX9QSG6/jxWbJhjW5m7gfbd2qZYkHq8SSlc0rnVQwE8Iw8Vc0YbG+5GxKL9PE0nhBUJHeWCqobJ0uUwHLVqHxpcSKRVf5lisTm5WVxyIighfacpO1CWOtsqIWUSAWSy+HhC78qSyIxaK/V1ksVlouTRJi3Sao9aodi5WmqG3GUUQsWPlYLD3NWa7M92wtUP69pQVbjNVVRIWxWEWxl3q/eWdIY7I++clP4pvf/Caee+451Go1nD59etBVYhiGYeYL1V0ORyUlxsfH8fLLLzvlZVasXbt24dOf/nTpcV988UVcffXVZnliYgLbtm3D9u3bsXPnzo7r2Uu4k8UwDDOk9FONqVvq9Tq2b9+Ot7zlLfjSl7406OowPWbJiuWoT77qlNGYEBp3EopVodvoAcYYbn4gJdpr16FYFD8OSw+GGnGbWmwGSuJaxcb5BPJkxUtqJmbLlFWr4TxalSqgBwTNYE5sy9JKpFP6Aiq1u3ViYyyzMtls2BxNjSaSLDbIDIyRAcvmTN3EDiWOMmxW1rADYqmbt83tlJ5flcbC6e9WT20+QRseYHJ9VgUqS6vZvP0u9XdcWVKzCsNVojZcsyEF8/W90jxYSaNB5rOBzZk6ZHZeWaua71i3saTeNPOyniDK2q4eUJeJQmS+48i0c53+04lPLBisC7XztNwNR/Hbe1752kWfe+zCC1CfDSs1d0W3yYizfcbHx9ve5Y477sCOHTtKt1m3bp2ZP3HiBLZu3YrNmzfjgQce6LyOPYY7WQWERq5zwZeJQBRbOXe6jZlKFRg5d2NA4ppAbdaNZQnFZuUsWZmNRCpr9WrHslCkCJdasnQ9svNnynJCqwvWhXmw6ridUGwWDWBN99d/qDZJsVEazP5AtdpgRNUGdTJic8mZFZHKvCM7r5GCz2JutN1LRMZypdExWPpvXBEFwk7wrVfZ6dJjR+66NCYrH4OVVkgnHm4iSohVC8jJtaM5a2TZZSAWSy+XxWLpZT8WKyEPacBTF8zFXxW3pXagSYjLknDrqR+LZZZrNjlj0T1GH0aFsVgkoWNikoUOLiZrWPn4xz8OADhw4MBgK8IwDMPMP92qC3bg+aJZuXIlVq5c2da2ExMT2Lp1KzZu3Ij9+/db5eoBwp0shmGYYWQu7oIqtTjNV4AxwzAMMxoo2Z0oUz89MyYmJrBlyxZcdtll2Lt3L06dOmXWrV69um/nbQV3strAj9mwymPCKAX6sVlGSTCRJDFxpjyozclG9lOZnFllsVl5S5Yr0SrJ/u1ZtNz9ExUZ5TirdmjrCKSWLWPlqNkExQCQzGRuC7VZkzOrWfMsWtq1oDINpUcZMktWTm1QxNZypSvtW7YAKNScMmsI0y4GNibLz6VljxvZGC69LvAd+iqD1NAReWVaQZDGZJlEw54FiyoHwlcXbLoxWW6i4Ww6M5Ut28TDzWmbdBigsVlZXrOZRj4Wy8uPphJlLKW6bbjqgu2rCWpi/ztEQCkwNy2PxQLS+8u6s2gFQT9GUhTGYjl5soZgBAzAnGKyvvjFL+Lzn/+8U7Z7927cddddc6wUwzAMM7LM0V2wHzz22GM4evQojh49irVr1zrrQu9y8wV3srqAug3qfBplboM0MTEQdhvUnbIyt0G/k2UTGGcFShl5ef9Fth1SIQO3k2Y6XdnLd1wTuRdy320wqTeNi5p2E7SJirVP9ozpTGnBC71shDBEbEUwNF6ny7lKFW7OsYitldoTxTACGIrIuptzlQheeMuphLsreKF/A6NILxNX4AIA9HImcoGkQTpc+c4VkHas1Myrblkg8bAveKF/k8T4pCd5N8Hst7V5RRLSqfI75e39cRW1RV/sIp0PT0N5W6ibIJDeT3lXXE+uPRaFboKOO3ASHnETBb7vfUGpOY387dy5M6faVGTF6ia4mFmcXPhbl9jcUdl94LvK5/ISSUnKktz+zra0rEX7poMdbrJwe8/q1CFmsITGUVUriAMDfTo2KF5SI2lGssG6ahVRbUl6okoNkXZjr9YAPW9c20nskBBpLFFa2dLroi+bxiLQbFgxAf39NetQjYbZRxmX8br97rJnh2o0bJySTIyokT2PbPv7DuUBo9caVatWqEr/RuS7goiNyFVUqdlYKyNyVbXfVbZ9KTT+CsjU6uy12u8lnapG3f2u9POx0YBqugJQyUzdxMLJRpOIQdlYORM3R9q5FvpSiXTaufSeHWXfeUhULQq1cxKrRtu5H55SxPmrXwORDbr2hG69LPpoydqxY0fL2K1BwJ0shmGYoWQu6oIKtVqt7QDjToOLGYZhGIYphztZHeCPOqhEOnLuQN5tUMQRVOKPnGcj79q1iaj+FLkN1gS1XNkywFqbgMgEFpaNFyREKCNdhjN1yzLrRVNbNiTiqpZ1z9R3suswFq1qw4weale1nABGtUJGtTJLllb4qWgVKDJypivmWUUUWacNWdabMnMNVBJK6NG47Jq15L7+nmFzGLdjWvatVvS8xk1Qnz+xroHWTTBvwUq3rRPpdj1C6cq1y/qMcQv03Qap1ao54wpd2JG79FzN6WZejt9zF0yaMmfB0lDhC1vW+rvLy7VTUQt3SsvL3AQBrSrm3mvCKDFRa1exm6Aun1eLVREK8ybh3klwMcMwDDPCdOllodTwqeX2G+5kMQzDDCXdBRf3m5deegm//vWv8dJLLyFJEjz33HMAgPXr12PZsmWDrRwzZ8be8Gas0O5y2uUKcF26iKtWOpWOC6HvLqgSCUnacsid0KwjZSE3KJoPT1D3Ke3WFgvHBZDmZkzLqtbdb2ypcQEUxkWwmpZn26q4Zq5fxdkrUzZop0TFxhSLCqDXE/VbqoTbNtnLaKQkGTSUiPRLqpLG9cop04Nc5GU2oi+2rV5ySR1VyFXf+L6T6wqoAdPjSFreLv616nmtvCubNp5ZNokbPhnQ1IOUzYYZlESzYRR5jWvh7LRxLVTNhut+idRlUw9QqkQ68+mpwu6x5lJK2nMoN6OIrYt73l3QLYtEwD2VDsxl5fHK16M55aZlmBNdx2RxJ4sh+CPePu3FZkW5EXMTo0WsXVTOHcjHZqWj/cjKzFnNuhRi1+ky0C8v0+3GaCX1BElWEdHwhC+0ZauR5CxYJj7IxGhVrSWiklllPCEMCWv10ORitJCPz1L6NyDrzR929nCsGCn4dCulYCXfdVnuTKFYLBt3pS1X8MUttEVLNq2YhX4Y+ImGm3UTr2UsWNOpqIXU4hbTU8SCZYUuADfxsEk+nPmbGwEMk2g4KUlCnE2VCkq3+5RJt/u/WF7cJQpabt1tymOx9NSkE/BTKRArclEsVug+H6hFS2EoH0p/8zd/gwcffNAsv+lNbwIAfO9738OWLVsGVKvRhZNDMwwzr3QbkzWClqwh8IlhGIZhFgoHDhyAUir34Q7WYNDJoT/84Q8PuioMw4wAKnMX7PQzjIOG/YYtWV1AVXGonDuQj82Ka7HNep9ZerT6DI0f0XElfmyWVRcsjsWiyYnz8VZ5E4Mfi2XVCqnVwrNgZcsqUSZepyw2S19bnCUo1t+ZVSqiyjivOtuAmMCVnwleT3NXRSxa2WiJs6wtYMq1VmnLVhQJE1+lSlQFNcZqpc8iZdhyBdjRG9m0MVgh6XYgtWI1dQxWOO6KSrjLTGVQW60aU+k+aaJhT11w2sZiAan1qigWy0j2q7wFq0y23W93IrDOX6aJtstis4pisUJWKn2vCU9lkKo35WKxhkW23TAX4QtmVOg0OfTs7CxmZ63SmJ9LjWEYppRu3QVH0JLFnaw54ufOsi5I1m3QvAR6L3fUfVC/1Ppug3LW5q3Ky1vn3QWL5N3LBAn8jpm7zt1GKmWuVbuWhdwGtaiHcRusuW6DUWxlds33Usl8pWknK3Y7WfoWFanLfLCz5Uu5KyFtJ013wHTnina6Ajm4WmL8xpX1o/fELYzvvGwWSreb8uYsZOYeWCTPruozQaGLdGo7Vlpi1roJ+rmwkpyboPEzJx2pMlfAdoQu8p0rf5p3FwxuU+AmSDtQZW6CetnvTBXFfQwcpaykM8P0iLvvvtt0zELIS38bS85PVSkVjcnKiISwQe9GcjwplNfWZYpsayTKacxhJ21dCyLFsY0J0mWVqisVXrWxWACAmMRZxbGZ188ExFVIk1akZmOu4hqankhUIhWaNG+gntchREoZQaVEKTPGZ0WWABlwTFdKD+SGpc1D44DCe3KZbWhxRw83W8d0xpaF61x8jLL6RpEVkIrM/33spEIxz4GKfU5U9IAcSe9R0cdJ6s5AJhWYEiZ+S5clZL5h47MaWRmR1lfNBmnzpA130XYBOrBs23BEUwL4MVd+moBW0vcZanwV4rPn2q9jywMOX56sYWUI3iQYhmEYHwV05ZKhpAwHFDIMgDvvvBNnzpwxn+PHjw+6SgzDLCRUKsrU8YfdBRmKn1TOSZ6XLetGY0a+c8kbE2LBcq1VQlurEkncnIrdBn33vjjKuwu6IhiBhMWEODC65Mu526TE9pwiWxC1zLrlC1/UYpO8WJc1pzOLjVaFqlWsVctzBaSN0liuvHrq8mhMIqoSaxIAVfFUl0RCFKC0xTGzMglPDQoBVaUAkW/2VjJouUqXiRCGsWB5iYYb1kXQWKwyV0Bj2SLCF81XtVugK3ihlY+aM7PmO8+5BBKLli6T2j0w+221K2pdqoC7YMuvp7S9+a6A1F2wSMJdRFGpmyCQ3k++lcu3HocSPQ4txGrcxc49rQozv/QzOfTY2FhhUmqGYZiWKNVdfBV3shiGYZihQIUlgZnFDyeHZhhmaOGYrLbhTtYc8eM79Ih5Iq0ghpZqV16CVEVG2Y2se0lslpVwdy1Y1mqgHKuWLqOUx9e4IhjpNPK2USZex1hG9HU1iPCFsSRoy4JrUWjWqjkLFs0PAQAx8TlWbYgSWCNediNXaJ6NrKkbp3jtvJ3lvIiEjdtqJ6eHEbMgVjPlWtRyiYdl0+Tm0OuoBQvI4q0yC1ZhwuHZWUeqHbCWwqYj4a5jstJzNbKpI3zRcK1cMiBq4Vs1/XKAthv3a6LW0uK4qyhXlhPACFipfLl2EQtzb/nbUnJxWyaOUt+Dw+I33l3CR2bhM8jk0L9Uy/Da118LgMStAAjmOgrFpFKrPvmfDOVzilTg/5PuV0QgH5PN2xSbeRVX3JxWer0pi01MVYOI/Ziypo25asiGibXSZbNNiZmmzNZLzJp5fUxJ5hUa2f2szyWVQl3HOEtFYrrcadk8pai818Qi/79Ky/z5mMRP6WlN/29HEarZ/3Q1+y+uxhGq2bbVWJj5sYow2y3J5scqgsRnwayvZO8OVTGGyph99uhz6X0imTheJ7nndtIk8dZJ2Iulg/xjMOljaF6xyKyj+cfsfCW8jxH0Kjh/tv6cjHFW9U7gRnUZLzyKz7MF08niXCAMw4wSii1ZTBtwcmiGYZjhZMF0snQukLe85S340pe+1PfzyS5HhMzoOElObBMTu8mI9TlETVhZ94LYrLiiEGdWh1puFEnHz+RjsrR9x7d+FVGkNEjjcYw8d1FsVhxB1DOLXnYdSU0rEaajQ2JmFqIgGSyd6vGfotgs0NwLOvaptiT7CkhMVuzFYNGRIWTWK+l9OWUjt2ZZmXIzwkUtVwCQ5GOyQrLseqotWFqe3SQjrltFwZCaYDrNYrQaTZJY2FMVJNYrPxarnfirMkXBUPsKJR+m05qwbdpasLJtK7YtlMVi6XJ9b1krVeTtI+YUi+XHaTLMoOHk0AzDzCuqOy8Lxe6Cw0unuUAYhmEWNt0LX7Dsxehw4MABfi4yDDNvKNnds0m1o5q1yFgwnaxu6FXSRd2YdKwGVRn0FQdDyYm1qmBZbJbwrFx+bJaII8TNVrmEymKyrInBt0SU58dy90mUqzQI5GOzaHLlZmZBEp71IRKCxMLkld80uoEKL09WpGPe6MY0DwsAZLlOouoYlNJJh7N12rJFffsDfv6F0PiCbGosWTqmx8ubpRqzQJavw1iwdE4OnVx4eopYuTKLVrbcnEqnjanpfKJhbdmatomHdeyVjsmSAYuWH4tVNzlf8nmyQv+PRXnYaJsqyusWzpPlTgVpU2WxWEB6P/mxWH78FU1A7MdihRio5UoBcmjiw5hR4SenXsXrLkjVB2uOaVrHEdGtrfpnHGVW5AgQUbq/vo8jYf+roygiOZDyZfaoyI5dXFdaF0XKlI4bBslZ1bRxTonSlvskF2fVSBRms/tupmnjrGaaErOJG1M120wwk5VN1xNMZ/+n9WyfV+sJphu2rN501882pZmvNyWSbF7XX0ll6q2UMt4vily4npfef7DqUXxWFPgBRBTlyiMR2ZjYKDI5rSIRIdL/65lnQq0iUCMxVTVTHpv1S7N3iPNqsVm/NPvvX1qLsSTW+8cmzmosK1tSESZ+a0lFYCz7j6/GUS5+K33+2DjwWLddko5K119E+VRjRe0z1DZpuSLPVlqmnziK5F0zIY7Kf9a673f+q5ze//TMNKbOzoQr2g3dKt9yTNbiolXSxX4QSk5MExPTbcxUKuvOlNiXSsB1G4wrmStf9qcd6mxpd6u6dG8+Kuke6lS1wnUX1POu26C5TiGNe6C+Di3lToUw7AtwQcJF8kJsOlveTSoBRLrzW02TTUbabbCiE/8mNhGlTt4nPen2SNh/qDZENsyfRYm7IGgCQ6QdK6U7Wboj1XA7Wao+k3MP1J0r6iJoy3x3QSt2QZMOAwi4D8qWboLtDjwVtalUnt3tXOVcAqNAW66490hcjYOJhd2pKHUT1LTjLjgMsVCqS5eMdOfe1oVhGIZhgO6fTb3q+C8kBpooZteuXYiiqPRz+PDhro/PSRcZhlnIqER29WEYhmGYvpC5C3b8YUvW/NLvXCDdJF0MmeG7gSYn9pMR6+NqlyaVRDk3wfyyMC9P1UxUQ7s8uFYAX7gib9HqxC3WF8Jw3ccyi4R2bdBulVIa64m2KDS85LCN2Mq8+5RZGoxFSxfIxLoHNjNrVXYjq8ySJWQClVmyjNVMuxJqC4eI5+YuKEk2c22t0q5emSVL1mfMvJFn99wF1exMoQWrMUWFL1yhC72sZdqTuiTzrkVL11Mlkki2I5uGJNw7vw/C8uzFAhh6vmrk/F1LlCCiFr5rrXZREcSlMJR8OLTcLt0K4cwJTkbMMAzDDBmqy2cTd7LmmUHmAmEYhhl2RvGhxAyWn/zyLI6fSQeBxrIYmTgCiR9RucE3QQZThLA5joQeSPHKdL4ktwzkWO7+6THaq38i3Xx/Zj67lRpSmpiqhlRo6DgrkvtK57OabUqTx4rGXOkpjbmarjdN/JZeP1tP0NRu2k1l57NjNqnCa1OacpkdJ0mkGZRNmk2Tm0jJxAziOWXSLfPnOyEScW5Zlznzcb4srlTMAGscC4jM/TvWA2QVYQbEKrXYlFeqev/IzI/VYhOLNWZisypOzBaN1dLTmonZEmbwLp3P2l6sc265ebpoOwTSNm7bcevvze970PtFKmXWS6VMm0tIXB0t021Xl0mpnPtQI7wBTFOXbJMzsw1MT51tXfk2UVJ2FS88il4WCyYma75zgVAVFB38XhweX4yIhUlM7OPEkkhX6MKPzYoSEm+SWcRqXqJgIC9KERbA6HyUW38d9GGr477Mw5XEZkXCjdMS2ZQKYTS9f4ROrAyx/k2IJUtp65ROEJxZr2SzAWhLlplmFiQqfuA9VHLLQD7LuT53klgLmrZkZVYqY71q1HOWK18IgyYaDlmw9HLirbPiFolZNkIXDRuD5U/1n78VvHAvr8zqWZYOgFqtiixYVLa9louzsrFYurwsFosuhxBdWrAGiVKKJeMZhmGY4YIl3NtmwXSyOBcIwzAMwzAMwwwOlnBvnwXTyRpELhDpNQjdcy+TfI48ZTqVSCIVHVYZFLGC8ixXIUn3uOYqF+p9tNUqpNJGaqZrZOa7ibVJ1Qn1vLZ+uLFZST3JSWknnvWhQSpoLRT1lue3126ncUBNEICxXqlmw6oLVlNrlxKZJUm7POj1yLtJBOvhWbRUs0Ek5LO6NXyLVt1RGkzX+eqAxYmGrUVr1q7TlqtMrp3GYdGkwwBVF7Sy7X4slqbb/8KQ1ao45YCdancHK9Pux2ZRNcpsWxHltilTFbTbtG/VGqgakhpN9wqGYRhmiOGYrLZZMJ2sQeI3jFC+rCKiWBgn3SIBDBVHuTw+KtuGug1GmeCFyDpeuhMYK/tim+9k5V+e/VxaZZ0t+7Jt3Q19f/y69yK6JFHB3FlFlK0zZw90roA0j5D+fUQ17WDExn0wcw2sWndB7abnS7orEZvf01xN6GW8oC1QAQ7TqfIl3Bt14zqYZPnbZCPLZTWdLruiFtptMC9y0Zy2Uu2A7VzR3Fi+dLv+TfRoUl2q3G+Xl3JvTyjF71zZ8rDQhT81Haea9u93O1RxVeQGIHw3wVT4Yu6CF6m/+RA8DOYifDF6A4ZMj/i3V86Z3E3LxuwrQmJcipWZ18SC5LoTkYmd0bFXtYoonPf3F5GNkaHxMOZckR1gKYIK1fgxLIlSJiZLKmVirmi+qjqJrdJxVvVEkpis9H/21Xpi9yPxV82Gja2iZToPlo3Tsutlsw6ZDczJpp0mZF4/b2SzTuKvtOCUjcmSgZgtH11eNKjox1yJXEyWcLYTlZrdtlJDnLnvi0oNQs9XbZmNvxLOPABUqrbs1YrA2aobs1UjubPSmKy0neqYrFosSPxWTPJwkZxc+p2roL3RZ1m77Y0+K4vam3nGSmXajr6f6k0ZnJ8l24Xe1/S1xF49zfGVQv3Vc6XX0AldpxcZQQl37mQxDMMMKaM48scwDMMwiwHuZGX4vqIykG+GJhhOl5O2rFl6dD0x7oa+uIUw1q04G7HRI+nUbVDXUcnIlNG6x5HKJXytm0uw1idridLrWluSKPlEte4oTkNKc21aZEELYZgzCmu9aLYYJQpB5eL1i2icJSPW1iFRrZhppEUxsm2UHr0T1nLil5UiE2eqpMyX6UTDeiSy0TR1k9lIaJJtY6xW03Vr3SqQaW9ON4wFS1uucomH60lO6EIaRS07ulWUhLiMUOLhvAUrL3wRSkIMZGpiRp7ddxu0su2+4AV1EwTcNqXpRPBCBdSS9Hc2CF/ybmVyGYZhGKZfKNmdKJMcwUFD7mQxDMMMKdzJYhiGYYaKrmOy2F1w5PHFLoD8i44RwBAiOPpdhLWAuVYqJRVUwQg8jc2icu6AlXLXIgGoA0DmHy7D1qpUJMONxbJCFm1firO/PZ49jvY9N2fPybVLAM3S41MFGztNv29RyyxSJH5GZjFZopE2a23ZErWKideK6pkfdi4mSxRbJUWcl27XdTQxWdaSJXUMlq4XsV5py5W1ZGVTEn8l641cWTq1Vitf6MJYtIhcuy90kRj/bJhpkfBFu5RZsPSyb7mqmRw52korckIVdtlar/Q9IUTYokWtVh2JW3j3cFlm+nl9SCg1kiN/zGA582odr5xOY1crJGZKx3coqUwMisr+N6IosveliJxYKyCNhak4MVk2RkZvR+NKaEyXPgad+mX+PMWPH0ukjSmj8zQ+hsZh2VitBK9m/6VO/JYWEkqkeX+gea5M7iupzLz+H5GJdHJb0VgsAEiadTOvErq+kcuJlTTqubKy+RA0PsvMZ49pSfNgVWskPsv+RwmkHiMSYRErE/csE8jEChglxksoe5dIpJlPzx1lUx3/5h63aX7PdH2tEqOevSfNNqXTnvy22a/2RKc0pkrHALoxWbY9NQvis9LvTTnxhvqeqwTuF7rf0lqMxvRM8Hq6oXt1wdF7ni285DEMwzAjgMrUBbv5MAzDMExfyIQvOv2gy8HcTpmdncWGDRsQRZHJqTso2JJVgvLiMUxM1hwTm+r9Q1YwE1/iJScWscjFYOnYLEWSFFOlQTq1MVnO2QC4Fq1W1qx027zaEz0OtZAIPbJXD42g6eYXtmiF4mC01aqiFZXIS6XUMViZJYtatiJjNckUBzO5eGs5EXlFuoA1JK80SepB6gQASWaR0uWpJcuNyfLjr2SjgeZ03VuXj78qsmDZ5SSnJpio8DSd96et/wxpW8pbsOy0SFWQJhMui8XS2/rJh0PM5d6kv61vQWUYhmEYpvt44fkScvqrv/orrFmzBs8///y8nK8M7mQxDMMMJaojd2R/X4ZhGIbpOUPsLvjtb38b3/nOd/D1r38d3/72t/t+vlZwJ6uAMitKFGgoJt4q0FM3ObCy5ZDKYC6HVuJaqVSsnJxZ6X5ubJaIo2CC4qwWZNm/NmvRaiNlVY5QbJbNv5R9H6V5hsMWLep7rH3dq0u0FU8rCjZzcVqxsWSl02hGIM7yaOg4J5Et699NkHisdqwh/p8FzdelrVR6OdHLiTTWKWvRcuOvkkbTWKC0tcpfpjFZIQuW3kerCmo1Qf2buDFZnVms8uuKLFjWahVSEwSoOmBUGouVbiuCyYdD2+rt6TYUGlNJl836wP09kLxZqvuRv3nyymAWIbVKjPpsZilvkLiY7P+j2ZDB2ER9HwoRYUbf/xV7P8fkfqV5i4B8HFatEpv1NP8WAIyRPFudxtNo/Lgafx9dFwDO+XUsWb2Z/s/ONiXqFV0m0axm/8eZSnDStHFYNGeWLkuaysRvNRtjSM47PyvX+9jcWTRmS8nE5M+icVg0N1YoPksTfE/xE7eTnFh6qmOqIhqfpZV7RWzyYUUidnJi6fxXug1UqjGELqtETnm6jzBlcSUy5ZVAvquxinDaC5DmjSpqLz60LYTaRdE2oTisWRJHpZ+tad61xGzrxGeR2D4gjXWicXv6njOxfl79/GdiXBGIsvaa5rJS5nspurZuUF3GC+sYzsnJSad8bGwMY2Njc67XK6+8gp07d+Ib3/gGzjvvvDkfrxdwJ6sE07C1UIXnDgYQ178OGlxIAIMmJqbHpW6DVM493T/vNmjEMDy3QdddMHLKSM06EkDI90PpS7wrhmGS+HbQ2aId3dhz2Ywb2XewxApfxLrjojtXsQ7SrUA23E5VNOO+hItYdCSWoDEdK+K2SOXlAVfkwiST1J2tnNsgSSKsJdh1MkviLljWudL7Wql2eFP7EOhEut0n1IEKdbrK3AQBnUS42E1QT0PJh+m2QIeCFwWdq/S3HJx0O6kRuysyDMMwQ0XX7oKJxOTkJJYvX+6U7969G3fdddec67Rjxw586EMfwnXXXYdjx47N6Xi9gjtZDMMwQ4gWvmAYhmGYoUF258qupMT4+Dhefvllp7zMirVr1y58+tOfLj3uiy++iO985zs4e/Ys7rzzzo7r1U+4k1WASoh8uHStKFpGNI7FnMQwqACGdXkqdhukcu4AILJRf21xi2JlRvf1fkbdPXtXc90FQ1LublkIu32BxKmy59Dn1bLd7Vi0VGKl7W2ZctcZK6NCXHWtQyYJcfZdylrFWK60S6EQriWLzrdjDfFFLui8NBasvPCFkZtvWKsUYN3+Ujc/t0wvUwl338olPetXQ0pjnap77gtlxpn23Ad9K2lYul1P9W8fchME0u9bt+WQmyCQukUUuQlquhW9CIlcmN/Js2iFUjz0DdVdwkeGYRiG6RcqUxfseL9sn/Hx8bb3ueOOO7Bjx47SbdatW4fHH38cP/jBD3Idtuuuuw5//Md/jAcffLDj+vYC7mQxDMMMKfOlxsQwmrUXLcXxX00B8GNA7OBigny7NHmyoghRm+MdOk7Ejadydy7Lk1ULxNv0Ik6rKO9RWU4tmgOJ5tbS87NNWRqDkzRtnq2E5NnSg41JU5qYlqRp421Mzi3llvnxO8obQNPb+oNVAExcDwAn/1lEBswiUg6ksVORicUTtjwWJiaLxg6VxeiNkZirWiV2Yq2AUAxfee6rucTrtcqDpX9L/9gJDXfI2nTSIk9ZEfp7FcLek3Tgkca80d9T/8avWTaGumh0de4Q3asLdj5IuXLlSqxcubLldp/97Gfxt3/7t2b5xIkTeNe73oWHH34YmzZt6vi8vYI7WR7OaLYXdGjiM6p2W2uN6v5lKIojILv3jCUqEJvlj+7rBmuSEYfILBuuEIYbk0WTEftCGe1YNsKxWe45fItWrJQtbANrScisU/qPpp5AZlYQbfnRli1jBWk0rcBFJjBh43us9aowGXFpvXRwcT4mS+ZisxJTRi1XgLVWSansvGetorFaRRYsSaxVRRaskNR+O4QtWOXbxJG1YOl2SmOxdLkfXxX51q5Y5GKxNH6i6zLauU/TnB5DoBzR5YOMYRiGYUaJSy+91FletmwZAODKK6/E2rVrB1ElANzJYhiGYRiGYRimHbqUcMcIemZwJ6sAV2HMtUxolUEJK8uu6TYuRI/g++ZkGmNF5dwBEEl3G8cVSlAM+GqDrmXDxlapnGXDj7sqj9WiS27cl2/RSo+tg4bc41jVRJGLhYm1JSs7kKgJx6oFwFi2tIUjbsTWzSFnKcnHYYk2fkM/Vsa1ZLmqlMbdo57YxMDEcuUs12WxtathrVY24bEr007jsMosWHRaRlHcXbquPQl3/7vWFq24GpvyslisdDlfj3Z+p3bIWR4TSazX7m86n6TCF0NgUWMYhmGYDNVlvPB8xjRffvnlORfZQTDynayil5ig6IIngAGYLFDWhS8ghNFJj98XwNDuaFEsHDl355xE/j2UOys9jn7pta58vrx7Wu75Iwc6XVQCXJf52P2KO1tFYhi67gDtXLnCF+aFPbEdMf29WLfBrONal3mxBc9ljfoxd9fJUoUv5rTcdJy8bajYhd+B0p0ruq2eD3Wu0mVV2LkK4XeeQ79pqCMV6lTRbUQUBYUu6LIg6QlCboKaIsGLMtq5H323Tip648c12GPMz59318IXg3+2MAuUqy6+AL88OwuAxh7ZeKJX64kTk+QTiomqVQQqpEznNaLrQ/E2NSc2Jx+DUxXC/NdU9X86+V8SIrLuyuQ/KRSXI8h/ngy8nNFrpW7Zel5KhYbnou2X+d9bneRVovM0zsusT6QXG+QeK5EKzUDsUNE1hAh9L/S3rARjnkSujOap8uOnADeWzp8H0udIleRd088VWkZ/V+E9r/zraPe3leS5SX9XWtZI3Gdug9wbodxX9aYsjNuzv73No9UMtIdQvCC9D87LBpaX1irB3/Dq112Aman2n5ut6Fr4QrEli2EYhhkGVHeBwmZnhmEYhuk13boLjqBnBneyPOgItS/jLD2rQ1yz+xVZtMqgLmp+zgFfAAOJMq5TZW6DRvq9wG2wCmEsR77IRUiwQkPvjTIXMr0tFdNwj2eP78rKA0a9SlGrknsuPXqiXc2odUhbrozrZd1aRUyS2wLZb3qedoQUfEuGTPJ/Or4rYGohcV0Jdd2p9cuIWuht6+5y0pQ2m7wZJUU2paIWYQtW6H+ulVugO7UjiEXuglVirfK/45AUe5GboCYiCYt92pHeD92PeQuWtTL6yYipK+F8kbpkjN5DiWEYhhleUnXBzp9NQyEoNc9wJ4thGGZIYXVBZr65dvUFxg357GyWm4+4QZ2baZr5ZsFLE3Ur09My2XXqLiiiCNVYu4cJMh+R9cKU6fXGpSyOzCAPPZYeRxKI7Hzklvu0GE8E9TyTZGBSl0tF5qFIuXYDo66HyinX2xnXQ1Xu1hZyZ0yPW34NRfhjWtTlLm7hhinIAFxa7h4jjsj+wpa3+o1MXchv1a/fqJHY71rfD43E/h56fUNaF8J0W3+9dI4VchcMuYyGXD7p/VYREZYaN0E7deTqsy/nP7zmfEyd600MM6DDI7qIyWLhC0YjidXBl+bW1qV0vWe98I7TbnC+GcmHK4BBRS20scuPW6GxWUb6vSA2S8IXwQDCMVmtLVplWFENf7/ic2mrjN6n1pQmlszEZnkJmEUcGQuGH69F4620UIb/3WmEE/vTjSVL5taFBDD8uC0dd2Vk3km7oxYwwD442xO1yIuYdPOwTa1Vet63WhXHZNF4q7JYrHQqSn4X1+qltw9t2w7O7yTzVsS0XBHrtSteMq8oFr5gGIZhhgySk62j3UbQktW7ri3DMAzTM7S7YDeffnHs2DHceOONuOKKK7B06VJceeWV2L17N+r1euudGYZhmAWPUujquTSCuhdsydJQy4jGWBCkb5nIYqGENJYn34alR+3LTKpl6ixGQY0o55nRfOkm26WxWdTylZ5Dm4WyRLv1xFiHdA5jK6uet35oqNGgk3e4couWby1zl+uSJFFW1HpI5NlrsbHW6e/TJB4m1pFQ7FW6LY3/6nzMwbWM5OO00jpbS4kpI5Yrel1UOZC6kaRTmOUyCxZd9ufbxY+xKtpGW65qxJUHcC1QZbFY6XKU++6jgLWqlaqgkrKj+65Icj/9DQYn3T7MHD58GFJK3H///Vi/fj0OHTqEnTt3YmpqCnv37h109RiGYZg+o7oUvuhGkXChw50shmGYIaXrmKw+9Q23bduGbdu2meV169bhyJEj2LdvH3eyFglXXFhDHF0IADhbT2OyGonCbNYWZ5oSs1py2osLArzYnWC8TuSUA2mMj465qsY2XofGZMUkbkePyTguy8JuZ2KAnHJk+7vn19WN9DUoiUgPuSvpBvXMZSg+IgNJNJAoykScnPXZACrZTin3e/ZvcTrGF8oP1ImnVmg8KyJ1oevppn5sFZB9r973Finplvn1Va4QWNuEvuNI2O82EuY7pfFxuh0rOoCp499gY+QSZeOknEFP3VwUAjFb0vxufkyX9AZFJTm+DLj8U9J4xEzCPRP9WlIRzv2nYxNXL6vibK1ZfLBO6Vb4YgQHLbmTVUCakNSObAMkeSqJzZKZBavIogWUq561Qo/+J0k+51XiWXVELJycWWldMwsOdJ2FjdPK/sdMUmBEBXFabh6lvFWqNWGLVvgc1IqSV7bLW7b8GB/fCkLjtnKWLEdVsPPfSQVisTQhq1U+wbVnJVXdxlv11oLlluVjsfTUf1kKJR4ui8Wi5UBx8uEiZcF2oSNohRasBrE4Fliv5/MhoVRxnq6W+wKo1+uYnJx0ysfGxjA2NtaD2lnOnDmDFStW9PSYDMMwDLPQ4U6Wh3EbhHX/Mq5cDe2ml3UK6okVYijobEWx6ImJNIqFk5gYgElOrM+pYuXIuad11aMxVgiDimAAVDJdFci6u8vFLoCtofvmxTBC5y7ugKVTRTpc+tpd10+JsPsZ3QborjNMf1s/FsbvUNFtylwCi6XX89vYdf62nV2H34cpF7ew24SELuhyJESpm2C6j8h1zjSddnxb3WuKyLP7oha04+tvMxC6HC3UfPGLX8TnP/95p2z37t2466675lgxy9GjR3HvvfeyFYthGGZEUDL/vtPufqMGC18wDMMMKTKzqHf6AYCdO3fizJkzzufOO+8MnmfXrl2Ioqj0c/jwYWefiYkJbNu2Ddu3b8fOnTv7/l0wDMMwg0fHZHXzGTXYklWCb3XwpbXjWuxYvoBiixZQPCrfbsOzMu96v7zbIJVzB+AIXqTlkUlQbFwIk7wPfbGUe2Tme2HRCmPP5VuwQpatIlfCJHNBFlFkrFsa35oHzN1dUFNk0XJzl4RdAkNlIYtWL+TZgXILll4ucxcMCV3QZRFHEDoRdBtugppO5Nn1bxD6/fzfJxUfcS1Y+ftc5ixYA3k4qLm5J9ZqNYyPj7e17R133IEdO3aUbrNu3Tozf+LECWzduhWbN2/GAw880HUdmeFj6W+O4cqLLgUAzKoqgDQ/j87/00zsvI1lCR+LxuboWzxCKC+SjfmJhX3GxSIyTyAaW6XnI6UQyeyPPptGsmnmkTTJ+swTRElvW1m4HjKx1nGZmG20V0la7u5PUYGyMiIR5wtDZQAQ8LyI4oJte4BzzZSQ90DBdXf6fQAl3wm5fnPdwk6NZ4qIAZG+6qpIkG2ydyVRCa5XWRlisl5UcutVFDlxWnpe3xKJVOY9I5E2Xk4CubxpCuHYOXp/ReY5bHPHVUguOfro1Pnqaq/+O8bk2fyBu0Qp1ZUruyz6o1jEcCeLYRhmCFFz7GR1wsqVK7Fy5cq2tp2YmMDWrVuxceNG7N+/H2IOMacMwzDMAqPbZ9MI5sniTlYBMlFG4EJ6UxM/kihjIdIWo5BFS2/fyWi4Hu23xwH8gaRQbBaVc6f1oUIY1qrjJSxOXBGMbM/AsrtuLhat8v3pgcKxWSFrV946o4zJSlthqJXL4ikgBawpZX8s/ihNWdxUZ1aqsuMUVqcl9PI6SzicLqcWwrDYCBW7oEmh6TbUolUksU/3bSWxX3Z/0Rgr34Ils3tYLycNG7flx2WOOhMTE9iyZQsuu+wy7N27F6dOnTLrVq9ePcCaMQzDMPOBkirn7dEO/czhOKxwJ4thGGYo6e5B1k8ee+wxHD16FEePHsXatWuddSHZaIZhGGZxobqVcGdLFkMT2vqj2TLL2qtH1BMkAFxZd63iRy1awtMX6STexN3Pi/PS8WDCxmb5VgIJN14lVRuMSf3d+CSqNJidNbAcXhdWDmyf9uK0NNay5VvAiuKMwutKTtrh+21nFqju1oWWO6VdC5ZeLlrnWKl0LpuqG38VxcJYsEKxWIAbj1WkMtgpeTl9G4flJ4m2FqzEbJt41i17nOyem6OkfFuoOTyU+vQs27FjR8vYLWZhI3/2PKorfwUAqC5NY/pUpQYV17L5MaCSzeu4laiD+5VIjLn5qPRzTZo4n0g2TUCKia2iMVVJYL1sQjUb6XyzDtVI51Wznq1uANl6lSRAVq73Uc2Gjb1q1E1dVLMeSGQunTL7n6JjoPOpI/x5+7UM14BKP/GVfMtUZVOF2tgpT58rZN4o12bTSs3EXEXVmomjiipVRJU0zlC34SiOgawsXZ+Wi6rdzuwjKqTNZx5KcQVVch/k1ouKjR+LhDOv/PumnftIkXsja7tRfTadJnW7Xknbzn/9C4hzr7Y+drvI7rw7uJPFGJSUpsOkX7j0yyIVvlBC59JCVpZOaWfLuPxpUYoemUxpDi0ge+klcu7pSndbFUfWhVBmL4qOOEa2tqn/8N0Old8BAOxLN+1sdes6SCk/Tt6V0O7nug+mxwnXv5fvykXXGhK16G6bbmuWEup8xlH5FxB0F6xY176Q0AWQl3R3ywLCF138EO3cRyGRC/2Ck9T9FybrGhiSdZ9vlBpN9wqGYRhmeFGqOy+LUXS754hlhmGYoWQuMrmj9zAbRY4dO4Ybb7wRV1xxBZYuXYorr7wSu3fvRr1eH3TVGIZZpCiVDkR2/BlBl3K2ZJVg3QAyK5AXBC8TSWTVfTl06z7oi2FoygL5OxkliIgkO5Vzp+dw3Qaz+cSTco9FUNY9hVqHitwEbflcxTA0/n7h4xUd3F5DXjCjuF6trDv0eOXbtL9feNuWp2iLVjLtobJQwuGQXHtc89w0AomHW7kJtusaqO+JTu6bvEw7EbXQViqpnH1TmfdywQuZqP67DHar4MSMDIcPH4aUEvfffz/Wr1+PQ4cOYefOnZiamuIE0QzD9IWukxGP4POMO1kMwzBDCLsLMq3Ytm0btm3bZpbXrVuHI0eOYN++fV13smZ/fhji5aMAgHj5awAAUW0JorGl6fyS80zcSlR141sAL96mKMeTly/JiUfy81F5eahUs2HzLTUbNn8Tia0yMVkySeOqsm2BNCZL1tP4LdloIqk3zHx6Tokkm5f1ZrBcn1M2msSlWJJtw2qm4bx9iiy762kuouIBn8HEcpUNdhXlQKQDar5rOV0v4siJ5TWDxtUKKROmTOfJirP1USzstrVKsDyuVc3+opZtW6na+KxqTVfUxGRFlaobywUAlarJ5RWReR17JeI4nL+L0sl9QuIFVX0mnc+mcnbGbftZeXL2NGZenQmfoxtUvi23tRvHZDEa+scXicxiUy9JpOcl/Y31MmRODEP/edA/R2NxKmm4VqDCFcDQS0lCExa7sVlmWSpbn2yddKTc87LuzmUKoG5ulDKLVl4Mgy53S2f75zfOW91C55hbJcv271e8VYi5WLBqJvGnTTgckmuPhH0o0nU08XBZLJbe1j92mZXIt2iF7pmQBSudKitqId37WgvbJI0kF4tFBXHmDzVSwfBMbzhz5gxWrFhRuH52dhazs7NmeXJycj6qxTAMM3JwTBbDMAzDLAKOHj2Ke++9FzfddFPhNnfffTeWL19uPpdccsk81pBhmIWOkqmEe8cftmQxNBbDJBH2YrP0NpGQJumvcQ/IjhNpqWdS6lu0NJGIemLyj0hMlR+bZbZJiLqgsXplyzIy9aey7oBr0bKHLJJ5Lypz6ZX1pr24LZ/+3eztXFe/vMDK5eqjwDZF0u02DstXCqTLRWqCNPHwXGOxiiiKv0rX5S1Yulx6sZXUtUdvozwLlj3H/Fm02F1wdNm1axc+/elPl27z4osv4uqrrzbLExMT2LZtG7Zv346dO3cW7nfnnXfi9ttvN8uTk5Pc0WIYpm26fTaN4vOMO1kMwzDDyByEL0ZQxGlRcccdd7TMR7Zu3Tozf+LECWzduhWbN2/GAw88ULrf2NgYxsbGCtefmziFxmSaU6c6/gsAQGVJDZUl6T7xkhriJVlcio7FEsLGqIg4F2PS6aCEonFYflxKktj8PzIx2+o4KyWljblKEhMnpadJncRRNZok/srGZiXOsdLzJ43EuBbr+zKpJ47bMS1P97cxV7Ke5NyPnQEdMmgUEt6RTpqP8pQfc3V5D+G72Ic8un2RJMDNp2jLhDMw57udi1rsDNjp8AuTj7EWm8G6uBY75UCar1HofYRArGOuqhWILBZLx2mlMV0i279iY7lM/FdsYrYiIZz5dErybMX5tt9WHJbMh6Lk4hSzqY1BbCDJ3H6TmTTusDkz6+Rwa2blKpE4O9NDxVHVpSv7CD6YuJNVQs46lcVm6cTDKo5ycVr6JteJfoGYWK48i5axlNH4L/fPqFvzqh+blSQ68bDIJSimaoPaEubHmFGLViYoh7q5x1yLFk0Q7OfXcnNX2fleUna8fp2z03r0mvIEzHkLli73LVg6FksEEg7rh5Z9+Il8nJaXeJjOd5uEG0jvg3bujTILFqDjrdwXIfpCpPeV3n72WvqsKOjQXXAxs/BZuXIlVq5c2da2ExMT2Lp1KzZu3Ij9+/dDzGvcIMMwowYdPOgEtmSNMKFeuX3ByToqyI826E6V/+LmdrZichTA72wB4Q6XT1EDtR0q6pJY7DZIRTBoPUSscvur2F2WsK6DcVTkLkhfRPMdsHTfvCiGpp/34WK5x4ve9dtxBaTb+tv4IhehhMN01DEkdEH3D6lM5Y4XuBjd1mmnpujeCKlzhTpXulx62yjpd7qks31RHfsOuwsyLZiYmMCWLVtw2WWXYe/evTh16pRZt3r16gHWjGGYxYrq0stCSeW+Ho4APOTFMAwzhOgHWTcfZjR47LHHcPToURw8eBBr167F6173OvNhGIbpC1KZxPedfDAParnf/OY3sWnTJixduhQXXXQRbrjhhr6fswy2ZBVAXYYEXIuWiq0Qhh1pzixYmdXKyExDQIki4Qvig+31d3vlluS7DUrYZKzGtSvbVsVWFMOVdbdbWWdDoKq3NjdOOwIYIStXSq/l3hcr7Yhb0HXtuAtWvWTCVJI9Cliw9La+0IWGyrb32grkW3eoS51vwcpbtqSRaqdCF3QbJWWuo6L8xjlPyBH0YWfaZ8eOHS1jtzqlOTWDyZd+CQCoLE1jTSpLaoh1TFa1YmKyTH6hWJCE5IK4D9tcQVTophPRm3xuKQmZaBdf6cSg6DJzb9ebRLhKp2homvgrGr+V0HxYJg7LxmTJRBkLN43Notuac9RpXQIxWbpMKZMSJVHKPPNCMVd0PS23y+Hn6Vwpi73y19NnTiuvCuqa7j933JgskvRex05VhY3TmmnaWKy6Tu/RNO7tcVWYeLwoFiYWK3HirGycFs2/pfcRpD3bFCa2TMSxU+bPt8J9hunnUpJruyqRpiypN00sFo0rDOV1q56/BDOzjbbr07K+qlt3QWjHrr7w9a9/HTt37sSnPvUp/O7v/i6azSYOHTrUvxO2AXeyGIZhhhAF1ZcAdoZhGIbpFiXn4C7YJ5rNJv7yL/8Se/bswY033mjK3/CGN/TtnO3Anaw28C1aMtEjLMoIQ8Ao2WQjElrIpWaPY9MTh6TcXTGKfsZihKxb9txugmNdaxuPJpz4LMBatGKlR+ToKFprmfeQKAZdpmWjSHgk0V/uRJ7dLodisNJla9mKq57gBbVyeUIX/bZaUXwrFd3ejlp7Vqu6HeU268hItZ76o+f+fTlH9XmGYRiGWZAoqK68wGO6mgAAHlpJREFULFS2j58AvZXiaTv8+Mc/xsTEBIQQeNOb3oSTJ09iw4YN2LNnD6655po5HXsu8KsCwzDMEKJgByw6/TAMwzBMP1BKu692/pmcnHSSoS9fvhx33333nOv0s5/9DABw11134a//+q/x6KOP4qKLLsKWLVvw61//es7H7xa2ZHkoZzTbfVsxY9uObHtmwdKj497xoiQiUUx0D09dMH+WdP8Oh8xtEuG8KmC6LHL10ZUWcUTq5Fq0lIxypbljOxdfrjwYknnP7zsYBcJBUmYIClmpivYLybP7y+FEw/nYrJAFi+7jrstbtopUBTslH5uRl1kvsmDRmCwq1U73dxUIPel2Y+3to0O5j+pPvhuGKaM2fp65R5rTWexSIk3uqLhWgZhJ8/PoWBbh5Q/y41aKYrY0NI+QaHGP6Xgsfz9TFgvjUSJiQf4DrMeGyuJtVCKRVLPryo4rG01Ultj4LRtnleSUSGlMlpQqmEfLqPgmKmc1V1JijMRp+f9JKrEWg3xMlvUc8cso3T4r243FKioLpQGhzxcacxVKExKV5MESXu4sM+/so+O33Dgr/R8ek5grd71ts7p+oVirUNsLxVZRaNulitahmCuZFMQbkhhC2chyu5m8cNKJ49LtcezCCyB66Kon0V27kgDGx8fx8ssvO+VlVqx2E7PL7Lo/9rGP4X3vex8AYP/+/Vi7di3+4R/+ATfddFPnFe4BC6KTdezYMXziE5/A448/jpMnT2LNmjV4//vfj4997GOo1WqtD9AlvjlUdyKMzEOijAhGkrkHxll1VPankNQT8wfgd26irNELEeVcCPWfynzkydF/JtLpYuVzaKX1o1cx986WWwZnndsRQ1aWTkMPgIXY8Wq3U5Uuh4ON/XV6fVnnCih++AHlubCo2IXosd9cO+29SNxCSuV0pui2NBeW/yJkH0r2eDl/8wFIuGtLVrf7MgzDMMywMT4+3va27SZm/8Uv0sTpNAZrbGwM69atw0svvdRVPXvBguhkHT58GFJK3H///Vi/fj0OHTqEnTt3YmpqCnv37h109RiGYXpO2sni7hLDMAwzPCjVnShTN8a0dhOzb9y4EWNjYzhy5Ah+53d+BwDQaDRw7NgxXHbZZZ2fuEcsiE7Wtm3bsG3bNrO8bt06HDlyBPv27ZuXTpbfmLSlJpWS1SISVtYdcJMS590Orbx7ukytQSFRjO4FBYz1gSYT9gQvzHURO5Vv0RKZlLsMCF+ELFrC95vsQgCDWrvy63S5nS/6iobFwtXOT9jKRcPfph159pAFC3CTCYcsWP42vlw7lWcPuQkCNgHxXCkTt5DG/S+QaNhLOEzdgLV7YE4so95/63G7dN12h6TNMwzDMIuLbt0F+/kuNj4+jg996EPYvXs3LrnkElx22WXYs2cPAGD79u39O3ELFkQnK8SZM2ewYsWK0m1mZ2cxOztrln1FE4ZhmGFFBxczzHwy/oar0ZxO/d9pfqGivEH+epoTKwrEtUQ0Pktk8VciBkiMixP7KDqMg5Qk7oXEwJh8jjKBkvnYmGBcTL3ZMieXjlVTXjyMntr8W+G8R5IcK6yYqterYPypXfYGc3v0RhuKoaWDvjReqciV3Hc5T+OwivOqRXEcjJkKxfXRmKui3FWi5FjpfLgd6rqQCwx8QwW00Q7NehluYzTnVbpL4rRNGr+lt6NtUzN++etQnbbvwnOl22dTv/M+7tmzB5VKBX/yJ3+C6elpbNq0CY8//jguuuiivp63jAXZyTp69Cjuvffellasu+++Gx//+Me7OodKVCCw1G0gURKScNdy7ynpH52bqFhDLVpWmMK1aMGU9x4ai2XP45XpxMVG9r1YVCOUsLjIohVHUYnMu18eWhfaxqmyoV0jYDfPpG5DdYr2861WoW3bTThcZsFKl0W+LJBwWBOSa/ctWCFaibe0k28j9HJBLVjpNjJnwfKtVTQhKC1zlgMPgihx7+v5YC4xWQzDMAzTD+YifNFPqtUq9u7dO1RhRAOVcN+1axeiKCr9HD582NlnYmIC27Ztw/bt27Fz587S49955504c+aM+Rw/fryfl8MwDMMwDMMwixbVgWS7/xk1BmrJalc1RHPixAls3boVmzdvxgMPPNDy+L1IcEbxLS8iUY7SIECT9lppd2uVKrZo0fgsgEpG2ySo3UpfU1Ilw+wq2hiK8CXhQ3Mhi1a54qCmLE6LlufXWZXB1nFbof1C9FpArr0YrM4sV/76IgVBoNyCpctbWbBS16D2v5hexWKFXF3KLFh6uVW8lUyUI9XubmOlkjWh32c+YUsWwzAMM0x0bckawefZQDtZ7aqGAKkFa+vWrdi4cSP2798PEchRwDAMs1hQGM2RP2aw1K55K1a+ZjUAQM3OBLcxcSr6OUxiVSIS1xKKdYni2G7v7Jc/FiIRns9QgbJcXVXASalVGYmRccqkO1qoksTG2Dj76XwvJBdSYH9I6cXr+OvDeZVy2xWV+ft1QCgPlCEUmxT6Lf1t6TZ+GyLrI2cf4bYjUu4ch67361LUpkrK2mlbQKB9lS37v6dpJ3rgr3V7UnSfNn/beOXrkZybAvC/tbV9K9KYrM73407WkDIxMYEtW7bgsssuw969e3Hq1CmzbvXq1X07r25E+RedzHqglKM0mJLemDR/ls6dpS0/JlGik4I4rziYLkuyTX86lu3EZrnWqwIFQsd6FbZyxdD5v+h3auO0gKIYuLJ4raJtkB2PWiaCm8wL7VitQtuVKQf6+/jWK6A80XCZBctuE1YOTC1hnbfJTgKyaXB3mQVLTyWxWNH9tWJgGljsrlOBWCy/Dc5jCmID58liGIZhho3UktX5U2YUBw0XRCfrsccew9GjR3H06FGsXbvWWacG+KPRBmMD4/VLnpV217Luuqvhjze109mixzbnbOMFd67JjP0OGBW+KOtsFcm7g+wZdiEEOklYHN7PxRXZmH/KEw535y7olxW5BqZlxTLtZZ2rdJu5JxzWbbCb9irJ0FdZ50qXJw1fvUtLuNvOl/I6YtII3PhCN4OF1QUZhmGYYUN2a8nqfVWGngXRydqxY0fL2C2GYZjFxrB0+JjRofmayxGNrwIAiCSVkHZcnmjHnw72EPcq7WpltqQuYUUugO26bLXpxtUTQm6FKHBBLNq+aNtsXXAMLuAGRrcrPH8ZnezTxXdc6l5X5noY+t29clWybctzD7i9lLoTlroW2nl6jJa/feB6k9p5SCbPlu/XAd26svdbwn0YWRCdrEEQxRFiV8W8FOP+FrvucBJ5WfeQRUt4roBJ5qdNJbJzt1bmm1smMiADTrD5fBpzG1+g8u5AecJiuyRbuBCmX6UVs3BdCam1x9/GlrvHCtFLS0E7Igm9km4PuQUCYXn23Don0fBcBSoya2ZmpaLt3ifQgu1xvHYaaqN+mW/ZShr5PDO+XDs9RjvCL4MkdRfsto7DfW0MwzAMs9jhThbDMMwQwnmyGIZhmGGjW3fBUXyecSfLg47sa8tBLTPC+FaUOIoKLQoUEw+SWXNib9ukIaGykfwosZYrZ5skCVgmRLau/ZYbslqVje7TbPOdYKwlOYuWRkCLApkYmWxNTBwjhG/dCozst7r88vXzp4TRaWyW8MpCbcwXtQht61uwOkFJZePxPGsVRfq/cKLPbc/ZTjv122eobfptMiSkYSxXJepLxgJbkDAbAKqeMAjDMAzDjDLdelmwuiDDMAwzHLDwBTMAZHUJokqWX7KdGBO0KXfdQWyMGnB+ul4RDcP92038FjC/sUwlLPS20HEbaPP3ovdhy/svEpC1QqWxjmHhi/bhTlaGb3mJa1a0WVtTqv4+JJmrLWstk21H563qmh55t3FNOiDMHtu3bkmzf+s/obL4k6B1S/oWLWpRKLY2FOF/T+4RtIXPq0Mic+YfvQmtT5G8tir43QZJO79VK6tJSKWvKP6qFfo7ikzbdK2ugG2TSRYDqCXdy9qmRkLOqX2WtU3fgqVI3JafRLssvYBuY1ohNNSefNXF+UCh+4fSELzaMQzDMIuQboUvRnHQkDtZBURx5HS0irbR5DpbxDUr3xFzl1UizUuceXH0XhYB+5Kbo1FazZaU5S0KScB3Ihjgu6hp9y3nO/E7YObFv/j7Lxu3GXZBA6C9zlYZ7bzsd+IemP/O7O+uc2Wazl3g+y11J51j+zQ1KvhdaRuNvIEMv7MVC5vDTrcif4CDfhch2Xu63E84GTHDMAwzbHQ7ADiKTzPuZDEMwwwpC2C8gGEYhhkhZJeu7Ok+C9v9s1O4k+WhR6pjAeNnpq0v7VgGuh3hLkoanASMV0VJXeeaeNg9VvdvdyKOCq0O7XyHc8x9O1z+gUNIO2009PsrL60AJdROO8Fv03Nty0UWLQDGL1W30Vx7K2k/8+0uyJYsZhDoOJgo4DPQVvxVwfFGjaG47qjcI4fpLx23gez3ahXL1c59SM/dy7bYrfItC18wDMMwQ4HqMriYYRiGYfqFVHNJRjwEAw/zCHeyCgiNfPcK30rQaXyOn3B1GGHJ68VLP9qd8kxh3cSsdVqvhdBG2ZLFMAzDDBPdWrJ6p2+4cOBOFsMwDMMwDMMwLek2JkuO4KAhd7I8BjG6PcwWKYYZBHxPdD9aqPdlmLlC4zjKYkSGIvaIYRYRre6p0P04X/chx2S1D3eyGIZhhhAWvmAYhmGYhQt3shiGYYaQuViyGIZhGKYfSKWQdOEvMYrPs5HqZKlsVPjs2bNQr84AAKaaTQDAdBZ4L0ZM+YRhmLkRZf8ZZ2frAIDa2bMA7P9NN7zhDW/Av6OOc2hiWYd/0xOYRgTg9a9/fdfnZxiGYRifKIowC9VVh2kWEqcnTvW+UkPMSHWyzmYvP/9h/foB14RhmEXHC8+m071fBpD+3yxfvryrQ1177bW4FEvxY5zB2/CatvdTUPgRTuNaLO/63AwTguOuGGZ4GNT9+Id/+If48n8+gDdhHEvQvvK2gsJzmMR6nN/H2g0fI9XJWrNmDY4fP44LLrgAUY8b6OTkJC655BIcP34c4+PjPT32sDFK1wqM1vXytc4dpRTOnj2LNWvWzOk43zr8Y/ynq6/GtRjH8jYzbP8PTOMsmnj87PE5nZthGIZhfH7v934Pq1DDv2ASb8FFbe/3MmbwK9Txwq9P9LF2w8dIdbKEEFi7dm1fzzE+Pr7oX041o3StwGhdL1/r3OiFFemqq67CepyPf8Zp/M9Y2XJ7BYVncBqf/uw9WLZs2ZzPzzAMwzA+33z+v2HjtRvwn7AM420MAEoo/BC/wf+E5bjoovY7ZosBMegKMAzDMGG+8z/+FT/HNP4d9ZbbHsWrqEPiz//8z+ehZgzDMMwo8tu//dtYh/PwDE63tf1/xxQaUPjezC/6W7EhhDtZDMMwQ8qll16K/4hlLR9mCRT+Gadx7/7/A2NjY/NTOYZhGGYkOXj8MI5hGqcwW7pdAxLP4DS++NUvj+SziTtZPWJsbAy7d+8eiUY0StcKjNb18rUOHwdfOYoJzOBkycPsCM5BAHj/+98/fxVjGIZhRpK1a9fiGlyAH+A3UCVy7i/gLM5HjD/4gz+Yx9oND5Gai84wwzAM03c2RhfiJGbwv+BiIxmvaULiv+AEHvyHr+L3f//3B1RDZqEyOTmJ5cuX4+Qrr4xMHCbDjBqTk5NYffHFOHPmTM/u8zNnzmD1hSuwBa/BZTgvt34aCf4LJvDdJ5/A2972tp6cc6HBliyGYZgh5+BvjuHf0cAEZnLrfoKzOA8x3ve+9w2gZgzDMMwosnz5cuy593/HD3EaMmDNehZnsAZLRraDBXAni2EYZui58MILsQHj+BFOO64ZdUj8Cybx5f/6Tz1PS8EwDMMwZdx0001QUDiMc075aTRwGOfwX1/88YBqNhxwJ4thGGYB8PjUBKaQ4OeYNmXPYxIrUMU73/nOAdaMYRiGGUWq1Sq+9LWv4p9xGg1IU/7f8Bv8Fs7H1VdfPcDaDR7uZDEMwywAzjvvPOz53GfxTOaaMY0EL2AS//D/HGQrFsMwDDMQ3vve92IcVTyPSQDAScxgAjN4/Bf/NuCaDR7uZDEMwywQ/uzP/gwJFP4NU/gXnMHrsARvfetbB10thmEYZkSJogj/1//7OP4/TGIKTfwQp3EtxrF69epBV23gcCerxxw7dgw33ngjrrjiCixduhRXXnkldu/ejXq9dTLRhconP/lJbN68Geeddx4uvPDCQVenp3zuc5/D5ZdfjiVLlmDTpk340Y9+NOgq9YWnnnoK7373u7FmzRpEUYRvfOMbg65S37j77rtx/fXX44ILLsCqVatwww034MiRI4OuVlvUajV87v/8z3gGp/EizuEf/+XpQVeJYRiGGXE2b96MtViKb+GXOIsmnjg3MegqDQWVQVdgsXH48GFIKXH//fdj/fr1OHToEHbu3ImpqSns3bt30NXrC/V6Hdu3b8db3vIWfOlLXxp0dXrGww8/jNtvvx1f+MIXsGnTJtxzzz1417vehSNHjmDVqlWDrl5PmZqawrXXXos//dM/xXvf+95BV6evPPnkk7j55ptx/fXXo9ls4qMf/Sje+c534l//9V9x/vnnD7p6LfmjP/oj3Pa/3ojXYQwbNmwYdHWYBY7O4nL27NkB14RhmH6h7+9+Zm36v//7c/iPv/Vb2PfAAwviWTofcJ6seWDPnj3Yt28ffvaznw26Kn3lwIEDuO2223D69OlBV6UnbNq0Cddffz3uu+8+AICUEpdccgluvfVW7Nq1a8C16x9RFOGRRx7BDTfcMOiqzAunTp3CqlWr8OSTT4601Cwzmrz88su45JJLBl0NhmHmgePHj2Pt2rWDrsbIwJaseeDMmTNYsWLFoKvBdEC9Xsezzz6LO++805QJIfCOd7wDP/jBDwZYM6bXnDlzBgD4HmVGkjVr1uD48eO44IILeiagMjk5iUsuuQTHjx9fNAmOF9s1LbbrARbfNfXyepRSOHv2LNasWdOj2jHtwJ2sPnP06FHce++9i9ZVcLHyq1/9CkmS4OKLL3bKL774Yhw+fHhAtWJ6jZQSt912G9761rfimmuuGXR1GGbeEUL0bWR7fHx8UbzsUhbbNS226wEW3zX16nqWL1/eg9owncDCF22ya9cuRFFU+vFfvicmJrBt2zZs374dO3fuHFDNu6Ob62WYhcbNN9+MQ4cO4atf/eqgq8IwDMMwzCKCLVltcscdd2DHjh2l26xbt87MnzhxAlu3bsXmzZvxwAMP9Ll2vafT611svPa1r0Ucx3jllVec8ldeeYVlSRcJt9xyCx599FE89dRT7KPOMAzDMExP4U5Wm6xcuRIrV65sa9uJiQls3boVGzduxP79+yHEwjMYdnK9i5FarYaNGzfi4MGDRgBCSomDBw/illtuGWzlmDmhlMKtt96KRx55BE888QSuuOKKQVeJYRYVY2Nj2L17N8bGxgZdlZ6x2K5psV0PsPiuabFdzyjC6oI9ZmJiAlu2bMFll12GBx98EHEcm3WL1QLy0ksv4de//jX+6Z/+CXv27MH3v/99AMD69euxbNmyAdeuex5++GF84AMfwP333483v/nNuOeee/D3f//3OHz4cC5Wa6Fz7tw5HD16FADwpje9CZ/5zGewdetWrFixApdeeumAa9db/uIv/gJf+cpX8I//+I+46qqrTPny5cuxdOnSAdaMYRiGYZjFAneyesyBAwfwwQ9+MLhusX7VO3bswIMPPpgr/973voctW7bMf4V6yH333Yc9e/bg5MmT2LBhAz772c9i06ZNg65Wz3niiSewdevWXPkHPvABHDhwYP4r1EeKFNT279/f0kWWYRiGYRimHbiTxTAMwzAMwzAM00MWXrAQwzAMwzAMwzDMEMOdLIZhGIZhGIZhmB7CnSyGYRiGYXrOsWPHcOONN+KKK67A0qVLceWVV2L37t2o1+uDrtqc+OQnP4nNmzfjvPPOw4UXXjjo6nTF5z73OVx++eVYsmQJNm3ahB/96EeDrlLXPPXUU3j3u9+NNWvWIIoifOMb3xh0lebE3Xffjeuvvx4XXHABVq1ahRtuuAFHjhwZdLWYLuBOFsMwDMMwPefw4cOQUuL+++/HT37yE/zd3/0dvvCFL+CjH/3ooKs2J+r1OrZv344Pf/jDg65KVzz88MO4/fbbsXv3bvz4xz/Gtddei3e961345S9/OeiqdcXU1BSuvfZafO5znxt0VXrCk08+iZtvvhk//OEP8dhjj6HRaOCd73wnpqamBl01pkNY+IJhGIZhmHlhz5492LdvH372s58Nuipz5sCBA7jttttw+vTpQVelIzZt2oTrr78e9913H4A0B+Qll1yCW2+9Fbt27Rpw7eZGFEV45JFHTH7LxcCpU6ewatUqPPnkk3jb29426OowHcCWLIZhGIZh5oUzZ85gxYoVg67GyFKv1/Hss8/iHe94hykTQuAd73gHfvCDHwywZkwRZ86cAQC+bxYg3MliGIZhGKbvHD16FPfeey9uuummQVdlZPnVr36FJElw8cUXO+UXX3wxTp48OaBaMUVIKXHbbbfhrW99K6655ppBV4fpEO5kMQzDMAzTNrt27UIURaWfw4cPO/tMTExg27Zt2L59O3bu3DmgmhfTzTUxTL+5+eabcejQIXz1q18ddFWYLqgMugIMwzAMwywc7rjjDuzYsaN0m3Xr1pn5EydOYOvWrdi8eTMeeOCBPteuOzq9poXKa1/7WsRxjFdeecUpf+WVV7B69eoB1YoJccstt+DRRx/FU089hbVr1w66OkwXcCeLYRiGYZi2WblyJVauXNnWthMTE9i6dSs2btyI/fv3Q4jhdKDp5JoWMrVaDRs3bsTBgweNOISUEgcPHsQtt9wy2MoxAAClFG699VY88sgjeOKJJ3DFFVcMukpMlwznvx3DDJBTp05h9erV+NSnPmXKnn76adRqNRw8eHCANWMYhlk4TExMYMuWLbj00kuxd+9enDp1CidPnlzwsT8vvfQSnnvuObz00ktIkgTPPfccnnvuOZw7d27QVWuL22+/HV/84hfx4IMP4sUXX8SHP/xhTE1N4YMf/OCgq9YV586dM78BAPz85z83v89C5Oabb8aXv/xlfOUrX8EFF1xg7pnp6elBV43pEJZwZ5gA3/rWt3DDDTfg6aefxlVXXYUNGzbgPe95Dz7zmc8MumoMwzALggMHDhS+uC/kV48dO3bgwQcfzJV/73vfw5YtW+a/Ql1w3333Yc+ePTh58iQ2bNiAz372s9i0adOgq9UVTzzxBLZu3Zor/8AHPoADBw7Mf4XmSBRFwfL9+/e3dGllhgvuZDFMATfffDO++93v4rrrrsMLL7yAZ555BmNjY4OuFsMwDMMwDDPkcCeLYQqYnp7GNddcg+PHj+PZZ5/FG9/4xkFXiWEYhmEYhlkAcEwWwxTw05/+FCdOnICUEseOHRt0dRiGYRiGYZgFAluyGCZAvV7Hm9/8ZmzYsAFXXXUV7rnnHrzwwgtYtWrVoKvGMAzDMAzDDDncyWKYAB/5yEfwta99Dc8//zyWLVuGt7/97Vi+fDkeffTRQVeNYRiGYRiGGXLYXZBhPJ544gncc889eOihhzA+Pg4hBB566CF8//vfx759+wZdPYZhGIZhGGbIYUsWwzAMwzAMwzBMD2FLFsMwDMMwDMMwTA/hThbDMAzDMAzDMEwP4U4WwzAMwzAMwzBMD+FOFsMwDMMwDMMwTA/hThbDMAzDMAzDMEwP4U4WwzAMwzDMIufUqVNYvXo1PvWpT5myp59+GrVaDQcPHhxgzRhmccIS7gzDMAzDMCPAt771Ldxwww14+umncdVVV2HDhg14z3veg8985jODrhrDLDq4k8UwDMMwDDMi3Hzzzfjud7+L6667Di+88AKeeeYZjI2NDbpaDLPo4E4WwzAMwzDMiDA9PY1rrrkGx48fx7PPPos3vvGNg64SwyxKOCaLYRiGYRhmRPjpT3+KEydOQEqJY8eODbo6DLNoYUsWwzAMwzDMCFCv1/HmN78ZGzZswFVXXYV77rkHL7zwAlatWjXoqjHMooM7WQzDMAzDMCPARz7yEXzta1/D888/j2XLluHtb387li9fjkcffXTQVWOYRQe7CzIMwzAMwyxynnjiCdxzzz146KGHMD4+DiEEHnroIXz/+9/Hvn37Bl09hll0sCWLYRiGYRiGYRimh7Ali2EYhmEYhmEYpodwJ4thGIZhGIZhGKaHcCeLYRiGYRiGYRimh3Ani2EYhmEYhmEYpodwJ4thGIZhGIZhGKaHcCeLYRiGYRiGYRimh3Ani2EYhmEYhmEYpodwJ4thGIZhGIZhGKaHcCeLYRiGYRiGYRimh3Ani2EYhmEYhmEYpodwJ4thGIZhGIZhGKaH/P+76GgKKAI8bAAAAABJRU5ErkJggg==\n", "text/plain": [ "
<xarray.ScalarFieldDataArray (x: 158, y: 159, z: 1, f: 1)>\n", "array([[[[ 0.0000000e+00+0.0000000e+00j]],\n", "\n", " [[ 0.0000000e+00+0.0000000e+00j]],\n", "\n", " [[ 9.8921271e-07+3.6848229e-07j]],\n", "\n", " ...,\n", "\n", " [[ 9.9903627e-07+1.4422510e-07j]],\n", "\n", " [[ 6.1203380e-08-8.3397850e-10j]],\n", "\n", " [[ 0.0000000e+00+0.0000000e+00j]]],\n", "\n", "\n", " [[[ 0.0000000e+00+0.0000000e+00j]],\n", "\n", " [[ 0.0000000e+00+0.0000000e+00j]],\n", "\n", " [[ 9.8921271e-07+3.6848229e-07j]],\n", "...\n", " [[-8.2269871e-08-2.9938814e-08j]],\n", "\n", " [[-1.8088322e-08+3.3552048e-08j]],\n", "\n", " [[ 0.0000000e+00+0.0000000e+00j]]],\n", "\n", "\n", " [[[ 0.0000000e+00+0.0000000e+00j]],\n", "\n", " [[ 0.0000000e+00+0.0000000e+00j]],\n", "\n", " [[-9.9369956e-08+6.6969790e-09j]],\n", "\n", " ...,\n", "\n", " [[-8.2269871e-08-2.9938814e-08j]],\n", "\n", " [[-1.8088322e-08+3.3552048e-08j]],\n", "\n", " [[ 0.0000000e+00+0.0000000e+00j]]]], dtype=complex64)\n", "Coordinates:\n", " * x (x) float64 -2.379 -2.348 -2.318 -2.288 ... 2.288 2.318 2.348 2.379\n", " * y (y) float64 -2.39 -2.36 -2.33 -2.3 ... 2.266 2.295 2.325 2.354\n", " * z (z) float64 -1.0\n", " * f (f) float64 2e+14\n", "Attributes:\n", " long_name: field value
\ud83c\udfc3 Finishing 'Simulation'...\n\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mFinishing 'Simulation'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "57e100fe0af8454db9b4cd6230fb1d99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5e35fa239a8d49499e6421e398aab624": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "867adab403574e1ab1cb5e809d2eacdd": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_5e35fa239a8d49499e6421e398aab624", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 0.00e+00) \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "% done (field decay = 0.00e+00) \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "92f5192b2e1b48508cf38353c80aded7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "998a54c226db4707a6fc787a2140a5c8": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_57e100fe0af8454db9b4cd6230fb1d99", "msg_id": "", "outputs": [ { "data": { "text/html": "
\ud83c\udfc3 Starting 'Simulation'...\n\n", "text/plain": "\u001b[32m\ud83c\udfc3 \u001b[0m \u001b[1;32mStarting 'Simulation'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9c45bc2d981b4dd98ae5713288adcbab": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bd7083b1c11642ab85400b9d8d5d5bfe", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 4.3/4.3 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m4.3/4.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a54bd1bafdbe48528e9c0587b196758e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_92f5192b2e1b48508cf38353c80aded7", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 2.2/2.2 MB \u2022 15.6 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m2.2/2.2 MB\u001b[0m \u2022 \u001b[31m15.6 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "bd7083b1c11642ab85400b9d8d5d5bfe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }