{ "cells": [ { "cell_type": "markdown", "id": "9a8fc81f-041f-4082-951c-3b7e4d6e1e96", "metadata": { "tags": [] }, "source": [ "# Gyrotropic materials\n", "\n", "Here we demonstrate the usage of Tidy3D simulation software for modeling of gyrotropic materials, that is, materials with Hermitian permittivity tensors. Currently, this is achieved by using [fully anisotropic dieletric medium](../_autosummary/tidy3d.FullyAnisotropicMedium.html) option with anisymmetric conductivity tensor. Specifically, let us consider modeling a material with total complex permittivity tensor \n", "$$\\varepsilon = \\varepsilon_u + i \\frac{\\sigma_u}{\\omega} + i \\varepsilon_0 G,$$ \n", "where $\\varepsilon_u$ and $\\sigma_u$ are real symmetric matrices describing unperturbed permittivity and conductivity of the material, and $G$ is a real antisymmetric matrix representing the magneto-optic effect. That is, \n", "$$G = \\begin{pmatrix} 0 & g_z & -g_y \\\\ -g_z & 0 & g_x \\\\ g_y & -g_x & 0\\end{pmatrix}$$\n", "for a gyration vector $\\boldsymbol{g} = \\begin{pmatrix} g_x & g_y & g_z \\end{pmatrix}$. Denoting the electromagnetic frequency of interest as $\\omega_0$, we can approximate the complex permittivity of material in the vicinity of $\\omega_0$ as $$\\varepsilon \\approx \\varepsilon_u + i \\frac{1}{\\omega} \\left( \\sigma_u + \\varepsilon_0 G \\omega_0 \\right).$$ \n", "Thus, the gyrotropic effect of a medium can be modeled by providing a modified conductivity tensor $\\sigma = \\sigma_u + \\varepsilon_0 G \\omega_0$ that contains both symmetric and antisymmetric parts. Note that because of this approximation, the simulation results will be most accurate in the vicinity of the frequency of interest $\\omega_0$." ] }, { "cell_type": "markdown", "id": "3b58073b-4e6d-4a40-bf74-dfc61c6a3c3a", "metadata": {}, "source": [ "## Simulation setup" ] }, { "cell_type": "markdown", "id": "3d3a04fc-8cb1-4eba-b90d-69761766709c", "metadata": {}, "source": [ "Let us now demonstrate simulation of plane wave propagation inside a gyrotropic material. Specifically, we will consider two simulations, one with $\\boldsymbol{g} = 0$ and another one with $\\boldsymbol{g} \\neq 0$. In the first, reference, simulation the injected plane wave is expected to preserve its polarization, while in the second case the polarization of the injected pulse will undergo rotation due to the gyrotropic properties of the background medium. The rotation degree can be predicted by analytical expressions. In section [Results](#Results) we apply it to the results of the reference simulation and compare with the results of the gyrotropic simulation." ] }, { "cell_type": "code", "execution_count": 1, "id": "a36120b6-d7c4-49bd-9396-18baaa1ea5ce", "metadata": {}, "outputs": [], "source": [ "# standard python imports\n", "import numpy as np\n", "import matplotlib.pylab as plt\n", "\n", "# tidy3D import\n", "import tidy3d as td\n", "import tidy3d.web as web" ] }, { "cell_type": "markdown", "id": "11dfc19c-d87c-41f7-809c-4c891fdfc3de", "metadata": {}, "source": [ "We define an elongated simulation domain assuming wave propagation along $z$ direction and select sample frequencies in the vicinity of the wavelength of interest." ] }, { "cell_type": "code", "execution_count": 2, "id": "1ce15f40-ec78-4b95-a3be-9b56ec5146bb", "metadata": {}, "outputs": [], "source": [ "# simulation domain\n", "sim_length = 10\n", "sim_size = [0.1, 0.1, sim_length]\n", "\n", "# central frequency\n", "wvl_um = 1\n", "freq0 = td.C_0 / wvl_um\n", "fwidth = freq0 / 10\n", "freqs = np.linspace(freq0 - fwidth, freq0 + fwidth, 5)\n", "\n", "run_time = 10 / fwidth" ] }, { "cell_type": "markdown", "id": "4a470c3d-e378-4c77-8981-c1c6ec0f31b3", "metadata": {}, "source": [ "Properties of the unperturbed material." ] }, { "cell_type": "code", "execution_count": 3, "id": "cda0d308-687b-49ab-ada3-bfebcaf763ec", "metadata": {}, "outputs": [], "source": [ "eps0 = 2\n", "permittivity_unperturbed = np.diag((eps0, eps0, eps0))\n", "conductivity_unperturbed = np.zeros((3, 3))" ] }, { "cell_type": "markdown", "id": "cc6da355-424f-4cd5-b6fe-f36e09253d8e", "metadata": {}, "source": [ "Gyration vector along the propagation axis." ] }, { "cell_type": "code", "execution_count": 4, "id": "2d7e275e-6008-434e-b3cb-ca47e0eaa592", "metadata": {}, "outputs": [], "source": [ "g = (0, 0, 0.1)\n", "G = np.array([[0, g[2], g[1]], [-g[2], 0, g[0]], [-g[1], -g[0], 0]])" ] }, { "cell_type": "markdown", "id": "5233d603-c648-4ae5-9bbb-85ac70656000", "metadata": {}, "source": [ "Following the procedure outlined in the beginning of this tutorial we modify the material conductivity such that it accounts for material gyrotropic properties." ] }, { "cell_type": "code", "execution_count": 5, "id": "291b0cd9-6671-491b-8fbb-072abd084ccb", "metadata": {}, "outputs": [], "source": [ "conductivity = conductivity_unperturbed + G * (2 * np.pi * freq0) * td.EPSILON_0" ] }, { "cell_type": "markdown", "id": "9b894750-2b5a-4532-988d-a4f902090fc7", "metadata": {}, "source": [ "Now we define two materials: a simple [isotropic medium](../_autosummary/tidy3d.Medium.html) to use in a reference simulation and a [fully anisotropic medium](../_autosummary/tidy3d.FullyAnisotropicMedium.html) for modeling the magneto-optic effect." ] }, { "cell_type": "code", "execution_count": 6, "id": "468b0773-2068-46eb-a154-9dad66617257", "metadata": {}, "outputs": [], "source": [ "medium_unperturbed = td.Medium(permittivity=eps0)\n", "medium_gyrotropic = td.FullyAnisotropicMedium(permittivity=permittivity_unperturbed, conductivity=conductivity)" ] }, { "cell_type": "markdown", "id": "f09ff522-79b2-43ab-865a-95e876d22104", "metadata": {}, "source": [ "Given the simulation geometry we place PML boundary conditions along the propagation axis and periodic boundary conditions in the orthogonal directions" ] }, { "cell_type": "code", "execution_count": 7, "id": "4189b0a8-a150-4362-8848-2b9247315c0e", "metadata": {}, "outputs": [], "source": [ "boundary_spec = td.BoundarySpec(\n", " x=td.Boundary.periodic(),\n", " y=td.Boundary.periodic(),\n", " z=td.Boundary.pml(),\n", ")" ] }, { "cell_type": "markdown", "id": "b2604c27-d771-426a-bd86-14690c1324c6", "metadata": {}, "source": [ "We will track field distribution along the propagation axis." ] }, { "cell_type": "code", "execution_count": 8, "id": "4314d437-be3b-4bf3-80d6-6be28b06b2a4", "metadata": {}, "outputs": [], "source": [ "mnt_xz = td.FieldMonitor(\n", " center=(0, 0, 0),\n", " size=(0, 0, td.inf),\n", " freqs=freqs,\n", " name=\"freq_mnt_xz\",\n", ")" ] }, { "cell_type": "markdown", "id": "1cc1958f-6c05-4b2f-ac31-443d680fbc64", "metadata": {}, "source": [ "Since Tidy3D does not currently support injection of [unidirectional plane waves](../_autosummary/tidy3d.PlaneWave.html) into anisotropic material, we use [a uniform current source](../_autosummary/tidy3d.UniformCurrentSource.html) to initiate a planar (bidirectional) propagating pulse." ] }, { "cell_type": "code", "execution_count": 9, "id": "bcebfa0d-7fb1-422f-b51d-4dad021b62a4", "metadata": {}, "outputs": [], "source": [ "source = td.UniformCurrentSource(\n", " center=(0, 0, -sim_length/2.5),\n", " size=(td.inf, td.inf, 0),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n", " polarization=\"Ex\",\n", ")" ] }, { "cell_type": "markdown", "id": "0686179a-c0dc-47c5-9cb7-03a2f7a79bf6", "metadata": {}, "source": [ "Use automatic grid discretization based on the requested number of steps per source wavelength." ] }, { "cell_type": "code", "execution_count": 10, "id": "f84977a5-03e7-4c6f-b7ca-3aebde9ff6b0", "metadata": {}, "outputs": [], "source": [ "grid_spec = td.GridSpec.auto(min_steps_per_wvl=30)" ] }, { "cell_type": "markdown", "id": "0512f004-8020-4d31-b6a6-6f63450e3827", "metadata": {}, "source": [ "Combining defined above components we create two simulation, with and without gyrotropic effect." ] }, { "cell_type": "code", "execution_count": 11, "id": "b857a1a9-a632-4e42-b418-c4dc84e2d965", "metadata": {}, "outputs": [], "source": [ "# Propagation in an unperturbed medium\n", "sim_unperturbed = td.Simulation(\n", " size=sim_size,\n", " grid_spec=grid_spec,\n", " medium=medium_unperturbed,\n", " sources=[source],\n", " monitors=[mnt_xz],\n", " run_time=run_time,\n", " boundary_spec=boundary_spec,\n", ")\n", "\n", "# Propagation in a gyrotropic medium\n", "sim_gyrotropic = td.Simulation(\n", " size=sim_size,\n", " grid_spec=grid_spec,\n", " medium=medium_gyrotropic,\n", " sources=[source],\n", " monitors=[ mnt_xz],\n", " run_time=run_time,\n", " boundary_spec=boundary_spec,\n", ")" ] }, { "cell_type": "markdown", "id": "2a88a310-e64f-40b0-b020-5f27ebd57d26", "metadata": {}, "source": [ "Visualize simulation for setup confirmation." ] }, { "cell_type": "code", "execution_count": 12, "id": "d96d2322-f7e7-4e9c-8b3c-7d557e62f73f", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAALAAAADgCAYAAACjOeypAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAARs0lEQVR4nO3dfZQV9X3H8fdnd9mHLk+7LCICwhLUBJFoXSGpsVVpFBMFm4fGkFgtaTH12MbE00SlaXNy0lZtT42pyUGqaTQ+xoQKMRqCEjwxngQBHwJGFIiAiAouLA/KxWW//WN+K8Pl7rKXfZj7g+/rnHt27szc33xn5rNzf3Pv8kNmhnOxKsu6AOe6wwPsouYBdlHzALuoeYBd1DzALmoe4D4g6VFJl2Vdx5HIA9zDJH1D0t3peWZ2gZnd2cd1jJFkkir6YFszJK2XtFvSQ5LqO1n3VEnLJb0dfp6aWiZJN0p6KzxulKTOtl3SAe6Lg++6R9LJwG3ApcAw4G3gex2sWwnMB+4G6oA7gflhPsAs4GLgg8BE4CLgik4LMLM+fwCjgHnAFuAt4NYw/3Lg18DNYf63gEHAXWHd9cA/AWVh/XHAE0ALsBV4IMxXaONNYAfwO2BCB7VcDqwDdgJ/AD6XWjYT+D2wDVgIjE4tOxlYBDQDbwDXA1OBvcC7wC7gubDuEuBvwnRZ2If1ob67gEFh2RjAgMuADWGfZndyHD8OPBP2cSPwjdSyDaGtXeHx4bzXHksStiGpeX8cjnO/Is7lvwH3pp6/LxyDAQXWPQ/YBCivzqlh+ilgVmrZF4DfdLr9DMJbDjwXAlYLVAMfSYWpFfh7oAKoCSd4PjAgnOCXgC+E9e8DZodQpNs5H1gODA5h/gAwvEAtteHknxSeDwdODtPTgTXhtRUhdE+FZQOAzcA1YbsDgMlh2TeAu/O2kw7wzNDuWKA/yS/yD/MC/D9h3z8I5IAPdHAszwZOCfs/keQX6eK8tio6ORePAH+Xen4z8N9h+iPA9k4e7cd6PvC1vHZ3AacX2N6XgUfz5j0MXBOmW9qPY3jeBOwstQB/mOS3/KADSxLgDXlh3wuMT827AlgSpu8C5gIj89o5lyToHyJcrTuopTacjE8CNXnLHiX8ooTnZSRXrNHAZ4FnOmjzUAF+HLgytewkkit2RSp0I1PLlwKXdPHYfhu4uYgAfwb4depYvw5MKvJ8Pg58MW/eJuDsAut+Hbg/b949hHcOYB/w/tSyE8I+qKPtZ9EHHgWsN7PWDpZvTE03AP1I3m7brQdGhOmvklxhl0paJWkmgJktBm4Fvgu8KWmupIH5GzKz3SQn8YvAZkk/k/T+sHg0cIuk7ZK2k3QVFLY9Clhb3G6/57gC+1NB0n9s93pq+m2SK/VBJE2W9EtJWyS1hP1oKKKW+cB4SY3AR4EWM1taxOshudrmH9uBJF2yYtfNXz4Q2GUhzYVkEeCNwPGd3KCli91KcnUanZp3PMlvOGb2upn9rZkdR3Jl/p6kcWHZd8zsdGA8cCLwjwU3ZrbQzD5K0n14keTtu73OK8xscOpRY2ZPhWVju1B/Ia8V2J9Wkrf/Yt0LLABGmdkgYA7JL1lX6sDM9gA/Aj5PchP2w/Zlks6StKuTx1lh1VUkXZ32140FqkjeAfOtAibmfbIwMcw/qK0wvYpOZBHgpST9xxsk1UqqlnRmoRXNbB/JAf5XSQMkjQa+QnIXi6RPSxoZVt9GctLaJJ0Rrk79gN3AHqAtv31JwyRNl1RL0tfclVpvDnBduMtG0iBJnw7LHgaGS7paUlWobXJY9gYwRlJHx/Y+4MuSGiX1J7kJeqCTd6TODACazWyPpEnAjNSyLWFfOvpFa3cXSddtGqkAm9mvzKx/J49fhVXvAS4Kga8FvgnMM7NCV+AlJN2EfwjH7aowf3Gqlq9IGiHpOJJ7jB90Wn0x/Z2eepBcdR4i+aRhK/Ad298HfjJv3TqSwG4hufL9M/s/hbiJ5Gq8i+QtfVaYPwV4PszfGg5y/wJ1DGf/pxjbwwFO97cvJfkEo/0u//upZRNI+n/bSN7yrw3zhwBPhvkr7OA+cFnYh41hn+4G6jrqt6ZfW6D+T5F0QXaS/FLdSqr/TRKmLWHfPtTJ+XgZeKIb53MGyacJu0m6JfWpZY8C16een0Zyg/0OsAI4LbVM4Zw2h8dNdNL/NbNkoTu6SVpM8lHY7VnXUiwP8FFO0hkkn2eP6uBtv6SV9DdxrndJuhN4DLg6xvCCX4Fd5PwK7KLmAXZRi+qvvQYOHGh1dXXvPW9rSz6yLSvrnd/DPm0//TFwD/0RXqkdnw0bNmw1s6E9WUNUAa6rq+OGG24AIJfLsXXrVgAaGhqoqqrq0W31efutqW+Pa0d38KputF8Cx2fGjBnrD7lSkaIKcLtcLkdzczMNDcnX/s3NzdTX1/fYScqk/Zo2qvr1zJUy9uNTjOj6wO0Hr/2AVVVVUV9fT3NzM7lcLt72d+4j9+5B33bHU38PtV+sqK7A5eXltLS0UFNTQy6XO+CA1dTU0NLSQmVl5WH3+dra2ti7d2827VeW0bJ7H5UVRtm+HfHV3wPtH46oPgduamqyZcuWZV1G71gzd//0uFnZ1dGLJC03s6aebDO6LoRzaR5gFzUPsIuaB9hFzQPsouYBdlHzALuoeYBd1DzALmoeYBe1zAMsqVzSM5IezroWF5/MAwx8iWQESOeKlmmAw6g6HweiG4/AlYasr8DfJhmgr/t/COuOSpkFWNKFwJtmtvwQ682StEzSsi1btvRRdS4WWV6BzwSmSXoFuB84N///lgAws7lm1mRmTUOH9ui/B3RHgMwCbGbXmdlIMxsDXAIsNrPPZ1WPi1PWfWDnuqUk/k2cmS0hGUbUuaL4FdhFzQPsouYBdlHzALuoeYBd1DzALmoeYBc1D7CLmgfYRc0D7KLmAXZR8wC7qHmAXdQ8wC5qHmAXNQ+wi5oH2EXNA+yi5gF2UfMAu6h5gF3UPMAualkOLTVK0i8lvSBplaQvZVWLi1eW40K0AteY2QpJA4DlkhaZ2QsZ1uQik+XQUpvNbEWY3kkyRvCIrOpxcSqJPrCkMcBpwG8LLPPRKV2HMg+wpP7AT4CrzWxH/nIfndJ1JusR2vuRhPceM5uXZS0uTll+CiHgDuD3ZvZfWdXh4pb1ANeXkgxs/Wx4fCzDelyEMvsYzcyeBJTV9t2RIfObOOe6wwPsouYBdlHzALuoeYBd1DzALmoeYBc1D7CLmgfYRc0D7KLmAXZR8wC7qHmAXdQ8wC5qHmAXNQ+wi5oH2EXNA+yi5gF2UfMAu6h5gF3UPMAualmPzDNV0mpJayRdm2UtLk5ZjsxTDnwXuAAYD3xW0vis6nFx6lKAJT2eP2qOpLnd3PYkYI2ZrTOzvcD9wPRutumOMl29AjcCX5P0L6l5Td3c9ghgY+r5qxQYH9iHV3Wd6WqAtwNTgGGSfippUO+VdCAfXtV1pqsBlpm1mtmVJMOhPgkc081tbwJGpZ6PDPOc67KuBnhO+4SZ/QC4HPhFN7f9NHCCpEZJlcAlwIJutumOMl0andLMbst7vhyY2Z0Nm1mrpKuAhUA58H0zW9WdNt3RJ8v/pQgzewR4JMsaXNz8mzgXNQ+wi5oH2EXNA+yi5gF2UfMAu6h5gF3UPMAuah5gFzUPsIuaB9hFzQPsouYBdlHzALuoeYBd1DzALmoeYBc1D7CLmgfYRc0D7KLmAXZR8wC7qGUSYEn/IelFSc9L+j9Jg7Oow8UvqyvwImCCmU0EXgKuy6gOF7lMAmxmvzCz1vD0NyTjojlXtFLoA88EHu1ooQ+v6jrTa0NLSXoMOLbAotlmNj+sMxtoBe7pqB0zmwvMBWhqarJeKNVFrNcCbGZ/3tlySZcDFwJTzMyD6Q5LJoP7SZoKfBX4MzN7O4sa3JEhqz7wrcAAYJGkZyXNOdQLnCskkyuwmY3LYrvuyFMKn0I4d9g8wC5qHmAXNQ+wi5oH2EXNA+yi5gF2UfMAu6h5gF3UPMAuah5gFzUPsIuaB9hFzQPsouYBdlHzALuoeYBd1DzALmoeYBc1D7CLmgc4Anu2bWPhjBk8d8stbFu9Gh9GY79M/lVyO0nXAP8JDDWzrVnWUsr2vfMOueZmXnnkEdb//OfUNDTQOG0aI845h5qGhqzLy1RmAZY0CjgP2JBVDaXozVWb2LHiRwfM27tzJyovp7K2FjMj19LCC7ffzgt33MGQiRMZc9FFHDtpEuVVVRlVnZ0sr8A3k4zOMz/DGkrOiwtWsHXtE5RVHHhqyvr1A0ASFdXVUF2NtbXRvHIlzStXoooKRk2ZwvFTpzL4xBORlEX5fS6roaWmA5vM7LliDvT21u3M2zqv9wrL0JhdKwDY3trCnj8Sqs4/Lq3sbt128Aurkx/WuodVP32QVT/7MarvT/lfnknFn47v3aJLQCajUwLXk3QfutLOLGAWQMPIo7u/1yXtF4Sj5Eavz0enlHQK0Ai0X31HAiskTTKz1wu0897wquNOHXd0nJVde7A97x44r185qq0+YJaZwds5MFBFOWVTTqH8nAnofcd6F6K3mNnvgGPan0t6BWjqyqcQgysG84mGT/RidRnanuz+iL84hh25kw9YtHfXLtbNm0e/iuQmbl8uR1suBxL1p5xK47RpHDt5st/EuewNmzCSYeM+c8C83a+9xtoHHyS3fTuqqKC6vp7GadMYec451AwdmlGlpSHzAJvZmKxrKHXlNTVU1dUxbPJkRk+dyuCTTjpqugiHknmA3aFV19Vx/n33ZV1GSfKvkl3UPMAuah5gFzUPsIuaB9hFzQPsouYBdlHzALuoeYBd1KL6Jm7btm3cdtttRb+ura2NvXv3UllZCfDedFlZz/z+9kj7udTfMlUduI9R1N+F9ntDVAFubW1l4MCBRb0ml8vR3NxMfX09VeGvtQrNO1w91v7u1B+r1+7fx2jq70L7veGI7kJ0dCKqqqqor6+nubmZXC7n7fdx+z3piA3woQ5ed0+St9+99nvKERngrh68wz1J3n7PtN8TFNMgGZJ2AquzrqMXNQBH8vgYJ5nZgJ5sMKqbOGC1mTVlXURvkbTsSN+/nm7ziOxCuKOHB9hFLbYAz826gF7m+1ekqG7inMsX2xXYuQOUXIAl1UtaJOnl8LOug/UuC+u8LOmy1PwlklZLejY8jin0+r4kaWqoaY2kawssr5L0QFj+W0ljUsuuC/NXSzq/TwvvosPdP0ljJL2TOldzit64mZXUA7gJuDZMXwvcWGCdemBd+FkXpuvCsiUkI/1kvi+hnnJgLTAWqASeA8bnrXMlMCdMXwI8EKbHh/WrSIbjWguUZ71PPbh/Y4CV3dl+yV2BgenAnWH6TuDiAuucDywys2Yz2wYsAqb2TXlFmwSsMbN1ZrYXuJ9kH9PS+/xjYIqSkUumA/ebWc7M/gCsCe2Vku7sX7eVYoCHmdnmMP06MKzAOiOAjannr4Z57f43vCV9vacOVDccqtYD1jGzVqAFGNLF12atO/sH0CjpGUlPSDqr2I1nNT5wZ0OvvsfMTFKxH5N8zsw2SRoA/AS4FLjr8Cp1vWwzcLyZvSXpdOAhSSeb2Y6uNpBJgK2DoVcBJL0habiZbZY0HHizwGqbgLNTz0eS9H0xs03h505J95K8xWUZ4E3AqNTzkWFeoXVelVQBDALe6uJrs3bY+2dJRzgHYGbLJa0FTgS6/JVzKXYhFgDtnypcRuH/gmAhcJ6kuvApxXnAQkkVkhoAJPUDLgRW9kHNnXkaOEFSo6RKkpuYBXnrpPf5U8DicHIXAJeEu/hG4ARgaR/V3VWHvX+ShkoqB5A0lmT/1hW19azvYgvc1Q4BHgdeBh4D6sP8JuD21HozSW5q1gB/HebVAsuB54FVwC2UwF078DHgJZK79dlh3jeBaWG6Gngw7MtSYGzqtbPD61YDF2S9Lz25f8Anw3l6FlgBXFTstv2bOBe1UuxCONdlHmAXNQ+wi5oH2EXNA+yi5gF2UfMAu6h5gDMm6QxJz0uqllQraZWkCVnXFQv/IqMESPoWybdVNcCrZvbvGZcUDQ9wCQh/Q/A0sAf4EzPbl3FJ0fAuRGkYAvQHBpBciV0X+RW4BEhaQPIvGRqB4WZ2VcYlRSO2oaWOOJL+CnjXzO4Nf1r4lKRzzWxx1rXFwK/ALmreB3ZR8wC7qHmAXdQ8wC5qHmAXNQ+wi5oH2EXNA+yi9v/5l+1hKgTTKAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "_, ax = plt.subplots(1, 1, figsize=(2, 3))\n", "sim_gyrotropic.plot(y=0, ax=ax)\n", "ax.set_aspect(\"auto\")\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "aa094e99-6362-428b-993d-fb49f37767e0", "metadata": {}, "source": [ "## Results" ] }, { "cell_type": "markdown", "id": "ea0e8bcf-1c1e-4cd3-a24a-0bb4655f16e8", "metadata": {}, "source": [ "Submit and run simulations on the server." ] }, { "cell_type": "code", "execution_count": 13, "id": "ed410168-9199-4b88-93f1-4d89032ab7b0", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[16:57:08] Created task 'gyrotropic_reference' with task_id                                           webapi.py:186\n",
       "           'fdve-010efdb5-62aa-4da9-9fea-d51749934a32v1'.                                                          \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:08]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'gyrotropic_reference'\u001b[0m with task_id \u001b]8;id=280297;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=648278;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#186\u001b\\\u001b[2m186\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-010efdb5-62aa-4da9-9fea-d51749934a32v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           View task using web UI at                                                                  webapi.py:188\n",
       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-010efdb5-62aa-4da9-9fea-d51749934a3              \n",
       "           2v1'.                                                                                                   \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=262213;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=670641;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b]8;id=737339;https://tidy3d.simulation.cloud/workbench?taskId=fdve-010efdb5-62aa-4da9-9fea-d51749934a32v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=801779;https://tidy3d.simulation.cloud/workbench?taskId=fdve-010efdb5-62aa-4da9-9fea-d51749934a32v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=737339;https://tidy3d.simulation.cloud/workbench?taskId=fdve-010efdb5-62aa-4da9-9fea-d51749934a32v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=896405;https://tidy3d.simulation.cloud/workbench?taskId=fdve-010efdb5-62aa-4da9-9fea-d51749934a32v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=737339;https://tidy3d.simulation.cloud/workbench?taskId=fdve-010efdb5-62aa-4da9-9fea-d51749934a32v1\u001b\\\u001b[32m-010efdb5-62aa-4da9-9fea-d51749934a3\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", "\u001b[2;36m \u001b[0m\u001b]8;id=737339;https://tidy3d.simulation.cloud/workbench?taskId=fdve-010efdb5-62aa-4da9-9fea-d51749934a32v1\u001b\\\u001b[32m2v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a858ae7044ea40c1820f5e87c127fbec", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:57:12] status = queued                                                                            webapi.py:321\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:12]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=312983;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=696617;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#321\u001b\\\u001b[2m321\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:57:19] status = preprocess                                                                        webapi.py:315\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:19]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=692133;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=164250;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#315\u001b\\\u001b[2m315\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[16:57:26] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:338\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:26]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=59344;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=165818;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:342\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=5599;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=182522;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#342\u001b\\\u001b[2m342\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:352\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=106736;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=543314;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#352\u001b\\\u001b[2m352\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5a3caf6f62b046ac96b60c003d863555", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:57:33] early shutoff detected, exiting.                                                           webapi.py:366\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:33]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=9010;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639500;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#366\u001b\\\u001b[2m366\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:383\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=658888;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=324857;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#383\u001b\\\u001b[2m383\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:57:39] status = success                                                                           webapi.py:390\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:39]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=949882;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=603705;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#390\u001b\\\u001b[2m390\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "cccacf56e72a43659ba2a0ae8beaf830",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:57:41] loading SimulationData from data/simulation_data_gyrotropic_ref.hdf5                       webapi.py:568\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:41]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data_gyrotropic_ref.hdf5 \u001b]8;id=292714;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=716461;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#568\u001b\\\u001b[2m568\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:57:41] Created task 'gyrotropic' with task_id 'fdve-99c887ed-1681-492e-a374-2781ca415175v1'.      webapi.py:186\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:41]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'gyrotropic'\u001b[0m with task_id \u001b[32m'fdve-99c887ed-1681-492e-a374-2781ca415175v1'\u001b[0m. \u001b]8;id=5782;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=523115;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#186\u001b\\\u001b[2m186\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           View task using web UI at                                                                  webapi.py:188\n",
       "           'https://tidy3d.simulation.cloud/workbench?taskId=fdve-99c887ed-1681-492e-a374-2781ca41517              \n",
       "           5v1'.                                                                                                   \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mView task using web UI at \u001b]8;id=271043;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=229838;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#188\u001b\\\u001b[2m188\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b]8;id=479434;https://tidy3d.simulation.cloud/workbench?taskId=fdve-99c887ed-1681-492e-a374-2781ca415175v1\u001b\\\u001b[32m'https://tidy3d.simulation.cloud/workbench?\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=986159;https://tidy3d.simulation.cloud/workbench?taskId=fdve-99c887ed-1681-492e-a374-2781ca415175v1\u001b\\\u001b[32mtaskId\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=479434;https://tidy3d.simulation.cloud/workbench?taskId=fdve-99c887ed-1681-492e-a374-2781ca415175v1\u001b\\\u001b[32m=\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=552398;https://tidy3d.simulation.cloud/workbench?taskId=fdve-99c887ed-1681-492e-a374-2781ca415175v1\u001b\\\u001b[32mfdve\u001b[0m\u001b]8;;\u001b\\\u001b]8;id=479434;https://tidy3d.simulation.cloud/workbench?taskId=fdve-99c887ed-1681-492e-a374-2781ca415175v1\u001b\\\u001b[32m-99c887ed-1681-492e-a374-2781ca41517\u001b[0m\u001b]8;;\u001b\\ \u001b[2m \u001b[0m\n", "\u001b[2;36m \u001b[0m\u001b]8;id=479434;https://tidy3d.simulation.cloud/workbench?taskId=fdve-99c887ed-1681-492e-a374-2781ca415175v1\u001b\\\u001b[32m5v1'\u001b[0m\u001b]8;;\u001b\\. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "56da9005af8e4ebaa7e01a620b974a39", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:57:43] status = queued                                                                            webapi.py:321\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:43]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=281099;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=153972;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#321\u001b\\\u001b[2m321\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:57:49] status = preprocess                                                                        webapi.py:315\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:49]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=217163;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=565806;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#315\u001b\\\u001b[2m315\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[16:57:56] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:338\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:57:56]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=45614;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=302160;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:342\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=496209;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=609557;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#342\u001b\\\u001b[2m342\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:352\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=595407;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=598347;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#352\u001b\\\u001b[2m352\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bc606e962d43459baf43fd7f29a4c39b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:58:02] status = postprocess                                                                       webapi.py:383\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:58:02]\u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=137290;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567582;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#383\u001b\\\u001b[2m383\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:58:08] status = success                                                                           webapi.py:390\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:58:08]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=945935;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=48297;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#390\u001b\\\u001b[2m390\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d50e3366dd6e4dcf8f64d94ea5331d7f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[16:58:09] loading SimulationData from data/simulation_data_gyrotropic.hdf5                           webapi.py:568\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[16:58:09]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data_gyrotropic.hdf5 \u001b]8;id=668674;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389113;file:///home/daniil/Code/tidy3d-core/tidy3d_frontend/tidy3d/web/webapi.py#568\u001b\\\u001b[2m568\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data_unperturbed = web.run(simulation=sim_unperturbed, task_name=\"gyrotropic_reference\", path=\"data/simulation_data_gyrotropic_ref.hdf5\", verbose=True)\n", "data_gyrotropic = web.run(simulation=sim_gyrotropic, task_name=\"gyrotropic\", path=\"data/simulation_data_gyrotropic.hdf5\", verbose=True)" ] }, { "cell_type": "markdown", "id": "e019fa5b-af1e-45c9-987a-85abcb88da1a", "metadata": {}, "source": [ "Now we compare the simulation results to analytically predicted behavior. It is known that in the gyrotropic medium propagation along gyration axis allows two circularly polarized normal modes with propagation constants given by\n", "$$n_{\\pm} = \\sqrt{n^2 \\pm G}$$\n", "and the rotatory power (rotation angle per unit length) of the medium is given by \n", "$$\\rho = \\frac{\\pi}{\\lambda_0} \\left(n_- - n_+\\right).$$" ] }, { "cell_type": "markdown", "id": "510c1b05-4063-49c6-ac3f-4da352576960", "metadata": {}, "source": [ "First we consider central frequency for which we expect simulation results to be the most accurate." ] }, { "cell_type": "code", "execution_count": 14, "id": "100fc296-0e8d-4154-a3f2-2661cc099df6", "metadata": {}, "outputs": [], "source": [ "freq_ind = len(freqs) // 2" ] }, { "cell_type": "markdown", "id": "5e080644-93da-4f86-860b-0966a0df4dbe", "metadata": {}, "source": [ "To obtain reference field distribution we extract numerical data from the reference simulation and apply rotation of polarization as predicted by the theory." ] }, { "cell_type": "code", "execution_count": 15, "id": "5d302961-7f73-41f7-b62d-34ea6b3d885d", "metadata": {}, "outputs": [], "source": [ "# reference (constant polarization) wave propagation\n", "Ex_ref = (\n", " data_unperturbed[\"freq_mnt_xz\"]\n", " .field_components[\"Ex\"]\n", " .isel({\"f\": freq_ind, \"x\": 0, \"y\": 0})\n", ")\n", "\n", "# predicted rotatory power at chosen wavelength\n", "wvl = td.C_0 / freqs[freq_ind]\n", "n_minus = np.sqrt(eps0 - g[2])\n", "n_plus = np.sqrt(eps0 + g[2])\n", "rho = np.pi / wvl * (n_minus - n_plus)\n", "\n", "# rotation factor along propagation direction\n", "coord = Ex_ref.coords[\"z\"]\n", "src_coord = source.center[2]\n", "dist = coord.data - src_coord\n", "factor_x = np.cos(rho * dist).real\n", "factor_y = -np.sin(rho * abs(dist)).real\n", "\n", "# rotated polarizations\n", "Ex_theory = Ex_ref * factor_x\n", "Ey_theory = Ex_ref * factor_y" ] }, { "cell_type": "markdown", "id": "8fc45df0-1fee-4ed1-a13b-97ad15f60c1f", "metadata": {}, "source": [ "Extract simulation data at the chosen frequency." ] }, { "cell_type": "code", "execution_count": 16, "id": "425e2ad3-3076-4630-97ff-bdee8a8b7d08", "metadata": {}, "outputs": [], "source": [ "Ex_num = (\n", " data_gyrotropic[\"freq_mnt_xz\"]\n", " .field_components[\"Ex\"]\n", " .isel({\"f\": freq_ind, \"x\": 0, \"y\": 0})\n", ")\n", "\n", "Ey_num = (\n", " data_gyrotropic[\"freq_mnt_xz\"]\n", " .field_components[\"Ey\"]\n", " .isel({\"f\": freq_ind, \"x\": 0, \"y\": 0})\n", ")" ] }, { "cell_type": "markdown", "id": "c5a82e6e-0e44-40d8-acc2-719a55305a82", "metadata": {}, "source": [ "Plot the comparison." ] }, { "cell_type": "code", "execution_count": 17, "id": "0ca8a218-a4dc-4c33-b1de-83b2a6bcab38", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGoCAYAAABL+58oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH37tdu9qiLlmSLbn3jqkG03vvLUCooYWEEEjhCykQAgkt9F4CAULvHdOLO+5dttXr7mp7u98fu7Jlq22ZtYWZ93n02Jq5s2c0Wu2cOeV3hJQSFRUVFRUVFZXdCc2uPgEVFRUVFRUVFaVRHRwVFRUVFRWV3Q7VwVFRUVFRUVHZ7VAdHBUVFRUVFZXdDtXBUVFRUVFRUdntUB0cFRUVFRUVld0O1cFRUckCQoibhBBhIYRHCGHJwuuPTrx2VAhxkdKvP9gYjNdTCDFGCLFYCNEphLha6XNS2R4hxBwhRCzxezpCgdczJl4rLIT4mxLnqDK4UB0clZ80QogqIcSnQgifEGKVEOKQftYahRCPCyHcQohGIcSvB3j5F6SUuVJKr8KnjZRyjZQyF/hC6dfOhJ/Y9fwt8KmU0iqlvEeJ80hck8eEEJsSjtNiIcSRA6y/UwhRL4ToEELcL4TQd9s/TgjxiRDCJYRYJ4Q4cYfjTxNCrEzYWiGEOEGJn2MHGw8LIVYnnJPz+1n3sRBCCiF0/bxcfeI98F7imPOFEF/28lo1/b33AKSUwcTv/NkkfxSVHxmqg6PyU+e/wCKgAPgD8JIQoqiPtTcBo4BhwIHAb5V4ktzN+Cldz2HAcoVfUwdsAQ4A7MAfgReFEFV9rL8BmAlMBEYD0xPHkHAUXgfeAvKBS4D/CCFGJ/aXA/8Bfg3YgOuA54QQxametBBirhBiTh+7lwCXAwv7Of5sQN/XfhWVdFAdHJVBiRBihBCiXQgxPfH9ECFESz8founY6Loh/ElK6ZdSvgwsBU7u45DzgL9KKTuklCuBR4DzU7A3t3v6Y8enz8TT6+VCiLWJJ+q/Jq7D14kox4tCCEMaPypCiOuEEC/vsO0eIcTd6bxeHzZ+StfzE+JO2b2JNMfodF5nR6SUXinlTVLKGillTEr5FrARmNHHIccC90gp26WULcA9wM8T+8YCQ4A7pZRRKeUnwFfAuYn9FYBTSvmujPM24AVGJH5GjRDiBiHEeiFEW+J65afxM90npfwYCPS2XwhhB/5EPCKmOEKIJYnfUdeXVPJzRGXwojo4KoMSKeV64HriT5xm4AngKSnl3N7WCyHeEkI4+/h6qw8zE4ANUsrObtuWJLbv+Pp5QFlif79rM+Rw4jezvYh/4D8MnANUEn9KPzPN1/0PcIQQwgFbn+7PAJ7ubbF6PftHSnkQ8XTWlYmUyZod1yTSRX1dwx+SsSOEKCEemekvUiR2+H9Fwmnoa+3ExP/nAyuFEMcJIbSJ9FQQ6Dq3q4ATiEeThgAdwH3JnHeK3AI8ADRm4bWRUk5J/I5yiUerVtNPNEll96G/XKeKyi5FSvmIEOJY4DtAAsf1s/aYNEzkAq4dtrmA8j7Wdu3vvtaaht3+uE1K6QaWCyGWAR9IKTcACCHeBaYBT6X6olLKBiHE58CpxCMlRwCtUsoFfaxXr2eGSCkvJ56aSQsRr6V5lrhjv6qPZe8BvxRCfApoga5iZzPxG3kzcJ0Q4k7iEacDgE8T5xcVQjwNPAeYgBBwarcap8uIO3C1ifO5CdgshDhXShlJ9+fa4WecCewL/JJ4RCkd9hJCOHfYZuvF1n7A34D9Eu8Jld0cNYKjMth5hPgT57+llEGFX9tDzw9CG9DZx9qu/QOtzYSmbv/39/J9LunzFPHoBYl/n8ngtXrjp3Y9s4YQQkP89xMCruxn6c3Ea54WA18DrwFhoElKGSYegTmaeHTkWuBFoMthOQS4DZgDGIg7P48KIaYmXnsY8GpX1AlYCUSBksTxzm779gO6R/1uSPJnvB/4ZYYO07dSSkf3L2DzDrYqEz/7eb1F21R2T1QHR2XQIoTIBe4CHgNu6i//L4R4d4c8e/evd/s4bDkwXAjRPWowhV7SAVLKDqAhsb/ftf3gJf5k3UVpCscqwWvAZCHEROAY+ukeUa9n5gghHuznGvb5cwohBPH3fAlwcsJR6ZVErdOVUspyKeVwoA1YIKWMJfb/IKU8QEpZIKU8HBgOfJ84fCrwuZRyfqLeZx7xaGlX99EW4MgdnAeTlLIu8drdHYovgWO6bbs1iUtkI14g/YIQohGYl9heK4SYncTxSSGEyCH+3r9LStnXe1dlN0R1cFQGM3cD86WUFwFvAw/2tVBKeWRXnr2Xr17bbBNPcouBPwkhTCLeQjsZeLm39cTrVf4ohMgTQowFLgaeTOHnWQycJIQwCyFGAhemcOyAiLhOiOxrv5QyALxEPCXxvZRycz9r1es5wPUcCCnlZf1cw/5qjR4AxgHHSin9A5xjuYgX4AshxF7AjcQLdrv2T078LsxCiN8Qr3t6MrF7HjC7K2IjhJgGzGZbDc6DwM1CiGGJ/UVCiONTvAwIIQxCCBPx+h994nw0xFOSQ4g7WlOBoxKHzCDuaCnF48AqKeVtCr6myo8A1cFRGZQkPkiPAH6R2PRrYLqIt5MqyRnEnyI7gFuBUxLdKAghzt7hSftPwHpgE/AZcLtM6HEkyZ3EUw5NxNNFSutvVBJPU/THU8AklE9PdfFTu56KknAmLiV+w2/sFvE5O7F/aOL7oYlDRiTO0Uv8Gtwgpfyg20ueSzxS1gwcDBzaleqVUn5GvFX/JSFEJ3FH9JZux98NvAF8kNj/LbBnGj/WB8TTgfsQL/L2A/snOrcau76AlsT6JillKA07fXEGcOIOETTFIkQqgxchZdoPKCoqKn0ghPgj8Dvi9RDlUmFxOiHEKOJP4Abgcinlk0KIR4H/SSnf7+e4ocAqoPTHVGg5WK+nys5DCLE/8D7xTq/TM/29CCGMxJ1jPfFi9D9nfpYqgwnVwVFR+YmQSAvcAdiklD8faL2KiorKjxm1TVxF5SeAiM9vaiKeDvoxqQWrqKiopIUawVFRUVFRUVHZ7VCLjFVUVFRUVFR2O3brFFVhYaGsqqra1aehoqKioqKikiUWLFjQKqXsMdR3t3ZwqqqqmD9//q4+DRUVFRUVFZUsIYTY1Nt2NUWloqKioqKistuhOjgqKioqKioqux2qg6OioqKioqKy27Fb1+CoqKioqKjsDMLhMLW1tQQCgV19KrstJpOJiooK9Hp9UutVB2c3xef3s2bpPKbsMZv4cOKdR02rl1A0xugS68CLVVRUVHYDamtrsVqtVFVV7fTP3J8CUkra2tqora2luro6qWPUFNVuiJSSH+7/Gda3LuGNBRt3qu0Ob4hTHvyGPzzwLI31fQ6rVlFRUdmtCAQCFBQUqM5NlhBCUFBQkFKETHVwdkMWfvE2e3V+wBeamfzf2+twB8I7zfZrLz2FxtfCk/L/qHnuVzvNLkA4GuMf761iWZ1rp9pVUVFRAVTnJsuken1VByfLfLWulVVrVsNOHIkR+OF1/NLAyNNupiKwhuXLlu4UuzIW49iNf+O24g9ZWXQEEzu/Ihzeec7Vgqd/R+3nz3DJ0/Nx+XaeXRUVFRWVwYfq4GSRls4gZz/6LYH/nMniV/+50+wWdCymxjSW6UMdvG64ERY9s1PsNmxaTSFOcoaMRVu1D7nCz4YVO0do0d1Sx6yahzjBvpaJni/57tV7dopdFRUVlcHEzTffzIQJE5g8eTJTp07lu+++46KLLmLFihWKvH5VVRWtra39rrnlllu2+36fffZRxHaqqA5OFlnf4gEEVaIR1n+6U2y63G5GRNbjKZqBOdfORt1wrC0Ldort+qVzASgcdwAVkw8EoHXl5zvF9qbFH6ERkuIDLuWPpv9RuPndnWK3i1gowJaln+/USJ2KiopKd7755hveeustFi5cyA8//MBHH31EZWUljz76KOPHj99p57Gjg/P111/vNNvdUR2cLBJe9jrP6G9hrWkSVd4lyFg06zYX13Vybvh3aKafDUB7/lSGB1cRDgWzbju66Vs6ZQ5V42ZQVDmaVvLQ1X2fdbsAwfVfxtNyU/ahNW8qIwIrCIUjO8U2UrLiwXOofPlYvn/jwZ1jU0VFRWUHGhoaKCwsxGg0AlBYWMiQIUOYM2fO1rFFubm5XHfddUyYMIFDDjmE77//njlz5jB8+HDeeOMNAJ588kmuvPLKra97zDHHMHfu3B72TjjhBGbMmMGECRN4+OGHAbjhhhvw+/1MnTqVs88+e6tNiDfAXHfddUycOJFJkybxwgsvADB37lzmzJnDKaecwtixYzn77LORCjwsqm3iWUTTsJhZmpXMH/kHHMu/pX7dEoaMnp5Vm8sa/XwbG8/o8VMB0A6dhbnlJTauXUz1hD2zajvftZxNpjFM1MXfVg8Nu53Pms18kFWrCdutC1lrGMvknBy0w/bG3vomK1YsYPyU7P7MABu/fJ6J7R/SIa2MWfhXWvY5kaKi0qzbVVFRGZz8+c3lrKh3K/qa44fY+NOxE/pdc9hhh/GXv/yF0aNHc8ghh3D66adzwAEHbLfG6/Vy0EEHcfvtt3PiiSfyxz/+kQ8//JAVK1Zw3nnncdxxxyV9To8//jj5+fn4/X722GMPTj75ZG699VbuvfdeFi9e3GP9K6+8wuLFi1myZAmtra3sscce7L///gAsWrSI5cuXM2TIEPbdd1+++uor9ttvv6TPpTfUCE4WMbo20KgtpWTyYQA0LP0k6zYNNZ9ygmUZVlNcCMleGQ9LdtSuybrtmyIX8OXQy7Z+byqfzDonhCKxrNoNhSPUhiy0FO8LQOWUgwBoWzE3q3a7aFr+OU5pof7op/g4No0Fq3ud+6aioqKSVXJzc1mwYAEPP/wwRUVFnH766Tz55JPbrTEYDBxxxBEATJo0iQMOOAC9Xs+kSZOoqalJyd4999zDlClT2GuvvdiyZQtr167td/2XX37JmWeeiVarpaSkhAMOOIB58+YBMGvWLCoqKtBoNEydOjXlc+kNNYKTRfICW+gwVTJx5AT+EzscgkXMyLLNPRv+wwGaAHA9AMXDp3Bm6A8cpp1ENmNHTl+IrwJVHDh03NZtE0ytXK19iYbacQyrGp4125va/fwsdD13zZwKQH7lWNxYCLftHEfj1ug55Jccx6MzD+Ls96Ic2mDiiJ1iWUVFZTAyUKQlm2i1WubMmcOcOXOYNGkSTz311Hb79Xr91nZrjUazNZ2l0WiIROJpfZ1ORyy27cG0N+2ZuXPn8tFHH/HNN99gNpuZM2dORirOXefR9TN0nUsmqBGcLBGJRCiLNhC0VaPRangm70rmhrNf5FUYqsNjrtz6vd1mY3XONNa4tVm1W7dpHcdpvmaEddubstro4hrdK3TULM6q7Y2tXgCqCi3xDUJwWcl/eUB3TlbtAniDEZbVuRg7vBqNRrBnVR7r163Out3udHhDNLpUeXgVlZ86q1ev3i6KsnjxYoYNG5by61RVVbF48WJisRhbtmzh++971lK6XC7y8vIwm82sWrWKb7/9dus+vV7fq0TI7NmzeeGFF4hGo7S0tPD5558za9aslM8vWVQHJ0u0trexJDaCYOk0AKoLjHhasqvs6/V6KZWtRBzbR0uOsq6jfMubWbUdWPcZ9xjupdrk3bqtaGjcofM1rsuqbfvCB3jPcD3VedueACqL8rY6Ptlk01cvcqf2bvYpjwdDL9G8wf8Cl1DX2Jh12xB3sE564Gv+cuddbFq9aKfYVFFRGZx4PB7OO+88xo8fz+TJk1mxYgU33XRTyq+z7777Ul1dzfjx47n66quZPr1n/P+II44gEokwbtw4brjhBvbaa6+t+y655BImT568tci4ixNPPJHJkyczZcoUDjroIG677TZKS7NXr6imqLKEK2bmzPAfuW94/I1xTuAF9u58nGj4GLR64wBHp0d9zUpGCYm+aOR224+Xn1DpXAj8Pit2AcLN64lJQemwMVu35ZVU4pcGaN+QNbsA+vaVODQ+7Lk5W7fN1izhoOCTuD17Y0tU8GeD4MZvOUwzn8DwCgBs1dPRrpM0rZlPeekxWbPbxZsvPIyuXcvNhnvZ8r+34I9fZt2miorK4GTGjBm9tmR374DyeDxb/7+j89O1TwjBs88+26uN7rUx777buxzHP/7xD/7xj3/0+rq33347t99++3bru1JqXdx77729vm6qqBGcLOHyx8Nz9px4sa+2aARaIWnetCp7NmvjqRF7xejttkfsVZTSSsDn6e0wRdC7amgShZhyzFu3CY2WJl0Zxs7s1sJYPZto1ldst22o0cvh2vk01GTvegPoneupFaXYLSYASqonAuCpz65dABlwc8qGP/KbksVsqDqDCeFlNDU1Zd2uioqKyo8B1cHJEtqaz/nYcC3F/nh6JrdsLAAdW1ZmzeYC/QwOCN5B8aiZ223viug0bc5ebUiufwtthvIe212mCuzBhqzZBSgO1+KxbJ9ntpcnrndtduth8nw1tBqHbv3eVjqcIHpka//dBErQsORDdETRjz6YgkmHoRWStfPez7pdFRUVlR8DqoOTJaKdTYzQNGDJiT/ZF1XHu4t8jdlr167vjNBurCDXsn1KxlwYvwG7m7MXSXGEW/Dl9Mylvjf6rxwbvlkR0abeCLhbsePpUXdUUh2v/wk1ZdHRiIYpiTbgs1Vv26bR0qQrx9KZ/Snu7mXv45NGRs44mGGT9yeAgfC6uVm3q6KiovJjYJc6OEKIx4UQzUKIZd225QshPhRCrE38m5fYLoQQ9wgh1gkhfhBCZFcxL0Oivg4AzLYCAIqLyvDIHKRzS9ZsVtW9wXmmL3pst5fEoxuBttqs2I3FJKeF/sSC4b/osa8gPw9/GNz+7KgKN7a7eSW6H7J82nbbTbYiPJjRurJX2O1ub2ZlrJJY8cTttn815DyeCR+UNbtdmJsXslw7lsoiB0JvosY8mTzX8qzb3Y6doM6toqKikg67OoLzJPSQDLkB+FhKOQr4OPE9wJHAqMTXJcADO+kc00L6XQBYHXEHR6MRPGA8n2+M2Rs6Nqv9LY6Wn/XYXlA+gtnBO5lnPTgrdlu9QTbFCrEUV/XYN1Ju4lbdw7TWZ6fQuD5i49fhy9EP30HxUgg26kbgCmfvLb7eb+bY0C3EJpy83XbvqBN43TeJDm8oa7aJxSgObsJtG7VV0+KrmXdzgv/GnTZJ3bvuK9pvHsPHn364U+ypqKiopMIudXCklJ8D7TtsPh7oUiZ6Cjih2/anZZxvAYcQomynnGg6BFwEpB6dcVvR7bz84/kyPDZrJh2RVvym4h7bTUYjnTkV1HuyoyjcXrueS7VvMlTn7LGvVO/lDN1cPPXZqYVp7PAAkjJ7To999w67i7s052bFLmzT36nu0t9JMMKhYbpYw+b6+qzZDkRi7B+8m3WjLty6bfiQYkCwprkza3a7kAEXmudOpSFs5vL3PXywfOe0xauoqKgky66O4PRGiZSyqyq1EShJ/L8c6J7fqU1s2w4hxCVCiPlCiPktLS3ZPdN+qNMM4XPtXtttG2kJkNexNCv2IpEohbKdiKV3TYGzTV8zassrWbEdqF3E7/T/ZYiu543VXhyv/wm0ZSc1V7n0Hn4wXkRprr7HvjJ7Dg1ZFMAbsvhu/qO/mcr87Z2r4ZG1vGK8iUDN/KzZ3tjmo1naKauo2rptrDXAHfr7cS7/OGt2u2ha+DY5MS9LJv2O0jwb73/1XdZtqqio9E1bWxtTp05l6tSplJaWUl5eztSpU3E4HDt1kvhgYjA6OFuR8crUlKpTpZQPSylnSilnFhUVZenMBuYj8xH8y/rb7bYd5X+d+/2/RUaVTyG0tTZiFGGEbUiv+w+Lfcm+ztcVtwsQbK8DwFHSUzEzvyy+LeLKTjRD62nAL3LIMRl67Nsv8CnPxH6Hx58dJyfXuYohWhdG3fYq0fll8YLnQFv26n86l7zJ5drXGFW0LXpUWpjHSdov0dRmf4K7d8nrtEobsw88hn/anuemuktxe31Zt6uiotI7BQUFLF68mMWLF3PZZZfxq1/9auv3Go3yt3olRilkm8Ho4DR1pZ4S/zYnttcBld3WVSS2DUpc/jC2nO11FIWtHK2QuFqUP+2OpngBsSGvotf9wZwS8qJtitsFkO56wlJLfnFP58potuPBjOjMTqu40d9Eu7Z3R7ZQH2KqZj0tDdlxNMyBRpz6nilBa2ElMSmyWlBuXf8m5+g+orpoW8ecMFpp1hRhdGa5RT0apqz5c7437ElloZX88QdhFX5++EatxVFRGYxEo1EuvvhiJkyYwGGHHYbf7wdg/fr1HHHEEcyYMYPZs2ezalVcv6umpoaDDjqIyZMnc/DBB7N5c/wz9Pzzz+eyyy5jzz335Le//S2jRo2iK1MSi8UYOXIkuzJzsiODUcn4DeA84NbEv693236lEOJ5YE/A1S2VNej4XfNv8RmLgW1FxYb8uPPR0bgJR2mVovZqtMM4PvAkL4/dt9f90dwy8tpdhENB9AZllZR1ngbaRB6lut7fTo3aMoLBoKI2u7CGmmky9D5rJacg7g+7mzbB8NG9rskER7iZutwRPXfoDHRoHOi82avByXFvpE5byRD99tGjdvNwijw1WbMLEAiF+HP4Z4wauycA1bOOIvypltDqj+CQ47NqW0XlR8MTR/fcNuEEmHUxhHzw7Kk99089C6adDd42ePFn2++74O20T2Xt2rX897//5ZFHHuG0007j5Zdf5pxzzuGSSy7hwQcfZNSoUXz33XdcfvnlfPLJJ1x11VWcd955nHfeeTz++ONcffXVvPbaawDU1tby9ddfo9VqsdvtPPvss1xzzTV89NFHTJkyhV2ZOdmRXd0m/l/gG2CMEKJWCHEhccfmUCHEWuCQxPcA7wAbgHXAI8Dlu+CUkyY/2oJRu31Rb25R/IbrbVFej6bJHSCIgeJ8W6/7NfZyNELS3qh8NMMUaMapK+xz/y0VD3K7/jLF7QLkR1sJmnuvO7Ilurq8rVmIpESC5Esnkdye4oYALn0xlkD2VIUdoQa85p62g7YqhshGAqHshY/XtIV5IbI/FRP2BkCTY6dBPxSrM3silioqKulTXV3N1KlTgfg4h5qaGjweD19//TWnnnoqU6dO5dJLL6WhIR4z+OabbzjrrLMAOPfcc/nyy20jYE499VS02viD1c9//nOefvppAB5//HEuuOCCnfhTDcwujeBIKc/sY1ePfuZEPc4V2T0j5bBID40G+3bb8hJRm2C78no0jpp3+JP+MwrNR/a635gXTx85W2opGTpKUdu/Nf6RMXmCO/vYX2I38UOdS1GbAKFQmKcihzKkeL9e9+eVVQEQ6VD+end2uvgmOoNo4YRe939UcQVf1nh5WnHLQMiHQ7oIW3umI2XhKBpq89G2dDCiPDtPUk0rv2a02MLY0jlbt7ltoylvnU84GkOv3TnPTbGYRKMRO8WWikrK9BdxMZj7328pyChisyNG47aovVarxe/3E4vFcDgcLF68OKXXsli21f1VVlZSUlLCJ598wvfff9/n/KpdxWCswfnRE4vGsEofMeP2Dk5hURm/Cl/Okpw9FbdZ3Po9J2q/QtPHzUWMPIhRgafZkqN8NX2TV2Ky96xF6WKfwOfcFryZWFTZNvUWX4TbI2cQqO5d38dkK2QRY2gN9yxAzpTGUA6XhK8lNOLwXveHKvbhc98wAmHlhfB87XWEpBbhGNpjX2T6hRwWup0tnuwoRwOMXHI7txseYWj+NgmE9gnn84fwz1nXlP0WdYCnv6nhwJueZ97L/9op9lRUdjdsNhvV1dX873//A0BKyZIlSwDYZ599eP755wF49tlnmT17dp+vc9FFF3HOOedsF9kZLKgOThbo9LjRiygiZ3sHR6fT8kXOQayN9O0MpIs+0IpL4+hzf6E9lzA62rzK1sJEI2GuDD7C1OiyPteUyjYO0i7C2dGqqO3WDhc2PBRZ+nBghOC3ttv5wHCoonYB6hPt50McPfV3AKqNnRyl+ZbG1h1lnjKnVpQyJvgU/tHH9dhXkRd3Omo7/IrbBUBKirxraMgZtV30ZMjE2Xwam8byhuw7OGs/foo333yZ8zXvssfSv7BqUU/1bhUVlYF59tlneeyxx5gyZQoTJkzg9dfjJa///ve/eeKJJ5g8eTLPPPMMd999d5+vcdxxx+HxeAZdegoGZ5Hxj55OX5D3InMoze8ZLZllqiWvZQswSVGbOeF2vPr8PvcXmHXcpHsSa82hsMclitl1tjVwge59vo3O6HON1haXMnK1NZBfqJxzJ9a8yw+ma1gVeR/ovQ6nMNdIi0f5Amf7wvv5zvg4YcuiXvePDCzjfsM9LK49HMqUTRXVdfiRaBjSS71VsTHCi4a/0rzmFNjrN4rahXjHXK70EMwft9326gILB+mX0bEuBDN67+RThGiY0q//xKWGUUy74mki975J4zfPM3Za30+YKio/NW666aat/6+qqmLZsm0PoL/5zbbPherqat57770exw8bNoxPPvmkx/Ynn3yyx7YlS5YwZcoUxo7NnohtuqgRnCzgFWauj1yCp+KAHvsujjzHKS33Km7TGukgaOjbwTEZ9Jys/YKCFmU1Utyt8aI0fT8pKpMj7nx42pRteou44uq51oLetX8ALvE/zPWtv1PULoB0N2AmSHGeo9f9lsJ4Qbk/C/VWxmXP8WfdE1Tk9YweaYwWJmk2kNOenYJfV118WKypdPs6Lq1GcJfu34za8r+s2O0ivOYjrNEONleeQEFRGetzp1Pd/FFWi6pVVFR659Zbb+Xkk0/m73//+64+lV5RHZws4AmEAYnZ2DMfGTQWYo12KG5TxmKEc/qPFLg0DnR+ZdNE3va4k9HlxPSGJT8+USPgVFbOP+ppISoFBUV927ZrQlRHahS1C6D1NdMuHBh0vf8J2YrjUYyQwj8zgKPhS+Zof6Aot5d2fyFo05Vi9mWnRd1ZF9fJsJWP6WnXUI7Vnz3tH4CGxR8SlDqG75VIz40/nmE0snSxqqSsorKzueGGG9i0aRP77dd7o8euRnVwsoB+y5esNf6MUufCHvsiOYU4Yi6IKVdw6w1GOCB4BwvGXd/vuk5dHqaQsjUhQWc8KpOb3/dYMHvhEDbGSugMKPuUrfG20IENk7HvIuKYpYg83PiDyqpHGwOtuLV5fe7viirFOpVvFTd562nVFvfZQeTNKcMRys5sqGXW2ZwV+j3FFT31f3y5QymONBBRuJi8O5r6eSyX1ew1On59K6YfQafMoXbjqqzZVFFJlnizr0q2SPX6qg5OFgj7O9GLKAaTuefO3CL0IorPrVwkpc0Tn1pdaO1fwM+vz8cSVjZ6FPQ4iUmBvbDvNJGtqIJDInexwKKsl68PtOLsx8kA0OYWoxMx2luUTY9Zwu14DQV97hcGCx7MaLzNfa5Jl9xQC15jSZ/7g5ZySmQzoYjyjsY6j4Fv5EQqCqw9d+ZVMYRWGtrditsFIBbD7K1jk3kipoTAoaV0FGfkvcDLnROzY1NFJUlMJhNtbW2qk5MlpJS0tbVhMpmSPkYtMs4CUX+8k8RksffYp7UmCm5b6jA7lCm47axfwQP6OykI38j20yy2J5hTRMxXo4jNLr7MO4ELwhNY6ehb6E+jEeRbDFsdMaX42HAQeq2PK/tZY0ikzlxtDZRX9GyrTpfPxUyEfSR79bPmL3l/w2cqoWclVgZISV6snbC5bwcnUDiRpXVrGeHy9u6IZEDx+lc4NNfaY/4WgKl4JNp1koZNa6ks2kNRuwAxBAdE7+fkUQWc2LVRCKZXFfDKwlqiMYlW1cVR2UVUVFRQW1s7qEYV7G6YTCYqKpJvYlAdnCwQC3oAMJl7OjjRYftz2rc38ntNMX0ndVIj0LyBI7XzWG/oX3Pl69E3cN/c9axV8EbQ5glht+T0qb/Txd/Eg4hNduAxRewCvBOdxfBuwyZ7w1A8mveie5DrV06PRkrJX4NncPYADpMrfwobW72K2QWQAReNMp+wtXcFZQDvpHO4YP4YXvZEqOg7yJSGccnxjXdTkHMwvWluWqccw1GfRjgr6GCWgma72NDqpTMYZfyw7WuujjYs5DT+xZotUxk3rO96LEWIRggv/A+RSJicvS/Ori2VHxV6vZ7q6updfRoq3VBTVFmgy8ExW3s6OLbCMr6X42gOKCeIFHbF6zxyC/p3mQqtJmISnD7lIimzap/gMt0bA64bKpqo8Cnb2WPvXEt5Tv91PbnV07ks/Cs2C+Val72BEOFwkKIBUoIzxGr2dvdswcwElzQzO3gX9SPP6nNNiTUewm1yKzxF3deORfoI2Xqf/VVUPISNuhFsaFe23qmLwNw7+IvuCaZUOLbbPjTfwiRNDU1r52XFbncaXF5a37mFnPd/w7IXb8q6PRUVlfRRHZwsUGccwVPRwzCZe6YHCs1ajtN8Rax+iWL2ou64g2Mv6rsOBqA6vJYH9XfiqlutmO3Jni+YIZcPuC5gKCBXwe6xiN/NS/JaDux8q991BZa4E9LSqZwWjnv9d6wxnscE//x+183yfca1sScIRpSLHjW54z9Hsa1v52pIrIHPDb/EsPYdxewCBNriM9S0Bb07OEIIzrd8S15dT/0MJbDWfsokTU2PqF3RyGkA+OpWZMVud659eSVnxf7M14Z9GLX8XlqaBu28XxWVnzyqg5MFVuRM55+aixDanhnAAquJO/QPULj5XeUM+tsJSj0mc++DNrvI1wU5QjsPX0uNYqZzo05Chv4LfQHCpnzsMeXmUbla4m3QGlv/dUwGreA705VMXXuPYrY9bfVohMSc179tkVuKTfhp63AqZjuy/E2e0t/KEEPfSsX2vAKGalqQTmVbtjsaNgBgKezdwQE4N/IS09uVday6cHg30mgc1mPWlT5/GEEMaNvWZMVuF41fP8f69Ws5Zc4eDDvpzxhFmMXvPJRVmyoqKumjOjhZIOz3YjP03sFi1OtxCivC16aYPW9Uy0ZNJYj+62rM9rhOTqhTOds22UnE1LfA4FZy8rHiIxRSJn3hbou3QRusAxRqC4FGgF5B/Z9gR/yp3VbYdx0MgM4erwfpaK5TzLZsXsEB2h8oyO/bqRTmAkLoEB5lW8V9LfEIjrWkqs81XlMp9lAWpqj72rFHO/DYerano9HSYqzE5tmgvN0uYlFsH9/ADYYXOH2PSsrHzqLGOJbiTW9ltS1eRUUlfVQHJwscv+VW/he5ps/9ncKGLuhUzN5/Lefym/yBIxS5efHOm4hHmZt9JOjDQoBYzsAOTtAxnO/lWFxuZaI4fle8/dqURCeaV2PDEFIuPRZ1xx0cRz+t8QCmvHhNlK9NQQens4F2mUuxo2d911aEoENTgMGvrKOxqPB45gT/RVFJ345dOHcIxbJV8SGjkea4zo0oHNPr/sai2awKFeENZknRuGEx5qiLluL9KEwILK456CFODtzIklpndmyqqKhkhOrgZAFdxEdA0/sQRgCvzo5RQT2aDl+YPPPAE7Nt+XFnIOZVRuzP5WynSTrAMrCT4Rp5AmeEbqQ90n9hbrIE3fFWTEte3+3SXfj1DnLCyqXHpLcNp7SQZ+2/g8uSH4/gBN3KaeHovU20inxyDP0XqXsMheSGlFWtrvNIamQZJfZe9J0SCHsFxcJJXZtTUdtNbU5WxSqxVPQ+w611r9/x58h5rGv2KGq3C9ey94hJQe74bYNb95w0gZjQMXe12hasojIYUR2cLKCP+ghp+3ZwAjo7ORHlxNCuaL+VU/0DzwAy5ZjZIIfgiSjTIt4hHOwZvJ/W0acPuLbLAetQqIOrxjyBG8IXYS3oP00EEDLkYVGw/meZaRrPao4bsNXeWjmZ/YN3stKsnCaMMdCCWztw73dN/my+jYwacF0qVK9/htPNC/ocTwFgKIi3zrfXb1TU9jLTdI4I/YOyqtG97h9ZHHc2a1qz4+AE13zKcjmM6eO3XVO7Wc/f89+heNG/s2JTRUUlM1QHJwvooz7C2r6f7t8dchW/0Sk3AHJadAlDZHLpiHNM9/KubWCHJBm62s0dSUSPikOb+NhwLdoNynTYbGIIz0cPIs/ef2E1wJaCfXgvOlMxhdEvdXvxmvXMAdeZzWaatGW0BJQTn2ugkPqckQOuWz36Ym4LnoxPwSGUezc/z5H6Bf2uMU05mamBh9gQUXaCepeeUHVh739XlbKRecZfoFv9pqJ2AZASa8dKVmrHMLp4+87IGcYt7O97P3upMRUVlbQZtA6OEKJGCLFUCLFYCDE/sS1fCPGhEGJt4t+B23d2AaaYn4i27zC+dAxjhV+ZU49GY9ilh5gpuddzmA3K6eBs/JxH9P+kSA5ctGzPtTBC00DUpcwQSF3rKmaY6tENIDAIsGXYydwaOh2/QnUhMXcjJX3/ercihOBS04cUN8xVxC7ADdrf8HFFT5G9HSm0GAFJq1uh9vhYlLxoK/6c/rWWigsLcAsrdS7l2vIB5sy/kj+b/os9R9/rfqOjlCLhQrZlodBYCE7LeZjvKi/qOf+rchbDRDMrNmxS3q6KikpGDFoHJ8GBUsqpUsqZie9vAD6WUo4CPk58P+j4nziMFfkH97l/hNzEWdHXCfkzD6e7XR3oRRTMSXQyARdHnuPMxtsytgsg2tZyqHYhdvPAs0Fs+fFamahXmQ6u/Wsf5DbNvUmtzbfo0ROhw6vMTfcfrZdzqe/hpNaeHXuTce0fKWIXoNUT3Frk2h8T2t5njfFnuJoUuuF7mtERJWbtv7BarxH8MecVHFuU+5kBKrxLKTL246Aarbg0DgydmxW1C+AJRljWDkOH9lSpLR4d12xuWpXlaeaxGPKHF5lX087mNl92bamo7CYMdgdnR44Hnkr8/ynghF13Kn3zRORwNhQf2uf+6tBa/qB/DndLbca2OjviqSmtJTlN/koaGRtcmrFdiBfbAljzBy4yNlkchKUWfMoUOJtCHXi1/XQSdWNc64esNf0Mb70COimxGHbpJpqT3PX26hyYFOrg8jet41WuZWpo0YBrzVYHBhHF266MEJ23La6po7UPUPMkBKfIDxjW/pUidgHwO8mNdRKw9j1nDcBlKscRyPxvakdaPn+USzVvMLG8ZzrUVh1/9grVDvw7yYTYdw8RfvVKfv7gx5zwz9f58PVnsmpPRWV3YDA7OBL4QAixQAhxSWJbiZSy6xO7EejRQiOEuEQIMV8IMX9XDD2LRWNYQ83YdX3n5PXW+GBKT0fmbbxub4DFseFo8/r/8O8iYnRglQoVOPvbcEszVnPfBdVbEQK3sKJVqD3eHHERNDiSWmuyxqNbXmfm3UwRbxtaJJiTc3AC+jwsEWfGdgHcLVsYo6nFljPwCLnc/HgqKeBUplXc1Rr/szPlD1zU7dYXYA4o97cXa6+J/8fRt8AgQNA6lLJYE50BZUdF5Kx4kcO085kwpBeH2pzP+pxJ1DsVHovRHV87sY9u4ovIeM6bM4m78l9l34XXsrFG2UJuFZXdjcHs4OwnpZwOHAlcIYTYv/tOGa8Y7VE1KqV8WEo5U0o5s6hI2ULHZPAHfHxruoo9m1/oc43RHndw/K7M23ib9OWcEPobDJ+T1HppyscqfcQimRdFagNOXMKGGEBgsIvvDXuySQx8g0wGa8xFyJhcWi4noZXT1VqeCV0Cg5qBBAYThE352BTq4OqKxuQ4Bh4oaUuM7Yi4lRH7q8nblzGBJzFUTh1wrd9YjDWiXIu6q2EtAMbiXkT+uuEdehDvxmaxSeEBp7nu9dRoqyjpYzzGh3s9xT+9R+DyZWcGV3Tx8+iiAV4vuJBfHzaGCaf9CYMIs+Z1ZVLNKiq7K4PWwZFS1iX+bQZeBWYBTUKIMoDEv8oJjCiEr9MJgDD2nEPVhdkRDzwpccPtSHyo5pl7L77saTwfjZB0OjO37ZJmNun6f6ruzjNFv+YF3XEZ25XRMFbpTUpgEMCaqP+JdGb+M3vaEwrKtuScZ5mTTx5uRYTvuhSUrQX918EAGG3xn1l6lImkNHcGCWKg2J474NqIuZgC2aHYDK6moIFPolOxD+m9RbwL3dTTuSVyNls6+h5jkTLeVnKjTvz2EX068mNL43/rqxqVk37YipT4v3uSxbHhHH3ooWg0goJhE9ho24uJ7R/Q1pnFyJGKyo+cQengCCEsQghr1/+Bw4BlwBvAeYll5wGv75oz7Bu/J/60rjP1fSOwJWYYKaEoXLj+Fd4y/B6HJrkPOukYyuLYCFyezAucH7L8grsKbkp6fZ7FgFOBp1x/OMqF4d9QX35kUuu7HBwlBA5btMXcEj4TXcnYpNavG381U4MP0+bNvHMt0tlMTAocRQNHcDCYeVV/NKtFVcZ2AfJXPcuvdC/1GcXojrSWkoufZpcyjsZy0wx+Hv4tQ0r6j5pV5OVgIExjm3IimrGEgrLsQ0EZYFJ0JZ8ZrqFpbf/DV9PCXY/RvZG3NXOYM2abU22deRrlopUv5mZn7pfKj5d3lzZw1N9f45zb/8vHK5Qd1/JjY1A6OMRra74UQiwBvgfellK+B9wKHCqEWAsckvh+UOFzx2+iekvfbdv2/CL2DvybeUUnZWxP797MRE0NVuvAejAAweGHc0Lor7RqCjO23eELJaWB08Xpzkd5wnNZxnbb/TE+jU1DFCfnZGiNuTzJcazTDawfMxANooiHo8diLUoucmWzOwhioN2TuYPTLAr5KDadfGsSPerAfwuv4vPYtIztApQ2zuVQ7UJyjQPX/7TM+BWTgo/SrMDPDFDbHu8aKs/rv9bLHm5mjek8CjYo99zT0VqPVxoxl0/sc01+QSHDNM34apcrZreLgLmUvaKP4h9/BkbdNvXq0lkn48dE++qvFbep8uNlwaZ23nz+AV4JXsJ/vJehe+F0Vm0ZdImOncagdHCklBuklFMSXxOklDcntrdJKQ+WUo6SUh4ipVSmJUdBAolBlgZr3+kTo16H21BMqwIPuCLQQSdmNLrkUlSORCpLCS2cv7uu56jA20mvN+m1lMlmYhkOJ+xsqedgzQKKdEmG54XgaeuFLND2LvOfCv62WoaKJvItyTl2Q6J1/J/uabyNmXdwfZ57JL/RXr/dja4/ii06/J0Kda0FWnDr8pOqtyp2WAFBk0IaPCcu/Bn35Tw04M8tckuJokHjVq6Tapn9QCYEH2fI0L7rf0TBSGJo0GRhmvnCzR20hXTMmVi1/Q6Tjcf2/pC/th1Im0dZzSGVHyeRaIz7XniLe/T3oi+fgmef36LRaLn5nZVZtat0Ub+SDEoH58dMs24Ifw2fjaG4f5n88wyfMqL+jYzt6YJOOkXf9T47UiidvG34Hea1b2VmOBpmmlxBgaYz+WNy8jGIKG63MyPTsS3f85jhX5REk2+BLs2JEe3M/Elm5JpHecvw+6RrnvKFh5/r3iPasi5j263eEIXW5Gd5Xd7yF+70Xp+xXYDccCteQ3J1R2W08U/9g0S3zFPEtiNYj9aYRKeeVodTW4DJp0xrPJCYbSUYWdLP35jOSIdxCHbvRsXUsgGIhKh8/RQO0S5iz+E9H5gOmDAMKeFTdRaWCvDBiiaO7XyemCEX7VnPk3vYH1g15xG+2OjhhywNhH1/eSOTbvqAX7+4mGhMwfe+QqgOjsI0aYp5LHo0lsKKftcdzedMa3s3Y3uGkBOfNrn0FIDNZmOCZhPCtSUju12RKpIs9AXQ5sZbqzs7MnM0Qp64bXMSk8S7uNH9F65q/nNGdgE0gQ7cwpqUgjKAtSBeLxNWwLn69cZL+HX0yaTXR3MKcUhX5sW+sSj2mJNQTnLX227ScIr2c7QtqzKzCxD2Y4u5CJgHLqwG6DSWYgspV3ew5/dXc2HOXAoGiNj5bCMYJuto7lQwmtKwhEr3IkYV6LGaejrUE/PCvJjzdzrnP6+cTZUfLY9/uZH7c69Ge+6rkNBFO2PPoexh3MLaN+/Mis21373HY/rbeWVhLYs2K1f7phSqg6MwYWcDw0U9dlP/tQoBnR1TJPP24XUMZb15atLrrbY8wlKL9GeWunAnnBSdJXkHR2+NRwAy1f+JdQkM5iUvAxAyOLBEM7/ehmAHnZrkBAYBchMF5TEFCspLwvVYkmyWAxC5ReTTSZs7Q+VbvxOXtBDLHXhyO4Cwxp060Zl5JEW64ukmaUtOXiCUO4SSWIsys6HCAca7v2CU2Tdgai5YfQjfxsaxvkW5YZ/Bmrg6snXUPr3uFzn5jNdspqjxC2UjRzvi3AIf3QQNP2TPhkpGrG/xMH9TB6ftPRpt5Yyt260mPdflfcYRjQ8S9KcQbU+CWEwyZMub7KFbj44oqxqVfX0lUB0chRmz6VneNwxcJxEy5pGrgD7KHZzDBxVXJb1eo9XgFrlo/Jl5275Em7k+NwUHp2gE/4vsjzOSfGFyb8R8HYSkFrvNkfQxUVMedunO+EZgDLvw6ZJ3cITJQRgdwpfhiIpIiFy8SSsoA2itJWiExNmaWUTDq7MzPfgQm6sHHjAKgM6IW9jQ+TOPWnlb4qMX9HlDk1rfXn0cT0SPoM6pQIFbRw0aJFFHzxENO2Le52JuipzPhhblNHg6131NrSxk3Og+Org0GpwFUxkbXbN1GKniNC4l9tD+RL+8hz889jqXPbOAeiWurYqifLBgDe8Zrufk/PU99umnnYVFBFj3+YuK2lzZ4GJWbDGdxTPZ17gR58bFir6+EqgOjsJogy46hQUGeOKLGfOwyU7I8Ibb4Qsnr4GToFNjQx/MzMFxh2BebDSGvOSF+8zlE7guchl1uuRUl/tCE2jHTS66JIttAWROATY8+IOZFVeboy6CekfyBwiBU9iJhTKLokS9iQiQOfnuN1NCELCzPbMBp11pl2LbwDPHunDrCzEHM68NaYnl8mzkYIyl/WvgdKEbdxRPKuTgBJvjAoP6ov4FBgFKbSZy9LCpSbm+B2PjAhbHRjK1wtHnmpzqvRipqWfhmiyoGkdCxF6+BGdAcmTkdlqHHcm8dfW8d8+VNDSrdT+DBSkl7sWvM1azhXy7o8f+CfscSSMFyGWvKGp3zfKFVIhWLBOO4F7N7YzZ8l9FX18JVAdHYXQhN17NwEW/MXM+RsJEAumH9QLBIHM1lzLb+VpKx60wTmWjyMzJqDWP59TQTRjLk+9MireUS1yezG7279rP4EZTanNWNZZ8tELibM/sg/nf2p+xqDA1scJfDfkP95kuzshuZ1s83aO1Jp+WM1VO5V/hU2gOWzKyHVr1AQ/o76TMkPzvrTOnEl8k87TJRm0Vf4hcSH5pcm355XY9laKJZgXGtLjq4jVEtvK+NXC60IS9LNJewMiN/8nYLgBhPxu1w1ieM5O8fup/8sfE01etq75Rxm535j+GpmUF14d+zm/POoaHzp3JSyfk8vPYS3zzzE3ZTYupJM3GVi8zvJ/hMZVBxcwe+w16HWvs+1DdOR8ZUbBGbFN83px9wqG0mEdR4ls36N4TqoOjMMawC792YLXXTaN+xsjA0zijyXfF7IirvYUS4cSsT25UQhevlF7Dw7ok0w190CXY50ghemQzCFYbz2fs2ocysr0+UkRt7uSUjgmU781fw2fTkaHw66vBmXQU7ZHSMXm5OVsVp9PFGdbxSnQ/REHyWj6OirH8O3oSmyOOjGzLxqUcqZ1Hvj35YvZPp93BxYFr8IcyK3BuaW1FQ4xyRxJdVEBxYBNfGH+FcdPcjOwCtAS0LIyNpLwsiSilMZeg1oK1U6Hp7focLo78lvrhp/S7TJTPYHnOTFa3KK9o7N3wLfNjY7BPPZ5Dxsfrr6qnHcimkkM5zP0S732/THGbKqnz5fIaZmuWIscd12fmQI44BL80sGX9CsXsdro6aNUUIfKrCRROYJTcRJNzcE26H9DBEUK8kcTXkzvhXH8UmKKdBHUD3whsublE0GWkR+NJFPrqc5Ovy4D4WIdMFYWrVj/Ku4YbyMtJ3sERWh0BYcy4/mdcxyfsoU1Nc8RQMYXHokfTGknfoQz4PEwML6M0hUgGwCH+D7jY80DadgEa9RX8Onw5+iF9C87tSI5eQ7XBha8jsxqcWGcTXmmkIK9v8codKbHG01nNGY4SmDn/Ot4w/JGiJNvju4bOSmdmXYIAXzqO56TQXxhWmJywostSTWl4syIjKho7vDS5g0zpJz0FgNHK3FkP8apzhCLaVt25Pfe3XBy9nt8ctn0Eq/Kkv5ErAjR8fD+RDDWtdldiMcn8mnbe/qFBmXqwfmhf+j5GEcE65fg+11TtfSJ7BO9nbnvyf8P9IaXkds/h3DXpFRAC/ZBJ5IgQ9RuUF7vMhGQiOOOAf/XzdQeQ2iPtbszDmtP4quj0AdeVylb+onsC/5YladvyJYZ1GqypqRIf7v4frwYvyqj+x9i5hRLRgckwsLJtdzqFFV0wszqFCzof5tDABykdk2cUVIuGjCaKexrW8qLxr4z1LUzpuKrwOo6RnxPO4GbQ7ok7CskKDHbxvuYqptVmljbReJtpxZ6S7THe+Tyrv5m25sw6qUyBZlzafLSaJKOUJjs+YcbgyazuCKCmzUeBxYCtlxbt3ojkj2KkqFdk2Kd45UKe0d/CpIqBC9qnVTqw4GfxZuXqf7xeDy8vqOWAScMptW9fe6UpGUtLyWyODr7D+0s3K2Zzd2FLu48T7/+KRx++m/D/fs73d5zGO2/0PXw5E3yhCN81aVhWcBhUzupz3dBCG0McFr5el2GzQ4JGd4DOQIQxpfGHefuweKlCZ112RQVTJRkH5w9Sys/6+ZoLZC4wspvwXmgqTUW9t3V2x6EP8zPdh8jm9N8QocSwTpMtNQfHrBeUiXb83vSHA2qDTjqTqDXaEZ/OhjGcWfeYVbqJmhwpHVMo2/jUeC22mtQco+50OUf6FOpgALAUYhM+Otzp3/gqltzFUuOFFJhTcCiFwK1xoA9k1qKuC7ThFI7knQwgXxdgX+1yOps3ZWTbGmrGY0xe7wjAZSghN5hhi3osyjXLT+VC8+dJH2IsHYNN+Kitzfymb2r5ATfmrYM8+2Oa53OWGi9i0xqF2ri9bRjuHM3B4bmcu3fvtU8Fh/yKVdoxvPWNmqbqTpM7wBkPf8uclmd50HAXR1vXc4huMUctvITFz92ouL15NR18ExlNxxH3g7ZvR1wIwUX5S7h+/bnIUOYO+MYNa3nD8AdmxuLvuYLqaZwS+SvzNMlHmHcGAzo4UsoXAYQQPVoohBCF3df81IlGY0wI/0CZduAbuG3rhOv0bz5t0spb0b2wFKVWMKxNiEC529PXozGEnPjScHACOgc5Gej/RIM+TISRKQgMAuTmdQ3cTP8Jxu+KO5Q59tQcHF1ufL2rLf1UkfC2EkJHXm7ynUwAXn0+OaHMnuydMTMNhuSnxgPYiuJt3f72uvQNR4LYYi5COcnp73QRyCmjINKcUcQMdx0l0YaUolaOcXP4V/gUNrZnmJIIuLAH6qg3jepV4G9HcoaMQyMkoU3fZ2a3ixWvoY946bSPYfrQ3lMamlEHs3z/+3l3k0ioPauEozEufWYBTl+IQy/4E5zwIPrfrCTn+jV8Yz6Itat+YEOzshPnF61azzBtKzOHDfx5WFmcTzV1tK35NmO7rprFTNZspKIgHsHRGs20501mvTPjl1aUVIqM5wkh9ur6RghxMqBOeuuG29XO84a/MdX50YBr7XnFxKTI6Ia71jieK8NXYy9OTiOki66aHU8G6RpjxI0/BT2YLlbmH8Q77Je23a5z1uSklkvWGHMJogd/+tc7nIiYWVJQUAYw2DMXONT623AKG/okFZS7CBgKsEYyq3n6m+V3PFtyXUrHWArjysNRdwaRlM64QxjLTWJ6ejc2jT6PuyMn0ehKv/4n0lYDgDa/KuljLMOm84L5TFY4M9N5IjHBPFQ4Prn1hWPwayw42hYr0sUSWvE2NbKEcVP26lfg8LSZlYzQNvPS14Or7mJXcf+n67HXfca/jqtiYlUpTD0TNFp0xhxGXPYsfxGX86c3lU3hWFa/zGf6q8nxD/zwVDrxAADaViYfleyLaGO8WNk6dFuzx1HmVYyufy3j11aSVD4tzwL+LYS4XQjxLHAxcFB2TuvHiccZj8ZozQPffHNMBlxYEBkU3Dq9QUx6DSZ98nowAMZESsvvSj96tFSMZnOKnUwAG8qP577gkWl/EHd2xJ0MnTW1wmqEoFNY0QacadkFiHQpKBek5uDk5JXRLB14POk/velDHXg0jpSPi+QU4JDOjIpBWz1BCnNTK84W1jIAZGf6USsfRm4Pn4a/ZHpKx2lHHcyHsZkZFXe66uOzw8zFw1M6bmp+GHdTZp1Ugfp42sdSkaQEg0aDK28io2Pr2dSWYRdLyIt20xd8HJ3OMVP7H49RGKzlY/01RBc/n3G3XJ8MsrbjvtjS7uOlud/zsPFujqi/r8f+YpuZXx4yCve6b6l5+w5FbLp8YYa759FhqgT7wJ1+o6uGsk6Wo63NPNJndq6mXVMA5m2Ro4PDn3G295lB1SqetIMjpVwK3AxcBhwIXCmlVG5s725A65b4k1dukhEVp8ZBOJy+LsFB6//BB9pfpXycqbCKN6N70RFLXx/lb/LnfFd+fsrH5eVosUSc+EPpdXG1Gis5JHgbocr9Uz7Wq7VhCDnTsguw1H4gl4auwWFNvl0aIGfkbGYF72ejKckn8t5eI+zEl4rAYIK6YSdwW/j0tNvUZWcT9/quY8/IgtQO1BlZox9Deyg1EcruNEZyuS96AoYUOscAKswR9hQraW5OP2Lma15PVAryy1NzcG7p+A2ntGUmg7BJlPN05FDKq5ITNwTQVUxnnNjEDzUZqkev/xRtLMTS3L0Z09+AUYCCEXgdYzgq9jlvL1VuwClSwtKX4MH94OM/4wtFaHEHiG76TjkbCnPLOyu5QfMfDBoJ+/261zXn7DWMs01fUTnvr+DMvE7r+/WNzNKsIjR0dlLrDToNNTkTKXH/ALH0H3hiMUlpYAPtudtLVsTyR1AsOmhrV67YPVOSdnCEEI8B1wCTgQuAt4QQV2TpvH6UeDfHC67KRifXVHa5/QEedVyTtj19sAM0qUVvAKwl1VwVvppNxuQ/QLsjpcSZhoIywMzW11hkugxXmuMDOoIa1skKch0pRnCAt/LP5xXdUWnZBdgoS/lKvw8GXWppInuOHiGg3Zt+G+9Huv1ZYUvug6w7kaH78WpsNm3e9BxpX1stU8U68oypfyDeVfUAT8n0r3dbUy2ltFGawgR1gCGB9bxg/CuyNkWnrBv1ooTXY/tSUZBaGtZnraIiVk9HBr/rhWI8/xe5gLFlydt2zDiZ2+S5LN2SWZdMIG80d0RPp2D8nAHnbwGYZ57NNM06vvou87oOIH7jffOX8PKFuHwh/rrYwvj/e59f3no32icO46s7zmTRBgWdKQX4Zn0bzhUfc7Tma8R+v4L83kd7mPRa/LOuJiYFzk/vztju5mVfYRV+8icdmvQx7eUH8V50D0IZzKWq7fCzKlaBp3z7zyNTaVxOoG7t4rRfW2lS+aReChwopdwopXwf2BNILXa8m6NvXU4bDmyFyU0+zrMYMtKuSHUuUhf2hGPiTPOm52lvYL7+Ima53k/5WF1idlW69T+yfhHna98jz5B6SHxj0UF8Fk4/ilLQMo99TamnH3QawePGO6nanL5U+n3RE1lbenTKxxUZQkwR6+joSC8V2qWgbHSkVgcDUGw1ZTRd27H4QT4z/poSe2qF1cb8eNF9pCN9LZzPLYdxXfQKylK0Tf4IqkQjGzIYutm8aRW5BpG0uCGAbuge/FB+BvPqM1Oq/bLdzj3h4zlwXHIjWMTkU5EIhta9w5Z2BUTe3rseFj7Fe44zmdZ8I1/p9uTaQ0dz1NEn8lnxOezrfofYk8dyyf3vsGDTro8URGOSv72xhFuMTxNzDIP9rul3/ZH7zeSt2D6Ylz4LgcwKjvWbPiOGQD9iTtLHWKYcz3Whi1nVkX4aaXVTJ78OX05s7yu32z50SrzGx7VybtqvrTTJCP3ZAKSUd8luyTUppYtd0B4uhDhCCLFaCLFOCJGaXn+WeTB6Io8V/z7p9UeFP+KC9vTzsfG5SKk7OEadlm+MVzFz9T/TsuvpaMEhvJhMqYvmGa2Z1f/Y6r/kJv3TOFIQGOxiqK6Dat/StOwCHNH4AJfF0tCzEIIZrCTPvSotuzIaJuLtSCtiNqRzGa8b/49IfXotxL6OuINjzitL+djDO57loehNBMJp1me4G2iUeZTak7/RA2AbQgyB1pN+B1dtm4chDhO6FIu6zWWjsYggDXU16Rn2tfPL5afya+vHaFJoyweYXeRDNCwmFEkz/eBto2HeaxQYwuxRnWQRv20IoYq9OVL7Pa8szKBjDqB9I3Lh07xtOYlfNB3LDUeN552rZ3PVwaM4Z9/RHHD5fQROfIIpui38ufkqbnjwf1zy9Pxd2sX1/LzN1Dc1YSmuRnPEraDv/71abDWxqvJ0DDE/kaUvp2231RPkHuds3pl4x3Z1MAMxbagDQYyVa3sO5UyWtY1OAEYVb6/Yby0aymZtJdqm9LXdlCaZv965Xf8RQny8w77XlDyZgRBCaIH7gCOB8cCZQoj0H8kVJBSJ8UW7DTn8gKSPqYpt5sDwF2nbzI25CRscaR0rNVp0aQ7c9CbapQ0pKijDthbroDvNAmdfOwGpx5ZiHQzAvu2v8aTmLwRCkbRMmyPutBxKAI/WnvaAU0/dahYZLmIPzycpH2sriEdeQq70ImYhZzyVaC1MfqhqFw5NgBmaNTSn2c2k9zXRKvKxGFMTk0Srx6XNx+RLM5URCfLPNYdzsf69lA91VIwF4r+ztEjoYsUKB55/tSOnN93JzZqHWNOUZvph3Yecu/G3HF3uw5jCIFvj8XdxZ/kdvLRwC7FY+pEBmVfFP4Y9zNVtJ/KvU6dwyf4jejh5piknobvoPUpytVw7OczX69s4/K7Pue5/S1iwqX2nFri6/GH+9cEaRlVXUXTp6zDmyKSO23P2oXwencSqhvTTRN9uaKMVO+WzTkzpuDK7iYfND3DANxekbbt6+X18Z7oKay/PWy9NepgLPJel/1CjMMl8cnR/h+3oKqb2iJE5s4B1UsoNAEKI54HjAeUGbCRBJBrD6+0kFvQRiYSJRiOs+uYdThEbmZqfvF6IzMnDTAAZDiD0qYXCpZS8Gt2P8sL0RKS9mvQLbv3ueJ7fZE9NYBAg1xE/JuxJr1ZABJy4hJWSFJ9uAYSlAL2I0u5sx1ScWicUgDXmImRIT+rcp7NjCjvTOtbT0YgV0NtSP2dLfjzyEvWkV3DbLi18HxtDVX7qP7feVoJRRGhrbWRo4cATuXfEHGxmoz61It8uPKZSHJ40C26dW9ATwZib+vtbVz6NWw1X4fIXckYapj21S8kFLBWpC6YZh85gdONX/K+mgYnlqTvi3tWfEJK5DB3XtyJurxSN4YhZFt5/YQnzatrZc3jqDz7UL+J/tQU8uFzHNYeM4qTpFX2vHTINzVULOcKYyx6eIK+/8TL/WhLlfwtqKbObmDDERnWhBbNBh1GvQacRWCJOhrd9xqjO77EJH4YL3oi/VuMyyKsC48DzA3fk7o/WclLwVU7d/xcITfKRvv1HF7Nvzk2Mb7PxRMpW42xa+hUXG79mUlFqzRZCCHz2URR3fB1PkZlSf1C0udcgdTm9CgtOGzeS0LfzeP611zlm9h7oDaa4l6A1YLZYU5a5yJRkHBzZx/97+z7blAPdE+u1xGuBdiqfrWlh/bO/4hLd21u3lQKluZOpnnRT0q8jEqHFzo5mbClq2XQGI9waPoM/VI5L6bgu/Do7pjQVhcOdcefEnKLgHYCtsJw7wqdQph/OwHrPPYm3S1tJTfotjs7Sdb2bKEnVwYlGsOIlZkrPwQkZHFg86UUUfIkoismeuoOjsSRu0p70Imbf2o/m3vAY1lpST0ea8uNRn87WWiBFB0dK7OFW/Ll7Dby2FxaOuZaHv2nkv4Fw0qMWugi2bsAI6AqrUjdsKWB12XE0OdOrhencvJSYzKFiWPJDVbuwDd8DMS9G2/oFsO/Y1A6WEjZ+zjex8cwenfpf15GmZZiN9/Dy/CGpOzibvoYnjmRh7Ar2HXkcVx00auBjEg5JQaSJn6+7mvMqxvN9xYU87xzDyhYfX6xtJRiJcbBmAZfo3mamWI1WSGplIV/HRvHUA19z2swKTl14BRrnZjj0LzDtnD6HVe7Iki1O6r59kYf0z0JzFYxLsqUf0Gk1nDKjgofnrqGtZikFVckf20VxzetcrHkfne7vKR8ryqej6XgS36b5mMekpvQSjsYYEtqIM38cvVXlHTCqiOsmuDl32S/QLt/mHvwncjD2U+/l2CnJ1acqRTIOTrEQ4tfE/bCu/5P4PvU7XJYRQlwCXAIwdGhqTkOyjCq24tvzZL7zTgSNDo1Wi85kY/zBZ2E0Jd96rUs8IXrScHCcnQFMBFOa5t2dkMFOfprzepo1RbwS3Y8D8lMvPDXk5PKY9lRO16T3uzGGXPi06aWJDIkRCz5nS8rHhr1t6AEsaTydAq7c4QRdfkZLmVR3SneCifRSbl7q1xudgU6RizaQXsSsxRMk32JIaUxDF7mF8afwQEcajp2M8Q/dJdiKJpBOH5Zm2N4s/3oR9U4/ttLU/kZc9esoBnJL0osezbI08+WGdUi5X8q/a1pWslZWbJ3xkwqiPN7zIeoXA2endnD7Biz+Bpbqj+HIktSjGaaQi8PFtzyz7DO8x09KPq0oJfKDP9KhLeT96J68cdLk1N5rjqFw8iNoP7iRvedfzd4aHViK4PLniZVOIbqgFe33GkKjrqWj+kg2M4wttS6cC2u5/uWlfO44nb9ZXyHvjSthxetw/L1g7f/vLBSJ8df/fcVD+ieIFk9Cu1/qUh0nTqug8ovrMT+7BK5fA7rkxSEbXH6mBBfSXDiDihQj/wAFo/eCZdCy+luGpejgbG5spZomVhed1Ot+jUbwi7NOY+nnegJNa5GxKCDJt4xkzJDU39OZksy78BHA2sv/AR5V/Iz6pw7oPpegIrFtK1LKh4GHAWbOnJmVCNPQAjNDjz0549cx2EuokwV4vKl3H/jrlrLKdAFL2v8N/Czl42vy9mGhJz/uCabIKtMU7gpfzjpHauMSuhiR4yHmqideRpUa/2f5P0otkE6TZU4iPRZIo/6nI5bDZcGbOKsinbgT/DD21/x94yqWh6Ip15REO+MOma0wDQcHeLTgN2yOFnJwGseeu+aXzNQOBZJvRe3CVlLNV7GJtKZRghNDw9O+fbi0ND0nY5jeyQmaL2luGcfYFJ0Ff8sGQlJLYVlVWraPaXmYA8UGmtyX9RhUORDv2c9gobONe1JsjQfAWoZXX0CpdyXeYCSl91ms5ks0QLRq/9SdMoCxRxPVmTk6MJe3l57MaTOTHB+z/BVE3QJuCV/K5YdPojI/ucnt2zHhRBh7DGyYG48GeZvBkItGI9DM/BnscR4mwAQUAvuMKuLyOSP4fG0rf3nTwvQtlfyj8ntOrXkE8eBs+Pl7UNB3xPH+T9dyXsc95Ok8aE7sfwZUX4wszuU/eQdwRudcWPchjE2+Q3LekqUcp6mjeUx6dTTjRlSzOVZEdEvqMgqN6xczQkgs3RSMd0Sj1TLlwFPSOjelSWYW1Z/7+9oZJ9mNecAoIUS1EMIAnAG8sZPPQTmq9mXf4L+pt6QYTmbbXKRUB212UVN+HLcGTkqrKNDlDWA16VLuMOnivvCfOLo+PR2IuoAejTWdBBWYyiZwaehXbDGmHv53BgUL5WhMBanN/eoiLzHTKB0tnHXmqfwzfCoFttSfrAFqCuewINhPTUM/lAfX4dClJxKoyR/Gtaa/sIjU06htzVuYLFczxJJemV+lfxV3Ge7HU596se9643geiR5NZWF611tTMJIq0cjGltSLSN/0TaCpNDkNmh4IwarZ93BH+BSW1aWWfl5RchyHB29lzPhpqdsFMOaimXA8x+m+5YWvVyVX7BsJEvvwz6xhGGtKjuKCfavSsw1xJ2PUoXDIn+D4+6Aw8Tfex3UUQnDA6CLe/eX+XHvYWH5ftzdncQuNpQeAo+86yrmrm2me+xDHar9Fc9DvoSx1NfcuKmYcQ4u04f3+mZSOcy37EICiKckVNe9IvsXA48ZzecdweMrHrnYKnogcQfHYvdOyvbNJpk18wIf8ZNYogZQyAlwJvA+sBF6UUv5oB6HkmeM3vXS0cEKJIZ1mR3pZQkeODpMM0OlLvVbg2HV/4jWR2myi7vh1NgzhNDQgpOR831NMjqY3wdieX8j7sT1ojKYeKvU2rOFkzecU6tKrrRjp/o43DH/A05L6dO1l+kk8rj0l5ZEcXYzRNDDaMy/1A6MRrLKTSE56TjRAkdWYlhZOcMX7vGK8iaGG9LRCbCVV8ddpT10x9mvdXvxbnEVRiuMpujAPGYNJhGmqTU0zSbpqsTV9z4Si9GdZDZt+KHUU8UNtag7Ol+vbWS2Hst/o9KsOxLRzsOCnqvEjFm52DnxA2zq83k7+FjqTW06elvYDUyYYdBquPGgUr12xLy3mEey1/ERuent1XB7hxZ9t7WoD+GJtC5c/u5CVRUcQPOSWPhWLk+WYaUN5Pbovpo0fgi85TZ9INIa/eR1OXRGiZELatpurjuF/ziRqnXbgW2ce/8n7BaZ06tN2Acm8o24QQpzUz9fJwC+zfaJdSCnfkVKOllKOkFLevLPsZoM8k+BJ/T/IX5u6HkI00YWU6uDHLiZ3fMgK08/pbFiT8rGGsJOINvXcbxdBvR1zNPUC57DfzUXiNUaGUj9niCuJHqxfhq4l9aY73Zav+ZfhQQq06c03suljTNZsxNueej2KdG5mmDl9Abf9O17iH+KelOcFSW8LGiTSkv5N71bvjZzVeFvKxwXa41NgHCXp1WppHfFIm3SmPk3G3bKZSocpvSgKYC+Pt3j7GlKLHrkWvcqT4iYm5KefWS/U+rgq91Ma1qegRdKyhjHf/4H9izyU2NL/u2bYvkTGHk/I4ODBzwbWWfmqs4SZnjsYs+/xaXV9KcnEcjtvXbUfF+xbxZNf1/Dbe58juPojuH8vPPfsw5p/HUbBMwczKk/DQxfuj3G/K5IuSO6LUruJtWXHopUR5IrXkzpmSa2LWwKn8NVRH2Zkf0qZheL2hbjr16Z0nLt+DRNKU9Sl2oUk4+B8Bhzbz9cxwIfZOsHdGZs5hz01K7E4Uw+jxxIevy0vPQfHYI3Xz/jSqEcxpTlJvIuwwYEllnr43t0eL7bVWtLrZAK4U3s3ExpeTfm4iCe9QZtdmBOOaNCdeuvy+Zt+x02xngP8kia3iDw8tHV6UzqsS+RPk5teShDArI1SGEpdAC7qqqNNWinJS/N9ZikkhB5dqoX0wU5u23Q6l2jfTM8uoEmkR6KtqYmpebcswyktDBvWu9R/UkTDXBt5BHvt3KQPCa3+kAO97zKzKv1IHQBCoDvjaUbsdzIfrmhieX3fDzH+1R/z+5cWMqQwj2sPS13zJxuY9Fr+dOwEXrpsb9pL92VP7x3cFj6dJS3xQv9gwTieO3M4xdYMnMAdmLbHbE4J/h/Lio9Pav3na1rQCNhnTOq6VN2ZXJbD84a/4vzm6aSP6fSHeMh/LZd4HszI9s5kwCo0KWX6ikAq/aLRCFzCiiaQugDcGsM4lnESlxrT86a7JooHXKl3FJmjnXSY0/8QliYHNukhGpMpdUz4XC0UALo0BAa78Ghs6EKpX2/pbSMo9ThsjrTsWvPiTkI4jettiTgJWNKbGwagyy1GIySutiYqCpJPz3UEBV9FZyDS0LDpImQqIq9zOZFoLKUUhM7TQKPMZ2yaaSKEwKUvxhxIbeaZ7KhBALKfOowBsQ7h7rLb+KxzCOemcJhoWcWaNDuotpJbjMdUSrV3NXVOf1LjHjpXfIg7VsLkiam3K/fGBTMKaf7yaf72VgHPXbxnz0hY3UKM/z2ZoyOnceBFt6ades0WM6vyee7ivWhwTWFVw0FENYLKCjsOc/qpw744cmIZN74+jtd+aGTS0IGbNsoW3cmL1rXk5aRXf9PF+GFDWCfLMdUlX2hcs2EVk4SPhiFTMrK9M0ll2OZoIcTHQohlie8nCyH+mL1T+2ng0djQBZ0pH7dIO5nnLKl3T3VhSWjYhNIQ3LNKN1GjI23b9eVH8JfIubhTrD3yJeZXdbV7p4NPa8OYhv6Pxt9GB1ZMhhRVdRPk5scdnJgvxYiZlNili7AxfafO6Ijb9qSYHqvXD+OS8LUYytMvpJS5xRQJJ62e1H7XJn8TTl1hWu3pXbwx7nb+L3BWSoX03sZ43YyhKL3uLQA0GvxDD2Bph5ZINMmxCVJi96ynXj8MexpjSLoTLZvOdM1a5tckUdcRCWFt/Jav5RT2rE7/PdYd+6rnuYV/I2u+4H8LdkgRRsN0vHQ1bdIGMy9ij6r0OjF3BmX2HA4cW8z+o4uy4txAfC7gnNFFVC68jdiX/TdeOH0hZnrmUpwDpCAs2JfdDYbR5LuWxzWQkqBt/UIA8kfOzMj2ziSVq/QI8DsgDCCl/AHSEutU6YZPa0tL4TbW2cgQU3rdLbAttRVN0cGJRKI8GzmEpsL0BNgAwkNm8mL0QDr8qZ1/oDP+gW1Js7AaIKh3YI6k7uDogh24Nemn5YTJwWLG0hK1Dry4G9LvREc0ru2RJpaEfo7fmZqacUuiOLg4nZblBBpbGVbhp7U9tajZo9bLeNOeopbLDhjKJlAfddDqSb5+ydUQr0lwDEm9ALM7M3UbOJmPqe1IsmarsxFLrBOPPf1IXRe5o2ZTIVpZuzaJ1Hft9xhifpqK9ybHoFAkZeYFSMdQ7sx5nJtfm88367d9xqx74XfkdSzlP47LueaYH8+NMpucOL2CynAN4a/ug1jfdXLffvs1IzX1aMYfq4jdzvzJWKNOcCU3lDZa/wMxBEXDpypif2eQioNjllJ+v8O29Ib6qGylyTSCBpn6k9MVzTfxR2/qKpZdWPMKuS9yHBuNqeW/XYEIt0bOpKMiHVWVOIX6EJPFetzu1G56qwoOYUzgSXLK0s/Zh40OcmOpd+Y8ar+af9ozmO2q0fBb+218ajgwpcO6VIyFJf36iNyq6ZwZ+gPrtandtIctuIVPDL/OzMEpn85L0f1pc6V2zT8LjKSzMM2W5QSjZQ2Xa1+nrj35eq9gy0Y6ZQ5lpZkprk50f8ZfdE+wPjGYcCBCxjxODv8Vd1Xqrbs7oh22FzEErprFA651tjdTEyvBMT41wbd+0ecgjr+f0mgDDxv/zcWPfcYv/rOAB+/+GyPXPMIHpiP5+WXXYtDt/K6pwcjB44p5T38QRn8TrHm/z3WRRc8SQUv5vmcqYlc/NO5gdq7/Lqn1lo6VNGjLEWmMtdhVpPIOaxVCjCAxnkEIcQqQ5jQ7lS7eq7yG32lSV8K0RF2E0hy0CaDVanlYfy4rdKmJ7XV0erHiS2uydRdDPMt4w3gj0brUps52+MIEMZBvTb+Kf9Gwn/OL0C9T1v/ZGLIRsGWQtiAuC9CeYlquPZbL78MXEiqbkbZdsy2fxdrJNARTC7NrPQ0IsU3OIC3bYw/mN+HLqA8l/zuT/g6muD5lhDl1AczuVPpX8lv9C7Q3JveECvBD7n78I3IGlQVpCM51w145AYOI0rQluY6/9e0hFkRHUD40/XqnrZRN4bF9P+WZtjEDRq8+lrOYE7qTPcdlUNjcG9WzEcfexazoQp4reY4fal18H6piVfFR7P+rpzJOw+1OGHVa8qafQL0sIPTVvb2uaXN72cP9ARvz9kHkptfosCNDxszkpOBNLDINPO0oFpPcHzicz4ZeqYjtnUUqDs4VwEPAWCFEHXANcFk2TuqnRJ5ZT4cv9VSTLdZJJIM6GIDKnCARd2pFmJFN37HUdBHV7jR0VRJ0zbAKdian/dBF+abX+K3hf+RkUJQYKxzDD7HhuAOpXfPDnC8wg1Vp2wX4pedOrmz5S0rHNEdzeS56MKaS1MUJu3NSzgJyWxeldIze34pTk9djonMqFOYaAUmLK/kOLm/tMu7U3MU4kbpmUHfspfGbtqd5Y9LHfBObwHs5x2BOs9aqi5wh8QeHQH1ykgSd85/nIM1CxpUpIGev0bLH2PjP3j091INohE9WNVGYa2RcJoXNfTHjfMTP32fyaTfy1Q0H8fh15zD28v9iMqYfEdxdOXvvETwVPQzDlq+gtmfh70vzt/BY5Ehy9lXulju+spBFjGZJ48Ap3Dqnn8+Do1JSXB4MJO3gSCk3SCkPIT5/aixwALBftk7sp8IM3xe8Iq4j4E6+FiYUCmPDi8zJrCjwn6G/cVbt31I6pmvMQU4agza7yE3U/6Q6Ubyy7SuO1XyTtj4JQLls4lTtXFzOFNJj0TBXhJ9iSnhx2nYB7Bo/5ZHkowkAnuZNTBA1FOZkdsO9NvIIU1pSa302h1rx6DN7jxnCLlabzmf4xv8mfYy7Ke7Y5BSmp77chaUo3gkVaktS7E9KjI3zGZeXZGFwfxTG04G69uQiONUrHuAc3SdUFyY/y64/Jsm1PG/6O0tX9e2Uh5e/xp/XnMgZI8IZObH9MnRPKPvxdN3sKoYVWGgeczavcwCd2u1TQJFojKe/r2fpsPOpmHmMYjatJj2H5LUw8od/QrT/B76N61ZygGYJ44t+XJG3ZJSMbUKI3wkh7hVCHAr4gPOAdcBp2T7B3R27LsI4zWY625MvAHV1NKMRcus08nQJ6O3kRFKrjeiaJJ5JoW9uYiaUTFK9swt9yIknzUGbXVT6VnC7/mF8LTVJHxNMqEaTQR0MQMRYgE26U0qP5a95kbeNv6fAklkBqFebhynF9nhbtJ2gMUNtFKMdDRKNL3n9H39r3CGxl2TQqg1gj4v9CVeSDo6nmb+0/ooTNF9mZhfAZMelL8Lu2TDw2IJwgHx/DU3mUegVUvPV6g3sxVLCaz7p8/3WuuhtDISZOVV1QAYDFx40mWuCl3LPwu0LjRe8cR8z3B9z3j5VitvcL7+DI13PIxv6LxeIrXyLpwz/YLQ9NbHQXU0yf03PAGOApcDFwKfAqcCJUsrk1IlU+sSQ0HTxOJO/AXQENfwpfB7+8vQGP3YRF9xLzcGJeuMOjq0gffE3jclGGC34U7vh5oSdGQkMAhgS+j/+FPRoupxPbW5mN3tpziePTjpT6B6T3lZc0kx+mnOouvAb8rFEUrjesRjviP2pd2TY6aLR4NbmYfQn//6OOOvwSiPFhRnWGhhzcWsc5PiSExoMt8VTWZr8qszsJvho72f4TfAiGlwDTBttWYWWGMGC1Gd29UnJJAKGfCaHFvJDb3OpIiHsmz5gLjPZe1T6f8sqyjGx3M5pMyp586vFuB45Hpa8gHv+80xZ8hcuzP2Kw8crU3vTHduo2QC0r/qi33XGpkW0iALMBZlFVXc2yTg4w6WU50spHwLOJD4C+nAp5eKsntlPBKMtHglJRXCvLWzgqejh6MomZmQ7YnRgS7WjyN9BSOqwWDLI2QvBLaZr+TIntY4iS9SdUWE1dK//ST495kk4OJno7wBocgvQiRhOZ/JaOBp/K+3YMxZDi5jyscecyQ1BBKIIbvCfS3PFYRnZBfAaCrGEkv+ZRWdc5K84k7EBCR6d+AzX+89L6ufuqIu3iJtLMism72Lo8DGE0bGqsf+/Md+WxQCYKtLXG+qBRoNm1CEcpFnMhz/0jGAF1s7FHPPQNuxIjLrBJbT3U+aGI8cyxGFmc10tvHoJtrcuZb0cgum0RxEZat/0xoSxY9gSK8K/ru+opZSSYb6l1Ft/fJG+ZK7Y1sdNKWUUqJVSDvBIopIs5kS6pmt4ZjJ4O5oYJWpxZFirJ3PyMYsg4WDy85WWmabzkPaMjP/YltjmsDKamty4lDHCpszScl31P5EU6n8Crnj0ISeDtByALBzH29FZOD3JF9wagu10ah0Z2QWImQvJx40ryehRu9uLRkYoyqBFvItgTgn50dakRe9eKriM/zNcq0i6Jq+kEk84uSnu3qb4aIXCisw0cLoYr2/kJt2TbK5Z1++6js3L8UsDZdXpD0/sDcOUU7ALLy2L3+1x7Zu+eoZOmcPE/U9U1KZKZuRZDNx14WH8rfhOzg9dx3W6G/Cc+z5jRmbWZNAXI4tyWaQZh6NlHsR6//vcsmkdQ2glWr5HVs4hmyTzCTJFCOFOfHUCk7v+L4RIb9Svylas+aV8GxtHeyz5ttTcTR/yofG3FMrU50h1p6NsNv8XPi+laebzNJN505p56dUk3RbKXMm3icdikn2C/+b7kam31HfHmnBwpC95B2dd/gHsEbifnLLUWup3RIw8iCvC19AUSV7sLyfUjk+f/uytLurGX8Rxob9tFe8bCP+Kd1ln+hkjo6nNU+qN5srDeTU6m5YkBfdW+u14HMqkayaFl/EX3RPUtg/sVEbbNtIsHVQUK6Poa5F+ztd9QGhz/3L4bxVdyn7Bu5lUqbCq7/ADaSnZjwZvjI9WbksRSin5t2s/HjBdxMwRpcraVMmYoQVmXrh8f+74w2+57Q83sOfI7P2ONBpBU+HeRKOxPgX/GpZ+BkD+uP2zdh7ZYkAHR0qplVLaEl9WKaWu2/+z0Fv408KeX8gZoRtZnpt8Pc3WOpj8zHLn0bJpPB09HGco+SdlrbuWclP6k627OM39FJd47k96fWcgQkyCw5JZREFjzOV0cTufW49K+pg2f4wWHOTZMutwybfE9WQ6UnAo7zdeyNyC0zOyC2AtHsZGWZa0kxFIDNrMzS/L2HZg7Mk8ED2OxoFqUQBiUfZpfoHpphSHZPZBeWQTP9N9SEvDwC3ncx0ncmPsYorSnX+1I8XjiKHB2Lq832U/1LnJySvd+v5QDJ2BvEveZINtTx76fP3WYuP3lzfyUksFIw+/LKOORJXskm8x7JTfj27yKUwNPMAW2XuE+vXQDE6Wt1E5blbWz0VpVCnJXYxRp8Vs0KamheNrJyy1mCyOjGznG2OMEZvpdCYfzbi+7Y9c6bknI7sAEWMeuSlMFHc3rOVe/d1UhfsP9w+IELRYRtMQTF54rmDTu1ymewNHhuJkBbE2FhkvoXDdS0kf81FoAq7C6RnZBSjTdHCh9m08iVlLAxF2xfWRHEWZKfoClFiN5OGmuSOJgK+3hV8EH2OmyExzqIuukQvuxoEjUfMCFWzIm61cy7TBTEfOUMr8a/GH+ug+cTdw7IY/c3RRZtHYvtBpNVx3QAl5tZ9w/9x1bNm0geDLlzOrMMxxUzL/3ar8+NlvTBkSDV+u7VkHKqXk83UdFIyYgVafnXlc2UR1cAYBj+n+wSHrbk56vTboxC2skKF3XxLczPvGG9Bs6r+Cvju5MTcRY+YpE5njwIGHQDi5tkN/60aO0X5Hvjb5eqG+OEr7HaNbP0x6fWXzJ5yt+zSladi9kWPNJ094wJNcQXks6GWK71sq9ck7gn1RKF3cqH8W0fhDUuulp5E2aaXIkbkse6V7IYtMlyE3fzvgWm9rPNKicSjTrZFTFBe8C7YMIPYXCVLV+D6TbZmpJ+9IuHAC4zWbWF7f+/yzzg3fcUR0LuMKM9M56o/jO5/nccM/iX3yN1ofO5UjYl9w+3HDM34/q+wejCzO5cTcFRz80ZHg3f5ht27dD1ze+W+OqMg8ar8rUN/hgwC7xo89kFwrK4A+2IFHk3l20JIocA4n2VEkYzFs0kPUpISDEy9wdrqTu3kHE11mOfbMWyWPCb7DIe5Xk16v1PXGYMGHCU2SE8U7GzfwqP52xgWXZmw6tzD+tB7tTE65WutroQ1Hxoq+ANaiuB5NuGPg97i7Kd7xk6NUO2reMGJo0Dn7d3Birev5nfc29tErEznqwloVn6e1ZGPvU23aV31BUOooHZv+8NqBEAf/H7FRh3O17jUm6OtxHfUAw0Yr2LGl8qNGCEF1VTXF4TrCy17bbl/TvFc4S/cJM6sza7DYVQw6B0cIcZMQok4IsTjxdVS3fb8TQqwTQqwWQmQ+lW6QENDZMaUw4fpVw7G8nHdBxna7anii3uQcHG+nE72IInIyL4bs0pTxdCQncNjlhFkdmTs4QWM+udHkr7cp7MSnc2RsF8CtcaAPJne9Pe3xOhRDBqrRXQhLMTEEIsno0femfXnHlHydUn9o7IlUSOfAdTXehMifrWioIrbRGWk3lA0oKumsXQmAuWysMnYTWOb8irMsjzKvtvf6I03t9yyX1UytzqIWjVaP5qwX4JplGK5dTvGep2bPlsqPkpl7HsCGWCnued0Ux6WkdP3LrNCMprJKmc7Cnc2gc3AS3CmlnJr4egdACDEeOAOYABwB3C+E2C0EHEIGR0o33K8jY1lfMCdjuxaLlaDUJy24507owWgyFLwDCFUdzJmhP9AWTS4FEks4YdaCzB2ciCkfm3QnrQljibgIGjKPWgF49Q5yQskpOHs74p0v5jwFuii0OtzCjj6QnIPzjjiAr/MUaiE2WPCIXPTegaNH4Y46wlJLYYlygmIv7Pkyv/Wdiy8U6XONqzY+M6pwqIJiewBaHdOHOli4uaPn+y0SpMSzktrcyRnrHA2IEOCohAzVz1V2T/YcUcjbukMpaJ0HW+JzBpt++Ijy6BbqR531oy1GH6wOTm8cDzwvpQxKKTcSHxXx4yvr7oWIMQ+rTL7OYrh3EdW61MYc9IbQaHCLXLSB5F6rI2bmD+GfExmSuR6CuWgY38Qm0J5kB5cnDJtlMVZL5rN6hLkAO17cvuTknMzSQ8SozI1hVd5BfCUnJbU27I47lLn5yrSJdurzMSUTPZISjWszZRblPtQ69YWYgwOrGX9S+nMOCv2TYnv6E+N3ZFhRXP26prXv+ppI81qapYOq8sy7xnbkgvB/uTFwO1vat68f87Y3UBMrQVbuFh9jKj9itBpBdObPaZNWOj/8O4QDxN7/A23SyvhDz9vVp5c2g9XBuVII8YMQ4nEhRNejcznQvVG/NrHtR48zbyIfRGcSjQzcSRWLxrg/9lf2d72uiO0Hci7hE/ORSa1ti5p5NnoIxpLMw5X5hhDHaL4h0pJcV9T7eWdykv4BRZ4khKUQjZC42ga+4UopmRF+hO+GX5GxXYBlVedxj//IpKJHkc5mYlLgKFDGwXl6xB1cF7t64IXBTv7ru4SjAqkN5+yPhZU/47nAvkQHmMO1xR3DZ65UNKIxPrSMx/W3UV9f2+cag2sjm0UZhbnKd4pUWeEwzQI+W7m9/a9bczgsdBuFM09W3KaKSqpcMGcS/xLncZvnSL7c0M47nSN4bejvGFL444367RIHRwjxkRBiWS9fxwMPACOAqUAD8K8UX/sSIcR8IcT8lpbkxx/sSpqHHs0vw1fiDg5803O7OzCIKJiVESNbZj+QhbHkVDJ97XVMEDU4jJk7GQ5dhHsN/8ZWn1wHV4c3RJ5ZmUm2nWNPZnrgQVpiA6fHPMEIoajAYc28mwigwGJAGwviTkIWYF7eMZwb/h15ucpEM3LyhtDgY0Ano0sDR2NVri6kY9QpvBedOaDQ4J41D3B0rrKFvmU5UQ7SLsa5uW89mn/mXsfT+VdnJRRvH38wRhGmccn2nXvv/7AFm0nHHtXK/C2rqGSC3axnxrG/4LnGcs55YhEPmS7kpDMu3tWnlRG7xMGRUh4ipZzYy9frUsomKWVUShkDHmFbGqoOqOz2MhWJbTu+9sNSyplSyplFRT+Oyu88S/zGnYwAXFcdjNaizIfiSH0z5Z3JKQrnbXybt42/V6RV22SN1/GIJBWFT62/jUtiL2RsF8BuL6AdGx2+vmsyuuisX8vfdY8wNJbkROoBmNX8P1abzqejfeDoUU0kjxWmaYq1806ILON67bO0dfafmnO3xAOlertyCqqVVskEUUN9m7PvRZEgJ3Y+x566DLWOdiCndDQAgea1fa75rt2MvlTZUQlbqT6AoMbM0KaP8ATj77lgRy1/WnkMv65cjUE3WAPpKj81Tp5RwUuX7c0tJ07i3V/OJk9p8cmdzKD7yxJCdE+CnwgsS/z/DeAMIYRRCFENjAK+39nnlw2G+paz1Hgh4fWfDbjW64xHpQzWzAt9AY73vMjvPX9Paq30tROTAlueAo6jVoeLXDRJ1v+MCy5mKMm1OA9EocbDtboXkfWLBlzrb1rHmbpPKdQmPz+qPwzWuGPa2d5723B3yhs/5QCTcjf7YcG1XKp7m5aW/jvXPK1xByensLLfdakwuuML3jb+Hlfd6j7XRJ2JFI5DoQ6qLhzDCAkDOe2923ZuXMTxvpeZWpjcrKyU0ZvwDTuYg8V8Xvy+BoD1Hz6KVfgZNynDae0qKgozbWgeZ+05lAKlFL13IYPOwQFuE0IsFUL8ABwI/ApASrkceBFYAbwHXJEY/vmjx5Jrxyr8hNwDp9S6Bj+aFGgdBoiZ8rBJD7KPQWvd0fjbcQsLOr1CqSKNDX0wuQ4ua8xN1OhQxG6eCa7SvYaxefGAa7uut9mhTDTD5IinfbxJtMcf2/Iwp8feUcQubNOWcTX3P7Yg2B53NPJKhilm21E2AgBfc02fazrq486csaBKMbsAaHW0mYdTElhPKNLzfd6+9D3+oH+OMcXJz4NLlby9zuF7y4E8/cUaWl2dFK18ioW6qcycuXfWbKqo/NQZdA6OlPJcKeUkKeVkKeVxUsqGbvtullKOkFKOkVK+uyvPU0lyE1Oqk5kovsU0hp+HfoNpiELh9Jw8DCJCwDdwF5cu2EGnUG78mE9rxxR2DrhORkJY8RFTQH8HIKfLOfQOfL3Did+JNU+ZehRbQVwTJugcOBpli3YQUqh7C7Zpy/hb+y62BVidM5W/hs+hpFC5FG9OURUA0Y6+U32uhvg4BVvZcMXsduEtmYVL5lDT1jMSF65fTrN0MKq6WnG7WxlzBHkn38kWj+S7f55MkWzHMPsqtEqNhVBRUenBoHNwfopYE4J7Me/A6ZrmaC6fxKZjz1cmRaVJ1PK4k6gJMYRdeLXKOTjPl13HbfpfDLjOm1AxFgoVVgudkU7MCP/A1zvmbSUqhWLX214Ub/yLuAaI4IQD2PAQMWeu+9OFrSTu4ISd/SsKL5UjeE5zLLYcBccH5JYSRofW3fvEYgB/RyMRqaGoXHkHJ3TIzVwRvoZVjT0deXPHamo0w7Jeb7D3iAJePKuKI7Tz2Dzhcibur3ZPqahkE9XBGQTYci14pREGUFsF0Lcs4xDtIqxGZW4++tx4hMDjHNjBedZ4Om/mn6+IXYBA3mhWBQaOULg9XpbGqpB25cTf3Bo7+sDABc6BUIhm8sjNUSYfrc0t4hnNcawR/ad/gs5E4DJXuU4mrW0IMQQRT/+RK13zMibavMp2FGk0dOiLyfH1rWb8YcE5TAg9zpB8ZTrWujOi2IJBq2FZ3Q6CmpEgJcGNtNtGK26zN2aMHYX2F18x9NS/ZzxLTkVFpX9UB2cQIITgVc1hrDOMGXDt6LpX+adCejAAsmIWF4Suo0U38GThL0KjqS9QrmZgbGwdJwTfGFATplVbzLGhWwhUH6aYbZ8uD0N44OnWr+VfyAmGh5W72Wu0/Nd+CfNj/f+unc2JTqY8BaWedAZOK3yN5w39Rw4uqb2BK+TzytlN8EX1NdwXOIxItPd6r83tPgpsNow65VV9jbEgH+T8jtIVj2+3vbN2JULGiJTtJLE9nQFKxu8cWyoqP3FUB2eQ8JT1Yj7T7z/gOn2gnU6NXTG7uQXlfBqbRmtk4AjFJN93DNMmNygyGcb6F3Gj7mlcrv4Ljdu88fZ5JVMIjw2/iyvEHwZc1+oJUWQzKWYXoCI3RtjVfxdVnWkUhwZvQwzdU1HbhXYrje5+2sSjERyxDkJm5RV9I6OOZEFkBPXOXuxLyQkb/o9TrclNO08ZgxmrLkqVe/52E+y/8ZYyKfgoxTOOyY5dFRWVXYbq4AwSCix6Oj0Dz6Myhdrx6JSZiwRQYNZysGYB0aaV/a4LeN08IG5lT++nitnWWeP1Jc6W/m/25lWv8LrhjxTrMtff6cJht9PmDQ8YPTqz4R+cKj/sd02q/KrjFn7v/FO/axp9sFZWUFigrJbTUeEPONf1cJ/7I+4GtMTApryDM9IS5FDNfDY39qw/kt4WDgh+xhijU3G7XfjL9mKmWMXSLdtSwd9saEPqcpiSzWGXKioquwTVwRkkXOW9lzubLxpwXW6knaBBuc6aPIuRh/V3ULLprX7XOVvjTojWqlzRqzHRet01NbsvtB3rmaLZQH6eco7d5NAibhb34/b07zTtG/yCajGwZk0qhM3F5MXaifWjKKzd+CnnaD+k2KqsFsWIyDqOZe5WwbkdcTXFW8j1ecrVO221HVrNI4Y7cNcs7rGvY0vcwTaUZK8Wxj5uDjbhY80P38Y3xKIc8cMvubx4WVbSYioqKrsW1cEZJMicPBzSBQNEFOwxF+EcZTp6ALRaLR3CjsbXf+qpsy3uhOhtyj3pmhNDJAMDacJ4W+mQVixm5QYwlsfqOVX3Oe2tfTtXsUAnZgLELMo5dQDSUkIhLtr7ca7KtrzNVbpXyTMr29mjsQ8hX3iob+m9oN3duAEAc5HCYnuAvTI+qTvUvKbHvvbN8WnejoqxitvtwjpmDgCeFR8gpaR20fvsGZ7HuDLlOgNVVFQGD6qDM0iQliIMRAh4+q5HCYSjnB36Hauqf6aobZfGgSHQv4Pj64jrtpjzlUtd2AvjBbRdU7P7Qu9vxaVg3RGAITGGwN2Pg9OZ2Kdk1ApAZy9FKyTtLX3b1vua6dDko1FYJ6VLj6a1dn2v+9eZJnJ16Aoc5co7GsIxjDA6dB0beuwLNK4hJLWUV2exm8lezprqc/naU8bCzU5avnqaTpnDjEPPyJ5NFRWVXYbq4AwSuupRXC19a5S0eUOskFUYikYoatunzyMn3H+hbyih22LNV24+kb2oktnBu/jedmi/60yhNjp1yk60NefHnatAP+kxV2v8d2FwKFuPYsyLd6x1tvQtuGcOtdKpV34Io70sPljV29S7g7PGb+ON2L5UlmRhAKRWR7thCLmdG3vscvqCrGA4pQ7lW8S7U3b6nSw0zOCh515gTNsnrHDMocChrPOsoqIyOFAdnEGCIVGP0t+MImfTZs7SfkyZxqmo7YChgNxI/w7OcsvenBu6AUeJcvOJtDodPnMFTf7+oxRrGEqNZbJidgFshXGnJeTuW1HY5fFREyvBlK9gqzZgGjqDP4fPpS7Sd2rEFmkjYFR+WKyjfBTt0tpn55ph0+fsk9uA2aCgyF83fPaRDIvW0ObZfqr43eIc/lxyd1ameXfHatLzxHkzuTFwBwFtLiNPT24Om4qKyo8P1cEZJBhLxnBv5HhapKPPNeH6Zdyif4wyOfAco1T4tvJCroz9pt81W8JWFuimYc5Rdl7P2YbPGFn/Zr9r/hy7iK+HXqqoXXthOT5pJODre4jmess05oTuJHfoFEVtF1aM5InokdQErb0viATJky5CFuU7mYRtCKfZn+VD0bue0TFbbucK7euK2+3Cuff1nBe+geX12zSIItEYy+rcTKlwZM1ud2YOtVNy1PXkXfEhBUOyOJ5BRUVll6I6OIMEe2k1/4yczhb6vql1zS/KVbAOBkBTNJpFwSHb6YPsSH7T1xyR038reTocFf2EWc6+B0pGY5J2b5BChSfbaky5zDE8x0eWY/tc09IZjzIUKdzJZNJrmWZpI9Dce5rIG9UyKfAoG0ecq6jdLirzctjS3kuBcyxKYbSZQK7yHVRdDB87g82yhGX12yQR6he+wwviBvZ2OLNmdzu0Ogx7XogoUDbVq6KiMrhQHZxBQmGuEQedeDr6TplEO+ORG0eRsimToaKFc7Qf0tHWd2TogOb/cHHsBUXtwsDpMXfjRr41XM50z+eK2y7MNdKyQ6qkO2NWP8D9hnsUG4vRnUfkTexV+1iv++qcfjoxU1SkbHFzF2eGXuYXHf/osT3UUYeeCDGHclPEd8Seo+Mq61zk2m3aQq613zJZszG7wy5VVFR+cqgOziAhx6DlY+N1TF5zb9+LvK0EpZ6cXIeitisim/ib/gk89T3bd7uwhDvw65Ut9AUI5xRgj/UtcOhqradYOMlVsEW8iwvlKxzT0Pf1LnAtZYS2OSt1IS59CbmB3p1Zz5rPuF73XyrNvWvVZEq5po395QJcvvB229tq1wJgKsyioyEE5/EmY+pf36oDZGiYx0ZZRlW58ik5FRWVny6qgzOIiLdrt/S5X+tvpUPjUHxIX05eXNvG30/0yBbrIGxSvrNGmovJE534/b2PD/Aliq5NCncyAYxiEzOD3/a53xJootOgfKEvgN9cTmGkqVclZe2mr/mF7k3KCrKjz2IoHI5d+NhYu/1kb3ftMgBsFeOyYrcLX8kezIgtZcnmFqKBTqo6F7DBsY/iLfEqKio/bVQHZxDh1hdiDvbt4DyQczE3F/RMLWSKLaFHs3WC9Q5EI2Ec0k0sR/mbvdYed1xam7b0uj/QHt9uU7B7q4uIZQjFso1AqPdIiSPSgj9Hubb47kRt5ZTQhtsX6rnTXUuLtFOc58iKbcewSQC0bliy3favTQdwevBGqoZnT2wPoGDWaeQJD+u+eYu1X7+BkTCWyX3XQqmoqKikg+rgDCJ8phIckb4dnI0eHRQMV9xuQWnceYi6eteEaW/aglZIhH3gieOpEhh/GqMDT1EX6z39FXXVE5WCojLllXWFfQgmEaaluefPLUM+HHQSzc1O2kSXV4lRRGhs6OnYGT11tGiL0GYpolFQPRWAQN2y7bYvaZFstk3DruBQ096wjD8Mr7CQt/oFnl/u4225D1P2OTKrNlVUVH567BIHRwhxqhBiuRAiJoSYucO+3wkh1gkhVgshDu+2/YjEtnVCiBt2/llnn2huKXkxJzIa7rFPSsnJ7v8wU6xS3K7RmEMbdjSe3iM49RErhwZvIzDyaMVtl+TbCKGnqY8J1zWU84Y4ALNJ2YneAKaCeDFtR+OmHvvaO9r5JjqeaMEYxe0CiFGHcmnoGup8PWcgWYONdBqyEzkC0DgqWKkbR50ntt32STVPcHiesnO3ekVnJDjlXHKkn6frSmk9/AFycpT//aqoqPy0yY6a18AsA04CHuq+UQgxHjgDmAAMAT4SQnRpt98HHArUAvOEEG9IKVfsvFPOPm3lB/N/mwTXeQM4bPrt9rmcHVytfYnvItlp4b3Odjvm3GJm9bKv0RNlraygoFj5CE6JWfAn3VMY1rfA1PN77P9QO5sa+3ROVNwy5JYOZ32sjA6Xu8e++rCVM8N/5KHRM7JgGQqHjuH92Cz27txhh5Tooz789iwW3ArBY2Me4rM1LXSpC4VcTVwYeIqPjcoNNO2P/OP+Tt70Zp4Kapk9Kjt1TioqKj9tdkkER0q5Ukq5upddxwPPSymDUsqNwDpgVuJrnZRyg5QyBDyfWLtboa+cybPRQ2j09Sw8bW+sia/JU7ZFvAuZVx1PgfVCdPN3nKv9gJJc5d8uVouFs7SfYG/+rtf9LS4vpXblO6gA8kbuwcGhf7FS17PmpN4V14kps2cnslCUa+Qg4yr8mxdutz0QibFn8N/8MPZXWbHbxZgSKy2dAdo645GzhrXx88gpn5hVu1vRaBg/tFR1blRUVLLGYKvBKQe6FyXUJrb1tX23otSqYazYTFtjz7oMd/NmACyF2Yng7K1dyTHOZ3rdl7/lI27UPUOhVVkVYwCEoE1TgN7bewfXE21nc4HvceXtArlGHVaTjkZXz/RY/g+P8JHhN5Tl9kwhKYEQgtu19zFhy3+3276+xYOUguGl2Y2kHKSZz0LjpfywNO7YuFZ+SlQKysb1rnCsoqKi8mMjaw6OEOIjIcSyXr6yGnkRQlwihJgvhJjf0tJ3we5gpMwQ5D3jDZjWvNFjX6At0U1UnB0RtkmRZfwi9gLhYE+FW523iTaRj0abnZt9vHusucf2cMCLg050luzd7O/W38de6+/usV3bsYEC4abAlr3hj22mYRT4a7bb5lv0Enfo72d0vr73gxRi2JgZ5AsPnUvfA8Bc+wWrNKOoqtjtnhtUVFR+omTNwZFSHiKlnNjLV3+DbuqA7v3AFYltfW3vze7DUsqZUsqZRUU/rvB3YXE5Qakj1ks3U8QVL/4sKK3Kim2tPX5ja2vc3GNfTqAJp74wK3Yh3j1mD7f22N6eKP7V2bN3063UtDLEs6zHdpNnCy2a4qxqswQcIxkaq8UT2FZUrt/8FQdrFjKsJLsRHF3RCBr1lRQ3fU7A7yU/sIWW4r2zPuxSRUVFZWcx2FJUbwBnCCGMQohqYBTwPTAPGCWEqBZCGIgXIvcMc/zIMei1tIp8dN6enSxv207nQO2TGHIsWbFtzI+nvpxNPR0ca7gFnyE7YwMAwpYhICPEott39biaagAUn+bdHW9uFaWR+q2qul3kBbbQlqN8a3p3dMVjsAo/WzZt2Lotx72eWm0lRn326/+d5XOYFl3KzS9/w8zgA2hmZ7fuR0VFRWVnsqvaxE8UQtQCewNvCyHeB5BSLgdeBFYA7wFXSCmjUsoIcCXwPrASeDGxdrejXVeC2dczglPnCpLryF5EKrcoHiDzt+7g4EhJQbSNsLkka7bXTv4N+wXvoWmHuVC+5hoArMXZGx0g80dQLDpobtsWQZKRIMXRJkK27M5GslbGC3rbNi3duq0wsBmnuSqrdrsYftilRDV6cla+xF4jithnXPZmUKmoqKjsbHZVF9WrUsoKKaVRSlkipTy8276bpZQjpJRjpJTvdtv+jpRydGLfzbvivHcGneZKikK1PbYfVX8vJxq+z5rdwopRwDbl4C6c/jCzgvexZsxlWbNdVRivc6lp9W23fV20lKcih1JWNbq3wxTBVBbvoGrauM1fbmlr57XYvoSH7JE1uwAl4/bhlOjNfOaPO1L+ti0UyHZCBdlVEu7CMGQSvpP+w+HDBA+fOwOddrAFdFVUVFTSR/1EG2Ssrzqda8OXEgpHt24LhUKcFH6LiZqNWbNrd+QzR/MEb5hP3m77pjYfXnIoG5Kd7i2AakuQB/V3El7xznbbvw2P4L6cy7CYs9C9lSC/ajJfRifQ4NxWXL3eY+Da8OWYxh3ez5GZYzDbMA6byZc1ccdu5Zq1rImVYxt3YFbtdqdw0iHMuOQBck3ZLWpWUVFR2dmoDs4gwzxsJp9Gp1Lb7YbbtGUdBhFFUzgyq7bzCkvY1Obdblvn6vhk6+HWaB9HZU5pUSGHaBagbViw3XZPcw0jCoxZswtQVDWRC+WNLAhvS8/UNLUBkuqi7NQ7defoolZOankAp8fH+x1lHBP9F+Omz866XRUVFZXdHdXBGWRU5+k4ULOIpo3bOnvatqwEILdsVFZtH6tfwCmNd263Tb/5Cy7VvkV5oSNrdrV6I82aYgzumm0bpeT2lsu4MpQdDZwuNBpBVYGFjS2erdvGLPwbnxt/RZkt++MDZtnauVj3NisXfME365qYNtSB2bCrBMZVVFRUdh9UB2eQUZVn5AnD7ehXv7l1m79xDQDFVROyanusto6Tou8R8G2bH6Bz1dAkCjHlZC9NBNBmrMDu31b/4+loxIoPma/8cNEd+ZN4mGtrLkXKeCdVnms5HfrSrLaId1E54wgiaCn59Nf8p+1Mzi1en3WbKioqKj8FVAdnkJHncNBMHpqOba3DXreTNmkjr7iynyMzR18UT4E1b9o20NPq20yrIfvib35rvF1bxuKt4k018aiVqTi7aTmAnKIqxrGBuro6Ql4nQ0Pr6SiaOfCBCmC0FVMz/QaGU0uDYRiHHX3aTrGroqKisrujOjiDDCEEjfpKHJ1rt257XJzI+QXPITTZ/XVZy+PdSh2128aEFYfr8eVmv31YFo1lnRxCXUs7AO7N8dbpvKHjs267YHy8qHfz4o+pWTIXrZBYRu6XdbtdjDz2OjYe/CAVv3gFg8Gw0+yqqKio7M6oDs4gxJk/laGh9UT8nUSiMZZscTJtWPanPJcNn0RMCgK1SwBobWlGSkm0IHtt2l3k7ncJJ4X+woKGuBaO3PwdHdLKsJHZH/5YMWFfAuiJbvwS9+rPiUgNI6bvvE4mhKB69plY8pWf1q6ioqLyU0V1cAYhhuF7oxMxNi/9io0r5vEMf+Age091Y6WxO/JZqx2Bsz0ueje/Kca04EOY9r4o67bHlFixGLTM3xiP4DwbPoD/FlyOTped+Vfd0RhM1ORMYkzrhzzQNIFXTSeQn5efdbsqKioqKtlDdXAGIVXTD+Ow4D/4LDiS9hWfMl2zjjHV2R0b0MUT4x7jt54zicUkCzd3YNBqmTA0+zO9dFoNd9ie4/Tll+IOhHmltYLQ+FOybrcLxwn/4GF5Ip+6Shh6+j93ml0VFRUVleyg9qMOQkqLCvHaR/PlunamN39KM/mUVma3RbyL6dUFPL+gjg2tHvZfcj0VeSMx6o7cKbYdjnzGblnJ5x++wN6ijj0qp+8UuwClY2Zx8HkjmBUIs+fwgp1mV0VFRUUlO6gOziDljCkOzvv2aGzCx9eVl1Cc5QLjLvYo1fKS4SY6/jeRPQNfosmv2il2AYbsdy6x/z7DQQuuYJhxGOXDfrnTbAPsPUJ1bFRUVFR2F9QU1SDl0kMms9o4gSW6ycw85287zW5VeRnSUsweLa8QxEDloVfsNNuVY2f8P3vnHR5HdfXh925v2qIuS7LljruN6dWU0Hsn1BQILRCSQEhIPkgCJIE0CL0HQggQCC2UUGx6s8G9F9mWra7tvdzvj901ttW2zMqFeZ9Hj6SZe+fMjlY7Z84953f4cvy1BKWJ2Al3YzKVXmhPRUVFRWX3RGTFzXZH9tprLzl37twdfRoFk0gkSUmJQT+0gbb21g30PHQaPVMv4cBTfjCktgHCoRDmEvafUlFRUVHZfRBCzJNS9hIvU5eodmKGooKoL2rqhlP9qy8QovRKvn2hOjcqKioqKsWiLlGp9MmOcm5UVFRUVFSUQHVwVFRUVFRUVHY7VAdHRUVFRUVFZbdDdXBUVFRUVFRUdjtUB0dFRUVFRUVlt2O3LhMXQnQC63f0eezCVAJdO/okdlPUa1s61GtbOtRrWzrUa1s4I6SUvXoK7dYOjkpxCCHm9qUtoFI86rUtHeq1LR3qtS0d6rVVHnWJSkVFRUVFRWW3Q3VwVFRUVFRUVHY7VAdHZSAe3NEnsBujXtvSoV7b0qFe29KhXluFUXNwVFRUVFRUVHY71AiOioqKioqKym6H6uCoqKioqKio7HaoDo5KTgghfiKEkEKIyh19LrsLQog7hBDLhRALhRD/EUI4d/Q57eoIIY4RQqwQQqwWQtywo89nd0EI0SiEmC2EWCqEWCKEuGZHn9PuhBBCK4T4Sgjx6o4+l90J1cFRGRQhRCNwFLBhR5/LbsZbwGQp5VRgJfDzHXw+uzRCCC1wD3AsMBE4Vwgxccee1W5DAviJlHIisB9wpXptFeUaYNmOPondDdXBUcmFvwDXA2pGuoJIKf8npUxkfv0UaNiR57MbsA+wWkq5VkoZA/4FnLyDz2m3QErZKqX8MvOzn/TNuH7HntXugRCiATgeeHhHn8vuhurgqAyIEOJkYJOUcsGOPpfdnO8Cr+/ok9jFqQc2bvV7C+pNWHGEEE3ADOCzHXwquwt/Jf0AmdrB57HbodvRJ6Cy4xFCvA3U9rHrRuAXpJenVApgoGsrpXwpM+ZG0ksATw3luamo5IsQwgY8D/xISunb0eezqyOEOAHokFLOE0LM2sGns9uhOjgqSCmP7Gu7EGIKMBJYIISA9BLKl0KIfaSUbUN4irss/V3bLEKIi4ETgCOkKkpVLJuAxq1+b8hsU1EAIYSetHPzlJTyhR19PrsJBwInCSGOA0yAXQjxDynl+Tv4vHYLVKE/lZwRQjQDe0kp1Y63CiCEOAb4M3ColLJzR5/Pro4QQkc6WfsI0o7NF8C3pZRLduiJ7QaI9BPO34EeKeWPdvDp7JZkIjg/lVKesINPZbdBzcFRUdlx3A2UAW8JIeYLIe7f0Se0K5NJ2L4KeJN0EuyzqnOjGAcCFwCHZ96r8zNRBxWVnRY1gqOioqKioqKy26FGcFRUVFRUVFR2O1QHR0VFRUVFRWW3Q3VwVFRUVFRUVHY7VAdHRUVFRUVFZbdDdXBUVFRUVFRUdjtUB0dFRWWnRgixlxDirszPs4QQB2y17zIhxIUK2JglhPAKIV4r9liZ443OlFIHlDieiopK/qhl4ioqKrsMQoibgYCU8o8KH3cWJRBZE0IEpJQ2JY+poqKSG2oER0VFpSAy0ZOs6Ns6IcTsPsY0CyFuF0IsEkJ8LoQYk9neJIR4VwixUAjxjhBieGb7mUKIxUKIBUKI9zPbZgkhXs00ebwMuDZj82AhxM1CiJ9mxk0XQnyaOeZ/hBCuzPY5Qog/ZOyvFEIcnMNrmyWEeHWr3+/OtNXIvqbfZc5hrhBiTyHEm0KINUKIy4q9rioqKsqgOjgqKioFIaW8X0o5HdibdOfuP/cz1CulnEJaufmvmW1/A/4upZxKusnoXZnt/wccLaWcBpy0nb1m4H7gL1LK6VLKD7az8wTws8wxFwE3bbVPJ6XcB/jRdtsLZUPmtX8APA6cAewH/FqBY6uoqCiA6uCoqKgUy53Au1LKV/rZ//RW3/fP/Lw/8M/Mz08CB2V+/gh4XAhxCaDN9QSEEA7AKaV8L7Pp78AhWw3JNoecBzTletwBeDnzfRHwmZTSn+knFhVCOBU4voqKSpGo3cRVVFQKJrNsM4J0D6j+kP383HuglJcJIfYFjgfmCSFmFn2SaaKZ70ly+9xLsO0DoKmf46W2+jn7u/q5qqKyE6BGcFRUVAoi43z8FDhfSpkaYOjZW33/JPPzx8A5mZ/PI73UgxBitJTyMynl/wGdQON2x/KTblC6DVJKL+DeKr/mAuC97cflwXpgohDCmInIHFHEsVRUVHYA6pOGiopKoVwFlAOzhRAAc6WU3+9jnEsIsZB0pOPczLYfAo8JIa4j7ch8J7P9DiHEWEAA7wALgEO3OtYrwL+FECdnjrE1FwH3CyEswNqtjpk3UsqNQohngcXAOuCrQo+loqKyY1DLxFVUVEqGEKIZ2EtK2bWjz2Ug1DJxFZXdD3WJSkVFRQViwGSlhf6AdiWOp6Kikj9qBEdFRUVFRUVlt0ON4KioqKioqKjsdqgOjoqKioqKispuh+rgqKioqKioqOx2qA6OioqKioqKym6H6uCoqKioqKio7HaoDo6KioqKiorKbofq4KioqKioqKjsdqgOjoqKioqKispuh+rgqKioqKioqOx2qA6OioqKioqKym6H6uCoqJQAIcTNQoi4ECIghLCW4PjjMsdOCiH66uC9W7EzXk8hxHghxHwhhF8IcbXS56SyLUKIWUKIVObvdIwCxzNmjhUXQtyixDmq7FyoDo7KNxohRJMQYrYQIiSEWC6EOHKAsUYhxKNCCJ8Qok0I8eNBDv+MlNImpQwqfNpIKVdmulR/oPSxi+Ebdj2vB2ZLKcuklHcpcR6Za/KIEGJ9xnGaL4Q4dpDxfxFCbBZCuIUQ9woh9FvtnyCEeFcI4RVCrBZCnLrd/LOEEMsytpYKIU5R4nVsZ+NBIcSKjHNy8QDj3hFCSCGEboDDbc68B97IzLlYCPFhH8dqHui9ByCljGb+5k/l+FJUdjFUB0flm87TwFdABXAj8G8hRFU/Y28GxgIjgMOA65V4ktzN+CZdzxHAEoWPqQM2AocCDuCXwLNCiKZ+xt8A7AVMBsYBe2bmkHEUXgJeBcqBS4F/CCHGZfbXA/8AfgzYgeuAfwohqvM9aSHEHCHErH52LwCuAL4cYP55gL6//SoqhaA6OCo7JUKI0UKIHiHEnpnfhwkhOgf4EC3ERvaGcJOUMiylfB5YBJzez5SLgN9KKd1SymXAQ8DFedibs/Xyx/ZPn5mn1yuEEKsyT9S/zVyHjzNRjmeFEIYCXipCiOuEEM9vt+0uIcSdhRyvHxvfpOv5Lmmn7O7MMse4Qo6zPVLKoJTyZills5QyJaV8FVgHzOxnyonAXVLKHillJ3AX8N3Mvj2AYcBfpJRJKeW7wEfABZn9DYBHSvm6TPNfIAiMzrxGjRDiBiHEGiFEd+Z6lRfwmu6RUr4DRPraL4RwADeRjogpjhBiQeZvlP2SSn6OqOy8qA6Oyk6JlHIN8DPST5wW4DHg71LKOX2NF0K8KoTw9PP1aj9mJgFrpZT+rbYtyGzf/vguoC6zf8CxRXI06ZvZfqQ/8B8EzgcaST+ln1vgcf8BHCOEcMKWp/tzgCf6Gqxez4GRUh5OejnrqsySycrtx2SWi/q7hgtzsSOEqCEdmRkoUiS2+7kh4zT0N3Zy5ue5wDIhxElCCG1meSoKZM/th8AppKNJwwA3cE8u550ntwH3AW0lODZSymmZv5GNdLRqBQNEk1R2HwZa61RR2aFIKR8SQpwIfAZI4KQBxp5QgAkb4N1umxeo72dsdv/WY8sKsDsQt0spfcASIcRi4H9SyrUAQojXgRnA3/M9qJSyVQjxPnAm6UjJMUCXlHJeP+PV61kkUsorSC/NFIRI59I8RdqxX97PsDeAa4QQswEtkE12tpC+kXcA1wkh/kI64nQoMDtzfkkhxBPAPwETEAPO3CrH6TLSDlxL5nxuBjYIIS6QUiYKfV3bvca9gAOBa0hHlAphPyGEZ7tt9j5sHQTcAhyUeU+o7OaoERyVnZ2HSD9x/k1KGVX42AF6fxDaAX8/Y7P7BxtbDO1b/Rzu43cbhfN30tELMt+fLOJYffFNu54lQwihIf33iQFXDTD0VtI5T/OBj4EXgTjQLqWMk47AHE86OvIT4Fkg67AcCdwOzAIMpJ2fh4UQ0zPHHgH8Jxt1ApYBSaAmM9+z1b6DgK2jfjfk+BrvBa4p0mH6VErp3PoL2LCdrcbMa7+or2ibyu6J6uCo7LQIIWzAX4FHgJsHWv8XQry+3Tr71l+v9zNtCTBKCLF11GAafSwHSCndQGtm/4BjByBI+sk6S20ec5XgRWCqEGIycAIDVI+o17N4hBD3D3AN+32dQghB+j1fA5yecVT6JJPrdJWUsl5KOQroBuZJKVOZ/QullIdKKSuklEcDo4DPM9OnA+9LKedm8n2+IB0tzVYfbQSO3c55MEkpN2WOvbVD8SFwwlbbfp/DJbKTTpB+RgjRBnyR2d4ihDg4h/k5IYQwk37v/1VK2d97V2U3RHVwVHZm7gTmSim/D/wXuL+/gVLKY7Pr7H189Vlmm3mSmw/cJIQwiXQJ7VTg+b7Gk85X+aUQwiWE2AO4BHg8j9czHzhNCGERQowBvpfH3EERaZ0Q2d9+KWUE+DfpJYnPpZQbBhirXs9BrudgSCkvG+AaDpRrdB8wAThRShke5BzrRToBXwgh9gN+RTphN7t/auZvYRFC/JR03tPjmd1fAAdnIzZCiBnAwXydg3M/cKsQYkRmf5UQ4uQ8LwNCCIMQwkQ6/0efOR8N6SXJYaQdrenAcZkpM0k7WkrxKLBcSnm7gsdU2QVQHRyVnZLMB+kxwOWZTT8G9hTpclIlOYf0U6Qb+D1wRqYaBSHEeds9ad8ErAHWA+8Bd8iMHkeO/IX0kkM76eUipfU3GkkvUwzE34EpKL88leWbdj0VJeNM/ID0Db9tq4jPeZn9wzO/D89MGZ05xyDpa3CDlPJ/Wx3yAtKRsg7gCOBb2aVeKeV7pEv1/y2E8JN2RG/bav6dwMvA/zL7PwX2LeBl/Y/0cuABpJO8w8AhmcqttuwX0JkZ3y6ljBVgpz/OAU7dLoKmWIRIZedFSFnwA4qKiko/CCF+CfycdD5EvVRYnE4IMZb0E7gBuEJK+bgQ4mHgOSnlmwPMGw4sB2p3pUTLnfV6qgwdQohDgDdJV3qdXezfRQhhJO0c60kno/+6+LNU2ZlQHRwVlW8ImWWBPwN2KeV3BxuvoqKisiujlomrqHwDEOn+Te2kl4N2JbVgFRUVlYJQIzgqKioqKioqux1qkrGKioqKiorKbsduvURVWVkpm5qadvRpqKioqKioqJSIefPmdUkpezX13a0dnKamJubOnbujT0NFRUVFRUWlRAgh1ve1XV2iUlFRUVFRUdntUB0cFRUVFRUVld0O1cFRUVFRUVFR2e3YrXNw+iIej9PS0kIkEtnRp7LbYjKZaGhoQK/X7+hTUVFRUVH5hvKNc3BaWlooKyujqamJdNNeFSWRUtLd3U1LSwsjR47c0aejoqKyi/Pc3I0saPFw04mT0GuHbtFBJhPMffBytGOPYM8jzxkyuyrK8Y1boopEIlRUVKjOTYkQQlBRUaFGyFRUdjOC0cSQ2+zq7OC3Ly/guU9X8+g//zmktj/84gv2bn+WPT/8AXO/VKtxd0W+cQ4OoDo3JUa9vioquxdvffQpG2+dzjvvDG3f0Q3PXs8/+BUPVD7Hmat/RiiqZJPx/pFScssncb5nuZMgJkKz/zwkdrMsavFyy+23sWTOv4fU7u7GN9LBUVFRUVHJjVAswU1zvFhEhInvX0bzptYhs13T/Slxaw21kw6iXARYtmjekNht7fGxst3LQQceyoayGTT455NKDU1bIyklt766iNMC/6Ju9o/Y2LJhSOzujqgOzg7i1ltvZdKkSUydOpXp06fz2Wef8f3vf5+lS5cqcvympia6uroGHHPbbbdt8/sBBxygiG0VFZXdh9cXtbHZn6D5gN9TJ3po/vSlIbEb8rRTn2olVLUnjdOPAKB76Zwhse15/wG+Mv6AvaolqYZ9GcUmVqxrHhLbS7+YjWnDHL6Y9EvKhZ81H784JHZ3R1QHZwfwySef8Oqrr/Lll1+ycOFC3n77bRobG3n44YeZOHHikJ3H9g7Oxx9/PGS2VVRU8iOWSPGPB37P2+9/OKR2qz+9hUeMf+GgI04mhAnWfzQkdlsWvQ+AZfQBWGvH4RYujJs/HxLbsuULIhgY1zScqoO/x4GRO/loU2pIbGvmPsQf9Q9w6oknEcCK2PDJkNjN0vnh47T843JIDc3rLSWqg7MDaG1tpbKyEqPRCEBlZSXDhg1j1qxZW1pL2Gw2rrvuOiZNmsSRRx7J559/zqxZsxg1ahQvv/wyAI8//jhXXXXVluOecMIJzJkzp5e9U045hZkzZzJp0iQefPBBAG644QbC4TDTp0/nvPPO22IT0iHS6667jsmTJzNlyhSeeeYZAObMmcOsWbM444wz2GOPPTjvvPNQu9GrqAwN7774GOe3/o4p75zHJwuUifTmwrCeT6k2JdHo9Gy0TaHe99WQLNcE13xKQmoYPuVAEII253RGhRcPie0qzwLWGidi1OuoHjYcnMNZuMlXcrsAFT1fsUw/EbvFxKayqTT45xNPDo2zkWj5kqq3r2H9igX87d3VQ2KzlHzjysS35tevLGHpZmXftBOH2bnpxEkDjjnqqKP4zW9+w7hx4zjyyCM5++yzOfTQQ7cZEwwGOfzww7njjjs49dRT+eUvf8lbb73F0qVLueiiizjppJNyPqdHH32U8vJywuEwe++9N6effjq///3vufvuu5k/f36v8S+88ALz589nwYIFdHV1sffee3PIIYcA8NVXX7FkyRKGDRvGgQceyEcffcRBBx2U87moqKjkTyQaY9qiW2nVN/Cm3JdPFwTYf1rp7Yb8PTQlmvm8Lr1E5Bt7Op9+8SlHtvmYMMxRUtsfJ8bzvv5iril3AbB20pU89M5S7vVFGOY0l8yuDHuoTrYzv/rULdsusHwMLQFgRsnsAkh/G9WJVj6rSdtONR2Ce8F/8G3oYMbI2pLaBmh75bcYpYM/Om9k0bur+c7Bo7AZd103QY3g7ABsNhvz5s3jwQcfpKqqirPPPpvHH398mzEGg4FjjjkGgClTpnDooYei1+uZMmUKzc3Nedm76667mDZtGvvttx8bN25k1apVA47/8MMPOffcc9FqtdTU1HDooYfyxRdfALDPPvvQ0NCARqNh+vTpeZ+LiopK/qxe/Dl1opuumdewbMKP+Hitm+QQRDKaF3yAVkjMo9P5eY79zudPibNY2REoue03whP5cti5W353jZzBfDmGdV3BktrtaVkJgKFm3JZthyQ/56jAyyWPWHcvTy//6Zr2B8B22I84I3YzKzqHoHoslcLR+QVzDXvz82PGc5F4lYVfflZ6uyVk13XNFGCwSEsp0Wq1zJo1i1mzZjFlyhT+/ve/b7Nfr9dvKbfWaDRblrM0Gg2JRFqPQqfTkdpqnbQv7Zk5c+bw9ttv88knn2CxWJg1a1ZRGjXZ88i+huy5qKiolI6Na5fSJE00Tj+SQzeGkV+9xfJVI5k0ftzgk4sgsHERAPUT9gVgRIUFi4iwefMmmF5fOsOpJJbuRYwetteWTaMdglM0H9LdbIYxh5fMdEvExNOJk9l7+NfRmqRrJPWej+jyhalyWEpmu2v9UiqBxvFp28OcZgw6DWtL7NQBJNuXUpbyE2rYlyMa7Oyjf4r/LbTB/geW3HapUCM4O4AVK1ZsE0WZP38+I0aMyPs4TU1NzJ8/n1QqxcaNG/n8894JeF6vF5fLhcViYfny5Xz66adb9un1euLxeK85Bx98MM888wzJZJLOzk7ef/999tlnn7zPT0Vld+SZF57nkfv/RDiWHDKb/w7O4JSyf+KsG8V+FRFu1z9E21f/Lbnd5ng5r8v9qaweBoBRq+Fz41VMWHlfSe362tbxDDcwK/H+lm3VVg1/NdyLpfntktpeHSvnj4mzqR4+fss2Q/VYjCLBpuaVJbU9p/wMDo3+mab6OgC0GsG/TL9nxvK/lNQuQLNfcF/iRCzjD8PgqGaTvglHx9AkdZcK1cHZAQQCAS666CImTpzI1KlTWbp0KTfffHPexznwwAMZOXIkEydO5Oqrr2bPPffsNeaYY44hkUgwYcIEbrjhBvbbb78t+y699FKmTp26Jck4y6mnnsrUqVOZNm0ahx9+OLfffju1taVf/1VR2dn5eHUXXV++yPfafsOrD/5qSGymUpK5693MbKoCoHzkDHzYMLaWXl33zdTe3On6BUKTuVUIQaehnrJgc0ntdm1cDoCpZuyWbcLswivs6D3rSmq7p3UtDhGifqs8H1fDHgC4W5aX1HazO07QOnybvJdybZiqYGntAnzmLuMPiXOZMD5dydtTtRcTE8vxh4dGXLEUfKOXqHYUM2fO7LMke+sKqEDg6zXu7Z2f7D4hBE899VSfNrbOjXn99df7HPOHP/yBP/zhD30e94477uCOO+7YZnx2SS3L3Xff3edxVVR2V+6Zs5qN1gs5ytDOsZ2P4PXfiKPMWlKbHW0b+XvyZ3QZrwOmgkZDm3EE9hI7GQCbujw01ZRvsy1gHUF1z0KklCVTLQ+0piMl5Q3jt9nebWzEHiqt8N1hS3/FPqYIBt2ZW7ZVDJ9AUgoCXS0ltb3fursx26YA39qyLVTWRG3nPGKJFAZd6WISbavmMtyiYURFeglOVzORss3/ZnHzGiZPmFAyu6VEjeCoqKio5EA0nkC7/kOOnViB2Pu72ESEZZ//r+R2O5uXMF2zlmEO05ZtwbJR1MU3lrRkOhmP8bL/bM6ObtsuIFU+mmF00uEuXdl0smsNEamnrmHbhr1B2wjqkptL+rpdkY14TI3bbNM6hnFc2XO8oStd7g+xEKcEnmEvffM2m0X5aIbRzcaO7tLZlpIrVl/GDeb/bHFancMnkpAa2jcOXJSyM6M6OCoqKio5sGzxVzyh/S0naz6kaa9jiaMlsqz0vZkCm9PLExUjthIBrRxHlfCyua10bRM6W1ZhEElMrmHbbDfWjEMrJK3NpVs20fs2sEnUYDUZttmetDdSjZtuX4mSbuMRKlLdxMq2dXAQgkpnGa3ecGnsArGuNekfXNs6dea6cWiEpH19CfN/fJsxESXmHLVlU9Wkw5mWfILPEmMHmLhzs0MdHCHEo0KIDiHE4q22lQsh3hJCrMp8d2W2CyHEXUKI1UKIhUKI3gknKioqKiWie1E6ubVx5tHoLA4+dJzIFx57ye3KrtXEpI6q+jFfb5txATMi97PKX7osg54NaTFB27BtK7Usow/ipvhFbIoY+pqmCM8bT+Up+yW9trsnXcQB0bto85emejPq3gSAxtnQa98Zidc4vfuBktgF6MnkHZlrt3UoykbM4NXkvnQGSudcBVvTtrWVX9vWGYw0VjpY1e4vmd1Ss6MjOI8Dx2y37QbgHSnlWOCdzO8AxwJjM1+XAqVN41dRUdlp8YbjPP/ZKmKJoZOTt7R+SpeooKwufcNfOv1X3BM4FH+kdyWikpi8a2nV1qHRfe3MNDXU48bOmhLq0YQ70sm85Q3bOjhVjWP5e/JomqNlJbP9QXQ0rdUH99peUVNPGxW0+gqXuhgId9t6AAyu3g7O2ORqDk98UDL9IX9b5nrXj95mu6tpGtemfsSyRO9zUgp31pmt37ZV0KX61zl004Mls1tqdqiDI6V8H+jZbvPJQFYU5u/AKVttf0Km+RRwCiHqhuREVVRUdhpSKcmLD/2Gk17bl3/f8wsSQyRjXxNZTattAmRyFMbVlGEkxurNAze1LZa1iQpW27eVaSi3GrjW/Cq2VaVrfJn0biIutVTVbrtcYzZomWFuJ9pRIin/ZII9fB8yxtQ7clBnjHCF9kXiLV+VxPRmTS2/iH8PQ/3UXvtk2TCq8NDlC5XEdtjXlc47qt1WX0ijEdTYTbR5SqeFE21fSUgaGda47fLYRLmaw+NzhvRBQkl2dASnL2qklNmF5TagJvNzPbBxq3EtmW3bIIS4VAgxVwgxt7Ozs7RnqqKiMuS8+/HHnN19HwmNkRN6HufTeV+W3KYvGKIh1Urc9XUIf5Khg6XG7xBeWDonI5FMcUPw28zb4/pe+84QcxjVNbtktpfqJvKY5jQM+t7LYA9wK/tufLQkdsOezdzN7cyM9VbRrTDruF7/LKbNpVHYbUk6+WfyCMprekdL9K56dCJFZ1tpKqneqvke02KPUFlm6rXvyfhPOXX9bX3MUobP7Ufx4/jlDK+wbbM95RpJPV20uUuvXF0KdkYHZwsyrYudVzxQSvmglHIvKeVeVVVVJTqzwunu7mb69OlMnz6d2tpa6uvrmT59Ok6nc0g7iauo7KrEv3wavUiiufJjDuURXtlQulyQLKs7Q5wZu4nQ5K81o2pHjCOFhmRb6RpftvkiJFKS4eW91XN9hhps0faS2Z4jZ/CS66I+9/kMVVgipbHd05YuA9c7eysla6wVRNEj/KVJro62LmO82EC1vbeTYalIOz2+9vUlsd3mjeAss6LV9C69l3oz1ljp/tZfRBtZUHYIZoN2m+2G8uFohaSztblktkvJzujgtGeXnjLfOzLbNwFbx0obMtt2KSoqKpg/fz7z58/nsssu49prr93yu0aj/J9DbaWgsjuRSKYw9yxlg2USxsqRHLTHMN5e2kayxMtUq7vCLJBjqB/19UOIRm+kVVePxVO66hbfqk/43HgF4+PLeu2LWOqoSHb0MUsZEu4WGsr6/kwKm2pwJkoTIQ90ph0ca0UfOSdC4NFWYAiX5mY/ceW9PGD4K3ZT76iVo3YkrbIcj9dTEttHN9/OuYaP+twXNddSnuwqWXl8Tescptt7l/2XVTcB4GtvLondUrMzOjgvA9nHhouAl7bafmGmmmo/wLvVUtZuQTKZ5JJLLmHSpEkcddRRhMPprPk1a9ZwzDHHMHPmTA4++GCWL09nvDc3N3P44YczdepUjjjiCDZsSH8wXHzxxVx22WXsu+++XH/99YwdO5bscl0qlWLMmDGoy3cquyLzN3q4OPJjVhzxCACn13XxbOJqVi0ubVPA+Or3OF33MY3ObZ/su62jqY6UTlk32LGOauHB5SrvtS9VVk+ldOMLliAnREoe9F3GhcHH+9ydsNZRLbuIxJR/gIr2pJ9bHTXD+9zvN1Rhi5bm88sUbsetrehTwNA+ciazkvcyXzdFecNSckjwTfbQ9r38JcvqqKWHLn8JkqtjIX7mvoljZW/nylU/Ku3UebzK2x0CdqiSsRDiaWAWUCmEaAFuAn4PPCuE+B6wHjgrM/w14DhgNRACvqPISTx2fO9tk06BfS6BWAieOrP3/unfhhnnQbAbnr1w233fKbw/zKpVq3j66ad56KGHOOuss3j++ec5//zzufTSS7n//vsZO3Ysn332GVdccQXvvvsuP/zhD7nooou46KKLePTRR7n66qt58cUXAWhpaeHjjz9Gq9XicDh46qmn+NGPfsTbb7/NtGnT2BmX71RUBmPuejcg2HePdDLk+OF11Gla+XTVpzBt/5LZHb3xBb6lX4BOd+s22+OOkdR53yMai2I0GPuZXTgJdzrtsGLYqF77dOWNJJp1dLa2YB+jbNPNSMCNhSiyrO86Do2zAevmKBs6OxheP6zPMYWS9G4iJrVU1PTdzDNqqsERWlISJWVbrJNWwx597hNCUOsw0eYtgZMR6sFAnKSt7+utczZgEVHWdHZQ7ci/b+FASG8LApD23n9HQ+1ETjI8xOGimlMVtTo07FAHR0p5bj+7juhjrASuLO0Z7VhGjhzJ9OnTgXQ7h+bmZgKBAB9//DFnnvm1oxWNRgH45JNPeOGFFwC44IILuP76rxMRzzzzTLTa9Hrqd7/7XU4++WR+9KMf8eijj/Kd7yjjG6qoDDU1Sx7hPstiXNb0g0lt0wQCmKF1YUntOiIb6TYNp3q77cHhh/OHtRHO6wnQVKu8gyN8mwhKE2WO3hGcxNRvM/6T0TyWdDK6j7nF4G5dTx2g7SMPBiAx5mgunZ/gu4EUfcdZCud9+0n8NdXA46a+c6s+nXwTt73VzIJYcpueTUUjJa5kNxF7Tb9DfpW8D+/mSuBe5ewC0Z6NGEkrJveFdsQ+PDzvWEZ6la+k8nduwA7oXY197q93mtnkKZ0GTylRe1ENFHExWAbeb60oKmKzPUbj1x+QWq2WcDhMKpXC6XQyf/78vI5ltX7dH6exsZGamhreffddPv/88377V6mo5EMgmuCJf/6DMROnc9S+04fEZkPPJ1Trvg6XC42WjfpROHy9c1SUQkpJZaKDjc7xvfZZRh/AQ+9oOMSfoqkE/WgNwVa6tFVY+4hUDCu3AYLNJbj5eDvSDo65ou+bnr1+D/6X6uD4sPK9qFZFnay3z+w3OuNwlpNkI92BqKIOjgx7MBAnZe3fwRktm+kKK5/35GlfTw2g70N/B6BszAHckgjz27jyfc/87c3YAWtl367qNfGH6fLEgX0Vt11qdsYcHJWtsNvtjBw5kueeew5If9guWLAAgAMOOIB//etfADz11FMcfHBvYaws3//+9zn//PO3ieyoqBSKlJLHH/wTV6y/hv1eO5YP3y5dqXSWaCJJY3wdfse2jobPOYHhsbUkS5RQ7/X7qRIeUo7eN58Gl4kG0UFX28Y+ZhbPV4znS9usPvdVW/XcoX+AstUvK2433J3O5+svD6bSLDhUs4BoxxrFbY/qeIsDjf3nNY2Ir+G3ukfxdCh7zf0pHd+JXUd3Q68FhC1EDRWUJdyK2oX0e6xTOrBV9e1QllsNmEUUt8ejuO1I9m9d2/fSV6NsY2JsEelFlF0L1cHZBXjqqad45JFHmDZtGpMmTeKll9I3k7/97W889thjTJ06lSeffJI777yz32OcdNJJBAIBdXlKRREWrNnIxV1/pr1sMhGNBftnfyy5zXUbNlAr3Iiaydtsj484lP+l9mJ9a2kqijo2pm/ihoreN4Aai4b3DddSveKfJbF9X+w4PhtxaZ/7tDodR2vnUd41V3G7aw17cGv827j6cXAcBsnfDX+gqkX5XlwXee/j2MTb/e6vwsMFurcJt69V1G53RMPs1AwMVWP6HZMwV+KUXsXFJZe5DmPv6H246nrnWgHokhGWGb/DuGblo+/zK0/g27FfUFvu7HN/3FZPHV14w6VV7C4F6hLVDuTmm2/e8nNTUxOLF29pycVPf/rTLT+PHDmSN954o9f8ESNG8O677/ba/vjjj/fatmDBAqZNm8Yee/SdQKeikg+LPnuXycQQJ/+Bd5e08vtPgjzRGWB0lW3wyQXSsepL9gCcI6dvs71s2kmc/2EFD/o09H17KI61qRrOj9zD4xNn9dqnM5rp0JSj8ysfwYnG43gCQeoc5n7HuLUVGCPKVxStYjiPcyK/KOu7HYPGVEYYI5qgwk5lKoVDekmYK/sdYitPJ+JGvMqWivtbV3O45kuqTJP7H2StpAIfPYEo1QP8XfKlKxADoLqsnzwug4UwJrQh5VWz10UdfMYUqvqxLex1lIsAqzw+nJb+/y47I2oE5xvA73//e04//XR+97vf7ehTUdkNSKUk96xv5Lqmf2MddQD7HnYiraKKVxeUVrWhw+NnYWoU1WO27bM7osICSFq6SlPKuskbpQMXddXbpxin6dHXYA1tVtxuz+Z1rDRexD7+//U7JqivwBYrQauI7tVMsngHrFLyapwYIt2Kmo0Hu9GRQlr7r/J0VKUTcZM+ZR0c3dq3edTwR6oM/UcqUuVjWCRH0q1w2fQey+7it/rHsZv0/Y7x6coxRpX/W9ds+C9HWtf2KTAIYHCmHUpPh/Lv8VKjOjjfAG644QbWr1/PQQcdtKNPRWU3YE1ngDZfhP2njAONhmq7ie+UL6Z2kbKVJdvzXmoaV9n+jN6xbSmt02LgfdOPmbSwNFL21nVvcrXhFZyWvm8+QXM9FXHlnTtf1yY0QmJxVPQ7JmqqxJ5UPifk5I13cKu8a8AxAV05ppiyDo6vK30T1Zb17UwC6LP7gspGrpL+TlJS4KzsP8k4OuVcTov9hs6osnmMte4vmaLbiKYfJwMgpC/HEt++dWPxHN92N2do3+t3v7lmLPNSY+nx7Xpdxb+RDs6umCy1K6Fe392b5kUf8ZT+Vva1fb08caRpBSd6niKVKN06/YbuYCZa05uwzok1UBoJ/ab2tzhP+3a/0YyErZ5K2UMymVTUbqgnfbO3lPddqg0QtTUQSBkUzwmxJnoI6XuXpm9NxKh8wq2/uw0Ao71/BwedAbdwEI8oWzItg524sVFe1vd7DKDSll7G6QpEFbVtjvcQ0LkGHBMzVWBPupX9fE2lcCTdRI39R8zsEw7j9NivWSdLUCZYYr5xDo7JZKK7u1u9CZcIKSXd3d2YTL17uajsHkTWfsKB2iU01n79gSeG74tFRGlZrnzCa5abu37MJZHH+9znMzdSEStN5xZbpA2Pof8P964Rx3Ft/Aq6/cqWa8c86Zu9o6rv0mGA1ZN/xNGx2+kOxhS1XZb0EDMNnG/xWdPl/Dh2maKfpZusE/lW9Ha0jXsNOO6ymn/xiOnCAcfkiy7chVs4MOr6j85UJdp43XADlua3FLVtS7iJGPuP1AFsaDiJvyeOwh9VsFow3IOWFClr/39rq1GH1aCl3VcCgcMS841LMm5oaKClpUVtVVBCTCYTDQ39fyir7NpYuxbg1pTj2koErnbyofAVdC3/gOGTlVcU9gajTJRrWW7uW4sj7mii2vcO8WgYvVG55E8AR6KLLmv/iaeGhum8mkpwaSBBtVM5uyl/2sFxVfWvFJxNDO30R6npo0FkIchkHIf0k7IMfMOV1RNZmBR4w3GcFmUannZGNKySDbhcA0czKu0mlm3u3TupGAzRbvxa54BjrLYyJmg2sMGrYFJ5Mo5d+kkM4lAGRh3DU1/U8V1/dMBcnXxIeFvRAcLW/7IcqRT/0f2cRRuOJt1oYNfhG+fg6PV6Ro4cuaNPQ0VFEcKxJI//4zHM/maOPPsaGmpL24IjEk8yIrqCrvLJbH0LGt40ji7pQG7+qiR2N7esZYKIo6vsu05KWzkabYukbcMK6sdOV8xuMpmiUvbQPoD4W61Fsq9Yhqe9ERqcitleoR3HCnEyFw/QAqIxsYEn9bcRWf8bqO9fvyUf/D1t2IVEWAdYJgJGaDo5Szub7p49cVr6bjGQL4YN73O+9jMqrUcNOO6Y8OscHJhPutOPMtxnuxqSMWYMMEZYKkiiQQSUe0CWUT9L5Cgi9oFbMFSbBU2ilW6PT7FqRX/3ZlyA3jnA30+joYZu1pdoCbiUfOOWqFRUdiceeuJRvrf+ei52/43wg98qmdhdlrUtmxktNpMatm0lk0arocUwkkSoNJVMPRtXAFBWN7bP/aYRe3Nf4kRaAsoq6/b0dKEngeinJxNArS7AM8bfYljbv3ZLIXwsZvC0/fsDjnFZ9BysXUy8UznBve6YgR/GriLU2L9wKMDwyEpu1z9EoE0528M2vcE1uhewmwd+9h6eWMcx8iNiCeVyjxbHagm4BpHR0GjxCTv6qHLJ1SGtnROit9A24qQBx43o+ZA5xp8QaVVOtbvNMYMjondA3fQBxwV0FZhLUa1XYlQHR0VlF2VDV5DjNvwZv7mBpdN+QU2yjU8+690RWEk2bm7j/eQUbKP367Xvn2P/wpWJH5fEbqxzNQCVjX3fgMpHTOIPiXNpTgy8tJEvbVEj46JP4J58cb9jXNXp5diUT9ky2pivjTrbwA6bqyatfJvwKlfF1RnT80rqAMy1AzfwNLvSeUlht3K2deEuPBrH4E00LZU4RRCPUp3Uk3Fm+V9mvHbw1xLQOTHHlKtmyiYsZxOY+8Oa0f+Je9sUs90REayR9VS4nAOOi5iqKEsoX8FValQHR0VlF+XfHy+mjXK0h/yY8Sf9lLMtD3LXYmVyIfpjYaCM7yZ/QfW0o3vtG13joCsQxRtSvpJqQ9zOW+yLparvMH6N3YRdhHB3Kluu3e6LkEJDtatvwTsAncFENw60AWV1WW7rvpYrAwOXapvKKoijhYBygnvB9jXsp1lKhWlgJ8NannZw4n7llmuMMTfBQfJgADTWdH6Qv0cZ28lAJz9PPcSUxKJBx66xzWRlSrkcw8Til3nZcCN1Ws+A47ICh0m/cn9r3ep0heBgzlXCXEUFHoJKJjgPAaqDo6KyCyKl5IVlQR4f/VecB1yMVqvlW3vuwdzmHrxBZUtYt2ZVm5+mSit6be+PjskWN4/p/0DbImWXagDeT83gz65fgbbv5EqDTsP/jDew98o/KWpXrnuP23QPU2sYuILEo63AGFHuxiNTKcpTbhLmQXKqhKBHuNCHlXMy7Gtf41+GW6gyDbz8U5ZxcJIB5ZZrzAkvUb1z0HH6soyD41bmmvt70s6pzjZwYjXAnJE/4Y7EmYrYBUh0r2OqZh1Ou2PAcfqydBJyKqhcJKV6/cv8QPtKvyrGWfxVe/J5ag96FK7WKzWqg6OisguyvitIwN3BoeO+vgEe1qjhLf1P2PjOfSWze+HGG/lzom9F7OF11RymXUCoWflS8VZ3gHrnwFVCbl0V5rBy4XsAU/t8vq17l3L7wEmdQUMl1phyTobf14NJxME2cKIvwFrDeDpTdsVsp0I9xKUWp2vgm73BVk5KCkRYuRuuLekjZnAOOs7oqqNFVhIMBhSxG/Sk/3aGssFbETgtevyRBHGFtIcSwW7iUotrkOuN0UECDSKi3PXWhTrpEU6shoGFCz0Tz+fH8SsUlyMoNaqDo6KyC7Jwwed8abyMo8TnW7ZNHjMSs4ijWa18BAWy3bybMZr7FkIbNqyRbmmHzpWK277XezmXef864JiAqRZHTNllIk2gFR9WdKaBHZwPGi7l1/ISxex6u9JLbbocHJxH63/DPXrlNGE04R682NAPoAeTHqjlO+a/8KbtFMVsnyju4v3GywcdZxwzi4Oid7HB2HfSeb5EfOkEWmPZ4BGcAzv/xefGK/AodbMP9eDBSvkgy0RoNDxgu4qPtfsoYxcwxNwEtM5Bc54qbOml754SRodLgergqKjsggSXv4tGSKrH7b1lm16nZXXZ3gz3fQklELJs6eihgQ5k5fg+92s1gnZdHaaAso0ng5E4tbILnWUQpVfrMKpSXciUcorCxkgHHu3gN71Y9TQ+DA1XTFE4mFkyMTgGd3AqrAZFn6x1UTc+TW4RIY9tLJuiyugOJVOSlogBs33w6+3K6O64Q8q87mjGwbHkcL0tei3VwoPPo8zSnCbixksZJv3g7R/mVZ7EvKRyLWUtcTdhw+CJ+cM88/jKeCly4xeK2R4KdloHRwjRLIRYJISYL4SYm9lWLoR4SwixKvNd2ZIJFZVdhJruz+nR1yLKt9V0SgybiY0ggdYVitvs3LASrZAYa/t2cAB8pnpcMWWridrbN2EScbSugRM7hb0eg0hskftXAmu0k4B+8BvucG03J2k+wu1RpnVBp6jgtvi5GOomDjr2CP+LPBK9TjFFYWPcQ0g7cD7IFtt8zrSeNxSxG+jezPXapxmR2jDoWLMmwROGP1C/4WVFbK+sPpojo7djrey/LUYWfSZPJ+BRZklyk7aBhdoBOphvxWhdFxV+hSKkUmJL+YgZB27JAVBWZsclAsR9CnePLzE7rYOT4TAp5XQpZVa3+wbgHSnlWOCdzO8qKjscKSWBIaowaPNGmJBahbuitySZfXRa6bd16ceK2/W3rgKgvKH/8mGvcxIbkpXIlHL6JO7WdQCYKgcWQouNOIhfxS+mNaic7VhKEDQNLmI3MrqMuwz34Gtbq4jdVip5MHkituqmQce6NBGmatbiCyjTm+kB8/d4vuLSnMYeHnmL44P/UcRuoGMdl+teoS6VwzKj1sB+miWU+VYpYrsrpme1bMBp678PVRajPZ2nE/Qoc7P/V9lFPOT4YU5jT++6jxujf1HELsCxhsf5uO6iQceZnenIViKwa2nh7OwOzvacDPw98/PfgVN23KmoqKTp8EU458FPmXzTmzx/z8+JhJRJfOyP5atXUyd6MDTO7LVv5ISZ/DNxGMtCTsXtrotYeUEehr2+fzG0lgnf46zojXjCyjl7oY5mAOw1Azs4ZY1TeTJ5FJsjg+Qy5IiUktOjNzF7j5sGHWtypJWOQz3KlKlH3JtoFO2U99PBfGs0mT5CPoUiV3NjI3C7puY0Nm50Yk8pI+4YzjgMRnsOatxC4Bd29BFlImaVLW9xtm4OdtPg4v6WzM0+5lfmZu8OxXHl8HcGSJrLceInHFNgGVYIWsI6rPbBF0KENfM3CaoOjlJI4H9CiHlCiOzjRI2UMvsJ0gb00k8XQlwqhJgrhJir9ptSGQp+98LHLGhxc96e1ZzScR8rnri6pPYWt0f4VeK7VM04ode+CruVu60/5O2g8u1IPomM4OHynyAs/Ye0G13pfIwNPQoJsAHrk5U8kjiW8ob+l8YAqm16xomNBDqUkZT3hRMkUpKKwZI/+VqELepVJsl53Non+J/hZ1iMg99w9Y70zcfvVsC2lOwfnM1obW7OkjRV4MSviKJwzJ/OaTE7Bq9kAghq7RjinqLtAoxrfYXv694YXGAQKKsewcvJ/elKWos3LCV3d1zEGdEXcxouLBW48ONWINk30raSa+WTDBc53CcNViIY0UWUkwQYCnZmB+cgKeWewLHAlUKIQ7beKdMLzr0WnaWUD0op95JS7lVVVdq+PCoqH6/q4NK1V/Of+qe59ay9mV1+FtPanqd7hfJLRFm+aEsxt+o0TMMm9Ll/8jAbPS3LQcFlIoDu7g6aygcu1W6yxXjD8DPkV/9QzO4S2cS9xu9tyX3ojyqbnjcMN1C75hlF7Pa0NfOo/nbGRRYOOtZZmVGZVShHQRvpxiPsOd1wzfZ0RCHiKd7BiYW83C7uYnrok5zGC2s5ZhHD4/UUbTue0dOxOgdP9AWI6B2YE8pEjwwxLwFtbonVpsoRXCevYaVuYKXnnIiHqJMdWPS55U9prBXoRRKPp/hS8eCmJfxA91+qdLktbX5gO4alqaai7Q4lO62DI6XclPneAfwH2AdoF0LUAWS+71oZTyq7HQvf+ScTNBsZs186mjL2zN8QlEY6Z5dOi8a0+VMOrPD3u/9MMZt/BC8j0jN4smauJFOSv/qv4yp33xo4Weprahkp2pCdyxWzHfa0U59Db0GT0Yhb2BEKKQoHOzdwuHY+5brBK3XKXNUkpAYZVCZqbIj2EMwx0ddSNZwPk5NwxwavwhkMXyYKpLUOnniaHpdZHlNAcC8R8pCSAocrtwhOl3UsLancznMwTAkPEV3uWkIuiwF3oPgoSiqYduqEObfXYcgs3wUViNZlHWKTc4BO4lvxWuOPeSF5YNF2h5Kd0sERQliFEGXZn4GjgMXAy0A2I+oi4KUdc4YqKuAOxhi1+RX8+kr0U88AYMSwWj4yH0ZT2xsQ9ihu0xOKcWPsLs71PdbvGFN9uvKmc818xey2e0PU0wGOxgHHWU0G2kQlWt8mxWxf1HoLfw3fmNNYt6ZcMUXhiCe9TJNtSTAQGq2W7+l+x9tlpypi2xz3ENLnViTqGDaW8+M3ssqUWyXOQAQzjorOllv0OzT+ZPaM3E8ng1eaDcac2u8wMfYYdsvAUcIsn4y7nqsiV5BKFV89Zkn6ieWgoJzlxcTlHLvxz0XbzQoMZltPDIZm5MH8IPYjOpL9tw7JlVgm2mh1Df7+hrQcgTeg3NLzULBTOjikc2s+FEIsAD4H/iulfAP4PfAtIcQq4MjM7yoqO4T/fbmSQ8V8YuNPBs3XT8+pqeeyOVXO+jVLFbe5uqWD4ZpONDX9lw9XjZwGgH/jYsXsdm5uxigS6CoH1+Dw6KowR5Qr1S5LdBMy5nbDDegrMCvU6TnmSz/hllUMy2l8h30SG6KDV+Hkgi2ZW8sCAItBi1Gnwa2AFk4oc8M15ZgH43C46MGOW4Gkck8ojslsRaPJrSO802IgJcEXKbL3mZSUST9JozP3KUKHIVZ8gnO2Ekufg4IygL12FG+m9qEzlltS8kAkA10EpRGnPbfI1Wmb/sDrmmuUSXAeIgbPYNsBSCnXAtP62N4NHDH0Z6Si0hv/gpcwigSGfc/dZvvU/Y/igPf1/NJdy/cVttm+Lp0P4mjqv8qlqbGBDulEdixTzG62/NlaPXjycsBUy7Dgl4rYTaYk5akeNlj2GnwwEDFWMcy/ThHbqUwTSUdFbk+4s3QLMXZ1A3sPOnYw/pT6NpNrx+R0JCEEL+h/ReeamcADRdnNVgaZcxC8A6jQhviJ7lnYLGDK4OX0A7FnyxPU6JKkA/aDM9n9Dq8b/orHMxOnJbe/UX8cmHqIMxobODzH8WG9A1O8+Pwfj7QyL7kPzkE0nrI49CkO0Swk0WMBiiskSIV99Eg75dbcGvRqTXbK8dMdjNJgUMaRLzU7awRHRWWnJhJP8nD7eP7VdAuiYdub7zCXhVGVVj5e1a64onBkUzoq4xrRv4Nj0mvZoB2O1bdaObtdaXVi57DBIzid5XvymZygyGvv8fopFwGkLbcb2NJhp3NT4nuKiN55E1pWMRydKbdqmSOi73JmoPjk6lgixfPRvfHX7pvzHLsIYwsXL7C4yrE/J0d/k5MjC+Awwg91L2Lt/Kpo29O877IfC3Ieb9fGmaDZSKCnuHyUaDJFR8yIJYdy6SwxgxNr0leUXYBWyx5cGf8RpurROY3XJiM8Yfg9w1rfKdr2qyN/weHxP+Ew5xYN0tiqsIgobq8yid1DgergqKgUwBfNPbTFzVTvdxb0Ueny7doW/rL+dOKbcv/AzgV993Ji6BHlAzsacyrP5XHt6YrZXZGq517Owlo1+I1v86gzuSpyOaF48aFsd0fasdI5cosOxOv25PX4dIIKhNFfMZ/KlY67cx6fMFXgVEATxu31sLdYTq0+nPOcoN6JUYGS6faYmQVyDC57bjkeRlt6aUUq0OHakvQR0+ee6GvMlMeHihTc87et5Qbd0zTI3DWMEkYXdukvOv8n22oiVx0cTA6SaNAo0HDTHYxhM5vR5rgkmE1w9hfpUA4lqoOjolIASxd9xQ/0/2W/2r4/HMaMm4RDBGldNFtRu/dFjuKxpj9tk/PTF5Hhs3jaO0WRBEyAr6LDeMV1IRgGj2bUOdJJoq2e3G/Q/dEe1XFL/Dw0I/bLaXy9KcIszXy6OoqPZnQFolRY8xANtFZiFRFCweKe7IObV/Cc8TeMDuUeFYnqXVgTnqLsAjhbP+Q0w6eYB+kuvQWtDj9WtArccMtSPhI59EXKYsnkCUWLFNwLt67kMt0rVAtPznM6aw7mheRBRef/jJ3/ez4wXLOlt9agCIFfo4zA4eHNf+Isw0c5j8+qGYeU0FsaIlQHp4RIKXl14Wb+Pa+l+EQ4lUF5Y8FGnrz3VuY8emNaB6aEmNa+wc+1T2HR9B0pmDRhIq2ynHhzbnoiueCLxFkWLEOOPGjQsaOcgunJJXS1KdP4UnavYXxZJKexI0UrC43fI77ohaLtbo6aeTh5PPbG3CqEGhMbedxwO5HmeUXbvqrrt5wffTrn8dqydLmtp7M4NeOvFX1zy4MBiJvKFVEUntT2Itdon89rjl/jQBct8oabiGElTNKcu4Nj3dI+oLik8ogvk1idi4JyBs/oE/lT4ix6ikzs1oa7QIA9x2UigJDWoYjA4X7e15msac55vKV+Eg8kjqczoUxz1aFAdXBKyNJX7+Lpfz3BT59bwEUPvIdHoc63Kr257835VD9/Chd03M6sDXdjfvhQfIteL4mtSDxJvW8+PaZGsPe9dFJVZmSpdg9c3fMVs7u+vYeLtW8wyTh4SH6M0cszxt/iX/o/RWz/zH8bl3ty64FTUTUMuwgT6S7euQp0baJJtFJly+0GYK9KN0sMu4tvmTAluZiaPJ7qDZl2Df6e4irIIt7039dWnps+CYC7fAbvJGcUrShsjHkI5NhJPEtIZ8cQLy5qFQt58UoLmHMvN7eV1/FpagI9ydzKyvu1HcgqKOfu4DjNeixEcAeKi1JqI258oiznZSKAiN6JpViBw0QUswznFTGz1o3nT/ICmlO7joCu6uCUiJinjfHzfs1llvd48iQn9/ZcwhNPPrqjT2u3ZM6KDv42ew3S2UTq1If46rT32SCrSb14JcRzizrkw1fr3cwQK4nWDVzj4q6YQXmiHbzKaMJ0rl/OzfonGBMfvJtw9fBxpKQg0l58onEgmqBGdhG35VYuXVVVQ1AakZ6Wom2Pbn6ad4w/xaTL7aPKWZWuRkn6inNwItEYLuknZcmtfBdAM/IQ9ov8jU3GMUXZTgbSEQVbjvokAO2jTuNniUu35HQUiinhJaLPTWAwy31Nd3Kt7pdF2fWIMqZFH6ZlzLmDD84gLC6u1P+Wecbck7H7IpVxcOzlud+4R3a8w1LTd0m0FScFke7cnp9D+f7Ia/l17MLiEulD6SVFOUDble0RQKM1QdCrTP+voUB1cErExrmvoiOJOOQnHLz3TEyWMo7ZdBfvLi0+N0DlayLxJL98cTF1VRVMvvpZNNPOYsbUaXw2889cELqWTzcq02F5a1Yv+4oK4ccx/pCBB446jPsTJ9KlgOIpQKA17diUD+9fAydLfaWTVioQnuai7bZ1dOIUQYRzYJG/LCaDjk5RgS5YfBRFH2rHI1yD5hxlcTqdBKQZWaSasaerDY2QaGy5LxO5XE7aqKArVFwUJRXsJiUFzjxuuBVWAyDpKfK9Zk16iRmcec0ps5XhDhW3BO/JzHfmmouSwWU1FK3/k4z48EszTlvuvaWy0Z6wt7j8H3PcR1iXn0MZq5nKwmRjUYn0MpRRUM7DwQF4M3YR+7c+UbDdoWZAB0cI8XIOX48P0bnuUsRWvkO3LGPKzINBb8J23K8Zp9nEl68+pEgJq0qaZz5fz1X+O/nzgSmMuq9vgmcdezgdZRO4d84axUu1fRsXk0SDZfTAsuVNE2by+8S5zPcq0JQPkF3paIyxeuygY/VaDW3aWsz+4htP9rSmNXDMlQN3894at64aS7h4sT9ztBOvLvdlCyEE3RoX+lBxlTW+7rRzps8jD6bCoudK7YuYNr5flO3PbEdwrbgOnT73vIwR/i9ZbryY+PpPi7Jtlz4SxtyXLQD2jHzGz5P3E08W7tglmj/lbv1d1Mj8HIY/Rn7NaZv/WLBdgNeHXcl+iQex5JpYDVhd2fyf4hycOfoDWVmWXwRqeHIjZ2jfK6pVRCTkp0fa0OaoWA2AEAQ0DvTR4hPKh4rBIjgTgD8N8PVnlFC12t2QktquT1lsnI4jU4Whn3wK3rKxHBt4ntnLd50s9J2ZWCLFktnPcI5uDlMt237QmPRazttnOCev+zWeV36hmE0pJY+7p3Dj+NegcmBHY3xtGSaitDUro2hs8q3Dq3GC2ZnTeK+5EVe0+OWxYKY7t702d2GxRY5ZvK/Zp2jbZfFuwsbcl4kA7nH8hH9azivKricU47PUHhhzKIvPYjbquVL3EtXtxTk4q5K1LLTl1/PHZndiEnEiRZRMJ5Mpjoj+mUUjLhp88FY0xtfybd27uH2F5+GkOldwgvZTHKb8+mmViRDlseKi4t5QHKvFklNj0yxWZ9oxSAaLS3C+i2+ztPr4vOaM8n7CH/UP4PEUbrvLOY09ow8SaTggr3khvRNzfPdZorpRSvneAF9zgF8PwXnuUkR9HbQly/AO22oJQwish1zJJM16PppTmuTXbxpvLmnj1OjLRCx1iEmn9dp/zr7DsYkY+oVPQ7J4KXmANl+ETn+UPYbX9ql/szVlJj33WB/mmK8uL9qulJKK6AY85uE5z1lQ/21+JK4vOoK1UjZwfeIHOIdPyXnOqsYz+Wv0xKLsSilxpdzEzLlHUQB6XNNZGMk9Qbcv1uuaODv2f1ia8nPSPBonunBxT/W1PZ+zt6E5rzk2V/r1xv2FN/v0RRJskhWYnPmpAmszWjiBnsKdq2wllM2V399aCcG9A1se5jzt23nNEZZMVDFURDQjlSIQCuZeIp7BkGnrECjCmc3mapXnaTtqcGFTQI5gqBjQwZFSPgsghOj3ky07RuVrlvmMHBv9HfqZF2yzXTftbF6YeCePbahkkwIaId90Zn/wPvtrl2LY/zLQ9u46Ul1mYmXt8VgTblKri1f+BFjU3MGT+ts4SMzPabzXvgeV8VaIFFf10B2McX7kej7d846c55jrJzEnNBJ/tDjnbkXYzke2Y9DZcl+vr3WYSIR9hMKFv889oTj/F7+IjU35CRZONmxif+9rBduF9PUGqLDldwPwa50Yiwzhn99zD+dEnstrjj3TTkIGC3eufB3N/FD7AvXkF2HecsMtoqO4DPUQk1qcDmde8xJGF2UpX1HL/jN9b7MXeUZZdUaeNJzDEu2Egu3GOpazQHM+ewfy08oyZdpohIu43rolz3Gv/q+4zPlFzBKmChzSR0QBEc+hINck43uFEJ8LIa4QQuSXEfUNZMnm9M1scv12l8pgYe8jz0Ki4bm5yuiTfFNZ0xlgbNurpNCimdH/ckTjvifRI224P3tKEbvtKz/nYO1ihpfl9q8jatPPBtFNi4qyu64rSAQjNQ2Dt0rI0mQXnKL5kPbVxcnomzoWsJ8lv4ThadF5LDF9D/fKwnWAOvxRXkvth6Yxv1XwmZEvuEneRzxc+JP9+JUP8IbxBiz6/OowwoZyLIniQvhlKR9xY37JnzqTjTAGRLhw5yratoKf6P9NVZ55MFn9mLC38OiRCLvxUIbFmF97xJTJhRM/oSISbm0pH3FD/re1V8ov5jM5eMJ/fwTc6eulz+PBAcDmTEfrYkVE6wwdCzlUswCXLb8S+9bhJ/Fw8viiq/WGipz+e6WUBwPnAY3APCHEP4UQ3yrpme3CTP/4Kv5gepwGV29BpEYb3FP5Ah2fPUdSIZXZbyL/+XITbbKCyLQLYYBEuSMmNTJbzsSy/l1IFi+2mNqUbiJpGJ5b80fHyBkAdK+eW5TdzvXL+LnuKcbqc193H+408lfDvSSXv1GU7TN7HuCK8H15zbFVpZfSAp2FJzl3d2xmf80Sak35RaC0GT0aT3vhZermwEYqRAChyc/BiRvLKUsWHq2TqSQO6SNpzu+mB/CS/niWaccVbDuaEbyz5NhoM4vVVUVAmogE/QXbDqb0bNTU55UHAxCsnMbbqZl4ggXKQaRS2GQg78RqgGHGCNpA4Yn02RYThhw7iWexZPJ/UkXk/8hQD27Kcm60mSU86lv8M3lE0QKHQ0XO/71SylXAL4GfAYcCdwkhlgsheic/fJORkhG+Lym36Pr+Z9WbOTT1GcdF/suHq4tbq++TaAA2FFdJsbOTSkn+89Um1o0+D8upfx1wbJlJz4raE3lOexwkitPEkVJS7lmMT1cB9tw0YUaOHEOXtBNpKa4nVWLjPH6g+y81edzsG+uq6ZR2Ut1rC7abSkkqkp1ELLm93iyuunRybrQIsT+58TOeNtzKsHh+xzA40+fq6yrcwTFGu/HrnHnP+2jsdRwcu6vgJZOArwedSIE198qxLP8uv5R3NfkljW5NPNPyIJvPkytlw6cxOfooi8sKt/2E83J+bv9d3vN8Y07mmvhVuMOFRXBkxIMGCXkoKGe5outWfh64rSC7ABFf+npb8hAYBNA4G/m25nbmmvYv2LY27MYtbdhNuVfqAVQak4wWm/D4AgXbHkpyigcKIaYC3wGOB94CTpRSfimEGAZ8AhSvyb6bkOhag00GiFX1k7YkBMY9z+GAD/7Irz75kkPHHa2M4WQcPvgTqY/uJJlIcoL933jCMU60LGHYhP05/eAZOHJt6FaI+ZTkraVtzJ67iKktT3NA8nOqhQfpGI7toB/AzIsVs/VFcw/l3iWcceQJOY2vmXok//fqMA4LamnMo7XQ9jR3h5iQWo2/fAr2HJ80h1dYuTb1fSZbJ3Fp4aahew0AuqrcReTKTHrWilpsRZSKd/nD1NKNz16f17yaqir80oz0Fu5kJDzp6hhXbW76O1lsFWmxv1B34RVklriboD7/KEqZ3Uk0tRlfOFHQ/5uvq5UyQJdP+W6GcouOLnfhy2PZiEA+gneQrlg06TVFKbV7QnGc5vyiCfB1k0pvuLDobCTgISqtYMnfoUwYHdgCG5FS5h15Akj409c723IiZ3QG2q3jcUbzv15bDhFzE9TY0eShoAxQ3/Ee7xivY3bnONgjv8+EHUGuEZy/AV8B06SUV0opvwSQUm4mHdVRydC+8C0AjKMP7neMbvq5aJA4Vr+oTI+qRBSeOR/m/I634lP5QexH1NiNHDqmgh/4/sbJH5/GT26/i3tmry5Jcti89T0cf9cHXPmPL7im+UrOTbxI2DKMVzmYFd1xnpvbUrSE/Nb8d+4qnjH8lmNbc+v0PGt8FSaiLP+0uMTThRu7aZFVaEcfmvMcrUawofZIZvsairJtCzTTra0GfX59YNzGehzhwp2MjraNGEQSnSs/J8Ok1xYt9if97aSkwOzML3rkqEqPj3kLXz4oS7qJmfK/6Y1MNnOL7hHc7esKstupqeK06M1ER+T+HstyWc/t3Om5uiC7AIR78EszZZb8ew39Xv8I41ry62G1NVd33syp8VfznlfnXcBi43cR6z8syG6PoY7p0YfoGnVK3nPT+T8BwgV+prZYJnB/4kQcTmfec08WHzC8++OC7AJ4hZ02ff6fSZZM/k+0yA7uQ8WAERwhhF1K6ZNS9vpvE0IMl1JukFI+WbrT2/UIrZhNm3QxddoAORoVowlWzeCE9o94fVErZ++de+lvL6SEl66ClW/wq/h3WDjsTO48ezpNlRlxuY5XiP7zAh7w3MJNb2/kmLkn85uTJ3PIuOL7iXhCMf7wxnKe/3wtlXYbfz13L2rM96GpGMnEitGMTiS5651V3DN7Na89OZeHDo2iGzYVTIXnqUfiSRJLX8YiojDtzJzmjKq0ckXZ+3zr88fgwP3AUZizsaAlwD/5OYuPzC/qNr1ag3fpO0h/E6IsvxJcyCwTxTbidYwg31tu2Dac8u45aSdYl3/4ytuWvlFbq5vynvuK5RT0BheT8p6ZRhdqx6OxU95HhdxAuCprOTb6O0517s/MAuymUpKPkhOxu6bnPbcSD4fr3mFZxzoYmX8+THdUw5dyHGUV+Tl1AEmTC4fHV3BE4T9Vl/Np53G8U8Dc/VnAGn+BOYVSsldiHnGRu+ZQFluZHZuIEPMXlo+SjTrlq6AMgKUcB0FaAxEs5ba8p68wT+OOhImL8+lYn+HM8DOsYjjww7znAtzquJlUCk7Jc15W4DBeZIPToWKwCM6c7A9CiO3rbF9U+mRyQQhxjBBihRBitRDihh1xDgPxSXQUr5tPpNox8FOQZb/vsMkwkpfnFfaktzUbzeP5U/IcVg4/m6cv2fdr5wagegLGy95FO/Zb3KJ/jGtiD3Lxo5/yw6e/osNXWE5KMiX597wWjvjTe3w49yveK/8dsw9exonThqEddyRUjAbAqNNy3dF7cMspU1i0YjXyydPg+UuK0mV5Z1kHxyXnELYNh8bcFECFEMiRhwGQWPVuwbYXbexh0jAHOm1+iacz7AH+Im/Hu7SwUvVWXwSHDJBw5l5BlWXdyHM5OPY3ErmtRvdidWoY58V+jmNsfsJzAAuqT+HVROF9gkyRTrza/BIwAUwGPZuMo9kULmxJ1heJc138B7SMzr0vUhZrJn8l4ilMzDPRupjTNO9Tbigg4mmpwC5ChMKF/V93hyQaa/7LcgAhrR1jrLDkahkLYiSOLCAPxurKJtwWVj0m18zhbv2dVGryr7jTWivQCInPXVguZczbRoU+ikmfX6k2QFTvwJwovErQHYzjsub//6G1pv8fi5EjGEoG+6Te2pXf/p2fv5tfJEIILXAPcCwwEThXCFF4nZ7C+CNxbuk6lM1TBhd2EzMvYsUBf+Sj5gAbe0IF2/SGE5y9YAYv28/hgQtmYjH0cSMz2eHcp+GAH3LiBCfXHDGeN5e0ccSf3uN3ry3L2X4wmuCl+Zs45q/v89PnFnCOZS5zbL+iLrkZY9Xofuedv98ITjtkBrfEzoVVb8JX/yj05TLniy85QLsU457nDiq0tzUTpu5Du3TiWfxmQXYTyRQXt93C78P561rWjZpMXGrxrC+sVHxdZ5BZsb/Qc/Bv8p5bWdPAplQ5rb7CZN2bA1rm66ZTVp5nngDQYAOLdxWkCgvh3635Ni/VXVPQ3FNN8xi5+b8Fze0KpJ/qK/PUwAG2RF7ivsJC+M6W2fzZcD/l1vwdUk0mMdnTXZhzdUjHk5wkClNhjugdmAvscJ1NthV5dBLPYsxUIMkCBfdE5zJO0H6Gw5J/R/L48AP5VfxiPLHCboUnrfwFD+ty17XaxrbBia1Q/Z9QD3f4fsr+iS/yn5vpXVWMHMFQMth/kezn575+Hwr2AVZLKdcCCCH+BZwM+ao0FceG7hALP3qVSt/SzBtMok1GWN8VgNTRHDelLqfjnDy9npfeepeXvmrhqiMKKO989VpeaWukw78Hz19+wMBhVo0WjroFXSrFNRoNZzT08MZ7H3HbhwkeeH8tY6ttTG90UmM3UWbUUBVYji4eoNM8iuaIlebuIJ+t6yGWSLFvRZiPxjxPfctrUL8XnPbglqhNf/z0qPGcvOI05nm/YMabv0Az5kiw53adsnQHopStexONTsL0c/Kae8DYKt5KTeHolg8hlYI8y39XdQSYJlaBLbfy8K0ZV1/BOlmLoaOwt+m67nTD0KZqZ95zGx0artC+iGcZNB6YnyQ8gLX1U06xuhHimLznzgq/zW9Svyfq+RbG8vxyeKSUfBqsZczk3Ptfbc0p8l3s3R7SRZ/5EVn3CQuN32N98BEgv0RKR2U6gpPtCJ43oW7C0oDVWpb3VH3mZh90d0BjU97zDw/8l2br1LznQVpR2BUqLKnb7+7EDGht+Ts46C1E0SMihSVXJ4M9pKTA7so/Umisn8aTSS/7xguLFJriXtp0+X0GZkmaXDhYSiiWxJqndpAMdDBVrqBZX0BSuM7I/WU/ZL1mDwbSKV+35HM6lr4PiQgr6k4mprVy2B7VjK7KfymvGAa7MtVCiB+TjtZkfybze/FJHPlTD2xdM9oCbBMDF0JcCumCleHDi8htGYBVHX42f/4iJ+i2fUK0y+HcefTZzBieW6i1se0t3jJez1Vz/4A8fGx+6+brPoC5j7I5fjaXHnIc0xqduc3L3Njrlz/O99qe5sL6yXxlOYBFAQefL7PxfHgsRhlhnvHydJ4LsIwmNhtGcuy4Yxl10BnsbViP9vF3YdbP4eCfgHbwf3CDTsOfzt6Tq+/5Pq+JGzC89lM4Jz/xvf98tYlHE0dx4Tnn0VSe33KNzaijpXxfLN4PoG0hDJue1/wVa9Zyiuiiuyn/1mtOi4EvdCOY4V2V91wA3ao3udfwAjX6A4D8njQbKhxco3uBtWusUICDc2DXczTKVuCnec/Vu9LOgadtPTV5Ojj+cJRjk+8xVncM6WBtfkSMFdT7CyuPj7jbsYswNrsz77lGo5luaSceKSwqq4104xF26grIg9HUTeavidPYN5V/kjBAWQGNNrOELfXInmYaUjLvyhx/JEZ7qgmdI/+8I4TgdeOxtGpGc3j+syHUgxcrzgLyYFyGFHuIDQQ9DUD+525Jeoma9sh7HgDmcpwE6QnF8nZwQt4OrBRWqQcwr+qUAaP+C2c/y9T3LiGbUfWThfW0yGqq7aadzsF5CCjr42eAh0tyRkUipXwQeBBgr732KkmU6ZBxVex9wwMEUnE0QiCEBqHVMdpgZo988jNGHUZCY2Rv/9ssaDmH6bk6KakU8s1f0CGqeN12Kv89PPfS4S2cdDcM3x/9vMfYZ/1D7IPke3XTkZfOSauCbqgiKpNoN89lwvr3mdCzGkaFYFQFyHK4ZiGU5aeXMXGYnRMPO4RbZ5/LhaZaRucRSZFS8s/PN7DncBdNkwvL69BPOI6T3nfyhH08zjznetZ8DoBrTGG2vbYxVPo+hlgQDPl1Fy/rnMdRms8Rxvyf6uucFjZSifBuyHsugDPWTrCAxGgAS2X6AcPfuYF8O0N1t2/iL4b7WBCqBGblbTthrsbl9RQUrYv70tVX9gISfQFOt/6dqU4Xhww+tBeGqJuAtrAkfEvdBP6aOIO/yvzzaGQiipUIqQIEBgEWT7iWW9Yew4JoAoc5v4hGm2U858Vu41+N+UdHAZ6rupJwLEkhHd+0UQ9eynDp8s+DcSY6ecN4A2+13AxMy2+ylNhS/oIdytYpl3P+sv14PBSnIc9DBN1pBydfgcEsY7XthAOboY93uEylsHz4e1pELZqLXsZa5uS/RgdCp8VcQK5RsQzo4Egpd7ZGmptIqylnachsG1L0Wg16W/43m16Y7Mg9jufkJW9y5xdrmN6YY83Hwn8h2hZya+xKbjhjRt95N4Oh1cHMi9Jf0QAEO8BgQwiRfiIYm3nzjjsMuG7buULk7dxkuWzWKI6dfxrvrZK8kZSYcrz3fNHs5tvu+zmoehiQf8IrwN4TRvL7OW18ss7DsVPye8rVtn5FCoGmfnpBtluazuDoL6fzmtZEvv/mtuAGuvXDqMmzmghAp9XQqa2lJph/qXgknqRKdtFmm573XABHTXp5Kdydv21fRzpQa3QVFsLHVoVeJIn4uzHlKaSW8qfzZxyVhdkutxkLVno1xz2EChAYBCi36KnCQ8DTRb5LayFvJ1ZAWApzcLLL455QLG8HJyv7n2/TyS22zXq6PYXl//hSJjzaYTQVMNdQll5SS4ULWB6LBdCTIGkqzMGxldfQhaOg99kWgUFnYQ7OaZ13c2ysDSm/32vVYcUXb7FHcg2fT/0N+zSNL+j4SjLg7SWz3DMguYxRkC+AsUKIkUIIA3AO8PIQ2lcc/cwLcYog/gUvE8ilKWI8TPLt37BQjiEw5iSOmlhc12QAjDYoHwW2/BNJ8zal0/LrkyfR3B1k9r/vhS8eyWne858u59vadxlTVriY2NQGJzMNG3G99wuI515pEogmeM8/jHn1F0ABURSAYcNHsSJRy0Z3fhUusUSKmngLAVthuSgAPnM95dHNec9r63ZTKXzgyG95KUtV9TBiUkvKm/8zSKgnfb7WysJs6+zpqJO7I3/nShPqwocVnSH/xFOA05Ovc2bHXQXN/YXhBv4zLP/lQAC7XvKF6Qqa1v0z77k+dxdxqd3SGTxfRgbn8y/Dbwm2r8l7btXyJ3nJ8EtcpsKSdS/r+A13B35S0NxHXNdwq6PA53ijgyQaRAEOTkoKfpu4gK7KwiLC1fEWrtU9R7g7/8isL2ViQWoUVmdh946UqRyX8BHso//XouRwzoj+Hw0H5l+BWAoGe36+QQhx2gBfpwOFlTkUgJQyAVwFvAksA56VUi4ZKvslYeShRG0NHJN6j/98lcONQGfiYfsV/CZ5MTedPKUgvYsdzcFjqzh+6jB0y14i9eaNMMgN0BuKY1n6HBYRRTfzwoLt6rUaDqmNsV/XC9Dyec7zFrZ4eDu5J8FDflWw7fE1ZZylnY1n3r/zmrehy8dI0UqqvIBlyAyxskbMMpiO1OVB16a0hIGxojDnym4xcJO8hC8s+S/WxD3p94SzujAHJzb6aGZE7qfVkH8e3jLtWN4wHFWQXYAxqWYOjBUmPLciZEM6C8sd1BhMBDAXVOHSaWpibPQJgqOOK8i2XRtnP80yIj35O7NG7zpGi804bIXlDkmjA7v0kyqgt587FMdZqMK7RkNA2NBF83dw/CkjjySOJVpdWFK3M97JNbr/ILvydyhXVBzJybFbcBYgMAggLRW48OPuI3q01idYoJlATdWOSNHtzWAOznvAiQN8nUC6dcOQIaV8TUo5Tko5Wkp561DaLgkaDYbz/skD1b/k0Q/XDdyAU0rmrOzkd2tHc8hhxzCiIr9cjp2JXx0/kTu4kEQyiXxrYMfhqU/XcpH4L6HqGdCQf5Lv1jgnzCIhNfiX5a5Js3TNehpEJ9MbChcoHFtj4wLtW7iWP53XvPWbNrNGDsPUkOca/1ZsGHMB4yN/JyTyi0isTZRzePSPWCblX0EFaf2hT8qO4atk/gJu0p/Og7EVmAdT7nTixk5XIH+l8NfEofyn8rKC7AKkzBU4pB+ZZ3l8PBbh/PjzjJOFa2P5hB19ARVF7lAcEHl3l86S7acU9eevjyIiHnzYMBaQBwMgzemO4v4CVOF/3vVzjo8XfgsLae0YYp6853ndnYwWmygv7HJjzTTcTBQguLdlSTDPRptZtNYKrCJKj7e3Do9zw/84o2wp2jwTzUvFgA6OlPI7OXz9aIjOdbdF1E3je4dNornLz6sL+19KSPz7+yz9928ZXWXlB4fmL/q2M1HrMHHmkQdxb/wExOLnobnvJ95QLMGGD/5Jk6Ydy6HX5KV90xf7TmhigRxNbOXsnOcYVrzCh8ZrcEYKb3lgMeho0Tdh9+dXSbXCb+D42O9wHVB45GpYVTlJtLS4w3nNa/EmaGYY1TUF5sEAk6w+yjvz76T+uvkEfmC6A1GA+jJAlUXDT3TPom2ek/dcv99HRQEiaFuwVqIXSfye/G4+3q7NXK9/htGxFQWbDmnt6Au44erXvcvtugdw6QrTS7JlFW4LUBTWRT34NfaC7AIISwUGkcTr9eQ3MRFjr+R8ajR5ztuKl6sv41lN/lGv1Mr/8Y7xOoalCmtlorNl9X/yv957L7qZu/V/oyzP6qssBnvauQq6e+stzep4kvMoTH+qFOSU4imEGCeEeEcIsTjz+1QhhNqDSkGOcrXzvuVnvPDGW333i1r9Drol/8YfinHrqVMKftrZmbj4wCbeKf82m0U1yf9e16cg3P3vreXjyAjaJl8KE04q2ub4mjK+0k7F6VkEkcGVQKWUuHq+wq91pvOUiiBgH4sr0QV5rNmv6QhSazdhK/DDCKDRoeO3ukeJLHwxr3llG2dzhXU2+jyVm7fmjPir/ML9y7zVq9cGTbhd/TSszYEKu4VLta/i2Jz/UtEzwe9xvue+gm3rMjcAX3d+N69AT/qGoSuwugUgondiSXjynmfsXMhZuvdw2SwF2c06OLIARWFT3ENIW7iDo7OlE6MD7vzEFWVmKa8QBeUsG6tn8UE0/+XjbGsJS76NNrNkq90KyP9xBNZSo/MXnN6gGXM4l8R+TEe895JiVaKNsLW4vntKkusn10PAz4E4gJRyIekEXxWF0LiGU6f1cknwQe5+Z+W2O0M9RF64kjWpOoJ7Xsp+owoQxNoJ0Ws1/PqMvfhl7Ds8oj2L1HZvx9UdAe5/bzXTp86g9ow70mKFRSKEINhwEN04kT2D66Rs7AkzKbkcT8WMoqNHVKf1XOKtuQv+HbTuTu7W3F6U2cYKOydrP0a/Ib+b/YTON7hQFpfDnyyrxUyUVNiT17yZPa9yiLbw9Dq9TkuPcKIN5Se4F4mEcYpAwdVEAAbnMFpkJV6fP695QXd6Wc7oLKwsH2Bu1Wk8yQl5z5OhHoLSiMNemKOhNTtYxkjcqfzXXFaLJtaZixCkr5vO3xKn4I7n9/kQ9KTfG1pr4Z+nTZpO9ogsyDv/J5Hp3F7mKtDB0ZuIYERbwHKkKe4hpCt8ud1eN5q3UnvRFdv2ocvrdVOOj5Sj8IIIpcnVwbFIKbfPysyh5EclZyzl6I6+hYO0S0h88Nevl6piITxPfBtNsIO7nNfzi5Om79DTVJo9h7s44JhzuK15HL96aTGJzYsglaLTH+WZR/7Ik7rb+NVhyias1Uw+nH0if2O1dmD1ZYAlq9cwStOGvmm/ou3aR6QTCrs2rhxkZBopJSPCS6jU5re0tD0VNiMtVKP15VdxYY+14jMUfrMF0DnS5cre9vU5z5FS8p3oPzgw8l5Rtr3acgyR/HJCetrTSbLaAmUQALSjDuWg6F20mPJ7so960xEIq6vwa95WdzjPRvbNW8JfG+7BK+yF504IwRW2v/K2Of98rT/oLuOduksKswsYG6fzp8RZdKbyc86CmYhPMQ7Ofl3P87D+Dnx55v/IYDdeacFVYGI1wI+HP8u9hovznmdJeInoC49alWkTHK5dQLK7eZvtHRvSn2uGyvxz7kpFrg5OlxBiNJn2DEKIM4DCFg9V+mfmxSQnnMwN+n/R+eyPuOyJudz25MvYWj/jz+ar+dWl5xXUmG1n53sHjeSyQ0ez8PM5iAcPof0PM9j4p0O5MfoXJtRaqSov/Gm6Lw4cWw0IPlw1+NN9z4p01KNyYiGybdsyvGkskyKP8IUzt27kXYEYTbKFqLPwCipIR6169LXYQrnnECWSKaqSHURsxYWbTRXp+d723J0rXzBMJV5kgQKDWYL6cizx/JZMvN3pBwtDEVGUikwPq3w1ShL+9PvRXl647VpDmHGp1QQj+eXS6GPuovJgAJwWPZ5Q/om+7lCM8gI1cACcJi3l+Aj48otm+GIpFqWaMDgLS2SHtG6QVUTx+POrUNREenBTht1UeK6XyebEHcozzpBKYpN+EsbCP1NFLMij+j9Q17HtA4i/PZ0cb6vdefJDc3VwrgQeAPYQQmwCfgQUXmag0jdCoD3jERJ7fpf9q2Is3OTllY4qHp74d6669pdU2gpLuNzZEUJww7F7cPm5p/MX20/YELVQro/Ttc/12L//MhgKywvoj8ZyC6c4VnHK7COhZ+CKlec7Grin4kZ09XsWbXdUtY2IxsLKttyWLjZs3EC5CKCrKV4wK2RpoCLelnMuTLvHTw1uZIEaOFnKqtIlz6HujYOM/Jqe9o1ohETryE+sbnuixkrMyfyWicI96ec2S3nhidXlFh2P6/9Azern8pr3cflp7BO9B2d54RHLKZ53edX4S7yd+ekeRZMCt744Ta2rw/fynY7f5TUnGejm9eSl7B/MvapxexwpD1+aLqNu/Ut5zdtUNo0TY7dhGDapYNvZ/ln+PPN/PnSezN3aC/Jua7E1hwXf4PTQs/lNSkR4n73w2scWbBeTkxSilxzBWtveHBC5C3Pj9MKPrTA5ZS5mmlseKYSwknaKQqRzcHKPO6vkhlaP7qS/sEcqxcd5Sszv6hw3dRjHTf0lUPr89VGjJ+Ba2k1s+f8wHPCDPse0+yJ82aXh6GNPB32B9ZxbYdRpOc+xiIMXPgRHvTBoTk/P+sUAOBqLyE/IEHM00eMtozbszim/pGvTOuqFRF/RVJTd8romLon9mGNte+fcUcrbkY72mMoLf7IGmD36er4/d3NenXg3U80niZM4vbbwqJlRr2dPzSqWeZblNa8rnCRurkZXRAGBviztHAXc7TA89yfpX5p/Sb3TTDELsZV4MMdzd2QhfZ61wo3FUPhr1mWWmPIV3PtaQbnwKEq23UHYk99S6HwxkeVFJuNOCH3BRJYQiSdzjuyndBa+G72WK+uLiAprdQSFDf12+j/dUdhMJS67Air/CjGYkrFdCPFzIcTdQohvkXZsLgJWA2cNxQl+Y/mGOTdDzYwZe7I2VYtv4Sv9jpm7dCXf1b7OIcOUa2k2xeZj3+C7EBj8iW+jN8FsuSflTdOLtts+/nz2j/4Nt8yt2d3aZCUTIo9imHZGUXarHDbekXuxLpp7UmOoO50Hk43+FEqFw0YoliKYi0J4hrWigTsS5+CqLi565NM40IXzK+GdsPkFLtQXHskAMGb0aMKe/CIK7mCM8mJK44GE0UlZavDKxK0JZEqNs6XHBaEzEMKEJs+E24YlD/Ks4dcFt4gAMNvTDk7El18ye1XPl4w1FtYBPUvK5MIpAnktC3rCcVISygvUwMkS0jkwbidH4Nr8HlfqXy7KWVWawe6iTwLjgUXAJcBs4EzgVCnlySU+NxWVkrHvyAreFfviavsYQn3naXgWvs7/6Z9kvCW/ZY6B0NSkw+GRzQsHHftBeAS3l/8Gjau4ZSKARlc6mXGgLsBbs8kdJoyJYVXF5T/ptBoOszZj3/R+znPmW/Zj38jduJoKFzcEGJXawB26+/Fsyl1XJuxuo94UKVqGwa9zYozldwPby/0GR8pPi7JrzZQdx/y533BlIsrtkV+zb/TjomxLkwsnAaLx3B3KcCax2lhEaTyAX2NHF/XkNcfsW8tw0YE9z95ZW2MZPoOLY9exQZ9fYu3Pum/k9Hj/D1e5oLFW4CSAO5h7+5fI4lf5wng5w1P5Rdp6HUfv6iVH0Nj5Ht/XvrZTqesP5uCMklJeLKV8ADgXmAgcLaWcX/IzU1EpIQadBnfTcWhJklj6aq/9sUSKys3v4te60NQVd6PdGufI9LF61nw16Nj1nV5GVymjVt3oMvGQ/o+ILx/PaXx583+52fwsJl3xkcQfiBc5avO9OY9v9ycIm6oxmwuvMAGoMkQ5U/c+wdbcqtYADm/+E8+IG4uyC9kbQH4OjjXpIWIovLoFwO5K59Ek8lAUDns7OUSzgGpRWMPKLNJSgVHE8fhyP07Ul9WDKa5SMqR1YIznd/7aiAefKCtKddfmquY9OaNPTZh+iUcwEykq0RfSS3NaIfG5c48URj2tVAkvNruzKNvvj7mO/4tdsI3yvi7mIaDZeZanYHAHZ0vsS0qZBFqklPl1C1RR2UmZud8sHkgcz7xI71yPz1c0c6ich2fkcYouF44cPoJNsoJ4y/wBxwWjCR4NXskl/twdg4ForLAxVbMWfeu83MZ3fcDx4qPitX+AkKkGRyL3G27Tple41PR20XZtmUThiKct5znmWDcBXXFOBkC3dQwtqfyiEvaUt+ibnq28hp/GL2OZOfekeF93epmo0EabWVLlY3kvORVvHhVFXZoKXkvuQ1kRSd0AH1aeyUvi8Lzm6OMegkUIDAJoBZxi+gpDd+75VlvUh4vQWgIw2CsJSSNBX+6VgvGM42srsNHmluNUT2VFqgFv+OvlMUPMR1i7azk404QQvsyXH5ia/VkIkd9iq4rKTsbB46p5wPgdHlvX+4bW8vGzmESc6gMvUNRmU4WVeUykJzJwn6KVGzbRJNqxViijCmoz6mgVNRj9uYWm7dFWPEVq4GRJ2mpxSl/OHdxnuN/gmFTuS1r94axOX7u4N3cHxxbvIWws7kYPMHfUlXwv9pOc9WiS8Sh2gqQsxdnW6PTMNh3JGpm7wxD0pB0cYzF5MEBszDFcFL+B7mRueV4AK6x7cUX8RzgKbPyYZU3dCbwcm5nXHHPcQ1hXnF2E4PfyTsZ3vJbzlLAv7WQUo78DoJ1+LhOjj7FZ5C4WmAp0EpRGyp3FOXZNqfWcpZ1NT+Dr/2lz0kdUX7iAYCkYrBeVVkppz3yVSSl1W/1c3BVSUdnB6LUaztqrkeZlX9D56ddNMLsCUbo2rqTL0IBRAYG/rdFoBP+ou5Hf6K4ecFznqnT/Jueo/D60B8JjrKMsMnj5sJSSykQ7EWtxibZbsKcjZOGe3HR47IluQsYCFV63otxVTkgawd+7Z05/OKWHuKl4B6fCaiCelPhzTHD29rSTkBo01uJt723aSFnP4pzHR7zpfB2To7hrnu3K7Q3nrv/jDsbQa0VRrUgAqnUhaqPrSCRTOc9ZrhnDJsuEouwCBDRleTXcDPSk8470ReYdOTOJwn119e6XcFp/p5jEaoBR7o+5Xf8QPZ6vl2GtSR9xg7Oo4yqNWqqj8o3muwc28T3d67je/CF0pRthPvFxM3+MnY73wncUWaLZnsn1DpZu9g34YRzLLGFVjNlLMbthayPlyU5IDlx10e0PUUMPKXvxyc0ARlfaUXK3Da4qkUpJKlPdxC3FhdABtBpBi6glkmPSayQSxkkAaS1eOXuP8Je8bvgZvk255f9042Js9Am6xp9dtO2fxO7nuI4Hcx4fiKVYk6rDVlHcMlFlvJUPjVdjXft6znOOW/4znjX8pujE1AM7n+F1ww14Q7kLHP5K/JDPhhUfoU13FM89/6fLOobvx34CNZOLsmuMerjLeB+Otk9ynrPWsAdvcGDRgrHGjDMc7E5HR6WUHBn/E7PH3FDUcZVGdXBUvtFU201s2vM6Qik93icvZPVHz7Pg/Rc5fkodoxuUWaLZnhk1Wp7T/JzO2f3n11h6luLRuBD24m46WxMpn8D81BiSoYGTX9taWwhgRlekBk4W/fB9OCF6CxtM4wYd2+NxYxchKFPmdV/tvJvHynLTJO3yh/lV/GK89bOKtms3CiZoNhLIlLwPRncwhkRDeVnxSeURvRNLHgm3ix2zOCL2J5yVxUXs7GV2GkQXKX/uS4KmaA8aBXrMabIJt3no0fSEYkVp4GSJ6h1YErlf786UjbdTM7EXIegIgBCcJD7A7l2e85S3bCfxuOXi4uzytRBmOJPfFowlCSe12Mp2oSUqFZVvApefsD9/sV+H1rOWMW99l9t1D3DricW1RxiICU31lAs/iTV955kkkileCU3mk2EXKmo3Ou5ETo/dzOb4wDkSa8I2pkcfQr+XMvlHlVVVLJajaA0N/pTe07GJhNSgdxUn8pelqsxIVyC3p/quiIYnk0ehaSh+WdDiyiY457Y8Jtd/zO90D1GlyU/yvy9iBhfWPPRo3MEYWo2gzFTcMlFWE4ZBHOitMSW8RBTI29BlFIWzDTQHI9q5lvc0lzEjVFxpPKSvty2P651sXcxhmq9wFlGeDoDJSRIN2kjuScY9gTAVRWrgANgyIpzZ/DZPTye/0T3G6GjuztZQoDo4Kt94jDotP73qal49+D+8PPlOtJd/gLPArsq5MKrSyiIxHnvnvD5bJ6xo9/Of2D7E9upbYblgu1Vpx2ZN58A30eauEELA8Irck0UHotZu4hTNh+jWvTvo2E3UMC76BIlJpyti+7jEu1zb/eucxnq7WhkvNlBlKX5Z0laRjv7Ffbk5OLr2hZyrm43LVvzNJ2kuxyF9OSc477Xmb/zNeF9RbQMA0BkIYkYTzv2Ga036iOmdxdkFjGVpByeUYwTH39NKjfBgNRevUD5v9JVcFruGWCK3/J+aNc/xN/3fKLcW2XpHoyGgsaPPI//n3pbTuCT2ZHF2AW1ZeokqFUw7lKHuzVyoe4vq5M7VonKnc3CEEDcLITYJIeZnvo7bat/PhRCrhRArhBC5dSxUUckBq1HHOUcewElnXExljULJtf2g0Qh6KvZMl057e1c1LVuxnCbRyp6NTkXtjqqy8qT+Nqo+unnAcY2rnuBvlocVa+xqNeq4xvAioza8MOjYdl+EFBpqnMqUm9Zrujk09RkyMXgipmnt/3jTeAPV5Negsy9cGQcnGcjthpsKdpGQGpzlxSdXY043gAwEchOorAosZ6Qm92WlgfBrynIX3JMSu/STNDmLtmvO6OjE/LlpwoTc6Ruzoay4SiYAKseySjbgyTG5WoR78GArSmAwS0jnxBzPMWIWj2CVIYRRgQcXWw2X2+5itu7g9HlkEtWNdgWup4LsdA5Ohr9IKadnvl4DEEJMJN3/ahJwDHCvEGLn0YRWUckD08h0dZZ3Ze9lKtvip3jHeB0N1jw7BQ9ChdWATRvH0j1wd6Z69+dME2sVtd2jrcIcHvwmal33BrfqHqHKrMxHk7Clk5UD7sFtpzLVVsW2aQAwmS28L6fTQW5aJ5pQNx5Rhl5X3DIRQHfT8ZwX+znucG4RHFPcQ1inTO7EPPNBLBe59cCSyThPJY+kq7z4RrbWuvFcH7+EjfoROY3PtlYwO4pPKG9ItnC+9i28vtyWqXQRNz5hL0pgMIvP3EAwmeP/SiayJiwKOCFaHV7HeDaF005aJFP6bilSakBpdlYHpy9OBv4lpYxKKdeR7oe1zw4+JxWVghg5eT9eTu7PMn/vpNIq9zw2GUcjTMom7Akh6DE24gwPXM1UFduI15rbjSJXAqY6XLHBw9eujs85VfcRBkPxSzUAekfawfF0DF6iLoKdBDBjsigTPbrRehPvmr6V01h9pBufxqmIXUPVaD5KTaEnmpuDY014ieqLFzcE+O+wq/iHOD6nsYGE4Kb4Rbjr8xPo64syVzXPy8PZlMrt5h3PRNayrS2KoT6wmFv0jxHsyq2Du0EBgcEsr0/5C1dEriKeQ3l8Vg5AFCnomOVbqQ+Z7EkvO8cyS7GOKmVy55RiZ3VwrhJCLBRCPCqEyP7n1QNbx/NbMtu2QQhxqRBirhBibmdnfg3QVFSGiimN5fxSey3/7tn2aXfd5g4mJlfirymN7x6xj8SV6oFI31UfnkCIBtlGwpl7J+pciJU14JIeiIcHHGcMbaZbW6VYeb4pk6wcyqGaSRfpwiOcitgFKLca6c5RoySWlHh0yjz9VugjHKv5jFDn4GX5AHbpI2FSxsFxWgx4cnzNbl8IA/Et+jnFIIRgP9N6NO41OY3v0NXx3+Q+OMqLv9lnl2XCOTbcNMe9RBTIO4Kvm2bm0nBTkcamW3G4/2VOiKTb3ESDfhJSQ1l5aSpPC2WHODhCiLeFEIv7+DoZuA8YDUwHWoE/5XNsKeWDUsq9pJR7VVXtXOEyFZUseq2GIybUsHDpMhLeryMbqz9+AbOIUb33aSWxK6vTwmbhTUv63L+peSUGkURfNVZRu8KZjggFOwZe+nJE2/AalSuNL6tqZE2qbhtJ+f4wR7sUadOQ5ZrIffys9dqcxv7KeAP3N/xBEbtVKTf3Ge5Et+mzQcfKZJyFqVEE7cpUDZ7U9RD/S34vpwTnxJrZrDRdRFN44CXTXLk3dSszW5/Jaexi64FcGf8RTkvxScbZ6rFojvk/v7H8nDcrLiraLsDEnnd4Sn8rnsDADw4APcLFI4lj0ZXn1xi0P+KmSlzSSySe5HXrKcwyPYcwWBQ5tlLsEAdHSnmklHJyH18vSSnbpZRJKWUKeIivl6E2AVsrjzVktqmo7JIcO9bKK6mr6Hztti3bLKtfo0c4qZp0WElsljXN5NXkfqz39t0qoqW9k2Wp4bhGFCdCtj2xMccyM3IfLZr+xQOllFQl24kqpaAMlNeN5IjYn1hk3X/QsY9qz+StKmVuPABWraQ2kbsOToWtyKqaDGUVuTfc9MXgnNgvaRl5hiK29QYzFcKHLzR4W46v82CUWTIJastyrihyB2PYjDoMCjSTtbnSy1yJQG4OzrxoAzHX6KLtArhSbg7ULsHnHjx61Gps4reJC7BVD1fENtYqKoWXTn+UzkCUNhydRwAAI3JJREFUCntxzXFLwU63RCWE2Prx7VQgqzn+MnCOEMIohBgJjAU+H+rzU1FRigMnjeR1DsC18lkIe1jd4ecK73m8NeUvoID4WV+MGj2Oq+JX81Wi7xybz0L1nCbvoGbSIYrarauupBsHLZ7+nzS7PD6CmEg5mxSz67ToMeg0tPsGv+H+LzyerpqDFLOdtFTgkH5kauD8iFQizh2x37JPNHdF2oEoc6YdBhkavBosK/NfroA2CoDGmk6q9mXaEQxE1gErcylQOQaEtXZMOQocnrXiGh7R/k4Ru9lE5VRwcAdHRv0cEX6DkRpl0icM9vS1C3kGv94+Tw9GYkW3adhi21GLUwRp6fRwTMcjXJAYvEpyqNnpHBzgdiHEIiHEQuAw4FoAKeUS4FlgKfAGcGWmw7mKyi6J1ajDO+0STDKC+4Uf88AbX5DQO/jW0SeUzGaDy4zNqGNtS98JvyvafYyrsSlS4bGtXQtXaF9Eu+zlfsdsCkgOit6FZ8blitkVQnCH6XEOXXHLgOOCwSAzY18w0hxSzDbWSvQiid87cCTF193GYZr51IjcBfIGQmj1eLEhctCjia39gHcMP6ExtloR2/qM4F4ghxtuMthDSgocLmUiOFGDE0syt0omc6wHoS0+9wdAWCo5U3cnH1qPGnRspGs9t2ofZEwitxYeg2HOJEnHfINf79EL/8inxquoKFZ/J0O2tUdnWwv7Rj9hQnKFIsdVkp3OwZFSXiClnCKlnCqlPElK2brVvlullKOllOOllLk3PFFR2Uk56eijuV+chWvV81y++nJ+vLdJsafpvhBCcJv1X1yz6LQ+RQavb7maH4rc8hjyodJm4BzdHKpa/tfvmE3udHSnwaVsqLte66Y+2HfOUZbuzat53HAHkyNzFbOrs6cTLj3tA3dw93WnP+J0ZcrlDPo1dvTRHBwc9yZGa1opsxbfIgLAmMlHCQ/i1EFWD8aKXYE8GICEwZmzorAl6SNqUKhKUaPBax1Je3TwEn+/W5lGm1mySb1R/+ARIU24hx7sRStWZ3Hscy4zYw+xJFiGU3pImpV5TUqy0zk4KirfJFxWAyddcxcPNPyO5QffxXeOU3ZpqE/KR2KTAaRn2yqbzh43k+VKym3K3HC2RghBp64WS3BDv2OMK/7DI/o7qLcqG5iNmGtxJQa+Afja09fCXKFQfgKgr53Af5IH0j2IHk2wJ11ebHIql1x9V/kveNw0eD5RfMsyUfHNTQEM1WN4MnEk3anBHabF5pk8qTm5eAXlDMtHfJufxb9PNDH4+8eW8pEwKJdQfjJzGN/9zqDjwplWEkaFHByjs5ZVsgFvZPCkbl3UjV/YFbveWrODMlcV8zd048IPVtXBUVFR2Y5hTjM/+P4VHPeto9FoS/8vqRuRFhnsWvrBNts3rvgSrZCYG6eXxK7XPJzKWP96NObOhRyoXYy9zKmo3YStDgcBZKz/5adwV/q87DXK6f/Yhk/n2viVbBADOy6RjINTVqVccnXQNYll0cFv4KlAd3qZqEKZPBh73Th+lfguGwZIJs/yiX4/XrKdpYhdgFjNdD5KTRm8ZDoewUyUlFk5B+f4yH85yP/GoOOimcRqi0J5R5TV8n3b3XyiG1xWwhhzKybomOWH2heY2PIsWiHR2ZVxkpVEdXBUVL5hjJm8DwFpwrvyw222e1emHZ7GyQeWxG7cOYoyGUD2k4xp9G+gQ1urmAZOFq0jrYXjae9fFybhTTs4lXVNitmtLktHwrp8A+f1+KJJNqSqcFU3KGZ7qljDYf5XBh0nQl14sGI1KZOX4TDrMWhS+HyDJ/tKXyu15tz6N+VCvdbDUZov6HEPnMuUSMR4LHE0nvLpitmOGZzYkp5Bx8UzlVZKRcwAKm25NZQtS7gJGnJT1s6VQyPvcprmPTbJCoyu0ra4KQTVwVFR+YYxpsbBYjEWS/u2+Sa21k/ZrKnDVt1UErv66nFEpZ7uzX1r4VRG1uM2K6ugDKCrHseHyUl0DuBoCH8rXqyYrcqoGAPYzTo+M17J1CV3DDjuY+uRHJn6Gw6HchGFGZHPuFE+QiQ68I1vg6aeD7X7IhRyKjUawVeG77PX2nsHHfvr9qu5IvSAInYBGgKLeNDwF0LtAydMe5JGfp24iGD9AYrZjpsrcUgviUEUhedXn8ox0d/jdCgXSbku+EfO6Lxn0HH/1J/KcucsxewChGzpJd2DYn+jYm9lpAaURHVwVFS+YWg0gs9qzuFRedKWbbFEitmhUSyuU6aLd18Y9/gWe0QfY6Wmt9BYNBZlWKqVmENZBWVI9/06P34jG0T/EZKXzadyi/VGRe0KIYhpTOhCA1e4dPijVNmMijkZAKKsGo2QuLsGbo/xH8OJPFz+Y8XsAvg1DnThQUqmpcQhPcRMyjVntGQSbiOD9B3z+P0YieFUqFwaSGvC4KMnOLBD2R43sYLhOBRotJmlRnYxIocquPuix9BVe7BidgGsteOYomnmlSsPVPZ6KoTq4KiofAOxTDqOh717sSmjS7Nok4d7Y8eT3O+qktkcWe1AomFdV7DXvpbNbcyXY6BumuJ26xzpqqxWb/8aPItC5XRU7K24bZ+uHHN04ATnU9bfwnWafyhq1+hI3+x9nQMLDXYF0s6VkgR1TsyxgR2cVMiDgQRYlascs5enlyIHK5mWS15iheliGpLK6cRqbVUYRRx3z8Cvu3HDi5xu/lJRGYaYqQpXyj1g9CgS9FIebaHGquwtv6I2/dAwuftNRY+rFKqDo6LyDeSYybU0iA6WvP4gAPM+fJMyXYIDRpeuEqLWbuI6w/M0LLir177VQSNnxW7CME35MHd1mZHnDb9m4le/7XfMXu7XmGbIrVliPoQNVZQlBr7pjQkvYphm8JLufDCXpxObQz0Dv6Ynes7jrNC/FLUdNlRgTQycB+PvSUeWNGUKJdsCtoq0U5cKDOzgxLzpnkxlFcpVrQWmXMSkyCN0xgZ2Fvdrf5ozNO8rZhdAWiupFF56Qv33APOv/JD3jD9mXFIZ/Z0tTDkTZl4M449V9rgKoTo4KirfQBrLLfy44lOOWHEzkZXvct6qH/FA5b9xKND4sD80GsFMw0bGdvbWwslGdZoqldFj2d6uWSex+vvO/QkH/dyUuof9458qbjtmrsKZGuBmLyXl0k3crNyNHsBWkYlmePtfrklF/FTgxWRSVhYgbqrAmfIMOMbXlY6eGBzKNWcUJicJtIjgwBo8KX8HMamlXIFGm1lcLhdBzHQP4GQAWBNuwkblluUAhK0GuwjR7e5fAyjQnXZ0reUKd/t2NcGJd4JJme7oSqM6OCoq31CsB19Ju3Ri+uepGGUM+8E/KLlNj2MPauItsF3J9qQFt/Gc+TZFcxO2xmsahiPadzSjY0NagVVXqXz+T3fNgTyR+BaRaN83vkjQg5ko0qZsia2rbjSHRP/Cl2X99zTzZpwMTZmytltrj+CRxDGEYol+x7Rra/hN/AL0tROUM6zR8HPbrbxuPm7gccEuunHgUkjRF6BK+LlB90/Y/FX/g1Ip7CkvcQXzjgA01RN4PzkFzwCVa1lH116581U6lRLVwVFR+YZy1D5TeHvGPbyYOpg39/07k2cq14epPzTDpqMlhbd52xtBrfcrLIbSRY+itkYqU52Q6i0C59m8CgBbnTIdtbcmPPJI/pA4l/ZA39os7ozKsc6h3HIJgMlkwm2opz3Uf65HNj/H4FQuigIQaDqS+5Mn0R3oP5rRKit5NHksjurB9XLyoc21J6sizgHH6COdeIRTMcE7gDKD5DLdq5g6F/Y/KNyDjhQpi7LROu2kE7kw/nPa4v0rgCd97QSlkcpyZcvEd3aU0WxWUVHZ5RBCcOEpxxE/8Rj0QyAwCFAxZi9YBO2rvsAxLq23EwkHaUo0M6/mvNIZdo5A35Ek0LkeW822kZpIR3rpqrJxnOJm651mygjR1tnDiIrey289gQgbUnugr1Smu/TWXGh6n8rNDmBSn/uDmTwYi8LLFlUWQR3ddHu8NJZb+hwT7lzHSNFKpcIJznuLZXR6NwL9azl9aJpFIBFAwdgRIpMsLYL9J5SH3G1YAK2CLTkAKsvS17DL379DKYIddOKkUeHrvbOjRnBUVL7hDJVzAzBm7ASWpEbQ6v56iWr9ks/QiyTGEcpXMWXR1k/nucQhtHr66Crubk4/3VYpnJ8ADNd0s8j0fXRLn+9z/1oaODv2f1jH7K+47ZNS77BXz3/73d+Bi2cTh1JWrVx7CoDh/gV8YvohyQ1f9Dtm/MoHeM7wa5wKL0keFniNS6NPDDjmVQ5hXuVJA47JG60enygbsDy+w9jEtMiDBEd8S1HTZfEePjReQ/W6//Q75kP7cTygPU/xJro7O6qDo6KiMmQ4LAauKLuTf3H0lm2e1Z8BUDdROeG1XnZH7811ictYm+gdon/Kcj5X2/6E0Cj/cVg1bARJKUh6+m64mS3Tr3cq22AUIGSswh7vP+F2pX4Prk/8gIoqZZfHbJVpRzE6QIKzLtyNW+FlIoCkpZJyvIRj/fSjkhKDr5m6vgNLReHXOjEMUB7fFYzhxYbL5VTUrjA5aBCdaHz9t0H5TE5ivuNwRe3uCqgOjoqKypCy53AXn63tJhlPh9TnB128KA6npl75JN8sw8stgKS1vfcSwiqvBqr2KIldk8lEpyhH6+9bc2X64tt4xnQrZSbl84/i1loqU53IVN/6KG6PF6NOYDMqm6ngyFRwxTPl2H1hinUT0Cmn3JxFY6vGKqJ099OuQUa8PBu9gqOCLytuO2IoRxvrrfG0xfaa2Vyn+xdVSvuyehM+jQNDqH+HsqpnLqMtA7cM2R1RHRwVFZUh5dhRBl5JXsbGt+8jlkhxz8aRvD/hppJEULI4LQZeNv2afb68fpvtqUSC03oeYh9T/13Oi8Wtq8Ic6ltR2O5fg13bf7VRMUh7PVYRxePpW2PnxOXX82/DrxVVUAYw2auIo0UE+ldRtsZ7CBuUrSYCMDjSFWHuzr6jGWFP2ukSCurvZPnP5Hu5IHo9qVTfnb3NLR9xqfa/VNqVl0Lw6auwRfvR/4n6+Z33Bo6ND97tfHdDdXBUVFSGlAOmjCWOHrHkBb6a9ymmSCcnTFV2maQvAuZhlIe21cJpX7+US8RLJRH522LXVIsj1vfTtSPWRsCkbBVTFoMrrTLb09bc535btKMkTgYaDT2iAn2wnwiOlLhSPUQV1v4BsFSkX3Ogs+8lwS2VY3blr3m1y0YiJfsV3NMEWunARblNWd0hgLC5BleyCyl7O1dxd9rZE07lmrnuKqgOjoqKypBiM+n5uOJ0RgTmM/31U3jB9GsOKqGCcpaIcyy1qTZSEf+WbR2rvwTAMXJ6yeyu/P/27jy6yvpM4Pj3yb252fflBkhCAiIKIogsFlSocpSqdZnaM9Zqq3X02BFbe7S1dnEcWztnptatrbVMp63t1HrstLZq3ReUKrIoO8iaQBJC9oSEJDfJvc/8cd9AVkS4b264PJ9zOLn39755n1/ecPI+97f6L2Np8PLBD59QiNxQPYEUl9YmOe1SJnf+lr1xQw8izg7W0ZnkTnL11+wbeMmzcMhjoWCQO7tvY8/Yj1mv5hikTprPBYEH2e4dekbcwfpw4pOYE/mH/eTODTwW/1Nq64ZuSfG176decvC6MKi/wX8e7wan0HhwcHLV5CS4idmW4IwIEfm8iGwWkZCIzBpw7B4R2Ski20Tk4j7li52ynSLy7ZGvtTEmUs6/7ru8KvPYE8pj+6eX4ov3uB7TWxCeLl1XtvFQWaByAz0aR9GpZ7kWt338hTzZtZADHf27olqbqkmgGzLcefD4szMJ4KO6ZfDMsWBHC6m0E0pzp+Vs15jLeLlj6InY9R09vBCcg2ds5Pcdy8rMoiJuHNVtQ3cTdTaGWzMy/ZHftT5fmrjcs4LWmvIhj6cEamn1RXaKeK+mM27ggZ7r2H9g8O+6zalPqr/EldijWbRacDYB/wT025RDRKYA1xBeuGEx8LiIeETEA/wc+AwwBfiCc64x5gRUmJ3C5Nv+RODmd7lgwfCr7UZSVsk0ABp2rztUltD4ERVx40hNSXUtbnGmj0lSSUVl/3E+NU1t/DU4z5UNRgHyUn183/t70na/MOhYY3U5AJ6syC6016skqZOigxvp6Rk8m6lhXxnz4jYxNiXyU5ZFhFuSlpFb9eaQx7clncX93deTnxf57rG0vHBLWXvD0ON/koKtdCRFdtXoXgUZiQghaloGDyQOOF1U2QWRT+pGu6gkOKq6VVW3DXHoCuBpVQ2oahmwE5jj/NupqrtVtQt42jnXGHOCGp+byrSizJGLN+kMHu+5nLXB0kNlyR3V1CVHfgXjviantPJawrfo3vy3fuW7Ahnc0b2ElFOGX5TueMR7PVzpXUF+7buDju0PxPNoz1V4x81wJfbcAy/zZ999NAyxu3Zo+6s85fsRhQnuzOq5Tp9nasPLQx7brCU87bmMdBe2BMlwWoW6m4aeMXeeLmXFhK9HPC5AUes6tiV8mWDZe4OOfZC+iFu6vsHYnAxXYo9mo20Mzjig7+iwSqdsuPJBROQWEVkjImvq6oZfVdIYc3JJT07k7/m38Fx1JgCNB7u4qOMHrD5z+F3GI2Fs8SQ61Eewdke/8rLqekA5Jd+91qMmby6JHYMHOO/tzuLhns+TWeROQ3jvAOemIQY49zRVElQhp8Cd1qM2Xy4pXUP/7ffWbGRaWmvEZ44BxGeEp8dL6+AB622BHlo7g+RnuvO7zswdg0+CBBoHD67eGshlVeI8kn0n38YFriU4IvK6iGwa4p+rLS+qulRVZ6nqrLw8d/o7jTEnpvMnZuKpeI+DjdUs21aLqnDeVHcetL188V6qPGNJbNnVr3z+urt5Pul+V9bA6dWaMIbMwOAEp7m2kiwOMCYj8jN6AFJyw/e0rX6I2Uyt1dSTSXZa5KdLA3Qm+skKDr3g3k1V3+N2/aMrcYlPpCpuLAcDg/cda9rxPj+J/wUT4odfCPB4eJ0ZUsHmwd1j/uo3mJc6/JpEscy1lE5VFx3Dt1UBff/aFDplHKHcGGOOyqKCDu723s+O5T0U7lzF3cm5nOHCbJ6BGhPHU9i5vV9ZVnsZ+xJLh/mOyOhKL2FM2wp6urvxxh9OpM7Y8hNeSlhJRtI1rsTN8IfHowQaBz9wE9r30+DJwe/StgHB1ALyGpfRHugmOaFP8hgKOdPT3RkHA3Bv8e/Y19LJlQPKOyo38DnPcta5tRdUQiotcZkktg5Yz0mVW2p/xPL0S4Hr3Yk9io22LqrngGtEJEFESoFJwCpgNTBJREpFxEd4IHLkl6I0xsS0qdNmspopFK39CXNaX+fUnPiIbxcwlEDmRPzB/QS7wrNcQl2djAnuozPD3fE/cbkTOUAy+6v7t6SktpWxP77Qla4agCxnPEqwaXALTkqglrb4yA/y7RWXMYZE6aamtn/LVfBgPfH0oC7NHAMoyk6morF90JIAXY3hz+M5BZHd96uv5qRicgJ7+8UOtVSRSICuTPdWCR/NojVN/CoRqQQ+BfxdRF4BUNXNwDPAFuBl4DZVDapqD7AEeAXYCjzjnGuMMUct0eel5aJHCKiHt2U2k66+f0Titk24hJu6v8ne5gAAtXu24BHF44/kntaD6VlfYlbgCXZ1pvUpVPK7KmhNKXEtbpwviR8k3sVrcYMHUN/vvZ23Cm50LXbP9C9xeuevKW/v31rSUrMHAG+mS+sOAZ/ufIMnQv9O04D1aKRlL3WaQX52umux9xRfyfPdc2huP9xF1lCxFYAE/9DrAsW6aM2ielZVC1U1QVX9qnpxn2MPqOpEVZ2sqi/1KX9RVU91jj0QjXobY058i+bNZeVV7zJhyd8o9g/efNMNE6edw7LQDNbsPQBAw7YVAKSXzHA1bkleeJxLef3hPZICB2pJ4yA9WRNdjV1WsJjVrf1XSu4OhnjrwDgYc6ZrcQv9eXSQSEVj/1laLfvCg7wT89zrFizwdXKuZzOV+/p3zSW2llMVN5YEr3vrPQWmXceTwYspbzj8u27auwWA7OKTc1WV0dZFZYwxrrtoxgSKctwZ5DqUU/JSOTepnK71fwLgH20FLA1dwaSpsz7mO49PXmoCDyUsZczm/z5UVlu2CYDEAnc/1U9PaeK0xjf7dZns37ONK2UZk9Pd2X8LIC81nu/7niJx50v9yrf5pnBb19fIGX+Ga7FTx4bvaXNl/1VQ2ruhNsndhLIkO4k8mqjss6FsV812OtRHcYm7XaGjlSU4xhjjsrg44asp73BZxUMQCvGnfbn8o2QJiS5P3RURpnv3UtCw8lDZzu487um+ifSJc1yNPT+wnEfiHqah8fBmn20fvcmD8b9kYtrgmUaRInEePudZTkHt8n7lH7Ul86KeQ5Hfhf23HLnF4V3pO2v6LwlwffD7LJvk7gL8xT3lrE68Ddnx6qGyZ9Ou5ca4H5Djwv5XJwJLcIwxZgR0F88ng1bK/v4gaXVrWXBK1ojEbUqeQEHnLnBaUra0JfPH4IUUF7m7sm2CP9xqULtn66GyQM0OutRDYclkV2PX+8aR3tF/gHNS+essSN9PoovbgiTklhIkDhoPb+raeLCL5vZuJuS622KYkB++3z01h1uPNjXG0Z1/pmuDyUc7S3CMMWYEnL7oy+zScZR+8ACP+x7lgtKkEYnbPXYW+TRSWxluVfDsfJXpaa2urr8DkDEunMQc2Hf4gett3k2V+MlKS3Y1dntKMfnd+/p1j12970G+4hl6heOI8Saw0TeD6s7D97Zh7fM8Ff9DTk9pcze2L5n9CaXktWxAVQm1NbCoeilzM1rcjTuKWYJjjDEjwJ+dwY55D/JuaCrrF/yG0qKR2d0557TzAKjasAzt7uDGqnu5PXXovZoiyT8+3F3TXXN4/Z/0g3up97n/c4cyx1NAA3XN4Ye7BtrICTXQlVHieuynJz/KQ20XHUquOivWMs+zhcIx7k1P79Xqn8003caeulYq1r/BzfyFufnudQeOdpbgGGPMCFl88SVM+87bLL5g4YjFLJk6h/U6kbL6dvZteocEuomfeL7rcRNSMqmKG0ty3fpwQU8X+T1VtKa6vyZLUsFkmkmhvLwcgKaqcJLlzXV3oC/A9KJMWjq62OPMXPPUbaVKcxmX797Yn14pp5xLunSwe8tKmrcuo1PjOf3sBa7HHa0swTHGmBGU7nLX0EA+n48fjvkZS5tm0rjhFYIqlM68cERi/+WUB/hGx02EQkplaw/zOh+jZupNrsctmH8tMwO/ZHVzeO+nxh2rAEgpdm96eq9zvDtZnfCv7N34Dqjib17LzsSpeD3uP279MxbzPVnCX3fFkVHzPtviTyM/6+TbZLOXJTjGGBPjrj67EGo2M63sf1jpPZuiMQUjEtd/6mz2BpLZXX+QlbsbaSSdGVNOcz1uRkoSE3JTWVfRDEBg97s0aSqTpsx0PXbRhMnkSQvtu9+no66MnFADnWPmuh4XwJPuZ+yCG0nY/TIl3btoKLpoROKOViff9qLGGHOSufrsIjxvrGFHRyGp1/xqxGbVzByTwFc9z1H5YSdpu5ZzXVIKk/3u7/0FcHvyq2SXrUL1NR6M+wrJ6Yv4eYr706W9meOojcsntfYDNpdfxMHgmWRPWeh63F43zivlDysC7PDM5Lxr7xmxuKORJTjGGBPjPHHCotsfp7Wji0m5aR//DREywZ/NTfEv07b6fQqC+/ClLx6Rvb8AxqcpM2rWUF61j/cqOvni3NkjEhegKX8O06vf4M5VjbwZvIcNM0amBQcgyefhplvvRFL9ED+y3aGjjXVRGWPMSSAzJYGiEUxuAOK8XnbOuJuSYDnt6iPp03eNWOxxsz5LnChxv76Ym/XPzC0dmXWHAIqvuo806aC0+kVumFdCsssLOg4kWeMh/uRc3K8va8ExxhjjmtmfvZUX95WRMnkhC86aPmJx/afP48OsxcxsepmZaacx/zT3djAfKMk/iY/mP8oFVduYfYm7G6qa4cnAbd1jyaxZs3TNmjXRroYxxpgoaG6oY8OLv2D65V8jIyMz2tUxLhGRD1R10MZu1oJjjDEmJmXm5HH+9fdGuxomSmwMjjHGGGNijiU4xhhjjIk5luAYY4wxJuZYgmOMMcaYmGMJjjHGGGNiTkxPExeROmBPtOtxAssF6qNdiRhl99Y9dm/dY/fWPXZvj914Vc0bWBjTCY45PiKyZqi1Bczxs3vrHru37rF76x67t5FnXVTGGGOMiTmW4BhjjDEm5liCY45kabQrEMPs3rrH7q177N66x+5thNkYHGOMMcbEHGvBMcYYY0zMsQTHGGOMMTHHEhxzVETkThFREcmNdl1ihYj8WEQ+EpENIvKsiGRGu04nOhFZLCLbRGSniHw72vWJFSJSJCJvicgWEdksIl+Pdp1iiYh4RGStiLwQ7brEEktwzMcSkSLgImBvtOsSY14DzlDVM4HtwD1Rrs8JTUQ8wM+BzwBTgC+IyJTo1ipm9AB3quoU4BzgNru3EfV1YGu0KxFrLMExR+Nh4FuAjUiPIFV9VVV7nLfvA4XRrE8MmAPsVNXdqtoFPA1cEeU6xQRVrVbVD53XrYQfxuOiW6vYICKFwKXAr6Jdl1hjCY45IhG5AqhS1fXRrkuM+wrwUrQrcYIbB1T0eV+JPYQjTkRKgLOAlVGuSqx4hPAHyFCU6xFzvNGugIk+EXkdKBji0HeB7xDunjLH4Ej3VlX/5pzzXcJdAH8YyboZ80mJSCrwZ+AOVT0Q7fqc6ETkMqBWVT8QkYVRrk7MsQTHoKqLhioXkWlAKbBeRCDchfKhiMxR1f0jWMUT1nD3tpeI3ABcBlyotijV8aoCivq8L3TKTASISDzh5OYPqvqXaNcnRswHLheRS4BEIF1E/ldVr4tyvWKCLfRnjpqIlAOzVNV2vI0AEVkMPAQsUNW6aNfnRCciXsKDtS8knNisBq5V1c1RrVgMkPAnnCeBRlW9I8rViUlOC85dqnpZlKsSM2wMjjHR8zMgDXhNRNaJyBPRrtCJzBmwvQR4hfAg2GcsuYmY+cD1wAXO/9V1TquDMaOWteAYY4wxJuZYC44xxhhjYo4lOMYYY4yJOZbgGGOMMSbmWIJjjDHGmJhjCY4xxhhjYo4lOMaYUU1EZonIY87rhSIyr8+xW0XkSxGIsVBEWkTkxeO9lnO9ic5U6rZIXM8Y88nZNHFjzAlDRO4D2lT1wQhfdyEuLLImIm2qmhrJaxpjjo614BhjjonTetK76FuZiLw1xDnlIvJfIrJRRFaJyClOeYmIvCkiG0TkDREpdso/LyKbRGS9iLzjlC0UkRecTR5vBb7hxDxPRO4Tkbuc82aIyPvONZ8VkSynfJmI/KcTf7uInHcUP9tCEXmhz/ufOdtq9P5M/+HUYY2IzBSRV0Rkl4jcerz31RgTGZbgGGOOiao+oaozgNmEd+5+aJhTW1R1GuGVmx9xyn4KPKmqZxLeZPQxp/xe4GJVnQ5cPiBeOfAE8LCqzlDV5QPi/A6427nmRuDf+hzzquoc4I4B5cdqr/OzLwd+C1wNnAP8ewSubYyJAEtwjDHH61HgTVV9fpjjf+zz9VPO608BTzmvfw+c67x+F/itiNwMeI62AiKSAWSq6ttO0ZPA+X1O6d0c8gOg5GivewTPOV83AitVtdXZTywgIpkRuL4x5jjZbuLGmGPmdNuMJ7wH1HB0mNeDT1S9VUTmApcCH4jI2cddybCA8zXI0f3d66H/B8DEYa4X6vO69739XTVmFLAWHGPMMXGSj7uA61Q1dIRT/7nP1xXO6/eAa5zXXyTc1YOITFTVlap6L1AHFA24VivhDUr7UdUWoKnP+JrrgbcHnvcJ7AGmiEiC0yJz4XFcyxgTBfZJwxhzrJYA2cBbIgKwRlX/ZYjzskRkA+GWji84ZbcDvxGRbxJOZG50yn8sIpMAAd4A1gML+lzreeD/ROQK5xp9fRl4QkSSgd19rvmJqWqFiDwDbALKgLXHei1jTHTYNHFjjGtEpByYpar10a7Lkdg0cWNij3VRGWMMdAFnRHqhP6AmEtczxnxy1oJjjDHGmJhjLTjGGGOMiTmW4BhjjDEm5liCY4wxxpiYYwmOMcYYY2KOJTjGGGOMiTn/D/8WgMrrQuXCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(2, 1, figsize=(8,6))\n", "Ex_num.real.plot(ax=ax[0])\n", "Ex_theory.real.plot(ax=ax[0], ls=\"--\")\n", "ax[0].set_ylabel(\"Re[Ex]\")\n", "ax[0].legend([\"Simulation\", \"Theory\"])\n", "\n", "Ey_num.real.plot(ax=ax[1])\n", "Ey_theory.real.plot(ax=ax[1], ls=\"--\")\n", "ax[1].set_ylabel(\"Re[Ey]\")\n", "ax[1].legend([\"Simulation\", \"Theory\"])\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "ce54520a-014e-4518-9888-9eb57bfbe3ae", "metadata": {}, "source": [ "As one can see the simulation results for magneto-optic effect matches very closely the predicted behavior. Note that this comparison is made at the central wavelength. If we repeat the same comparison away from central wavelength the accuracy of simulation results will degrade because of the approximations made in defining properties of the gyrotropic medium." ] }, { "cell_type": "code", "execution_count": 18, "id": "208b353f-bebb-4ce7-ba8a-f904800a495c", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGoCAYAAABL+58oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3hb5dmH71fbS5L3duzsPUgIgTACCbNsyt6FstoCpcBHCxTaAqWlLWWXPcoqq0DZBAgQshOy97DjPWRLXtp6vz+OnDjx0jhyQjj3dfmKc8776jyWZek5z/g9QkqJhoaGhoaGhsaBhG5fG6ChoaGhoaGhoTaag6OhoaGhoaFxwKE5OBoaGhoaGhoHHJqDo6GhoaGhoXHAoTk4GhoaGhoaGgccmoOjoaGhoaGhccChOTgaGglACHG3EMIvhGgXQqQk4PFHhh87KIS4Uu3H39/YH59PIcQoIcRKIUSbEOJ6tW3S2BMhxCwhRCj8ezpBhcczhx/LL4S4Rw0bNfYvNAdH40eNEKJUCPGVEKJTCLFRCDGnn7VmIcRzQohWIUSdEOKmAR7+P1LKVCllh8pmI6XcLKVMBb5V+7Hj4Uf2fN4KfCWlTJNSPqyGHeHn5FkhREXYcVophDhxgD1DhRAfhNc3CSH+2u3cGCHEl0IIlxBiqxDijL32niOE2BDeu14IcboaP8de13hKCLEp7Jxc1s+6L4QQUghh6OfhasKvgU/Cey4TQszv5bHK+3vtAUgpveHf+SsR/igaPzA0B0fjx85rwPdAJnA78JYQIruPtXcDI4AhwNHArWrcSR5g/JiezyHAOpUf0wBUAkcBNuAO4A0hRGlvi4UQJuBz4EsgDygCXg6fMwDvAR8AGcBVwMtCiJHh84XhtTcBVuAW4FUhRE60Rgsh5gkhZvVxehVwHbCin/0XAsZor6uh0R+ag6OxXyKEGCaEaBZCHBT+f4EQorGfN9FYrjESOAi4S0rpllK+DawBzupjy6XAn6SULVLKDcDTwGVRXG9e9/TH3nef4bvX64QQW8J31H8KPw8LwlGON8IfaFEjhLhFCPH2XsceFkI8FMvj9XGNH9Pz+SWKU/ZoOM0xMpbH2RspZYeU8m4pZbmUMiSl/ADYAUztY8tlKFGNf4T3eqSUq8PnRgMFwINSyqCU8kvgO+Di8PkiwCml/FgqfAh0AMPCP6NOCHGbEGKbEMIRfr4yYviZHpNSfgF4ejsvhLABd6FExFRHCLEq/Dvq+pJqvo9o7L9oDo7GfomUchvwfyh3nMnA88CLUsp5va0Ph+idfXx90MdlxgHbpZRt3Y6tCh/f+/HTgfzw+X7XxsnxKB9mM1De8J8CLgKKgfHA+TE+7svACUIIO+y6uz8PeKm3xdrz2T9SymNQ0lm/DKdMNu+9RgjxeD/P4eqej9oTIUQuMJK+I0UzgHIhxMfh9NQ8IcSE/h4S5ecGWAZsEEKcKoTQh9NTXqDLtl8Bp6NEkwqAFuCxSOyOkvuAJ4C6BDw2UspJ4d9RKkq0ahP9RJM0Dhz6y3VqaOxTpJRPCyFOARYDEji1n7Unx3CJVMC11zEXUNjH2q7z3demxXDd/virlLIVWCeEWAt8JqXcDiCE+BiYArwY7YNKKWuFEN8AZ6NESk4AmqSUy/tYrz2fcSKlvA4lNRMTQggjSn3Ii1LKjX0sK0KJJJ0KfAHcALwnhBiN8kHeANwihHgwvO4o4KuwfUEhxEvAq4AF8AFnd6txugbFgasK23M3sFMIcbGUMhDrz7XXzzgNmBm2uyjGh5khhHDudczay7UOB+4BDg+/JjQOcLQIjsb+ztMod5yPSCm9Kj92Oz3fCK1AWx9ru84PtDYe6rt97+7l/6nEzoso0QvC//47jsfqjR/b85kwhBA6lN+PD/hlP0vdwPxwmskH/A2l/mmMlNKPEoH5CUp05DfAG0CXwzIH+CswCzChOD/PCCEmhx97CPDfrqgTsAEIArnh/c5u5w4Hukf9bovwZ3wcuCFOh2mRlNLe/QvYude1isM/+6W9Rds0Dkw0B0djv0UIkQr8E3gWuLu//H84RN/ex9fHfWxbBwwVQnSPGkyil3SAlLIFqA2f73dtP3QAyd3+nxfFXjV4F5gohBgPnEw/3SPa8xk/Qoh/9fMc9vlzCiEEyms+Fzgr7Kj0xWqU6GavSClXSymPklJmSimPB4YCS8KnJwPfSCmXhet9lqJES7u6jyqBE/dyHixSyurwY3d3KOYDJ3c7dn8ET5EVmAb8RwhRBywNH68SQhwRwf6IEEIkobz2/yml7Ou1q3EAojk4GvszDwHLpJRXAh8C/+proZTyxK48ey9fvbbZhu/kVgJ3CSEsQmmhnQi83dt6lHqVO4QQ6eEUwM+BF6L4eVYCZwohkoUQw4Erotg7IELRCenvw84DvIWSklgipdzZz1rt+Rzg+RwIKeU1/TyH/dUaPQGMAU6RUroHuMzLKCmaOUIIPXAj0IQSbUEIMTH8u0gWQtyMUvf0QnjvUuCIroiNEGIKcAS7a3D+BdwrhBgSPp8thDgtqidB2WcSQlhQ6n+MYXt0KCnJAhRHazJwUnjLVBRHSy2eAzZKKf864EqNAwrNwdHYLwm/kZ4AXBs+dBNwkFDaSdXkPJS7yBbgfuCnUsrGsA0X7nWnfRewDagAvgYekGE9jgh5ECXlUI+SLlJbf6MYWDDAmheBCaifnurix/Z8qkrYmbga5QO/rlvE58Lw+ZLw/0sApJSbUNKN/0J5zk8DTg2nq0DpmKpFqcWZDRzbleqVUn6N0qr/lhCiDcURvU9K+Vl470PA+8Bn4fOLgENi+LE+Q0mlHYZS5O0Gjgx3btV1fQGN4fX13exXg/OAM/aKoKkWIdLYfxFSxnyDoqGh0QdCiDuA3wJ+oFCqLE4nhBiBcgduAq6TUr4ghHgGeFNK+Wk/+0qAjUDeD6nQcn99PjUGDyHEkcCnKJ1e58b7exFCmFGcYyNKMfof4rdSY39Cc3A0NH4khNMC/wCsUsqf7Wt7NDQ0NBKJ1iauofEjQCjzm+pR0kE/JLVgDQ0NjZjQIjgaGhoaGhoaBxxakbGGhoaGhobGAccBnaLKysqSpaWl+9oMDQ0NDQ0NjQSxfPnyJillj6G+B7SDU1payrJly/a1GRoaGhoaGhoJQghR0dtxLUWloaGhoaGhccChOTgaGhoaGhoaBxyag6OhoaGhoaFxwHFA1+BoaGhoaGgMBn6/n6qqKjwez7425YDFYrFQVFSE0WiMaL3m4BxgtLW52LjkCybMPBGLJWmf2SFDITatnI/eaGbEhFjG12hoaGj8cKiqqiItLY3S0lKUgfAaaiKlxOFwUFVVRVlZWUR7tBTVAcaSl27n4G8vx3H/JFxOxz6zY/GT1zL6/VPIefsMXC3N+8wODQ0NjcHA4/GQmZmpOTcJQghBZmZmVBEyzcE5gChv6uAX1cfxSfIpFFLPpi9f3id2dLY7mVj3XzYax/K0/yReWtRrB9/g4Ouk+YULcX371L6zQUND40eB5twklmifX83BOYB4c3klfgwcdPXTVIoCUja+vU/s2PDlayQLL8Fj7mLTqGt4aYWDfTUSpOHlK8ko/4C0L26l6fsP9okNGhoaGhqDj+bgHECMX3Uvd9g/J8eWRFXRyYzxrsZRXzXodjRsX8U2UcKY6cdx7FAzMzq+oqpq56DbEWipImfnh7xpPJU/hy7jiTXa3ZWGhsaBzb333su4ceOYOHEikydPZvHixVx55ZWsX79elccvLS2lqamp3zX33XffHv8/7LDDVLl2tGgOzgGCz+fniI7PmZDiBMB88MVc6P8daxyDHzm5q+OnPDbqJXR6HYfY23nE9Cg1Kz4edDuqlr0PQM5RP6d5/OW8tcNIIBgadDsAkBI2fwrtDfvm+hoaGgc8Cxcu5IMPPmDFihWsXr2auXPnUlxczDPPPMPYsWMHzY69HZwFCxYM2rW7ozk4Bwjb1i0mVbgxlh4KwIiRY1gYGsfausFtWWxo9dDQ5mV8kR2A4tHT6MBCqGLRoNoB8H5gJpf4fsvkKTM4bqSdo7xfs2HFN4NuBwCrXodXz4EHx8HOxfvGBg0NjQOa2tpasrKyMJvNAGRlZVFQUMCsWbN2jS1KTU3llltuYdy4ccyZM4clS5Ywa9Yshg4dyvvvKzeFL7zwAr/85S93Pe7JJ5/MvHnzelzv9NNPZ+rUqYwbN46nnlLqHG+77TbcbjeTJ0/mwgsv3HVNUDqhbrnlFsaPH8+ECRP4z3/+A8C8efOYNWsWP/3pTxk9ejQXXnihKmUNWpv4AULzxvkAFE4+GoA0i5HT7dsxb1wHx9w6aHbULHuf90x/BuvzAOgMRsotY8l2rhw0G7qYu60NU/GR2FJMHDYii5nGZ9i0tA4OnjXotmxLGseXoVM4h3novn6YtItfGXQbNDQ0Boc//G8d62taVX3MsQVW7jplXL9rjjvuOP74xz8ycuRI5syZw7nnnstRRx21x5qOjg6OOeYYHnjgAc444wzuuOMOPv/8c9avX8+ll17KqaeeGrFNzz33HBkZGbjdbg4++GDOOuss7r//fh599FFWrlzZY/0777zDypUrWbVqFU1NTRx88MEceeSRAHz//fesW7eOgoICZs6cyXfffcfhhx8esS29oUVwDhB0jetxkUpWwfBdxy4yfskpDU8Oqh3e8iWMFzsY1k2noD1jHCXBSvx+/6DZ4W7ayey6ZzmhyAdAWkoK5abhpLaok4eOlr8s9vGwuJj35REkbfsEOvZdC7+GhsaBSWpqKsuXL+epp54iOzubc889lxdeeGGPNSaTiRNOOAGACRMmcNRRR2E0GpkwYQLl5eVRXe/hhx9m0qRJzJgxg8rKSrZs2dLv+vnz53P++eej1+vJzc3lqKOOYunSpQBMnz6doqIidDodkydPjtqW3tAiOAcI1d4kQpapzOzWRufLmURe25c4G2uwZxcMih2WprVU6gopTbPtOmbIGYmpJkB5+SZKR4wfFDvqN3zHDYZ3WGA7f9exNutIxjs+RoZCCN3g+fY1S97Bs3EjVx5zNh2Oc3Cun49h+zLsE44fNBs0NDQGj4EiLYlEr9cza9YsZs2axYQJE3jxxRf3OG80Gne1W+t0ul3pLJ1ORyAQAMBgMBAK7a5X7E17Zt68ecydO5eFCxeSnJzMrFmz4lJx7rKj62fosiUetAjOAcK97rP4cNS9exxLLlSKyup2rBs0OzI8O3EkD93jmGn8acz0PMQmb8ag2dFeuZqQFBSMmLL7YO5Y0nDTWL110OwAMH37V67R/4+zphYyZ9Zspnmf4H/towbVBg0NjQOfTZs27RFFWblyJUOGDIn6cUpLS1m5ciWhUIjKykqWLFnSY43L5SI9PZ3k5GQ2btzIokW76yyNRmOvEfsjjjiC//znPwSDQRobG/nmm2+YPn161PZFiubgHAA0d/ho6fQzNCtlj+MZxaMBaK/ZNCh2hAIBcoN1eK17/kGVFhVQTTbbm9yDYgeAvmE9O8mlODdr1zF76WQA6rZ8P2h24G4ho20j680TKUpPZlhOGtlpFpZXtAyeDd1pKYdQSOnq0tJkGhoHFO3t7Vx66aWMHTuWiRMnsn79eu6+++6oH2fmzJmUlZUxduxYrr/+eg466KAea0444QQCgQBjxozhtttuY8aMGbvOXXXVVUycOHFXkXEXZ5xxBhMnTmTSpEkcc8wx/PWvfyUvLy9q+yJFS1EdANRuWMB88/U0iEeB3dGT3JIRBKSOQNO2QbGj3uFgRWgqqflT9zieZjFyTfI8bFvWwazBKXi2t29hh3kopbrdKbvCcYcx/Z3HuEwcxMRBsQJk9Qp0SHyFyjwuIQQ/z1jNcZueBd9SMCUPkiVAMADP/wRKZyJNaYgd8+C6xaDX3gY0NA4Epk6d2mtLdvcOqPb29l3f7+38dJ0TQvDKK703QnSvjfn4497lP/7yl7/wl7/8pdfHfeCBB3jggQf2WN+VUuvi0Ucf7fVxo0WL4BwAtFWuo0g0kZ+Xv8dxszmJc81P8EbKBYNix452Pb/w34h+zCk9zp2hn8+khvcGxQ6CfmwBB+22kXsctqakYLQXsKm+vY+N6tO0YxUAhSN2O30luXZKZRUt25cNmh0AbP4YWqv4R/UYbluWDI6tUD3INmhoaGgMEpqDcwAQbNpKUApyhozpcc6SU8r2Zt+g2LGzSXEchmT2jEq0pZaS4x8cVeVWP4zzPEP52Gt6nLsgeRHTdz47KHYAdFRvpElaGTlsd1dZwRhFq6huU8+8dkLZ8hmdulSeaRjJd0wmhCC09cvBtUFDQ0NjkNinDo4Q4jkhRIMQYm23YxlCiM+FEFvC/6aHjwshxMNCiK1CiNVCiJ5JwR8phrZqmnSZ6I3mHudmmTZyVtMTg2JH6coHmG++ngKbpce5oLWYbJx0dnYk3I7K5k4kOoqy7D3OHcx6ju/8X8Jt6OKd/F9zku9+hmbvro8aMXQEbTIJX93g1EZ1EaxYxJLgCE6bUsL1P5nO6lAZHRu/GFQbNDQ0NAaLfR3BeQE4Ya9jtwFfSClHAF+E/w9wIjAi/HUVMDif2j8AUtw1tBhzez03TlRwsfwfrS2JHxFgaS0noLOg1/d8WRkzSgBorE58PZBn7Qf8xfAUJak9z4VsQ8jCSXubK+F2AGxu6CQ1sxCzQb/rWJLZQLWuAFPrjkGxAYDOZvSOzSwJjOTCQ0o4YUIeC+REUhq+B2/b4NnRnX00gFVDQ+PHwT51cKSU3wDNex0+Dehq3H8ROL3b8ZekwiLALoTIR4MlwVFsTT+i13OWbCU10rgz8dGCNE8NTnPvejvJOWUEpaC5rjLhdhiqFnG6/juKc3q2pZuylOejvmIQoidt9Zy68z6Ottf3OLXeOpN1weLE29CFKYWHi/7G4pRZjC+0YbUYKS84iQcsvwL2wRDSxk3w3PHgqh78a2toaPwo2NcRnN7IlVLWhr+vA7pCE4VA90/HqvCxHzW+QIg/uc9ky/Arej2fnKO0bLc3Jt6xyAg24U3u3ee0jjqSUd4X2WCakHA7DK07qRHZ2FJ6puxsYaVnZ03itXD8tes4yT+XkdaeglVrh1/LnR3nEgoNUhTDYOa1xqEUlO2u0xo1YTpPOKdT7db3szFBvHsdNG+HjsbBv7aGhsaPgv3RwdmFVKZtRfUJIIS4SgixTAixrLHxwH/zrHd2IGSIQntSr+cz85WIhbc5sQ6O191OOq0E03qP4OTYUpA6I9XOzoTaAZDSWU2ToXdHK7tkFF5poL25Z1RFbZqrNwOQXjSix7lhOSm4/QFqnYmvSQJwLH2T0rblTC2x7zo2dUg6o8VOKld+NSg27KJho9K9dfivwVoIH90K1csH1wYNjQMMh8PB5MmTmTx5Mnl5eRQWFjJ58mTsdvugThLfn9gfHZz6rtRT+N+u4pFqoHtMvyh8bA+klE9JKadJKadlZ2cn3Nh9jXPrIjaaL2Wst3fxuoycQrzSiK8tsaJujc52ng2ciDf/4F7PG/Q67kx6h2HbX06oHQCZvho6kot6PWfNyOMQ8QqfW+Yk3I72+h34pZ78omE9zo031bPGfCXOFe8k3A4A09f3can+M6aV7k7bjc5L427ji5Qsu7efnQlg1augM9A6/AzqOiWseAlWvjq4NmhoHGBkZmaycuVKVq5cyTXXXMOvf/3rXf/XJWA0jRqjFBLN/ujgvA9cGv7+UuC9bscvCXdTzQBc3VJZP1o6GsoxiSD27N6zdXq9njnmV3gnLbFaODUeE38KXIxh2JF9rjlMt4bhLfMTaof0ddIsU/HZynpfIARFmSlUtSReVVm2lFMrMyjOSutxrrB4KGnCjbt+EMZGBHyktFewQxQyOm+3LRajnnrLMDI6tirqxoPFls/xFs/k5Oc3ceRDyynPPAI2/E8rOtbQSBDBYJCf//znjBs3juOOOw63W3n/27ZtGyeccAJTp07liCOOYOPGjYAi5nfMMccwceJEZs+ezc6dOwG47LLLuOaaazjkkEO49dZbGTFiBF2ZklAoxPDhw9mfMif7VMJUCPEaMAvIEkJUAXcB9wNvCCGuACqAc8LLPwJOArYCncDlg27wfkiguQKArMKhfa7JtqdS54p9CFokNDgcmPGR30uLeBcdlnwy2zcm1I5mn56jvA9y1+i+Q7IXyo9Irt0J9K7UqRY+r4d6UcBhScYe5zIzM3HJFKRzELSBmrejI0hb6jAMe3W4eTPHYKn9AJwVkNGHU6g2M2/g8fmNONq9TC6283x1IX/Qf6bYkF46ODZoaCSa53/S89i402H6z8HXCa+c3fP85AtgyoXKGJU3Ltnz3OUfxmzKli1beO2113j66ac555xzePvtt7nooou46qqr+Ne//sWIESNYvHgx1113HV9++SW/+tWvuPTSS7n00kt57rnnuP7663n33XcBqKqqYsGCBej1emw2G6+88go33ngjc+fOZdKkSexPmZN96uBIKc/v49TsXtZK4BeJteiHh669lnaSSU1N73PNGeJrbPUrgTcSZkf2+hfYZHmU9uS+a338qflkt35HKBhC10sruRrUtSqOXH+O1ggqGeJLbCQJ4B/pd1AlO/lE9OxSEkLQqM/B3DEIXURN4Y6x7J4DPtMKR0MtOKs2YR8kB6eh7HQeef0LrptVxllTi/jF31eAHqhcqjk4GhoJoKysjMmTJwPKOIfy8nLa29tZsGABZ5+929Hyer0ALFy4kHfeUdLnF198MbfeunvEztlnn41erzQm/OxnP+O0007jxhtv5LnnnuPyy/evuIM2hOYHjqmzgWZdBr1IvuxiOJUc5P8SGQohEpCLBdC1VuMkFXuqte9FqXkkCR/NTgcZmYnx8gPrP+DfxsexG1/sc00oLZ9Mhwu320NSUt+OULxUNrspyUzp83ybORe7ty5h1+/CV7cBE5BW2FPpOqtkDCyD5sqN2CfuLUmVAKpX8M0qByEJZxxUSFlWCvkjDqKispASf+e+aFiHTZ+AMQlKj4AE/X1o/AjpL+JiSu7/fEpmXBGbvTGbd3eU6vV63G43oVAIu93OypUro3qslJTd72nFxcXk5uby5ZdfsmTJkj7nV+0rtL/mROF3433xLEKVie0O+U53EPOtvYRCu2MrxCz8tDYn7sPU1FmHQ5fV7xpDRjG1MoPmpsR1MMn69RyhX0tWVmbfdtgL0QlJY11F4uxo3sEdzjuYbupbzG9b9mw+DM3o87xabB72M47wPkhZQU+nsqikjPN9t7Ms7eiE2wHAF3/koBW3MqHQxrBsxS2fPa6Qo9wPsL3krMGxYW8aN8BLp8Knv9s319fQ2AdYrVbKysp48803AZBSsmqVMjvvsMMO4/XXXwfglVde4YgjetdZA7jyyiu56KKL9ojs7C9oDk6CaF7zGeYdc2l+56aEXudV3xF8X3hhv2tM6UpHkaO2PGF2pHgbaDPl9LsmNOZ0DvU+ShX9r4uL1lqaZSrZdlufSyyZyvPhqitPmBntNZs4QqyiILXvP/imYWfxN/eptHn8CbMDYLPDR6XMZXhOz2LnPFsSK/UT2ejqWSeUCGT9er73FXPosN0O6MzhyvcLtiW2069PDrkGJl0AS5+G5kFUl9bQ2Me88sorPPvss0yaNIlx48bx3ntKT88jjzzC888/z8SJE/n3v//NQw891OdjnHrqqbS3t+936SnQUlQJ41PveM4HWn2C/uMasRMMhqC9gbw+tGe6SM5UOqw6HDUJsgRswWYcaT1rPLqTa1XSQQ1t3oTZYeqsxaHLJKOfGh9r7lAqQjk4WxM3osBZV04akBYWWuyNovQkrHRQ09TCqKLEOX15y//OMfpshmSe2OOcEIIT7Tsp3rEIuDthNgDQ2YzoqGdT8BimDtldM1aSkcypaVs4ce5vYPj/IKunblBC2PqFUtg85WKYcxes+y8seBhOfnBwrq+hkSDuvvvuXd+Xlpaydu2ucY/cfPPNu74vKyvjk08+6bF/yJAhfPllz0G8L7zwQo9jq1atYtKkSYwePTo+oxOAFsFJEF9taeHt4OHY3DsTdo3m5gYWm67lqJa3+l2XllVMnUynrSMxInuhkOSp4MnszD2233XZyYJnjA+QvuXthNgBkORpwGXov74ns2wSR/n+yWrT5ITZ4XEoxdZZ+SV9rhkR2MJqy89xb0zgRO+gnxnVL3BU0naMfTh9JxmWckHzY4lvFW9Uip03y6I9HBwhBGVF+WQFapH16xJrQ3cWPALz/wk6A6TlwcjjYONHWru6hkaE3H///Zx11ln8+c9/3tem9Irm4CQAX2sjM7f9g05pITPkINSx97gtdXDWKc6Twd7/xIr0wuHM8D7G6tSZCbHD5fbztP9E2or7r+OwWJI4TL+elObEfYhVyRzqUvq/k0gy6bEnGxPaOh9qraFRWsnL6DtVllmgdC15mhKYFnFVoiOEN62fuVfppZjx4XMmuKOrUZEI8NhHkpW65xiN7DJlhEd71frE2tCFpxV2fA3jz4KuLreDLoFDr4Ogb3Bs0ND4gXPbbbdRUVHB4Ycfvq9N6RXNwUkADTXlXCo+pC1jPOM8z1Lp6TkTSQ3aHYqGSlcKqi9SzAaSTXoaE5QaamxuYYioIydl4B6YZl0mRnfiJpv/InAjS8quHXDdXwxPMXNH33nleGkJJrFajiA9ue/alozsQgJSR7A1gWMjWpRCapHed6osKUfRUGqoTLDo4NjT+LXxLnJ7UXYeVZLHzlA2ndVrEmtDF1VLQIYIlh7JH/63jgufWcTnvgkw8wYwJObvVePAR2rRv4QS7fOrOTgJoNOlfIDnlIyigyQ21Cam1sPTogg5W7MHnkp9r+kFDt7+WELs8O1YwNfmmyjzDCzi12bIJNnblBA73L4grZ7Arlqf/iillqLODQmxA+A1+8+5O/UORC8aOF3o9HpahB1DR+K627qiQ5bsvoUg7fmKw9Fatz1hdgC06dL4b9soRub3jGqNybeyWRahbxqEKe8AFQtB6Hl6ewbPf1fOlvp2rn/te3aUl8POxYNjg8YBhcViweFwaE5OgpBS4nA4sFgil/bQiowTgLdV+QAfPqSEm1c+hX5dBYy/TvXrBF1K0XBG7sAOzihRCe2JUc31tiipjbSsgYe7eyzZZLUlxrFwbl/OXNPN7PTfDwzv3w5zJrb2xEUs6lwe8q29D0DtTqshE7MncdLmrU016KWe9LzSPtdkFyoOjseRuHoxgJZv/sVEIRmZO63HuVSzge+TDkVvrGVQGtY7GgjkTebvX1dz8sR87jx5LMf/8xvK37mTMs9XcNtOTRNHIyqKioqoqqrar0YVHGhYLBaKinqfM9gbmoOTAPzhwZZZOXmcqf+OxnovoL6Ds844nuXiQm5I7kdcL0ynOZvcjsTcHQfCKZb03IFfeK3WkXic9RRJ2W90IxY6mioYrqvBlZo84Fp/Uib21mXIBNhBwMt9dVfzbd7FwKH9Lp2f9VMqWvxMVteCXawsvZJffDuBt7L6fo1kZWRwjP9hTrRN4aAE2UHAR9GC3zNbfxqjcq/sdUn5kLP5X7VrcBycUx/hte+24t+xietmDSfXauGcacV8vKCAow1t4NjSq/JzwvB7YPET0NkMM64Da/7gXVtDFYxGI2VlgzTuRCMitFuUBBDoaAEgLT0Hpz4DU4Lu0L8PjeSDtHMjWutPyiJdtiTEDtrr6ZAWUtPsAy7dPPJqzvfdTptX/Um07hYl1RNJJImUHOyig/ZO9TvLZGsNw2QFmeaBQ9WVRafyWufBCQtr72zuxI+B4oy+nT6dThCyl1DhSuB04HCxc60un6L03iNbI3PTqGppx+NJ/CBUgLdW1jMm38rYAsX5O+ugIpYHw/VBVcsGxYZdfPo7mHs3LHwMXj0bfB2De30NjQMQzcFJAN9kX8gE3/NY09JoN2aR4ktMzYnRuY1hSZF9QMuUXFJx4+loVd+OzkaadekRRUIyU00ANLer36kSaFUcnL4mq3cnmDmSxaHRNLeo7/S1NyqpHmP6wHYUpYQoDpTT2pGYAvCJq+/hAtO3/RY7A5xm+Z5Dql9IiA0AtIQ7xdKHoNP1/joZm9rOBtNltCx4KXF2AGz8EN9zJ1NTWc7JE3dHSkblpWHKGUmnSIbqxCqQ70HlElj2LBz2Kzj/dQj4oGnz4F1fQ+MARXNwEkCL248pKQ0hBJ6kHGyBxLSJ39TyJ67piKxwWGYMZWVoGI4EfKB/ZD6eN9IuGXghUOpZz4em39JZ+b3qdtDegEsmk2kbOGXnHXkq5/p+T0Ng4HRWtLgaw91tGQM7OAe5PuMz8//RVJeA+hcpmdT0IVMsNQM6n4fINZzW0b+eUlyEFYLN2X3XRhUWlSKQdNRtSZwdAFVLMVQuwkkqM4fvKcN5+Mgc1gaHEKwbpG4uUAaMzv49zPqtosXzi8VQMGXwrq+hcYCiOTgJYHLN61xp+AiAYHIOyBAyoH7Ewhp0ErD0PXOpO96RJ3O670/Uhwb+8I+Wb/xj2JR1XERrbRYj43QVuB3qa65UiXy+1h2Cvo8IQXey05RW4ES0zrublZ/NmjNwTVJShqJC7WxMQAG4x4lZevAl5w24VNoKsdKBpz0xacyAYwduaSIjt2/hw7IcK9UyG5nocQn166g3l2A2WxhfsOffw2HDs/iT/0JWTv5jYm3oTmoOHPEbMIWHGAoBvk5oT5ycgobGjwHNwUkAE1xfcXhICXFvGXU1k7xP0xZQt5DV4/WSThsyJbKp3Bkpygd6IlJDxe2rKTVHlvqyZiopAZ9Lfe2X98yn8rgtstlfOTiZa7qZ1C3vqm5Hk7SxIDiWzKyBHQtrltIB15kAh49WpcsuNMAoDwBThqKT01CVmFbx8kk3cazvAUqz+56unmTSU2fIx9KWuCGoANSvY22gmINL0zHspe48vTSDDWIYc5vS+9isMlXLYfWbSlqqi1AIHpoEX94zODZoaBygaA5OAkgOuPAaFa2PnHCrcEOrupGClqZ6dEIiInRwskUrH5h+R8qW91S1IxQI8HTgTma1/i+i9dZsxcEJtal/d9rU7t0VmRkIe3oGw3U1CGel6nassM7mAv8dZEfQJm4Pd575nOrPCfO3KFEho33gSFJKVngAaUNiWsV3OINUyWyGZPbt4AC0JxeT7kvczDQ8LmitZrk7j4PLMnqcTjEbmJZvxLrhtV2jJRLKihfhw5tAdHsr1umgZAZs+VwbG6GhEQeag5MAUkOt+M12AAr1Th4xPoxn6zeqXqO1SbnjN9kGjhIA2O3pjNeVI5zq3h23ORvDjlZkI0XNSVY8GKFT/cnRTzdexAWe1yNaq7ek0okF0al+h1tjm5c0iwGLse9J4l2YbYrDJ9rVj2i5WltplFaSs/tOC3VhC6eOOloSo6qcs/g+DtWtozSz/5qnurxZvBA8CRlMUEeXp5WW/MNZK8uYWGjvdcnkgmSudf2T0OZPE2NDd7bPg9IjQG+gwxtg0XYHHn8QRhwLbTXQMEijKzQ0DkD2WwdHCFEuhFgjhFgphFgWPpYhhPhcCLEl/O8gxZGjQEqssp2QRTEty5rEKfpFhOrWDrAxOuqlnZv9V6MrnhrR+uSUVDqkBdGpbkeXy6F0LhnSIpyZLgRL9NOoJbLaoUiRvg6yaSbJHLnMvlNnx+BW39E6f8MvuNf4XGSLDSb+ZvkVC42HqG7H9uzZHOz9F7a8gbU5MotGMsLzEsvSZqtuB55WJlW8wCGmcuzJpn6X+kqP4W++M2jxJGjwp72YN0Y/zPzQBMYV9F6PNqJ0CA3STtvO1YmxoYvmHco086GzWFvtYsafv+C8pxZx0kPfUp0Znhu37avE2qChcQCz3zo4YY6WUk6WUnZJn94GfCGlHAF8Ef7/foW73YUbMyQr4e+M7AJCUuwSw1OLOn8qbwWPwpbXtwR/d4QQOHU29B51P9A7w9ozJltuxHsezvo97xhPVtWOtmbFDl1aTsR7OgwZJPnUd3CyvRWk9N+VvQfLM05mpX9gNepoqXUpejIFtoGlzS0mI6nJSdS1JmAAaasSbQxEUAtUbDeTjZPqugSNr5CStTWtFNqTSE/p3dmaVGxjW6gAf0OCu7l2LgLAXXgov3x1BalmA3/96UQa273c8lkj0j5EmZmloaERE/u7g7M3pwEvhr9/ETh935nSOy1BMxO8z7Jz5OUAWJPNOElVPSXjbdzGFLGFrCg+Sdv1Nsxedbtk3C4lxZNij9yxyEgx4VC52LltVyQpspokgO3W6awOqaw8GgpiCznxJ0Vux2izg2znKnXtAIYsv5/bDS+Tbx+4FgjgetP/mLgzARo0LsXB0dkHduLKLG0stVyHXPO2+nYA/PdqLt16A+ML++4mLMtKpVqXl/hi56bNYEzhzYpkyh2d/P3sSZwzrZj/O2E0C7Y5WDHut3D4rxNrw96UfwePHwZ/HQrLXxjca2toqMz+7OBI4DMhxHIhxFXhY7lSytrw93VA5GGDQcLl9gPsCsUrkRM7RpVTIUMr3uI/pj+RZIp82sbWpMlsFepGCiqSxnKN70aS80ZEvOf89hd42PUrVe3oiiRZbJE7WsuHXsM93nPVVRHudKAnhEyJ3I7TWl/hTvcD6tkQJtuxlDH6alLNkb1GprOGCa3q1ooBhMKF3ObM0gHX5heW4pd6/M2JKXYO1m+g3QfjCnoO/OxCrxN40oaQGmgBj/rCmLuYcxehG9bwwqJKJhXZOCysyXP+9BKK0pP4e3nZ4OvhtOyAkB+yRsH/boANHwzu9TU0VGR/dnAOl1IeBJwI/EIIcWT3k1L5VOrxySSEuEoIsUwIsWxfDD3zV6/iYeMj5Ph365rUGopoC/VfexAtBk8TLp1V0cyIkC+KfsHfZGSCfJFSHbTzSWg6Gek9O1L6ItUgKZXVhILq1Vk0YeOt4JEkZZVGvCcr1YQ3EKJdxbER7malA0iXFlnxN0AoJYcsnHR41I1qJfkctBsjr3XyWnKwBdRP2XW01OGXeuwR6AKlJplpFBno2hLQNi8lOLayXeYzMjet36XbSs7mSJ5DmlLVt6MbSxtge2MHlxxauuuYXic47+Bilmyrp37xW1CrfnSvT6ZcBNcuhEvfh9zx8OFvwNs+eNfXSCihkGTRdgerKp372pRBYb91cKSU1eF/G4D/AtOBeiFEPkD43x69xlLKp6SU06SU07KzI08TqEXIsZ1T9QuxGoK7jv0r7w/8JTkyfZZIMXpbaNPZo9qTkWLCofJIAFPDGo4ybYyoY2gXKdmYhR+nS710WYVpJDf7r8Haj5Dc3hzk/Iw15itoqVdPZM/hFbwbPAxdVv/TzLujS8vDKII0N6lYdyIlaYFmfBEKQQKEUnLJlC34/MGBF0fBppFXM877HIWZ/TsVXbQYcrB01g68MFra69EHOimXuYzI7d9xKSksYKfHQmOH+rpRADRsgDcvY/mKJZj0Ok4Yv6dDfM60YhCCzE+vg9VvJMaG7jTvgLVvQygIegPojXDygzDxbAgm6DnQGFQ8/iDnPrWQ855axGmPfcf1r32fsBl4+wv7pYMjhEgRQqR1fQ8cB6wF3gcuDS+7FFBX1EUFAh3KWIYU2+4PlswUE80qOxZJASduoz2qPYe1fcy3uqvobFNvdMRB1a9wn/7JqPYYwoXArU3q6Z20tHUAksw+Ckd7IzkllTThxtWkXrSg1ljMjf5fYimaEPEeY7rSKt7aoKImj8eJkQCBpMhTZTprPmYRoKlRXeeiqsWND2OfQzb3piMpH5svAe3qLUpNTY3IZUg/w0cBRuakcqPhLRzL3lXfDoDqFbDuv3y3zcGhwzJJ2SuNmGO1MKkki+2iBOoS3M0FsPQZeOdq6OgW9S6eDsfds6thQuOHze3/XcvS8hb+eNo4rp01jPdX1fD0t4kR9txf2C8dHJTamvlCiFXAEuBDKeUnwP3AsUKILcCc8P/3K4KdLgBSrLsdnMO93/LPjt+CitoeqUEXXlN0bzypZhPZohVno3qRApOvmXa9Pao95nCdTFfnkxrM2HAP35hviiqSlBx2LNwt6n2gN7YqnUtZqZG3q3fNrFJVzdjXyVo5FL818oiWKbOIRmmjuUld52Lo0rs5U/cNhfbI5n5tLTiNB/1nEQqpfHdpTuPb1BPxpo/ooWC8NyNy0zhf/yX6LR+ra0MXjRsI6c0sbLExZ2zvpYTHjs1lmbeYUM3qxAr+SQnr34Nhx8DeqdWgH7bOhaatibu+RsJZU+Xi7RVVXDtrGJccWsqtx49izpgcHv5iK65O/742L2Hslw6OlHK7lHJS+GuclPLe8HGHlHK2lHKElHKOlDIxUyzjwd1CQOpIs9p3HcrWtzNVbMTTpp4Gze2BK/m+6MKo9hitSsquo0U9xyLZ78RtsEe1x5I7nP8FZ9Dsj6KXegCMnma8usgiBF1Yw1PHfS71no+SFX9lhfkqsqKIJKWVTOJnvpvZYYq8UHsgOiy5nOy9h5aSYyPeYxh/Ogd7n6CCgdu5I0ZKRte+xxRzNUmmyJzPYNlRvBk4nAa154TljuVOeTXWvIHTh9lpZqpFHkZXubo2dNG4CWdyKSF0zBrZeyp9zphc1ssh6LxOcKmvuL2L6uXK4487vec5fye8eh4sfz5x19dIOA/O3Yw92ch1s4YBSvPLTceOot0b4KWF5fvWuASyXzo4P2Q6Q3oqRR66bneI+rAInkullEynL8A3/jH4ciZFtS8pXblTdDvVu0NPCbrwmaPTW7QWjeFX/usp15eqZofF10JHlI6WLUv5IA+2qjc2QnQ24cHUp8ZKb6RnZDFPHkSVV73J5l3OQXYUkaQ8q6KX06WfowoeFybpxZccecPjkDTBRLGNmlp1C4097U52NncwLGfgwmEhBK6kYmzuxHRz0biRbbKQApulz9TdsOwU6pNHKv+pTWCaauMHoDPAqJN6nrPYYNjRsOF9bWzED5TK5k6+3NjAZYeVkmbZfVM5tsDKUSOzeWXxTvWjpfsJmoOjMu/bL+HipMf2OGa2KimZjmZ1HIuWlhZO0C2hUB9dACs1Q0nJeF0qfaBLiV26Ip5o3kV6sgkhwNGu3h16csCJJ8qaJL3FynviGHaIQtXsMHgcuIRtwBTIHnboBCclb8DSsEI1O+SKl3nPdAd5SZGnRW1mHU+bHiRn+zuq2UFbODoWRVdZmb6e98134t86Tz07gNCr5/Ky4V6G9TPwszs+aykZoWak2l1EwQAyKZ3vOouYXpaB6KMTUghB+vDpnKZ7hNDIE9W1oTsNG6BoOiTZez8/5lRw7oS6NYmzQSNhvLGsEiHChet7ceZBhdS1elhavv8lQ9RAc3BUxuX2Y0vaM/WS3BU5UWmCdkf9Nv5l+idDOqObU2PLyueD4CE0CHXGJLh9QS7w3c72IWdHtU+vEywwX88hm9XTfrGGXPijdLQQgn/Zb2K+iGzcRSSYvdHXJAH8Tj7D1Nr/qGZHqGkLY0QFmemRR9eE3sAM3XpsLeqNFZFtSn2T3hp52iu7UAmje5vUjZ6IlgpqyaB0gIGfXZhzhuOWJprrylW1A72B7Wd+xD87T+CQof2/ZqcPz2NVZyabGjrUtaE7578OFyivPUe7l9+/t5YT/vkNN72xkoY2jzIXC2Dbl4mzQSMhSCl5Z0U1R47IpqAXwc85Y3KxGHW8vyqBA273IZqDozJn1/+Tn/lf2+NYamYh60JDaPWr83R3OpUIjMUWXRt8aqqVm0K/ZrVZnQ/0ZrefFXIkhqxhUe8NCQNGlcZGyFCIf4eOozbz0Kj3ZqUYaW1X7w492d+CO8rib4B2QzoWn3p3UbK9niZsu6bZR4rTkInFrV7Kzt3ZRpO0kpQReZTMkppOB0mIVhXrTgI+LO46KmUOpVmROTjGCaczxvs8G/2RR58iZUWFIpEwbUj/DuihwzI5RrcCz2d/Ut2GXQgBFivOTh8XPL2Y15bsJDPVxEdrajn54flUBayQMw4qB3FsROVSRWjw/V8p32vExOoqF9VON6dO6v0GI8VsYPboXD5bX39AtoxrDo7KjPOupDS05xtzenY+P/H9mbWph6tyja4UU0p6dELOQggyU000t6szb6i1oZKf6r8mTx+92muHwY7Fp44OTqc/xF9859BcdEzUe2923sM9TerJ4X9qmMVW22FR7/OaMxXlXJXQdzTikDbsSdEVcneasknxqyeQWZVzNNO8/yI5f2Tkm4SgWZ+NuUPFdvXWKgQSpzGvR4S1L0bk2QHBlvo29ewA+OZvHDTvUlLNeoZl918PVGhP4qik7UzY8ZzS0aQ2X90H/7sRgLveX8eOpg6ev2w6r1w5g3eunYnbF+QXr6zAf8GbcO7L6l+/Nzyt8MpPYe07sO5deO54+H6Qrn2A8cm6Ogw6wewxfctFHDUqm8Y2LxtqVX6d7wdoDo7KJIfaCZj2lIFPMxsw6gUOlUTDAm3KB5A1I/o7y38F7+aiHbeqY0f1Kv5mfJLcYPSpN48pgxSVPtCbXW3YaSMjOfKxFV2EzFasIZcqdgD8zX82FfknRL0vkJSJPeRU7S7K5G2i1ZCBThe50jWALymH9GCzanbUuhRnOj+CgZ/dabfkYVVTC8eliDnKCOZhdZGdZuaPllfJWfu0enYAVC1F725iQqE9ot+PzBqNgQA4tqlrB8Cmj6BlB4u3O3hvZQ3XHDWUw0coTRFjC6zcf9ZEVlW5eHmdD3SD9HFhsSpps1+vhZvWQ9mRihPWemCmURLJp+vqOHRY5q7RQb1xVLiL75stg6/8n2g0B0dl0mQHIfOeg/yEEDxufpQjtvxFlWvI8ODOtPQYlJoNZpL96jgWvvCE9JT0yMXkuvBbMrGGnKrY4d3+HSstVzOsM/oiSJmcRQYuPL74NYp8Xi9BtysqscFdpOSQThutKglCbtMPY7tlXNT7vOkjqJPptKjkjGcvvp/fG14iL0oHZ2XZz7nLewF+tcZ5WAt5Wn8uImtUxFuEEMwwbqHY8Z06NoSRDRtZ589nYnHf87C6YxuiiEa6dqrcSeVth/p1UHwIj3y5lVyrmWtn7dlCf9KEPA4fnsU/P9+M990bYemz6trQHSmhYqHy75BDlQ4ucxqc8yJc8i5EUcelARWODrY3djB7dP/vz7lWC6Pz0vh6k+bgaPSDp7Mds/D32o2Qp3OR1amOWNY3aSdxhf4ehCH6D1KvKYPUoFMVOwJhXR9rVn7Ue+uyZ/J24HBVPsC84eLtpChTdgC61GxMIkhzS/z1QG3ly1lruZIJ7sVR720aeS6n+O6lUSUH537TL/k6N/q5Y42TruMs3x+obVUnjZnesJiRukpy0qJzcETJDBaHxlCvkh3utFLu7TiNrPzIhQ8BOpKLyfCpGDnwdYKzgs3BQiYV2SPaMmTUZIJS0LhdZQenejnIEDuTxzF/axOXHlbaQ6tICMFvTxqNyxOgdesCWP+uujZ0Z+sX8PwJiuhgdyw2KA2n9xM5/DRBhEKST9fVcdd7a/nLJxvZ2jA4s73mhR2WWaMGvgE9bFgWK3a2qHdDsZ8woIMjhHg/gq8XBsHW/Z629jbWh4YQTO1ZUOk22knyO1W5TrnXSlVqdBo4XQSTMrCrlZLpdOCTeqzW6Itqm4ecyP2BC2jpjD9S4Avr2MSSsjOkKVGwNhXmQLXvmmgevaOVmlPGOllKQ7s6dRaNbV6y0yLXwOkiJ6yF09CqjqNl8TTg0mdhMkR3L1Wa1MnxuqXU1akjwli7czMZtFISYQdVFyFbCbmyibZOlbSBHFsQSDbLIiYURhbBGVuSSwV5uBwqz+cKFw2/UJmNxajjgum9O3/jCmwcOTKbLzqGIquWJaYWCODbv4GtuHc9HoDFT8LDUxQn8QeCq9PPJc8t4ep/L+ftFdU8/c12TnzoG95YlkDhxjDzNjVQmpkcUVH9tNJ0vIEQ62p+eA5kf0TyrjMG+Hs/X/8ADk6UgT8kWmQqJ/n+jGPY6T3O+cwZpAXVcSxGNH/FkfrYNClkchZJwoenI/4Xss7twCWse4gaRkpGipkkPDS3xt/+GmpvIigF9qwYIjgFk3g0cBpN/iiGhfaBp6UrZRe9o5Vr7OAC/Rd01MUf5QvUruMj/xVMC6yMem9hoIL3THcgy7+N2w5CIdL8Dtzm6FOpJf4dPGl6kI4qdaIW1rm38JzprxRHOA+rC3P2UAwiRFXFFlXsQEo2WmdSbiijsJe23d6wGPXcnP0kf9FdqY4NXSTZCY4+mbfXtXP8uLx+6zSuPnIo33pHIPydiREdrF8POxfCIVdDX5HpvAnQ2QSrX1f/+gnA7QtyyfNLWLzDwb1njGfl749l0e9mM2NoJre+tZq56xMwby2MLxBi0fZmjtxbJbvme3jzMtgyd4/DU8PdfMsOMD2cSD6ZbpdSft3P1zzgDwm28wdBjVO5y+tNbyCYlIlVtirTeuPkzNaXOcX7QUx73TlTeCZwoiqdVK9bL+e3qbG1r5a5FrLB8jP8O5fFbYfodOAkjRRz9KMfUoon8rfAudQG7XHb4W9T3rBiSdlli3buMz6LoSb+56OtqYoc4SQ1NbpoBUB6WiqTdNsJNlfEbQfuZgwE8KdE73hmFpQB6mnhGNqqqZFZlAwwZHNv7EWj2BbKp65epdb5gsnclXInlryRURWATyzJYnWVk4CaKYTpP+fz8X/H5fZzxpT+2/gPG5ZJnW2y8p+dC9WzoYvlL4DeBJMu6HtNyaGQPwkWPQGh/T+V8tt3VrO6ysljFxzEhYcMwaDXkZVq5ulLpjG+0MpNb6ykUe1xJGFWVjpx+4PMHJ61++DiJ+Hp2bDtK0UaAJQutU9+R26amaL0JFbsVK+Tc39gQAdHSvkGgBCiRxJdCJHVfc2PHdO6t/iv6fcUWXo6D+70UcwLTcbriT//mhZy4TPHNuE3WDKTewIX4/BHn77Ym53eFNqtA8/16Y1ku/Kh53HFX9i2POkwnjee26cibH9kppiw00abK/45YbK9kQ5pJiPdHvXe1EzFKQq2xf9B2u5QakaSM6IvyjTbFTtCrSqkhnwdrKeMoK00ejvSiwAIulQY1yAlye5aGnXZZERZAJ49YTbH+v/O9/7oanf6NCUYYFN9G6Pz0qLaN8tWy+Pcz/aNq1Sxg1AQQiE+XFNLZoqJw7t/EPaCEILZh0xiYXAsTZ3qDQ0GlKLibV/C6JMhpR/hQyFgxnXQtBm279+ig++trObdlTXcOHskx43bM6JrMep56LwpuP1B/vrJxoRcf8G2JuXpKgs/n0ueho9vhZEnwI2rYfhs5XjtSlj0GMx/kGlD0llW3nJA6eFEk1tYKoSY0fUfIcRZwAL1TfrhonNsZLzYQXZmz5B8S+lPuMJ/C83+GDpsuhEMhrDLVkJJsTk4makmLHhpaY0/RTWz5T0OE7Gp3qZmKIVvARU+0BfqpvCV9bSY9qboA6y0XE3Z9tcGXjwA65IO5tHQT0kzR9+uLpLs+DGg64jf4fM6lVqNtKwYuk5MKXSQhL4z/t9LZ0ohJ3nupbUken0izKm0ixQM7SrUnbhbMIXcuJPyo3aCzQY9RenJ7GhSR0nY/+wJ3OP/O6Nyo3NwRuemcYx+JbWbVRK9K5+PvL+Ypo3fcezY3IhGi/x0ahEXB+/kad/x6tjQhRBw3UI4KQJl83FnQmouLPqXujaoSKvHz58+WM/kYju/OLp3EdRh2an8bGYZby6vYrPaOkvAgm0OxhfYsCUboWqZ4tyMOgnOeUkp2u5i9l3Kc/rlPRxrr6WhzUtVi4qz6PYx0Tg4FwCPCCEeEEK8AvwciOGd68DF0FZNoy4Tg7FnqqTrztHRHl9RrcvZjEkEEcmxjVvI9tey0XI5yVvej8sOgMu9/+Zgb2zhaltXxKIj/u4li2s7xb1EzSJBGJMU1dzO+O1YbpjCu8lnxRRJQghcOhsGFdSdA631eKSRrIz+78r7os2QgcUTf0SrLkYNnC5ajdkkeVSIJHVp4Fhjmzn2Zx5lVsXD8dsB4NhKq0xmVJ514LXdyB06gRACT/U6deyoW4PwtbPZm8Fx4yJLIeakWZg9Joe3l1fi86lcaKw3QkoEr1eDCX76HJzykLrX7wtvG3Q2RzVo9JEvtuDo8PGn08b36zhec9Qwkk16Hv9Kne7aLty+IN/vbOGwYeHPiPxJiiNz5tOg3+vmSwg4+R+Qks0xW+5FEGJZxYFThxOxgyOlXAPcC1wDHA38UkpZlSjDfoikuGtxGnt/sygI1rDQ/Etlcm8ctIY7KQxp0WvPQDfHoi2+SEHA58VGBzIpNkfLaEnFjUkVx+K+lt9wcedLMe9v1dkwqeBYCGcFxcmxv/G3GzJI8sVvR5WhlLeDR5IVZWt2F9vTprE1ENvraw8WP8m7pjvJS40tavnh8Lu5y3th3CFzmZbP7aFr8OQeFNP+Al0zQ91r4w/du52YvC2Uy9yoU1TClEyjIR+zU6UPw7rVtBqzcJsyOGxY5I7wJePNfBj4OZs+e0odO4IBePoYWPPWrkPt3gDPfLudC55exDF/m8epj87nznfXsrzrg7f0cLCpNyC3B1LC2rfhySPhz0Xw1zJo3BTR1m2N7Tz/XTnnTC1mQlH/XXLpKSYumjGE91fVUO1UL2qyvKIFf1By6LBM8HsU5/HwG8Hch2p2Ujocdw9JjrXMNm9kecWBU4cTsYMjhHgWuBGYCFwOfCCE+EWC7PpBku5voCOp9wJTmy2dfNFMwBWfpkaDLpujvP/AMzS2MHGa1Y5P6neJBcaKK9wxpEuNQWwwzMumc1lpnByXHYSCWGU7wRgdLYBOgx2LCuKHt9b+ml/5YhdCe7X0Xn7HL+O245uUY/mL4Wosxtg6w74b/Tv+5PkpoVCcH+iNGykSjeSnR1/sDKAvmMw2fxYtnfFFCxxYecV3JOl5Q2LaH7QVU0ADDfEWhDZvB8BpKSY9BjHITusw8nwVtHlUiJ7UrWFdqJRDh2ZG9To5ZMIYLCJAy6b58dsAUL1M0ePRKTZ8t7WJOX//mns+3EBLp5+xBVbSLAbeWl7FWU8s5NwnF7JwmwN2LoK3rlAcJDXxe+CtnylfAR8cfTuc+ABkhwUiP7tDqWfpo8j5Tx+sJ8mo55YTIhOUvHjGECTwxlL12sYXbGvCoBPMCCyHRw6KzDkbfxb87DO8JUeyrPxH6OAAa4CjpZQ7pJSfAocAsd0SHYAEAkFWhspwZU7u9bwtSyk0C7bFF/p3uCUVMg9bRmyOhU6vwyWs6N3xOTjtDsXB0afFlgYB+Nh+PgvE5Ljs8LQ2oRMysvB2H7hNGfHPgZISa8gZ/UTzbhgyhrCjwxy3Y9HU2rlLzyYWcq0WgiEZ92gR0V5Hg0yPWsW4i5H6Gi7Tf0JNU3zyCg3bVjJOlFMcZQdVF8bMMnKFk/LaOKNrYQdHH8NwWgBZdDCN0saaKmd8dvjdyMZNLPUW7RrLECkGg4FG20TyXatwtKvQAbTlMxB6GHo0762s5tLnlpBqMfD2tYfx8Q1H8OgFB/HKlTNYfuccfn/yWHY0dXD+04t49INFsPYtZb+auJsVp2v27+HaBXDUrXDIVUoqJxiAhg3w0c3w79Ohfc8o+Jcb65m3qZEb5owgKzWyJo7ijGSOGJHNm8sqCcZ7QxFmwTYHMwqNWD79jaIEnV468CadDkoOYUqxnc31rbh98Xf77g9EIvRnBZBS/lN2i9FKKV3sg/ZwIcQJQohNQoitQojbBvv6fVHX5uUa3400jr641/PWZAstMlXRcYiH2pX8XP8BmcbY7+JadTaM3vg+0DucioNjscaeyihICiBa4+uS6UrZ6eOIJG3IP51ngifFlYKQHhcmAoSSY3e0xgY28Cvdm7jiFD+8d8c5/Dr4Qsz7pzg+YIn5Ohoc8eXiTZ31NOsyYo4klXWu5W7jSzTVxdcqbl3yII8aH4q6RbyLtHylU7ChanNcdgRsJbwSOg57YRSDR7uRfvxvudj/O1ZVxdkgEPSxbtiVzAtO5ogoHRwA+6jDGaGr5uOlKnQAbfkMSmYwb6ePm95YxdQh6fz3usN26bJ0kWwy8LPDy/jm1qP5vxNG80z9CBqknU0fPYpTBbHQXVgL4LrFcMRves7e0hvgwreU+p/KxfDkEUokCUV35k8fbGBodgqXHFoa1SXPP7iYGpeHbzbH32DQ6vGzusrJzbpXoa0WTnsMDJF3zJ7m+jcvGO5nXY168/n2JZFEcOZ1fSOE+GKvc++qacxACCH0wGPAicBY4HwhxNjBtKEvvl66ApBM7CPvKoTAJawY3PF9aKTVLuB246vYk2MXpvsi7TTmGY+Iy47y1MlM8zyBoWR6zI/xM+cj/KU1Ph+1PZwqM8XhaDmK5vAf3+F0xnHX4nbGn7Ir86znBsM78Y2NCAawhZzoLNHVeHQnLclMjnDS2hhfiV2Kr4l2U+wOnzVXSSm1NcanyaMPa+AUpcfm4NhLxrNAjqfGEV+3S7llLLf7LmNYYWyv1fQUE0Myk1lV6YzLDiw2nhDnUZM2ccBp5r2RNUZ579i8PM5W7dYaqFtDS+EsfvXa94zMTeOZS6eRZulbz8pi1HPtrGF8fvMc1ueezHDXAs78y9v8/r21rK9pjf0mZfUb8L8blBSVqZ/XiRAw9TK44nMwWOCVc8Dj4vnvdrCjqYPfnzw2atXuOWNzyUo18+qS+DWflu5oZrpYz+T6d5SW+qJpUe3Pyc7hSP0aqteplILcx0TSz9q9JWTv3uQY2kXiYjqwVUq5HUAI8TpwGrB+MI3o9AVoqKtGuFtAhvB0uDh2wc/IzziEcQUn97lvkeVwhCGT2IYsKIhOBz5pwJwcmcx7b6zMOY1NdW3cGIcdzZ1BmrCRYY+uG6Q7waRMbM42pJSxdR4B9YZCnvJfyXn5sfu5uWY/o8VOmlvbScm2x/QYrY46kgFjHI6WMTziwdVUDcWxDRaUHY3okMiU2O1IzVI0aDoc1cQsUi4l6/UjqU+N/feSmq1oz3gd8TlaSZ21NBvG95izFCm6win8Mf3PFHYmcXUcdpTv2IqeYNQFxrsI+Hgl8Bv+W344MDVmO4JN21m5pYLDxw2N7e+ucCrrSy5gyRYLG2pbGZMf43tAwENowjncuaEYATx18dR+nZvuZKeZmXXuTfDIy/wmexm/XmLnpYUVZKSYmFRkI89mIT3ZhNmgx2TQYdQLzAYdFqOeUXlpjM6z7nZEWmvgw99AzljQRSjxkD8Rrv4aaldT7THx0NxNnDssMPDcp9ZaRfNn2xdgscPJ/8Co1/Fs+gt8ujmFxvp8snNjL6BesM3BKYbFhNLL0B19e9T70w69nLZ5f6Z443Pwk1NjssHZ1kFzbTmEAuiEcnMvzVay8opIjUFCIx4iuZrs4/ve/p9oCoHu1VhVKLVAg8rCbQ62vfJbrjJ8uOuYX+rJnXlRv/s+yLqSTl+Ac+O4tt7TglNnIydGhwAgzxKgsj2+u4W0yi+5Qf8t6UknxP4gyRmkCjdtHR2kpUZ/JwlQJ+28HjyGq7Jif1MY1fINn5hvY33dIZAdW1lZoyGXR/2Xc2Le+Jjt6Brx0NEcu/ZLZ3MNKYAhhnlYXdjCz2WXnk5MCMH1od9wbFH0Yyt2PUS4U0a0xuHgBP1YA010JkevLt2dodkpbKiNL4Jz6NwzuMc4ieE5P4ntAQwm7HRQ6NtGQ6sn5jorz39+xt9DHupHvB2bHaYU8s99iG33zeXt5VXccXKMTmzGUF7M+x0fLF3PQ+eNj75GKnMYTLmYnxRP5tBRs5m7vp4l5c2srXaxtqaVlg4fgT7qWkwGHceNzeWCQ0o4dPltiKAPzvhXzzbq/rDYkKWHc9dLyzhZfMf9tf+C9y+ECT9VWrNNabvTXAsegZWvQUO4zT81F6bs/rwYaahjkmEp/iffhek/U2p/ktJ7XnMAFmxzsKHoN1x4bkn/kai+MKexwPYT5rjeVpwxa3R/N/NXb2Ts23MYKvb8W3klMBvr2Y9yyqTBnQgfyW8zRwhxE0q0put7wv+PPR6fIIQQVwFXAZSUqKM+ujfjCmzo51zOsvZZCKFDGMyUTDiCcQWl/e7LSDFR3RyfkrHJ20y7zkY8TbxznG/ye/k0Qf956I2xtfDmN3zLLMMnmGKsr4Dd6RyXo4601NgUkX0N2xgvtpOZclzMdljCqsqdLbFrrtSF0nk5eCznZsf+musS5vO6YhfZa21SHJwuReJYMNrCasZtsc/K8QaCNLX7YtbAAcBsxS2SMHTEoYXTWoMOSShGDZwubm68kzUu8AePxBjD7DU8raT4m2lLKo65JgkgmDmCEe5KVlW5OHZsDM9tKIjJsYF1oaM5bQD14v5ItwguK3Py/vc7+b8TR0f/nAR81O/cxN8+reKokdmcGusH32mPAkpq4ZyDiznn4OI9TgdDEn8whC8YwhcI0e4JsL62lUXbHbz7fTXtaz/iMNN7NBx8KzkZZVFf/tN19czd0MAfZ5+G8HYqTsyKF3cvuMuppLXa6hSV5jl/UFSEc8fvHpcAJF09l+sefJWzPG8xe/GTsPYduOB1KJgSsS2utZ/QWlvHT46bGVcbfcPIC9AvfRPP0hewzP5txPvcviD/91ENB6f8jstHB5B6C1JKQkBxcjFDS+wx2xQrkTg4TwNpvXwP8IzqFvVPNdD9FVwUPrYLKeVTwFMA06ZNS0iEKc9mIW/WsVHvO63tNf7W8SyEGnsWsEVIUsCJxxh7egpAF5ZDdzXXk5FbPMDq3jF4mnHpbMRjiSncgdXeXAdDYnNwhu94mVdMH2JNir29OiWja2xE7I6Fp2E7o8VOMmPUfAFIywhrFLXG7lg0iAw+DpzA+JzYOnUASM7kW+NMygOxqWUDtK76gMXm6/levAiMiO1BhOCRkS/w7hY/selUg9+SwRW+25hZODPGR1BINukYJiqpbO5kaAx1K10dVGQOjcuOlMJxDKtewqc7mzl2bAxROsdWjCEPTuvoiDt9emX9e9xedS0LvPfy5cbJHD8uukid3LmA3JdO41B5G3edfkPMKWpAqZupWQFDDutxSq8T6HX6XU5lVqqZ0qwUTpqQz+9OHI374d+xvb2QE+eP5yK5npuPGxVxKrOxzcsd765ldF4a5x8zDfTTFQemYgE0bQK/G2RI6RI7/t4BH2/qwYdyxQc2vr3oNxR//3dIj8LhqltD8rs/44/GkWSPPD3yfb0wZMQE7lxwGWfajyFy9wq+XbWJamcnf/7Z2Uzae8jnPiKSWVR/6O9rMIzsxlJghBCiTAhhAs4D4pfkHSSMSamYRABve+xFpNfq7uLVIbENuOxCn6a8+LoKdGPB7GuhwxCfo6UvnMJd/ktplPbYH8PtwCmscb1BWjOVu0d/HGMjSra8wBumP0Q966g7IjWXY40vMTc5xhQGsNNQxh8Dl2DPKYr5MdDpeDr/bj4Pxq4C0d64k1zhxB6jmnIXKXnDqenUxdy2WtOp45vQRNLzo787744+o5Ri0cD2xthGNngbFIG+lLzI9FH6wpA7mmThpboito4ub9X3ANiGxqnwUaw0FxyTsoPnv9sR9fbyhe/ilQYOO/rkmNv3d/HVvfDiqRBlxNFiMpB+5X/JvvTf/HT6UJ6dv4OTHv42oonavkCIG17/njaPn3+eN3l3BMtihVEnwMwbYNZtu/R9IuGUSfnoBPynOgsufgeS7IoWz38ugop+FOPr18PLZ9FOMn81XM24gvjelycU2vh38DgWtUX3t3vQlxfyT+PjTC+L/cZIbSJpE79KjTVqIKUMAL8EPgU2AG9IKVXSLk88Xa3MrY7YQu5SSmo7Bcm2+D40ulq725tjd3CSA048huhzxN1JzR3Gi8HjqQvF/gdp8rXQoY/vDzopnKKiPfYWfl1nEy3Y4ko/oNNhtmbQFIf+jLO5ETM+ctLiG6aam2am0RW7uqqvpZqgFGTGUTAJMMm3guv178Ss9NqyZTHH6ZZSbE+Ky47UvGHYRCfVtbH97ToqlZbqnCGj47KDwoNYaZ/DplpnTB1D9ZuW4pVGRk+IrrumB7ZiSMvn1IwqFm1vjqqtuNXjR275nHXGCVxy1Lj47AClqykUgKVPR77H06ooFttLSCubyr1nTOCVKw/BFwhx9pMLueeD9X061b5AiJveWMmCbQ7uO2MCo6Mcu9EXOWkWZg7P4t2V1bt/t63VULcGnj8R3r8eWsr33LTyVXjuBCSCq7mdkSNHo49iSn1vpKeYKMlIpn3rd/DtPyLb5NhGlns7Vclj43sPVJlI8iS3CSHO7OfrLOCGRBvahZTyIynlSCnlMCnlwHG//QjTLscituJNt8fDrbzIWF9sAy67SLIrdnhbY49YJAfb8Jnjc3AyUgyMEFV4mmMvIk32t9BptMdlBwYzfzb9kqXm2OvVTd5mWvVx2gGcH/qQ6U3vxLz/oLX38Kn5NmxJkXWj9MXldffwtPeWmMXHQq21NGEjLz224vEuyjpWcYPhbWqaYyvwTVn3Gn82PkNJVmxqyl0k5SipJVddbKMS1lkO4o/+ixlRFHvxNwD5k9h42IOs92RR7uiMevuH+mO4NXQd04bGaYcQUDydYZ51JJv0PDe/POKtT7/3FUOpInfqKREN+RyQzGEw+iew9BnwRlDjKCW8dj68feUeh2cOz+LTXx/JBdNLeCYczZm7vn4P4c3tje1c/OxiPlhdy20njuasqXFESnvhjCmFVLW4d49LyCiDa+bDjGth5Svw0GR4YuZuBed1/4XcsWw99b8sac+JSdeoNyYU2cis/Ra++GNPp6o3dnwNQFP+UapcXy0ieXV9DZzSz9fJwOeJMvBAoitS4I4xNdTSVM8Vho8p9pfHZUda7lDu8l9KpSlGRVUpOdL/CF8PvzUuO1KMOj41/R9lFW/E/BipQSc+U/wh0UW2k1gTiP3NKsnfgtsYn8MHcIhvEYd2zot5v8ndiEuXHl9NA2C0pJAjWnB0xKZWa+iop4mMiNt++yI5qwS9kDTXxyZlr2uropYs8uJQdgYgZxxfWo5lhzO2VNkCzxBe050cs9hgdyYW2kjCw+oYFI3/W5WKY8hP1LnLLp6BrrWSyyeY+d+qGhraBh54u2i7g5bVHwFQeHCslVW9cPivwd0CiyOYMr78eaiYr8y02otUs2FXNCcQCnHlS8uYft9cLnxmEac8Mp9j/v4162ta+cc5k7jmqDjq3Prg+HF5JBn1/Pf7bqWl5jQ44c9w4xo45g6wFu7u9jrtcbjsI76sVSK2R45Qp/ZlUpGNpzqOQAodLH9hwPX+nctwyDQyi+JLwarNgEXGUsrLB8OQHwOpOSW8EDiOIfpcYmms7Ah3+Ris8b2I7RmZvBg8nmxi67Tp8AXxBsGWFruYHIDQG3CJVHSdsYsf3i6vY0r+MHqWF0bHBGMtHS4nsaoOpAZa8MSh+dKFz5yJrX1tzNpAyT4HjcbYCse7I9LyyMTFBmcnOTEM7VxrHEezZRjxJiCsOUpXWkfjThQZrOiwdNZSY8iJO2xP1nA+HnYn38WoNisrFjE1Ow9dvHYAo+ddxavm7by38wVOmxx5CrChvoaRjZ8zdcIZcdsAwNhTIWcMZ6dM5IkVi3j8q23cfWrfv/EOb4Bb3lqF1TYb74lHY85U0UEomgYjT4Sqpf2vc2yDT2+HoUfDQZf2uWzm8Cy+/M0sPl1Xx9z19VQ0d2JLMnLTsSM57+DiuEah9EeK2cCxY3P5YHUtd50ybk/RQGsBHHnznhvCZQ/fbmliVG5azGNR9mZikZ06MmkqPIbsFf+GWb/tVxE5sHMpq0LDGBWrJlKCiGbY5kghxBdCiLXh/08UQtyRONMOPNIz87k7cBnbjbF1lXQ4lZSSxRafg2M26Jlgrifk2B7TflfdTu43PMXQwLa47IDwJG9vbA6OPxjiU884vNkT47bj/LbnuK7t4Zj3/1Fcy+rc+D84ZHIWmbhwuWMbxWENNuOxxB+mNtnz0QuJsym24bAv6s5kXs4lcduhtyvOmr8ltjSm3V9PZx8DcKOlLCuZtjYX7d4oBzx627i76SYuNM5TxQ6drZCRumqWlUfXrLB12Rc8anqEIzOcqtiBrQiGHU1pXibnHlzCy4sq2NbYd4ro/o83UtXi5q6zZ2KecNoebdKqcPrjcN5rfZ8PBuCdq0BvUtYO0Mlq1Os4eWIB/zxvCv+9biYvX3kI188ekTDnposzphTicvuZtymyEoIOb4Al5c2qpacAxhfaEALm205Vxgtt+F+/61cNu5oXgsczLCe+lLTaRJMAfRr4LeAHkFKuRuli0ogQa5KBJF2QttbYPtB9rcrdY5cgXDw8rvsrMyufjGlve+N2zjPMI0vEP6/EbbBj9jtj2ut0NHKsbhkFxvgE2AAClkysodik3kMhyfvuCXhz4ne0dGk5WIUbhzOG5zbgJU22E0yOP0ydEhb7a3fE4OBISYOzjVw1PgisSodbMBZNHo+LFNlJMC2+QucuLlhzBY8ZH2ZHlJ1UzVXKNGdTTmxSCD3IHk2K7KCxdmdUzpZrx3JCCMrGxj5epQe1q2HBI9x07EiSTXpufnMVgWDPSdvvfl/NvxdVcNdEF9NrXgZfbN1o/ZKcoTgtrTWw6ZOe51urwFUJJz+463W1P3L4iCwyUky8tzKyv715mxrxBULMiUU2oA9SzQaGZafyUccoKJ6htLz3w9Lko/gmNInCOIv51SYaBydZSrlkr2Mqz6o/sBFC8KnpFmZtiq022teuFJ5ZM+J/IXfo7ZhjjJx4XIqj1VWsHA8eUzqpAWdMe9ur1vG06R+U+rbEbYdMziKDVto80UdOXC1NHCm+p8AYfdHn3hituXRKMy2O6FMh/kCA+/zn05QTb8IO0oon8FzgBGo90dfQ+Ft2Mt93HrO9cc4qAkhK59aRH/O8P3rdqbaQmdneB2gsU6fWQ2/Lp1g0sr0pOrHO+vINAGQWj1HFDrKVYZ3DRDUrdzoj2hIMScxNa2k0Fcc1p6wH2+fBZ3eQLZu554wJfL/TyR3vrt2jMPeTtbXc+tZqDinL4BLLt/Dt35QoSqL4/PfwxsWw7DklatNWDx6XMlX7F0tg/JmJu7YKGPU6TpmYz+cb6mmN4P3o47W1ZKaYOLhU3fbsiYU2Vla3IX/2CRzU+xBpACqXIOvWkJFi2q86qCA6B6dJCDGM8HgGIcRPgTi03H+cdOhtmHyxTfJeaD+ZUb6XScuM/+7DbbSRHKNj4QsL4qWpEElakX8eD8gLYtrbNeAyyRa/o6VLzcIogjE5Fu07V/KC6QFKA7Gl/LoTmnIxY73PUxuyR73X4dXzVPAUQoVxtgADptxRPGq+ki3+6MPeLfWV6IQkya5CwaMQZGdmUOfyRN3RtdPpZZssJCtPHUXzpJyhFIlGdvSThumN9hqlRbxouAot0QDZSqv5CFHNkgg0WwBWVrYwWm7Dr0KUcQ/KjlT+3fE1p04q4JdHD+f1pZWc+9RCnvl2O798dQXXvLyC8YVWnrpwMrrNn8CI40EfX/F5v5z0AAyZCR/8Gu4vhn+MgSVPKeeS7Im7roqceVARvkCI976v7nedxx/kq40NHDcuN/46s72YWGSjsc1LXasHQkFFwLA35t7NKRX3UWBPbOouFqJxcH4BPAmMFkJUAzcC1yTCqAOZTmM6yf7YHJzmDh/WlCREjCrI3fGZM0gNxpZiCob1YqyZ8UeSWnMP4SPPRPy9hLUHwhtO2aVmxl9jYbQqP0tbDC38XSMektLjfz6y0pQQb1N79N1LjqZ6SkQ9OXFMmu9OYarA5Yz+tdraoMw5S8lSp4X2yNYP+JXuDepbB+7S2cOOTfO5VP8pQ9LV+TA1ZJSRJHw01kXZ0dW0hXoyyMrIVMUOUnPh8JvozJrIom2R1eEsWr2BAtFM5kiVR/flTYSUHNiiNNL+5riR/OWsCZQ7Ornnww18vamRa2cN45UrZ2BrWgHuZhh9kro27E1SOlz0Npz7Cky5WCnMHbd/R232ZmKRTRHcW1TRb9r8k7V1dPiCCZnxNLHYDsDqKpfiID5/IlTulcTxu6FqKcsYT75t/0pPQRQOjpRyu5RyDsr8qdHAUUDPPjuNfvGaM0gNOmPaO7nmNX6li3FA3l4ELRnYZVjsKkq8Pg8tMpXUtPgE9gAKjG0cqVtFi6s16r3BdsXBsWXGH0kSZUdwme9W6mKInPhcSiQpTQVHy04HDxofJ7Xq66j36ja8zzfmX1NgiL82CuD11ks4of6pqPe5HcpdZ3ruEFXsGNKxhrP031ITpdhf0vaP+a3hVYZkqdTZka78PN7G6CJ1z4RO4aWcW9SxAZTi3Dl3kTXmcFbsbKEjgjqcD7YFuS77RZKmxhYt7ROdDkYcC1vnQiiIEIJzDy5hye9ms+yOOXz/+2P5vxNGK+MPNn2kpKaGz1HXhl7t0sOYk+Gkv8LRv1O0cn5ACCG4eMYQNte3s6AfJ/aNZZUUZyQxo0wl57kbY/OtGHRCkSOYcjGk5sHHt+7W4AHYuRCCPr70jt7v6m8gMiVjqxDit0KIR4UQxwKdwKXAVuCcRBt4oBG0ZGKL0bEY2/odM+RKVeyoKjqZX/l/Sacv+pqTD2wXcaL5pbi1VgBGtC3lJdNfaGuoiHqv7GiiU5qxWeN3tGy5JcwLTabBG31tQLCtnpAU2FVwtHRGE2fo55PavD7qvf5WJZJkz1anqLbDmEmSL3p154CrGp/Uk5Onzl2lKb2IXFqobokuNaRrraJOZJOWpFK9R+44vs2/jFUtxj1qTPrDGwjyhSMTOfQYdWzowu/h+PRagqEgS3b0n6aqdbnZUNfGpPETIEW9TptdjDhWSWE073b8hBBkpZr3FPJzO2HYbEXXRWNATp1cQHaamce+6l1ccmtDGwu2OTh7arEq8gN7YzHqGZmbpkRwzKnKPK2a7+Hr+3cvWvwkIUs687wj4husmyAiieD8GxgFrAF+DnwFnA2cIaVUUanpx0FDzuH8w382Pl/0cvypgRbcKojaAcjccXwamk5zZ/R14i2dPtLjmLnUHXNY0yeWSd5zrWdyveFOVf64MyyCY3XLkI0bo9/c0UgLaaSnxi/ihikFNxb07ugdC9nWgEsmk2VX5wPEY8nGFmiOuvZlg2Esz3EaaRZ1XiOpOSVKfVRD//UIe5PcWY3TqF5nCbYiag+6mS3+HCpbIiso31ZZyyl8w5T06NJrA7LmDSZ/fDrDDY18s6X/urEvNzZwhf5DTtX3UUMRL6N+Av+3A7IGkL84/TE479XE2HAAYjHqufrIoSzY5mBhL1GcR7/cSrJJz0Uz1ImU9sbEIhurq1yKQz/hpzD5IvjmAVj4OHQ4YOdCmidcgRsLBT/ECA4wVEp5mZTySeB8YCxwvJQqhRJ+ZHiKDuWJ4Km0eKOP4NhCLvwWdUKROUYfR+hW44phLtZpdY9wceg9Vezo6sTq6syKhu3+dKrSJqlih1kveNr0D/KrP4t676fWc/md4WbV7qJaDemYvdEPZDV0NuAQ6ZgN6tTgBJOzycIZtZrxN0zlLdtlqkT4AEzpihZOZ1N0tS8Z/nrcKerWJoxJD1JII5vqIpMmqNuynAdNTzBeF32Esl9yxwNwel4zn6+v77dOY+66Oq41fkRe43x1bejCYFKKhqXsOzLdNUJBhfrBHxMXHjKEovQk7nxvLd7AbhXt1VVO3l9Vw0UzhsQ14HcgDhqSjsvt361vdPKDMO0KKJ0JKZlww2rWD7kQ4Afr4OzKYUgpg0CVlFLl25EfD1lJgiLRSHNLdMWbHq8PO63IZHVCzHmBCv5tup/gzgGUP3thqmcRI0LRTxDujbRwWieWSd4jm+ZyqDG2qco9MJhpJxmdO/rW+c3+LKpscU5n7obbmE6SL3o7zN5GWvXqtYqKtDxyhJOG1ugcHE9LNUVWFdtFrQW0iVTaXZE/Jx53Bxm4CNnU6aDqYuyXV/BX41Nsro/MwWmrUlrEc8omqGoHOWNA6Jhlr6eqxc362t5r2BztXjZt3UIWLYgC9V6jPWjcDI8eDNt6kQbwtsE/x8N3DyXu+gcoSSY9fzp9PFsb2rn1rdUEgiEaWj3c+PpKcq0WfjFLJW2lPuhqPV9aHv68Mpjg5H9AfvjGMslORbvyt/6DrMEBJgkhWsNfbcDEru+FENFXhv7IKfSVM998A6FtX0W1r6XFQTNWSIu/zgMgNdzi3SUeGA22kItAkjqRpC5Nn1BH9BGLi9ue4QRv9BGXvmjT2zHFEDkZ4/iUaSb17tDbk0toCxqjFh181XQ2n6efq5od/uHH8VDgTOqd0YmyPdJ8NT/vfFY1OyiYzG/K3mOuN3Idmaq2EOM8z9I87jL17AD0mUMZZmhgc32E9UCOrfgxoM9QOY1gTILsMYwIbEUn4NO1vUdiP1hdyzjCiuMFU9S1oTv2kr5nQS1/QTnXy+wnjYE5elQOtxw/ivdW1nDUA/M49sFvqHG5efDcydiSE9huD5RmJpOVamJZP3IElc2dmA06ctL6HuWwrxjQwZFS6qWU1vBXmpTS0O37/WvwxA+A1HArsT/KSd5NgWQO9j5By9j45e8BrBlKx09Xy3ekeDrbSBEepApquQDGpDR+yW0sTjk66r22kIugRb2IRYfBTlIMLfzXtT3CbN881exYNPnPXOH7Da2e6OqjPvZOpD73SNXsSBs9m6eCp1DbFnkhuq/DRRqdhFRSD+6iwJ5EdYs7YqevwtFJB0kU5qlYgwOQOZw82ciO2oH/bqSUpLXvoNlSpHT1qE3hQZjqv2fmsEzeWl7Vo1ZKSsnrSys52loNQr8rrZUQjBY45GrY8hnUr9t93NsOCx+D0iOgcGrirn+Ac92sYTx18VRG5aVx9Khs3v3FTGYMVb9zam+EEEwbktGv3lKFo4PijOSEFDrHi5YQHWTs2YpjEWiLLnLSFK6DyExVx0u22uz4pB7ZGV3EwtWoyIfr0+IX1+tiXeqh7PBH56h4O1tJEj4lD6wSXnMGqYHoHBzpbScZD6EUdRw+gKzw7zgaLZyQz01p+/cMSVIve5ydrKNM10CzI3In2FGrpC4N6eo6OD9tfJQrgm/i7IzM2fJt/pLbDK8yRO2GnSwlJRBwbMPj73+yeFWLmxJZg882VGUjwky/Cs55iQsPKabG5eHLjXveNM3f2sSG2lam5wC5Y8GkQhF8fxx8JVhs8L8bd7cSz70b2urgmDsTe+0DHCEEx43L47nLDuaf501hdN7gxRaml2VQ1eKmsrn3wvqdzW5KMhL82ooRzcEZZKypabRLizLALAr05d/wlPHv5MjYJ293R+h0uIQVvTs6B8fZ6qI8lItRxQ+wmcbNFDgWRrXH1aQI8ulT1XMsFg+9nl/4ro+4BRigzaHYIVLVc/iGty7mVeM9OBsjLwBvqdnMa8Y/Mdm3QjU79M1b+Mp0I/aabyLe01pfDkBSlropmQL3Fmbq17KzjzfZvUmp+Y4r9B+TYVXZw8lUHJxSWcPGAQqN19W0coHvdtqO/IO6NnSRPxHKjmTO2HzyrBYen7d112s3FJI8/MUWstPMFF/yBFypwtiMgUjOgJ/8A6qWKLo4nc2w9m045BooUVlgUGPQ6BriOX9rz88sKSWVzZ2ag6OhoNMJnMIWtWOhd2ziOP1y0tPUK+T6S8otvJ9ydlR7aoylzPI9CMNnq2bHeZ7/cKbzhaj2tIW7v4xW9RwLskayOVQQ0fyXLlxNSuuyyaZeKiRd7+Yw/XraHZG3Rbc2KNO2zekqdg2FBxKK9sjVnTubFBVjW26penagRITycVDuiKweyNBWjUOfhdAbVLWDzBG0zH6ANXIoa6r7F1RcU+2kWZdB2QiVRjT0xrYvMWyby83Hj+L7nU5eWazUgr24sJyl5S3cfNxIpavOkMDZT90Zfxac+zKMPF5xeH72KRx3z+BcWyMhDM9JJc9qYf6Wng5OS6efdm9Ac3AiRQhxtxCiWgixMvx1UrdzvxVCbBVCbBJCHL8v7YyHl5Mu4quk46LaI9ubCElBigoDLruosh3ExkB0H8xdaZOsFPUKynym9KjHRlSZhzLb+wCidKZqdpRQw0X6z3G0OCPe09GsOFrJ6fGrGHeREp415nFGHsHpCDtDaSqNRwDAYscnzJg7I7dji2Ek9/vPI7uwVD07gOSsEnJFCxURDrpM89TSalbvd7ILUzL2w39OR1IB6wZwcBq3Luf39k9ICqijLN0r8x+EL/7IWQcVcvjwLO58bx3nPrmQP/xvPbNGZXOO/BT+fQb4B6nxVQgYc4ryLyiDQdV2MjUGFSEER4zIYv7Wph6T4rsiqpqDEx0PSiknh78+AhBCjAXOA8YBJwCPCyH2r9GlEbIq/TgWhKIr+NO5HbhEmqp3pJP1FYx1zotqT9bWN3jZeC+ZSeoVlAWTlLER0XQNOTyCbbKQ9HT1lFmLOzdxj/F52qNQVd6eNo3jvfeTUqTeXXpauAA80Fof8R6/U3FwMvJUTA0JQbspmxRvQ8S/m/XBYl4xnklqsrpveAZ7MWYRwBGOVPVHIBgiK1iPN0XdOqAuRMsOzsnc3m8EJxAMkVm/gEs6X0yIDbsoOxLq1yA6m3nm0mlcNKOEdm+An80s48mLpyK2fA4tFUoRsIZGjMwek4vL7WfxXqrZ5U1KRLUkU3Nw4uU04HUppVdKuQNlVMT0fWxTTJRZ2shuXTfwwm6YvA5a9emq2nGU+zNu8jwa1Z7klk1M0W0jJVm9VJlIyiRVuGltj7wd2VT5HZfpPyEjRb02yaR0JTrmjiJyUufWs0mWkGm3q2ZHVwF3KAptoFBrPR3STGaGel1lAJ7kPHJw4HJHmLZrWM+4tOjayiMiazgVhlKaHQOndmtbOjDjQ4QFAlVn4WP8uvlPbKxrpb2POVAb69oYJnfiMWcpqZpEUXaU8m/FfCxGPfecPoEPrz+C358yFnPICzu+VjWdrPHjZNaobFJMej5YXbPH8eUVLSSb9AzNStlHlvXP/urg/FIIsVoI8ZwQoutTvRDoLmVaFT72g+Ok9v/ykPu2qOZRNQeTqTWXqWqHTMrERgdBf+RjIwxuB05d/LOfuqNLUwqFnU01A6zcTX7N5/za8DZpFvUcnNRw5MTjityxsFZ+ybmGr7ElqahHYbGzQ19Gky/yaN1XqT/hdsNv9pz9owLVY37O44HTqHVFluL4We0fuDnwjKo2ADDsGJ4Y828WugZ28rc63BzkfYqOQ36jvh0AOWOwBNvJCTlYUdF7193yihZGi52Qm8D6G1C0bUyp0JuuVvm3EPDAyBMSa4PGAY/FqGfO2Fw+WVu3R/fg0vJmpg5JV/19Ry32iVVCiLlCiLW9fJ0GPAEMAyYDtcDfo3zsq4QQy4QQyxoboxexGwxkchYmAvjdkefm/yCu5Y1SdbsxRLjF2tUcecTC7HXQpnIkyTv8JE7y3kdjKPLWR4O7CafOrto4ANitqhyMInIyovZ9rjV8oK4GhE7HvSVP84aM/M57rS+XbXb16pG60I8+nq9CU6h1RTbJOyPYhDc5AbUvwJDMFJrafbQNUAS+rUGp0xmZb0+IHeQoTssY/U6W9qEP8t3mekboqjEXTkyMDV3ojcp07qqlPW+YNn2sOD+awJ6GCpw7rZiWTj/vrFDS4c5OHxvr2phemsAIZZzsk+ovKeWcSNYJIZ4GPgj/txroHnMuCh/b+7GfAp4CmDZtWvQDnwYBXZpSN9LaVEdmiX3A9VJKmtq9u/RR1MIQ7kBqc9STkRuZpH1KoAWnSd0PMGtWPutlKY2dkf+6LF4HLpUdLWNXy3kULfwWr4M2g7p2AORYLXy/0xnx+tKmbyixqzuWAKDY4uUQsYG6pqFA/wXp7tYWUnGDNTGB1TO3/B/CYGZ740wmFdv7XGfa8hH/SvqYdMNRQAK6h3JGA3CErYlPepnk7Q+GqNi+Eb0eRF4CxfW6+Mk/IMm+u7C3i4LJii6NYf9TmNX44XHosEwmFdn419fbOGNK4a628ell+6+Ds9/FlYQQ3T89zwDWhr9/HzhPCGEWQpQBI4Alg22fGpjDNRatEUZOOtwe3tD9jkPav1DVDks4NdTpjLyYtTyUS1PqKFXtyDYHuUD/BcGaVRHvSQ04cJtUVvI0mLg05TE+TD4j4i3JfvUmvHfnDMez/NV37x4D9vrjlo4HON77uep2ZDYu4j/mP+Gp2zTg2oaqrQCYMtV3tABswRYmie1saei/k8rWtJxj5BIwJqjwMSkdrIUcnFTLip0tPWQFVlS0sMmXxRdnfA/jIn8txUxKpqKUHNgr1Tz1Mjg2QRo8Gj86hBDcfPwoKls6uebl5dzzwQaGZqcwpUT9Gzy12O8cHOCvQog1QojVwNHArwGklOuAN4D1wCfAL8LDP39wWLomaLdE5uA4G2uYpNuOXR95rUwkGIun8hPvvexMimzGj5SSn3tv5Pth16pqR0aykfuMz2Kr+TbiPdZgCz6z+lLl7rRh1Lgjb86zhVrwWdTr5OoiXdfJFN0WGtsGVjP2djhJwYNMVXksAaALR2O8zQNr8rSERf7SckpVtwPAlFVGsa6BLQ19C+xJKUnr3EmLpTCxk6vPeYnQ7LvwByVf7aUgPHdDPQad4NCReYMXPalYqAy0rF8Pfjcsfmq3mrCGhkocMSKbu04ey/ytTTR3+Hjo3CmYDPujG6Gw3wkUSCkv7ufcvcC9g2hOQkjOH8Uvfb/iFMsoInEt2poVoTWTVT3VXoCMzAzWyTLqPZF9oLvcfgIhqdq4iC4MSWl0YkZ0RF4zNSv4OOcNKeAIVS2BY1mAq7kZOHTAtSGfBysdhFSay9UdnS2fDNFOeUsrRen9RyJa6ivJAwy2BNS+2BRdHdE6cHv2FlHKc75fcKfak7PD6DLKyBdvs6PO2eeaxjYvhaE6vGmJnbJM0TTGhyQ5aTV8uq6O0yYrjqA/GOK/39fwdNbrWFdWwAx1bwb6JHuUonXz1uWQMQw2fQh5E2DIwK9jDY1ouGxmGedNL8HjD2JPHiQByRjZf12vAxh7RjYfhA6lJmSPaH1ni3KHmJSuziTxLjKSTZyjn0dS1XcRrXdVrucL028Y7V6uqh0ATpGO0RNZ7UunL4DDbyLVrn7kZKZ7Hqd73otorcsnmOR5iorhF6luhyU8CqO1oXKAleBqVNYkZaioYtxFai4BYSSpY+AIzuaOFD7VHUFWlorq0t3JKENPiPb6bX0u2VjrYoioR581LDE2dNHZjG7RY1w83MPcDQ3UhbvMvt7USHO7myM6Pofm7Ym1oTvJGXDuS9DRCNu+gKNv15wbjYRhMer3e+cGNAdnn2BPMnKIbiP6hrUDLwZ8LiWVlZap7h26Qa/jFuOblNZ8FNH6TkcVw3S1WC3qh93bDelYfJHN2XJWbea3hlcoEZF3f0VKMCWHTNky4CBFgKYOHy5SsakoNthFaliROJJxDZ2Omj32qIpOR4c5l/RAA25f/8+JvmYFs61Vqna27UHueHakz6SxtaNPW7burGaHzCe9dHJibOgiFIDPbueijM2EQpLH523FFwjxwKebOCytAUOwEwqnJdaGvRk6C369Hm7ZBkfdOrjX1tDYD9EcnH2ATif4u+lfTKiITOW0JWBiRWg4tiz179Bd+nRM3sgiJ55wMXJKprqRJAC3KYOUCCd5u2vWcbXhQ3IMkQ1ejAaRmke6aKehpXXAtR07V3GL4XUK9AOvjZbUvOF8G5pIY2dowLXrkw/mTO/dpBepW/zdxdqpf+SxwGlUO/t/vk+of4rfJEIDp4v8iWya/RxbQkVsrOv9OV/eCFelPkTyIZckzg6A1BywlZDesopzDi7mpYUVnProfDbVt/G7ieEi6KJBdnBAUSw2pw7+dTU09kM0B2cf0arPxBJhSmap5VAuEfdhSVO/W6fTkEFShJETf3h0gDVTfUdrbtmtXBa8I6K1nhalJsmapX47stGuRMmcEaSGZM0KfmF4nyzLwE5ItOhyRvLblD+wKjiwuONOt4m1utGkqz05O4xl5NFskiVUNvethSOlxBZoxJ2UGA2cLiYW2RCE+hyTsK7axbh8dYUo+6RoGlQu4a6Tx3DxjCGEpOSuU8Yy1vM9pOZCxtDBsUNDQ6NX9rsi4x8LHaZMcn2RzTxytPvISElMvtNjziSnLTI7Qu2NBKXAnqF+jYUls4gqbwcefxCLsf+i5y5Hy56tvqOVnKE4TW2NVUD/Im3BcOrQnp0Y3ZcCexI1zoEVhLOqv+KsFBdCnJgQO4bomzhD9y1VTSOB3n/3ze1ecqWD7bbEiovnf34db1k28mrlv3rUgbd6/JzneoZjLe1AZHVUcTHsGFj3DmbHRv50eje9m/etylTtRKXqNDQ0IkKL4OwjfEnZ2IKRpWTOqryX+4L/SIgdweQs0kNOZGjgKEQNOXwlDsFgVHEsQZhhoXJuMrxBU9PAKsKyrR6XTCbTFrnycaSkjJnDOM+zbDZF0N/WXotTpmKzqm8HwJ+dt3JR498GXHdow+tcKt9PiA0AmQ2LedD0BM21O/pcU1VZTrLwYspObHGvMKcxUlfNmmpnj3Nrq1xM020mUxfZxPG4GXEc6IxQt2bP46c+DCf8eXBs0NDQ6BPNwdlHhFJysNFOyDewBH6+Zzt2fWSzgKJl0/ArOMz7MB0DFJACfGY+jr/afpcQO4pkDdcb3qW1ru8OmS6kp5UWYU/I/JN0ayo+fTL1rQPrzxg76mnWZSSsqNZsEOT4qwmG+ld4TvfX0ZHA1JAIKyR3Npb3ucZRqQgB2gpHJswOALJGkhZy0dRQS8degy4XbmtihKgmuWgQ1IMB0nLh/8ph8vm7j7VGPk9NQ0MjsWgOzj6iYcip/NT7e5o9A0dO0kMOfEnqi7gBpKXn4sBGU/vAIoKODi+ZKYkRLutKDXU0Ddw19Jj9Fn5lfzwhdgghuMPyJvnVHw+41uRz0mpSXwOnC39qIQU00dDWt3MbCATIDjURTEtgaqhrBISzvM8l3/uLuSDwe7JGqz8Paw9yxwIwSuxkyV5jEjZu2YJNdGDKS/CAy+50FfT6OsHjgkenw1da9EZDY39Ac3D2EUm5w1gmR9PQ3n/kxO3xkiFdBFMS4+AU6lv4teEtWqs3DLj2vobruKrzqYTYYQ/PwvK1DOzgNLR5ybSlJMQOgJPl15S2LBxw3c/1f+LlIfclzA6dvYg80UxNS0efaxrqKjGJIDp7cZ9r4sZWTFAYsHVW9jk6YlNziIaMaeiTEyzbnjcJgCmGCuZt2p3O7PQFCHWlinIiU+ZWjbeugJfPhM9/D742GKVN79bQ2B/QHJx9RJ7Fz+m6+bTVbOx3naO+Cr2Q6BOhUgtkG9zcYHiHYPXAc6AKQrUkDVAAHCv2bEXDJdQ6sLbNVS1/5+jQooTYAdBmyCTJ07+qspSShjYfmemJ69ixZA3BJII01fetItxcrYjJJWUP3G0VM3oD7pQiSkUdOx29t4rn1X7BqcmR6TrFRUomHPpL9PkTmLd59+/o2y1NdISMNOcfoQyZHEyGzoLKJbD8BTjkWiiYMrjX19DQ6BXNwdlH5JiD/NP0OIbyr/td19jm4aPgdHTh0LzapIcjJ35n/5GTzrYWUvAQSkuMo6UzJeEiFdHRf5Fx0OfmlNCXlJG4WgdvUg62gKPfNS0N1fxZ9ygT5JaE2ZFaOpXXA7Ood/WdotqoH86hnkdIHTUrYXYAVB/3FL/3X862xp7RJH8wxFkd/+HUzv8m1IZdHH8vOZNPoMLRyboapV38jaWVbE+ZgvXK98GcmHb5PjnoYrj2OzjvNTjx/sG9toaGRp9oDs4+Iiu3gJAUA0YsqkPpXOe/kaThak9dUkjPzMErjci2/u1orlNayY32BIwDCHN1xvM8mXJNv2tcjYojpk9L0DgAIJCSTw6OHlOiu9NSs42z9PPJN/Q9+DFeUoYdyn2G69jS2bdwW7XTRy2Z5GWrr5HUnaJRU3EIG5vqev68WxvaKRb1kFGaUBt2EQpxeomXTHOIx77ayk5HJ19tqueCKekJKTyPiJwxMPqkfXNtDQ2NXtEcnH2ExWzGIWzoOvp3LLru3nPSElPcK3Q6mnQZGAaww1WvCN9ZMhIwDiBMmj2Dhrb+i527HByzXX015S509iL0hKhrcva5pr1JeT5Ss0sSZgdASUYStY6+7cgo/4DrUz7HbEhM6rCLlPYK7kj7kIrKnT3ObdlRToZoJ7VgkGpfyr8h7enp3D6mgY/W1HHmEwsYa2rkhiWzYe07g2ODhobGfo/m4OxDmnVZmDvr+10zcuNjLDdfg92SuF+Vy5CN2dN/SqYhkMRbwSNJyx+RMDuOCS3gYte/+l3T3lAOQEr2kITZ0XnwL5jofYbqjr7bs73NiqOVnps4OwBec13E8bVP9Hl+dOOn/JQvE2oDAM6dXOF7BV/Nuh6nmsuV+q30ssmJtwOgeAYYkzk1ZQOXHVZKqlnPYzNaEEjI61+cUUND48eDpmS8D2kz55Lt67uAFEDfUY8QAqFP3K/q6ZK/sqre1+/H5GZRxp/917C2KHFCbiMC25gkP8Hr92PuQ0zQ1daGU6aQkZ+4otqCDCUlVOPsZzSBsxKfNJCZm1jlXo8pi/SOGvzBEMZe0i/p3mra0hLYQdVF5nAA7J3baenwkd5NWTtYtx4AfYLqxHpgtEDpERh2fMHd1/8NGAcv/B2yRkHW8MGxQUNDY79Hi+DsQ74ouZ7r+G2/ayzuelyGzITaYbfbBxS2a3S6SDHpSDUnztHSWfMxiiBN9bV9rlmQModp/mfIykmcsF2O0cNDxsew7Pi8zzUdHg8VuiL0+sSmhny2MoZQT1VLT2erze2lSNbityWwg6oLWxF+k42xooL1tbsHXYZCkodcR/L30f+BtMSlDXswfA40b4e6tdDhgIrvYMwpg3d9DQ2N/R7NwdmHWLKHsa7D2qe2CIDV30C7ObEfHJNCG7kr9Dhtzr7TVD/Z/HveNfTvjMWLJUupZ2mu3d7nmlqXh1yrBb0ucXN+9KYUTtEvILVpTZ9rHjZczt2FTybMhl22ZA2lRNRT3tBzenZlxXYswo8xZxCiFkJA3gTG6ipYVr57xMi6mlZavSHKRo4f3NlLE34KZissfkL5kiEYd8bgXV9DQ2O/Z584OEKIs4UQ64QQISHEtL3O/VYIsVUIsUkIcXy34yeEj20VQtw2+FarzzCTg+v079FY3fuMn1BIkhNswJeauM4lgCJ9M+cYvqalru9ZQyneBjxGe0LtsOYpkYiO+r7tOKniL/xSn+B2ZIOJFl0Gpo6+W9GrWjopTk9OrB1ASsEozCJAQ3VPp6+xehsBqcNeOCrhdgAYCyczVN/At5t31419s7mBPxie52hz/3pOqpOcARe9DSf9DQ77FZz1LOQN0ogGDQ2NHwT7KoKzFjgT+Kb7QSHEWOA8YBxwAvC4EEIvhNADjwEnAmOB88Nrf9CU6J3cavwPbRWrez3f1NrJG8GjaC04PKF2dHVGtTZU9rnGFmjCbUmMmnIXWYXDcUsT7a7mPtdMci9mqL7/wmw1aDPlkObtvbPM3dHOo747OSK0NOF2pA6fyWPybCpcgR7nlgVHMM7/ItnjZyfcDgBm3cazMz5lRaULZ6fS7bZtwwouNXxOuncfzGAqng7GJLDYlIiOhoaGRjf2iYMjpdwgpdzUy6nTgNellF4p5Q5gKzA9/LVVSrldSukDXg+v/UFjyysFwO3o2XoLUN3q457AxYRGJlZfw95lR1NFr+eDAT+ZsoVASmJTZRZrFkcYXuGLpGN7PR8K+MkMNRNITVz9TRfelAIyAw34Aj1nhdVXbmGGbgN5lr51ctRC5Ixhbu7lLHOYepzb3thBfnoaJnNiJAR6YE7jyNEFhCR8ubGB+lYPKXWLlXNDEjyDSkNDQyNK9rcanEKgexihKnysr+M/aHIKSglJQdDZeydVbVMzZnwUpicl1I7swjKCUhBs7t3BaarejkGE0GUktiUaIShMT+61oBagpUEZWyFsidPi6SKYNZo2ktjp6Knc66zdCkBKbuI6yrpzcE4IZ802QntNFZ9a8TTXm/43KDZ0MWX7k9xrfZeHvtjC3z7dxDQ2EkzOgYyhg2qHhoaGxkAkzMERQswVQqzt5SuhkRchxFVCiGVCiGWNjf3PE9rXJCVZaBJ2dK29j0mwbnyDTZbLKDT0LDBVE7PZQqUowN3Z+1DHmg54OHA6+pJDEmoHwEV8wDl1f+/1XEvtNgDMmYkV1wPwzLyFU333Ut7L7CV3g1IjlFU0OC3J11b8httDT1LZstsWl9vPMZ4vmKgvHxQbutA1b+NsMZedjnbeXF7JUZYt6MtmDm6BsYaGhkYEJKznV0o5J4Zt1UB3UY+i8DH6Ob73dZ8CngKYNm1a30pt+wmNhgKSO/vQwnFW4sNAWkZii4wBbsl9GqHTcXQv57a7U/hH4By+LJuUcDuGilrKfAuQUiL2+tBsaGnHHyrGVjQ64XaUZSrTyst7ieDIpm14pJHMvMQ7WgAybyLjWj9lSbWLIWG7NuyoYoaunh2FFw6KDbsYcSymNW/w2k/MtCcVYltoh2HHDK4NGhoaGhGwv6Wo3gfOE0KYhRBlwAhgCbAUGCGEKBNCmFAKkd/fh3aqxstD7uVa3e97PWfsqKFJlw26xP+aijNSqGrufVK0o34nNtoTnioDkNYiMkQbzU5nj3MrdOM40fcXCoaOS7gd6UY/b1v+RPrmN3qcq/EYWW0+CKFLrAZOF2llU8kSrVSUb911rG7zEgCyR0wfFBt2MXwO6M3MqH2ZOdPGIX65BCZdMLg2aGhoaETAvmoTP0MIUQUcCnwohPgUQEq5DngDWA98AvxCShmUUgaAXwKfAhuAN8Jrf/Bk5xaw0+nrtZjV6q7GaU58QS3AkXIZf3Pfic/T08k5aNM/+dTyu4TPOwKwZCu1HHUVPWvQdzR1kms1k2waBAFuYzKjRQWpzT1fZve7T+PNEQ8k3oYuUwonA+DavmLXMX/l94AycXxQSc6Ao26F9e9B7SolNZVAlW0NDQ2NWNlXXVT/lVIWSSnNUspcKeXx3c7dK6UcJqUcJaX8uNvxj6SUI8Pn7t0XdieC8ZZG/qB/jpod6/c4HggEKQpW4rYOTiFrvsXDYbp1NFZt7XEupbMKh3FwVGozSpTuf2fl+h7nzt96M3caXx4UOxCCZnMxts49O9yaO3w0tfsYmZs2OHYA5I1HIjA3raG5w4fHH6S8qZ1qywhITdxU9T6ZeQPMuA6Cie8i09DQ0IiV/S1F9aOjKEVysWEureUr9jhe6WjjH4Gf0lZ24qDYkZKjOFIt1T0dnEx/HZ3Jg9O0llM2nnKZR6OrZ+3LcN96ssw9I12JwmsrozBYTVP77jEW1esX8a3pBqbpBlHYzpxG5dEP8X7wUL7a2MC8TQ085j2RHWd9Mng2dEdvhBP+DEXTBl6roaGhsY/QHJx9TH7ZGAA89Xs6FtubvTwfPBHr2MEp4MwsUdRw3fVb9jju6WwjSzbjtya4RTyMISmNn9ue4sPQoXscb2tpwE47ofTBa0c2FU6kWNfIhm3lu465KtdSrGukMD/xhd/dKTriEtxpZbywoJxXF24jK8XIjKEZg2qDhoaGxg8JzcHZx9jTM2nGiq552x7H6yq3UCLqGRbumkk0ufmltMpkaNiwx/GaLavQCYkpP/GFvV0MzU5he2P7Hsfqdyh2WXIHb1p01rij+TI4ma2Vu1V6fdWr8aMne8iYQbMDQCcDPDlpK5aaxUwpf465llsxSC1FpKGhodEXWnXgPkYIQbWpDHvrnkW1pZue5xPzByQnXz4oduj0OtZYDsLh2fMlsakzjWf8V3DF6MFTqj0r+AlDXK/jD6zCGC5sdu5YDkDm0MmDZkfysMO4L/2PlDqSuRyQUpLV/D07LaMYZhgk9eAuhJ5JGx/kmWwrZl8zlszhMNg2aGhoaPyA0CI4+wGt6ePB30kgsHveUHLbduoMhYMqoPb+iD/zB/e5exxb7TLzJnMoLhmcYmeA7FQTo3SVVFbsjmptajPzhZxGcdngjiCbWGRjbUUDgWCIqnoHo0NbcOcnXvCwBzodnPxPbO3bsEivMmRSQ0NDQ6NPNAdnP6DhkNuY432AbU3KiAKPz88w70Zc6RMG1Y6ReWk4Onx7FNVS/h2Hp7diMgzeSyV7lKLtUr3uu13H3uiYzNOF96DTD+5L9leBF/lf8Bq+21zH8q1VvB48BtvEkwfVhl2MOgF+9ilc8Zk2OVtDQ0NjADQHZz9gQpFSLLq6ygnA1nVLsYpODKWH9rNLfaaYa/jK9Gvq/5+98w5vqzob+O9oL8vynkmcvRcECJCQAIFA2VDK3pRdSqFQaPlaCm0p0EJZLaNl7733CiuQhCxC9rDjvWUNa+t8f0gGJ/HQuLKDub/n0WPpnnPufXUl6773nSu+z87n7Ma/crHmhQGVo2zCbPwYiFZ9CUAwGGJbfTPTyh0DKgdA+bT5FAgX3332Mv9e2sFD2ZdSPmOAunf3KNAsKBzY+B8VFRWVHyOqgrMbMCrfyp3G+yhYeisAbWs/BaB8ek+NEzLHiIrRjBBNeLYsjsnRUEWRbCWUP7BuIaE3UWWaQGF7rJjd9rVfsUJ7NgdrVwyoHAD6CYfj1TnYv+a/jGz+mOsOn7BLCwkVFRUVld0PVcHZDdBoBOVWydTG1wiHgrzgm8mfTL8jp2zcgMqRV1DMZt1osus+A6Dyq1g3jILpA1OLpzuNw4/k0+A4mjp8NC19EYDR0wYu0Pl7dAaM+/6S6Zqt3G+4g0NL/QMvg4qKiopK0qgKzm6CmP4L8nDy4VvP88aWMKbpxw1Kh+bmormMDazF42xBbPmQZnIYM2Xgg2pLF1zK3yOn8b8vtlJR+ybrzDPJLxmYWjw7ozvoD3DOO3DGy4jckYMig4qKiopKcqgKzm7ClHkn4sLKwhWXcJ7+Xc6fM3AF7bpjn3IYWiFZ98nTONwb2Zq9z4AH9gKMKbRxxJQixiy+llKaCE0+ccBl+B4hYMS+atdsFRUVlR8RqoKzm2AwmWk89F62mCZzzGgNBVmDU+Nk/KyDeE83n998ncXpgd9h2O/iQZED4LoZAQ42rOO78pOZfth5gyaHioqKisqPDyGlHGwZMsasWbPksmXLBluMHx1bmz2c9fASztq3gvPnDo4lSUVFRUVFJRGEEN9IKXdpjqdWMlbZhVEFNj69+kA1W0hFRUVF5UeL6qJS6RFVuVFRUVFR+TGjKjgqKioqKioqQw5VwVFRUVFRUVEZcqgKjoqKioqKisqQQ1VwVFRUVFRUVIYcQzpNXAjRDFQNthw/YvKBlsEWYoiintvMoZ7bzKGe28yhntvUGSGlLNh545BWcFTSQwixrKfaAirpo57bzKGe28yhntvMoZ5b5VFdVCoqKioqKipDDlXBUVFRUVFRURlyqAqOSl88MNgCDGHUc5s51HObOdRzmznUc6swagyOioqKioqKypBDteCoqKioqKioDDlUBUdFRUVFRUVlyKEqOCoJIYS4SgghhRD5gy3LUEEIcZsQYr0QYrUQ4mUhhGOwZfqxI4Q4TAixQQixWQhx7WDLM1QQQgwTQnwshFgrhPhOCPHrwZZpKCGE0AohVggh3hhsWYYSqoKj0i9CiGHAocD2wZZliPE+MEVKOQ3YCFw3yPL8qBFCaIF7gcOBScApQohJgyvVkCEMXCWlnATMBi5Vz62i/BpYN9hCDDVUBUclEe4ArgHUiHQFkVK+J6UMx19+BZQPpjxDgL2BzVLKrVLKIPAMcMwgyzQkkFLWSymXx5+7iV2MywZXqqGBEKIcOAL472DLMtRQFRyVPhFCHAPUSilXDbYsQ5xzgbcHW4gfOWVAdbfXNagXYcURQlQAM4GvB1mUocK/iN1ARgdZjiGHbrAFUBl8hBAfAMU9DP0B+D0x95RKCvR1bqWUr8bn/IGYC+DJgZRNRSVZhBA24EXgCimla7Dl+bEjhDgSaJJSfiOEmD/I4gw5VAVHBSnlgp62CyGmAiOBVUIIiLlQlgsh9pZSNgygiD9aeju3XQghzgaOBA6WalGqdKkFhnV7XR7fpqIAQgg9MeXmSSnlS4MtzxBhf+BoIcTPABNgF0I8IaU8fZDlGhKohf5UEkYIUQnMklKqHW8VQAhxGHA7ME9K2TzY8vzYEULoiAVrH0xMsVkKnCql/G5QBRsCiNgdzqNAm5TyikEWZ0gSt+D8Vkp55CCLMmRQY3BUVAaPe4As4H0hxEohxH2DLdCPmXjA9mXAu8SCYJ9TlRvF2B84Azgo/l1dGbc6qKjstqgWHBUVFRUVFZUhh2rBUVFRUVFRURlyqAqOioqKioqKypBDVXBUVFRUVFRUhhyqgqOioqKioqIy5FAVHBUVFRUVFZUhh6rgqKio7NYIIWYJIe6KP58vhNiv29hFQogzFTjGfCFEhxDirXT3Fd/f6HgqtUeJ/amoqCSPmiauoqLyo0EIcQPgkVL+Q+H9zicDRdaEEB4ppU3JfaqoqCSGasFRUVFJibj1pKvo2zYhxMc9zKkUQtwqhPhWCLFECDEmvr1CCPGREGK1EOJDIcTw+PYThRBrhBCrhBCfxrfNF0K8EW/yeBHwm/gx5wohbhBC/DY+b4YQ4qv4Pl8WQuTEt38ihLglfvyNQoi5Cby3+UKIN7q9vifeVqPrPd0cl2GZEGIPIcS7QogtQoiL0j2vKioqyqAqOCoqKikhpbxPSjkD2ItY5+7be5naIaWcSqxy87/i2+4GHpVSTiPWZPSu+PY/AgullNOBo3c6XiVwH3CHlHKGlPKznY7zGPC7+D6/Bf7UbUwnpdwbuGKn7amyPf7ePwMeAX4OzAb+rMC+VVRUFEBVcFRUVNLlTuAjKeXrvYw/3e3vvvHn+wJPxZ8/DsyJP/8CeEQI8UtAm6gAQohswCGlXBTf9ChwQLcpXc0hvwEqEt1vH7wW//st8LWU0h3vJxYQQjgU2L+KikqaqN3EVVRUUibuthlBrAdUb8henu86UcqLhBD7AEcA3wgh9kxbyBiB+N8Iif3uhdnxBtDUy/6i3Z53vVZ/V1VUdgNUC46KikpKxJWP3wKnSymjfUw9qdvfxfHnXwInx5+fRszVgxBitJTyaynlH4FmYNhO+3ITa1C6A1LKDqC9W3zNGcCineclQRUwSQhhjFtkDk5jXyoqKoOAeqehoqKSKpcBucDHQgiAZVLK83uYlyOEWE3M0nFKfNuvgIeFEFcTU2TOiW+/TQgxFhDAh8AqYF63fb0OvCCEOCa+j+6cBdwnhLAAW7vtM2mklNVCiOeANcA2YEWq+1JRURkc1DRxFRWVjCGEqARmSSlbBluWvlDTxFVUhh6qi0pFRUUFgsAUpQv9AY1K7E9FRSV5VAuOioqKioqKypBDteCoqKioqKioDDlUBUdFRUVFRUVlyKEqOCoqKioqKipDDlXBUVFRUVFRURlyqAqOioqKioqKypBDVXBUVFRUVFRUhhyqgqOioqKioqIy5FAVHBUVFRUVFZUhh6rgqKioqKioqAw5VAVHRUVFRUVFZcihKjgqKhlACHGDECIkhPAIIawZ2P+4+L4jQoieOngPKXbH8ymEGC+EWCmEcAshLldaJpUdEULMF0JE45/TYQrszxjfV0gI8RclZFTZvVAVHJWfNEKICiHEx0KITiHEeiHEgj7mGoUQDwkhXEKIBiHElf3s/lkppU1K6VVYbKSUG+Ndqj9Tet/p8BM7n9cAH0sps6SUdykhR/yc/E8IURVXnFYKIQ7vZ80oIcQb8fktQohbu41NFEJ8JIToEEJsFkIct9PaXwgh1sXXrhVCHKvE+9jpGA8IITbElZOz+5j3oRBCCiF0feyuLv4deCe+5mwhxOc97Kuyr+8egJQyEP/Mn0zwraj8yFAVHJWfOk8DK4A84A/AC0KIgl7m3gCMBUYABwLXKHEnOcT4KZ3PEcB3Cu9TB1QD84Bs4HrgOSFERU+ThRAG4H3gI6AYKAeeiI/pgFeBN4Bc4ALgCSHEuPh4WXzulYAduBp4SghRmKzQQohPhBDzexleBVwCLO9j/WmAPtnjqqj0hargqOyWCCFGCyHahBB7xF+XCiGa+/gRTeUY44A9gD9JKX1SyheBb4ETellyFnCTlLJdSrkOeBA4O4njfdLd/bHz3Wf87vUSIcSm+B31TfHz8GXcyvFc/IKWNEKIq4UQL+607S4hxJ2p7K+XY/yUzudHxJSye+JujnGp7GdnpJReKeUNUspKKWVUSvkGsA3Ys5clZxOzatweX+uXUq6Oj00ASoE7pJQRKeVHwBfAGfHxcsAppXxbxngT8AKj4+9RI4S4VgixRQjRGj9fuSm8p3ullB8C/p7GhRDZwJ+IWcQURwixKv4ZdT2kkr8jKrsvqoKjslsipdwC/I7YHacFeBh4VEr5SU/z4yZ6Zy+PN3o5zGRgq5TS3W3bqvj2nfefA5TEx/ucmyYLiV3MZhP7wX8AOB0YBkwBTklxv08AhwkhHPD93f3JwGM9TVbPZ99IKQ8i5s66LO4y2bjzHCHEv/s4h6t33euuCCGKgHH0bimaDVQKId6Ou6c+EUJM7WuXxN43wDJgnRDiaCGENu6eCgBdsv0KOJaYNakUaAfuTUTuJPkb8B+gIQP7Rko5Pf4Z2YhZqzbQhzVJZejQl69TRWVQkVI+KIQ4CvgakMDRfcw9MoVD2ICOnbZ1AGW9zO0a7z43K4Xj9sWtUkoX8J0QYg3wnpRyK4AQ4m1gJvBosjuVUtYLIT4FTiRmKTkMaJFSftPLfPV8pomU8hJirpmUEELoicWHPCqlXN/LtHJilqSjgQ+BXwOvCiEmELuQNwFXCyHuiM+bB3wcly8ihHgMeAowAUHgxG4xThcRU+Bq4vLcAGwXQpwhpQyn+r52eo+zgP3jcpenuJvZQgjnTtvsPRxrDvAXYE78O6EyxFEtOCq7Ow8Su+O8W0oZUHjfHnb9IbQD7l7mdo33NzcdGrs99/Xw2kbqPErMekH87+Np7KsnfmrnM2MIITTEPp8gcFkfU33A53E3UxD4B7H4p4lSyhAxC8wRxKwjVwHPAV0KywLgVmA+YCCm/PxXCDEjvu8RwMtdVidgHRABiuLrnd3G5gDdrX7XJvge/w38Ok2F6SsppaP7A9i+07GGxd/7WT1Z21SGJqqCo7LbIoSwAf8C/gfc0Jf/P26i9/TyeLuXZd8Bo4QQ3a0G0+nBHSClbAfq4+N9zu0DL2Dp9ro4ibVK8AowTQgxBTiSPrJH1POZPkKI+/o4h72+TyGEIPadLwJOiCsqvbGamHWzR6SUq6WU86SUeVLKhcAoYEl8eAbwqZRyWTzeZykxa2lX9lE1cPhOyoNJSlkb33d3heJz4Mhu2/6ewCmyA7OAZ4UQDcDS+PYaIcTcBNYnhBDCTOy7/y8pZW/fXZUhiKrgqOzO3Aksk1KeD7wJ3NfbRCnl4V1+9h4ePabZxu/kVgJ/EkKYRCyFdhrwYk/zicWrXC+EyIm7AH4JPJLE+1kJHC+EsAghxgDnJbG2X0SsTkhfFzs/8AIxl8QSKeX2Puaq57Of89kfUsqL+jiHfcUa/QeYCBwlpfT1c5gniLloFgghtMAVQAsxawtCiGnxz8IihPgtsbinR+JrlwJzuyw2QoiZwFx+iMG5D/irEGJEfLxACHFMUichts4ghDARi//Rx+XREHNJlhJTtGYAP4sv2ZOYoqUUDwHrpZS39jtTZUihKjgquyXxH9LDgIvjm64E9hCxdFIlOZnYXWQ78Hfg51LK5rgMp+10p/0nYAtQBSwCbpPxehwJcgcxl0MjMXeR0vU3hgFf9jPnUWAqyrunuvipnU9FiSsTFxK74Dd0s/icFh8fHn89HEBKuYGYu/E+Yuf8GODouLsKYhlT9cRicQ4GDuly9UopFxFL1X9BCOEmpoj+TUr5XnztncBrwHvx8a+AfVJ4W+8Rc6XtRyzI2wccEM/cauh6AM3x+Y3d5FeCk4HjdrKgKWYhUtl9EVKmfIOioqLSC0KI64HrgBBQJhUuTieEGEvsDtwAXCKlfEQI8V/geSnlu32sGw6sB4p/TIGWu+v5VBk4hBAHAO8Sy/Q6Kd3PRQhhJKYc64kFo/85fSlVdidUBUdF5SdC3C1wO2CXUp472PKoqKioZBI1TVxF5SeAiPVvaiTmDvoxVQtWUVFRSQnVgqOioqKioqIy5FCDjFVUVFRUVFSGHEPaRZWfny8rKioGWwwVFRUVFRWVDPHNN9+0SCl3aeo7pBWciooKli1bNthiqKioqKioqGQIIURVT9tVF5WKioqKiorKkENVcFRUVFRUVFSGHKqCo6KioqKiojLkGNIxOD0RCoWoqanB7/cPtihDFpPJRHl5OXq9frBFUVFRUVH5ifKTU3BqamrIysqioqKCWNNeFSWRUtLa2kpNTQ0jR44cbHFUVFR+pGxu8vD0ku2MLrBx6j7DB00Ov7uN5Q/9BjHmIPY94qxBkwN3I7zxG9jrPBhz8ODJ8SPiJ6fg+P1+VbnJIEII8vLyaG5u7n+yioqKSg9IKbn0yeVsaHSj0wgOnFBASbZ5MASh+e4F7BfcgmvJe6wbtz8Tx44ZeDkA3roKNrwJZoeq4CTITzIGR1VuMot6flVUfrysrHbyq6dXsLnJM6gyTGt5nU8L/8Elmhd55IvKQZGjpr2Tc9wX8vKI/8MsgtS98ddBkYO6FbDudVaPOp9Ne984ODJ0sel9uHMGPPFzCO3eoR4/SQVHRUVFRWVXguEoVz63ktdX1XHMPZ/T7A4MihwvL9nE9bonGeb9jit0L/HlNysYjLZCH29oZrMsZ9qRF7HZNouKjq+JRAehvdGWjwE4d+2eHHr31yxb/g1EowMvh5Twyc3Qvg3CfuhsGXgZkkBVcAaJv/71r0yePJlp06YxY8YMvv76a84//3zWrl2ryP4rKipoaen7y/e3v/1th9f77befIsdWUVH5cfL8N9VsbfZy9cLxeIMR3llTPyhyfLu1jlX2eYjj/gNCcETgLWrafQMuR/7iv3CUYxuj8q24p5zBw6FDWV3dPuByhFq2sInhjBo5kuPMq5n12kFQ+82Ay0HN0thxf/YPOPsNyC4feBmSQFVwBoHFixfzxhtvsHz5clavXs0HH3zAsGHD+O9//8ukSZMGTI6dFZwvv/xywI6toqKy+7FoQzP7OJxcwvNMLdDw5rcDr+B0+EKsaNOzeuaNMOUEWqdfhEtaWL59YBWLsKeVw13Pc1RuLUIIxsz9BU9EDuHzza0DKgfAh2P/j6P8f+aKBWMpnjoPAN/mzwZcDta9BloDTD8l9to38MpeMqgKziBQX19Pfn4+RqMRgPz8fEpLS5k/f/73rSVsNhtXX301kydPZsGCBSxZsoT58+czatQoXnvtNQAeeeQRLrvssu/3e+SRR/LJJ5/scrxjjz2WPffck8mTJ/PAAw8AcO211+Lz+ZgxYwannXba98eEWIDf1VdfzZQpU5g6dSrPPvssAJ988gnz58/n5z//ORMmTOC0004bFLOxispQpNbp44bXvqO6rXNQjh+JSpZtbeQObkcs+juHTC5jybY22rzBAZVjTXUrk8U2ppdaAcg56i88rDmeFdudAypH46bYb7F52AwAcq0GDijw0LJl4C0nS7a1IXVmZo3IZeGsSdTJXJo3D4IFZ9pJcPTd+DVmnF8+AreMBE/TwMuRID+5LKru/Pn171hb51J0n5NK7fzpqMl9zjn00EO58cYbGTduHAsWLOCkk05i3rx5O8zxer0cdNBB3HbbbRx33HFcf/31vP/++6xdu5azzjqLo48+OmGZHnroIXJzc/H5fOy1116ccMIJ/P3vf+eee+5h5cqVu8x/6aWXWLlyJatWraKlpYW99tqLAw44AIAVK1bw3XffUVpayv77788XX3zBnDlzEpZFRUVlVxpdfo686zPaO0OsqnHy/IX7otMO7P3n2joXh4c+oJTNcOIj7GUqI/pJNatrnMwfXzhgctRuWMqbxj/g9RYAJ6HTatijzMzGyu1A37+tSuLctpwyIH/Mnt9v+2P4HrwNIeDkAZOD715h4ep7qCq/FoNOw5SybD6jgomtyoQzJEXxVD5zF3PBje8zV9bwgE6CsxpsA/f9SAbVgjMI2Gw2vvnmGx544AEKCgo46aSTeOSRR3aYYzAYOOywwwCYOnUq8+bNQ6/XM3XqVCorK5M63l133cX06dOZPXs21dXVbNq0qc/5n3/+OaeccgparZaioiLmzZvH0qVLAdh7770pLy9Ho9EwY8aMpGVRUVHZlVdW1NLeGeLyg8eyYruT11fXDbgMX29r5WDNcsKOUTD5OKaGVnKO9m2+U/gmsD8i22O/NdbR+8Y2RCP8r/lUDml5nOgABvjK+m9pkg5GVvxQz8ufPZrhkWq8/tCAyRGo/IppwVVMG10GgFYjaLeNJc9fBeEBDAJ3VsP6N3nggzVYjVpqI47YdvfAf1cT5SdtwenP0pJJtFot8+fPZ/78+UydOpVHH310h3G9Xv99urVGo/nenaXRaAiHwwDodDqi3SLpe6rO/Mknn/DBBx+wePFiLBYL8+fPT6uKc5ccXe+hSxYVFZXUeX11HdPLs/nNgrE8vWQ7H61v5riZAxvAuamuldO069CNixWzs217j2v1z3BtzUnAwNV+yXeuxqnNxZE9LLZBo8WVNYapbZtocPkpdQxMPRzpaaZSN4q99drvt2mLJpDT8DLfba9i8riBOSedtd9RK0vZoyL/+21Nw4/gd98Vckskgm6gruIb3oa3r2aL/y7OO2wOi1f7oQ1wDU4geiKoFpxBYMOGDTtYUVauXMmIESOS3k9FRQUrV64kGo1SXV3NkiVLdpnT0dFBTk4OFouF9evX89VXX30/ptfrCYV2vROZO3cuzz77LJFIhObmZj799FP23nvvpOVTUVHpn6pWL2tqXZw0Xod4/48cVRHh803NA56OXN/YwDeW/WHCEbENYw7BSAhZu2LAZIhGJWXBbbTYxkO3elqRomlMENvZ1jxwtXkuEdfx+KhbdtjmGD4VgKZtqwdMDn3bJjbJMsYXZX2/rWjcLF4M7svm9gG8wWxej1+bRb3I4+d7lrP/tAkEpRZvy/aBkyFJVAVnEPB4PJx11llMmjSJadOmsXbtWm644Yak97P//vszcuRIJk2axOWXX84ee+yxy5zDDjuMcDjMxIkTufbaa5k9e/b3YxdccAHTpk37Psi4i+OOO45p06Yxffp0DjroIG699VaKi4uTlk9FRaV/vqmKZaLMHm6BL+/iVy034en0sbrGOWAySClZ1qLngwl/gVHzYxtLpgOQ716Pa4BcMnVOLxXUE84ZvcN2a+lEbMJPfW3VgMjhD0WobvMxusixw/bCUdMACNQNUPxLwI3NX0+1dhgFWT9Yz6eUZbOH2Mj2tV8PjBwArZuo1ZYxrtBOQZaR8SXZ3Bs+ltrsXa87uws/aRfVYLHnnnv2mJLdPQPK4/nhTmVn5adrTAjBk08+2eMxusfGvP322z3OueWWW7jllh/uULrv97bbbuO2227bYX6XS62Le+65p8f9qqj8mFi8pZXq9k4WTiom2zLwDWJX13Rg1msZMXYqHHsfOa9cxLHaz/mmaiozh+cMiAy1Th+6oIuxhdYfNtoK8JuLmRrZxpYmz4DIUtns5fehK7hyyo5JF1llEwDw1q0HZmVcjub1X3K//naE8UZg3PfbtY5y/mz5Pa7odA7LuBSAr531hsl0mCfuUCG+Is/CXYZ76Fg7Cw46ZCAkQbZsZm1wDDPHOwAozzFzduQERtlmdDtDuxeqBUdFReUny/bWTs7439dc88JqLn5yENJugW9rnFzreB9tx3aYfjJkD+MIwwrWN7gHTIZNTR5eM1zPwk1/3mF7uGg6JaKV7QOUul7Z7ufT6HQKx+xoFRDFU/mv+VxWe7MHRA7v9pUs1C6j2JG144AQVBcdzHduy4DIgWM4p0dvxFV+4A6bdVoNTboSzJ4Bcg8FPAh3HetDxcwc7gCgJNuMkSCuhm0DI0MKqAqOiorKT5Y7P9yEViP45dyRfLmlla+3DmwRt3AkSrR+FWe5/wvbFsXiTsYtZF9Ws6V+4MrgV9Y1M1w0YS3Z8V5cd9LD/CL4JypbBkbB8W1fwUL9CoptO1nSbAWsHHYGy5y2AZEj1LKVkNRSNGz0LmOzjNuZ0vb+gNQA6+gM0eIJMLZo1/ftMZfhCAxQBpPezHvzX+f5yLzvLXlWo44/mZ7lxCUnDowMKTCoCo4Q4iEhRJMQYk23bblCiPeFEJvif3Pi24UQ4i4hxGYhxGohxO7r+FNRUdnt8QTCvLqyllP2Hs5Vh44n12rgia8HNmByS7OXqdH1sRej4nfp00/lk2GXsq3JRTgyMP2G/HVr0AiJuWzqDttNZisl2Saq2rwDIsfImlf4l/ZuNFrtLmOTrG4czrUDEnytdVZRSwEF9l0tNft7P+BGcT/OASiA6HvrDzxruJHRBbsqOCH7CHKlExkYgMBrjZYlnnw6dHk7yOI3F2GKdkJg4KyNyTDYFpxHYBdX5rXAh1LKscCH8dcAhwNj448LgP8MkIwqKipDkCXbWglHJYdMKsKk03DA2HwWb2kZ0Orcm5rczNBsIWQp/KGvT/meeKafhzNsoLJ1YCwnhta4klW0U6sYbyu3izvIq1s0IHJkd1bRZCjfIYOqiyPq7uJ27d20eDJf+8XaWU2zrhiNZlc5dHkjsIgA9fW1GZeD5nVY8TMib1dFS5cXq8/TVtt3XTNF2PwBFVufYmSeBW23cxK1xZNPdtNqxoOq4EgpPyWWSd+dY4CuojCPAsd22/6YjPEV4BBClAyIoCoqKkOOLza3YtVF2XfR6fBnBxeGHqfFE2RT08ClIle2eJkhNqMp32uHi/pUWwd7iI2sbxiYIns291aCwgCOih0HDFb28X9OQceaHtcpTV64EY+5l/o/OSMpFy3UtmfemtQcsdFondDjmLUwpli012/OuBwGdw21Mr/H2j/6sQfy88Af2RouyLgcrH2Vn7U/zujCHWOSTFl5sSd+Z+ZlSIHBtuD0RJGUsqtyUANQFH9eBlR3m1cT37YDQogLhBDLhBDLmpubMyupiorKj5YvNrfw27zFaKoXQ/E0Jmx7lFGijsVbBi4Op7axiXJNC9phO2YGjV79T+4y3ENlS+Yv5lJK3vJP4ZPyi0Gz0yVBb8JjLKYgXIs3kNmaK15/iGLZQihrl591AIz5wzGKEK2NmY87OSd8LUtG/6rHsZzSWFxOZ1NlZoWQEpuvjhZdERbDrgnP5WXDWSYnsK0j8xbHqLOa6kguowqsO2zPys4FoNO1s51i92B3VHC+R8ZsxUl9elLKB6SUs6SUswoKBkCzTZLW1lZmzJjBjBkzKC4upqysjBkzZuBwOAa0k7iKyk8ZTyDM+gY3+xirYMwCOP0lRPE09rM1sKRy4H6s17fD+SUvw17n77BdWzKNctFCU2NDxmVo8QRZFJpE/cRzexwP2EcwUjRQ3Z5Zd1ljYx0WEUDrGNbjeFZRzHLiybBi4faHcPvDlPVSMTmraBQAkfYMx2t1tmGQfnyW0h6HSxwmjtB+BVWfZ1YOINxWTY3M30XBMRaN5cbQGTTpB7bqdqLsjgpOY5frKf63y7lXC3T/5pfHt/2oyMvLY+XKlaxcuZKLLrqI3/zmN9+/1ux896QAaisFld0RKSV3vL+Ry59eQX2Hb8CPvyGegl03/3Y4/UWwFcAFH9NQfvj3YwPBthYv5YU5YLLvOFASKyina868a6i6zcsUsZWKrEjPE3JHM0I0Uu9MvcVLItT4DBwSuJXQxON6HLfkDwcg2JrZYn/OdYt4zfAHxorqnieYHFyWdSevazNcfyYS5EPdAbhyer7x1Ws1XKd/ljHVL2RWDinRuGupk/m7BDsbc0p4KHI4rfrdsxDs7qjgvAacFX9+FvBqt+1nxrOpZgMd3VxZQ4JIJMIvf/lLJk+ezKGHHorPF/vh37JlC4cddhh77rknc+fOZf36WEBgZWUlBx10ENOmTePggw9m+/bYHcXZZ5/NRRddxD777MM111zD2LFj6XLXRaNRxowZg+q+UxlM/vvZNu78cBNvrK7j1Ae/HvC2BOsbXOgIM6Fkx5iCSYVmGlpaCYR7udgrSLs3yJGBtzix45FdB4umAJDVsTHjcjQ11vGG8XomNrzW47i+dCo1Mp+mtvaMylHvDrFJllNQMrzHcZE3hpss17AsktkeUJ2Nm5mm2UZOtr3nCULgzZ1EpSezl0+ZVcwl/kvwlczudU6HPh+zrzGjcuBrRxfxUSfzGJm/owUn26RjtKjF37Z72hoGO038aWAxMF4IUSOEOA/4O3CIEGITsCD+GuAtYCuwGXgQuEQRIR4+YtfHkgdjY8HOnsdXxKsHe1t3HUuDTZs2cemll/Ldd9/hcDh48cUXgVhLhbvvvptvvvmGf/zjH1xySeyt/+pXv+Kss85i9erVnHbaaVx++eXf76umpoYvv/yS22+/ndNPP/37iscffPAB06dPZ3d036n8NAhFoty3aAvzxhVw1ykz2dbi5aP1A5uFsa7exbPGmylbdNUPG/0ufrV8IWeId9nSlPnYl22tXn6m+ZpRrqW7DloLCGit5AWr8Ycyq2x5GmJZOPaSsT2O2+ZcyDGhv1GT6djr7V9zpvY9imy9FNg3WNlScAjrvZmthRNsrwEgt6j3/oAHsIL9na9nVI5mt49AOEp5Tu9FBTuNRdhDGb5ZteTyp8nv8Z7xULJMO9YnyjbreM9wDfnrHs+sDCky2FlUp0gpS6SUeilluZTyf1LKVinlwVLKsVLKBVLKtvhcKaW8VEo5Wko5VUq5bDBlzwQjR45kxowZQKydQ2VlJR6Phy+//JITTzyRGTNmcOGFF1JfHzNcLV68mFNPPRWAM844g88//8EXe+KJJ6KN15I499xzeeyxxwB46KGHOOeccwbwXamo7MiiDc20eoOcMXsEh00upiTbxGOLKwdUhq11LcwQGxC2oh82muxEs0rZW7OODY2Zz16qafcxWlMHBeN3HRSCr2ffywPhI6lpz6wLL9paCYCpcNeidhCrmluYZaK+I7MuqpK69/i9/ikM+t7bZeyl30Zpew8KoZK46miTNoryHL1O2dv3KWdHnieUwTpF0Q//xgrjBZQ7jL3OCVuLyY+2IqOZrZe0zS3IzcndZXu2xYgHM1F/R0aPnypqL6pz3ux9zGDpe9ya1/d4khiNP3yRtVotPp+PaDSKw+Fg5cqVSe3Lav3BlDhs2DCKior46KOPWLJkSa/9q1RUBoJXVtaSazUwL7sB3YavOX76KO7/fDveQBirMfM/SVJKZONatCIKpTvWC9WXz2RS6zs8NABxOM3NTRQJJ4GSXtKRx82j5sPFVLd1MqYwc1YLvSseLOvoxWIR8PBo9Do+qTsCmJ4xOUyd9bRoCynvoQZOF0e0PMT+4SaC4V9j0GXm/lzvradZ5DFev2uxwe/JKqGw0UmTy0dpjrX3eWkQdtYiMVDs6N2CI7LLMDaGcLY14cjPUBzMpg84ov4JPht24S5D2WY9DdKK2E0VnN0xBkelG3a7nZEjR/L8888DsR/nVatWAbDffvvxzDPPAPDkk08yd+7cXvdz/vnnc/rpp+9g2VFRGWiklHy1tZX5Y/PRv3kFPHcGF2y7nEg0wrKqzMZ4dNHsDjAyvCX2omTHC7amZDpFwklzfS8BpgoSaozF1xiLe1ZwKkQDZ2jfo6YlsxcPs68Ol8YRu6HrCYOVkZFt5Hi2ZlSOrGAjLkNhn3PCWWWUiZaMFvurFOWsMc7sc47OUYpORGlprMmYHHgaaJQOiu2m3qeMO579/XdS4zNkTAy5bRHHBV+nKGfXmCS9VoNHWBFBtZKxSoo8+eST/O9//2P69OlMnjyZV1+NxV3ffffdPPzww0ybNo3HH3+cO++8s9d9HH300Xg8HtU9pTKoVLZ20uIJsteoPDjtBZh9KdnN33C4bjlfDVAfqMrWTqaIbYQM2eDYKaA1nr1kbMl89pLH1UaryIXcUT2O57Su5Cb9I3Q2ZVaxeDp0IK+UXdX7BCFwG4rJCjRktMqzI9KK31TU5xxNVgkFwkVTR+YCgu7VncVrRZf2OcecF0uL9jRnThE2dDbRTC45lt6Vl4KiUmopoN4dypgcQWc9TTgoz+1ZAfZprOiCA1OQMllUF9UgcsMNN3z/vKKigjVrfvhR/e1vf/v985EjR/LOO+/ssn7EiBF89NFHu2x/5JFHdtm2atUqpk+fzoQJPd8tqqgMBEu3tWHHy17DLDEX7yE3wsZ3uNL1Or/dsmBAZKhs9bI4OonD99yHnJ3dIcVTWVR6Psu3ZxONyh5L9SvFB4FJrK94nv8WTuxxXJMXj4lp25IxGcKRKJ91DmP6sL4zk/yWYop8Lbh8YbItvcfIpEowFCZfOqm19q3gGHJjRQA7mmphRGYSJRpcfiaV9JJBFcdeEKtY0tmaOQuOJdiMWz+mz+9giVVykfY1wpVBmNRzen26BDsaaJaOXusCvWj5BQVZRq7IyNHTQ7Xg/AT4+9//zgknnMDNN9882KKo/MRZWtnGlabXGf3EvhDygVYHe57FyMg26utqMhq02UVVq5e32Z+sBdfsOmjKZvu0y9kQLqbJndmeR7VOH+U5PV80gO8tOwZX5uq+tHiCzBfLGWXou7hh1F5OqWilLkM1i5o9QWYG7qdy4i/7nGeNKziZUizCbdt5K3guc0Jf9jnPXrEHe4UeYJlhn4zIgZR8Yj6UjbZZfU7Ly7Jyrf4Z7HV9y5uWKO5GmmU2Zb18Vzdl7cNiMSNjx08HVcH5CXDttddSVVXFnDlzBlsUlUFGSsnSyjaeXbqd6ADXngFYXdPBoboViJJpoI//YO5xFm8f/iWNERtbmzOfnl3X1MrMbA+6Xm6MR1v8TBFbqWrNnCwuf4hrwg9wbMv9vU+y5hMUBkydmSv31dTaykOGfzCl7f0+54VL9mRVdDQt7sxkUjV7gniwkJPbt1Uma9xcjgv+mU30XO04XTpaaikQHdisvQf2Amj0RgxZBZlTgoXgDnE6VQUH9TlNqzfQgQ3RmblUcRny0SwdlPcS7Fyhb2O4e3nGjp8OP0kFZyC7Bf8UUc/v7sv9n27lxPsW87sXv+X3L387oJ9VMBylo7mG0nA1jDzghwGzg7HDY+Xo19Vn3pdvb/ya532/hJolPY5P2fogzxluoqo1c3EedU4fczTfUhjt48IkBG5jMdnBxowpox2NMeuQMbdvhUHueTYXhq6k2RPMiByd21fyO93TlGr7/vx1tlyqLZOp78yM69DTEitYZ3T038f5Au3rjG/IUC2ckB+Py0lRHwHGXbg0DvT+zMWv3TnpOW7WnI/d3HNEywLfu9zi+QNkOFU9FX5yCo7JZKK1tVW9CGcIKSWtra2YTP3/Y6oMLPUdPu78YBMLJhZywQGjeGZpNV9vG7i+S1uaPcxibexFxY7WxNHOz3nUcCvr6jKbMSSlxOLeFnuR13NhO2vJeCwiQGt9ZcbkqGvzUCZa0OT0XLW3i09m/YffBc+nrTNDikVLLEg2q7Ciz3kFWbESFpnKXhL1K7lY9zr5pv5/l08yfEl2U2bKoPnaY9YyW37PDT+7c2DoU6a7F2VEDv/at/hanMVETf/uSY8+F0swcwpOo8tPYbYF0Vv6vsmOBgnBTFeCTJ6fXJBxeXk5NTU1aquCDGIymSgv3z2br/2UeeSLSsLRKH86ajL5NiPPLq3m8cVVzB6VNyDHX9/gYrZmLRG9DW3xjunZOm8T8zQreb1mA5C5prPtnSHKI7X4zdmYrD2/b21BTPEJNW0C5mVEjo6mGgwigrmw5wyqLmwlY3DTQb3TT76t94JvqRJujyk49sLeq/YC2DyVfG28lM+qrwV6LgiYDlFXTLHIKerf9fRL/8N8Fdkb6Lk5aDqEO2LNTR35PTe47I7fkIvNm5nSBp7WOkyANad/S1LQmIfDvSEjctCymVO238Br9lN6naIxZQMQ7mxHt3NPtUHmJ6fg6PV6Ro4cOdhiqKgMKFJK3lhdz5wx+QzLtUDzRs6ZbuGeJQ20eAIZuXjuzPoGNyuZy8lHnBQLLu5OaazuiLFpFZCZbBCIuYZGiXp8WaPo1caYF8soMnRkLj071BKzIlmL+lZwRgU3crXuGRrapjK1PFtxOTSeutjf7L4v6MKUTZFoR7gyEw+k8TbixIbD2EfQdRyvIR9boCUjctTqylgfOYCfOfovrBgy5ZHt3paRbDufs4GoFDjy+1dwPhp3PQ8urmNNJrL+2rYyJ7CIZZZf9DpFa4l9L72udrJz+1aUB5qfnItKReWnyOqaDmqdPn42tQSkhJfO59INZ5MddfL5psxcLHZmfb2bjvw90c04adfBwomEhYGKwAbc/szV9Khp9zFKUwd5fVghskoJCiPZndszJke7L8i3Yiy6vL4VnCL/Ni7VvYa7KTOZVO/pD+Z6+19B349L2ZJHBA1aX2Z6hhl9TbRrErMk+k35OCJtGYlL+to8nz+JS7EY+r/3l9YC8nDh9Cn/fY24mmjHRqGj/yrJ2Y48OiNaOjIgh/TEGnka+ohJMljjCo7bqfjx00VVcFRUfgK8v7aRIk0HR3U8FUvPPupOdP5WLje9xWcDpOA4m7ZztG19rIntzmj1eHImMk2zlarWHsYVora9k7+GTkc368zeJ2k0vD3uJh72zSWcobT1r8LjuS73jr4VLcAadx2F2jKjbG302anLTSDVWaPFrc3B6M/Md8UQ7MBjSEzBCVuKKBDtuDKgCLe4O8nPSsyaqbHloyVKm9OpuBzC20SLzE7Isjo6soUbdI/Q1lynuBzfxyTl9W7hCxdM4/zgVbSbdy/rDagKjorKT4Kvt7VydfbHmD6/Bdz1UDoTMfUXnCLeY/WmrRkPuveHIox3f80lNVfHjt8D4Yp5dEgrW1syl55d6/TzvnYutnEH9Dmvc/ThbIyW05ihNOBGV4CirP4D8bWOeExKR2bqvkzt+IRZIrH4Da8+F2soM8GsF+lv4tGK2xKbbCsin46MpKz/fsvpXB+9L6G5zhkXMT7wCM1+5VvfrHAcwiPRw3GY+y+qWEwrZ+vew924TXE5/O31uKSF/BxHr3NMjkI+iO5JB1mKHz9dVAVHRWWI4w9FWFXtZEHkMxh94A9Wg30uxCADTO9cnFGlAqC6rZNJopKwzgI5PcfA2Q6/gQtCV1GZQVk6W7ZzaNY2RKTvrKRRumaO1Cymrj0z1qQLnf/kiva/9j/RHsvmMXiVvzuPRiWXhx9mniexhsHbCg5icWgskQy4htq8QbJtfdee6aJ96rnsH7iLNq/yFpzsSDvCkFhj03y7BRAZySz7wjCHjyyHJRRTY82NNdnssrYoiScEm2Vpn+nqWfoIB2pWfB9XtjuhKjgqKkOcVdVOJkc34gjWw5QTfhgonUnAMZpCnKyucWZUhq0tXiZpqgjkTQJNzz87Jr2WMoeZbRlUcEY1f8idnddCoO/mgKNaFnGP4W6amxsUlyEYjlIRqSJLk8CFUW/Co8lC61c+nb/dGyAfJ9F+2iN0sWXiJfwnfDTtCqes+zs9/FXexbTgyoTmZ+WV0EAerV6FU+cDHsz4iVoSawFREG3hH/r7ELXKp6zr2jdRbk3MPZpdEFOCAx3Kx0ctHvMbjg/eSJG9d1eZXRfhYcNtZG9/T/Hjp4uq4KioDHGWVrZxqHYZUqOHCUf8MCAE2suW8LDmeFbXZLb+zLYWL2NELfqSPlLAAx6eCV/BhOpnMyaHzVdLQGMGS9/xHraSmJXL26h8JlWzJ0CJaCNi6z9DBuBv41/g5uhZisvR1tKAQUTQ2BOTI99mREuEZpeyriFnSx3Hab+gRCZ2gS6knUu1rxBs2qSoHEFXrHSIsCWm4NiNGn6u/RR963pF5SDo5ea68zgpumv/wZ6w5cQsOFF3o7JyAA0dMSW8sA93qtUWCzKW/t2v4aaq4KioDABLtrVx6B2LOOruz/mmKjO1M3pjdU0H5aYgYsS+YNox1Vin0zG51M7qamdGZWiqryFXeDAU9dxYEgCDlVzpJM+zMSMy+IIRCsINeMyl0FvRsjjm/JgbLdJWqbgcjW0u8ulAk91/MTmA7GwHLd6g4llDruZYXI8hp/+aLwCT6l9kk/FMnK3KWrU88f3p7YkpFg7cXK1/Dl3zd4rK4W6LuXh0WYnJoY0rQtKrcOC1J6boRa2JySGMNjxYCPuUL7T3s1WXcLb5Mwy63lUFm8VEpzQiA7tfob/dVsERQlQKIb4VQqwUQiyLb8sVQrwvhNgU/5sz2HKqqPTHxkY3Z/zvawLhKG3eIOc+sjSjfY525rs6F++Nvg7OeHXXwUiYu12/Zn7DQxnLGAJY59Tw29x7YMrxvU8Sgg7bKIZHq/EEworL0OT2Uy6aCNgS6GPkiFUY1nRUKy6Hu3k7GiEx5CZWDHNv7ydcJx5VPA3Y3x5rS2DNS0zRsmTlohESb5uy8UA+Z8zyYHYUJzRfb4+71DzKumTapI3/hQ9HUzAusQUGCz5MaH3KKjgy/r40WYUJrzkj/zket5yuqByEfIx1L2GYoW/FRa/V4MWECPbt9h0MdlsFJ86BUsoZUsqulqrXAh9KKccCH8Zfq6js1tz6znoMOg0vXLQfT/9yNsFwlLs+3Dwgx273Bql1+phSau859kWrw2zQsodcx5YMNrrc1hZEFk+DrL4vYsGcsYwVtdQ5le9a3djhZ7hoAkcC6axmB15hxdxZq7gcbZ4Ab0b2xlw2OaH55f5NnKb9gGaFs4bWG6awIHAr9lF9d6zuoqt9QUDhYNagK2bB6QqW7RdzLlEEolNZxaJJV8pN4TMwFvXcwqMn3FoHBoXjo7ztXRatxGKjAPLtZpqVzviLK1pBc/+WpE5hQbMbtmrY3RWcnTkGeDT+/FHg2METRUWlf1bXOPlgXRNXzbZR8PqZDH9qLv+oWMKrK2uozcBFfGe+q3Nxle45Tlp3WazAXw9Eh81mpmYzG+sz05cqEI4w1fsFC8Kf9DtXlz+aHOGhoVH5gMlGl49zgtcQnHl2QvP/O/J2/hM5VnE5tkULuSx8BfYx+yU0X+8owSjCOFuVjbFo6BTU6IZjtSaW3mvJjSk4UZeyLqpOX4AOacGem1gsEFodbpGFXmHFwtnRjokAeVZDwmvajaX4I8q6DjvjCo41J3EF54jA25zZkVh6e8LEFRxp7d+SdIv5N7ya00dtqUFid1ZwJPCeEOIbIcQF8W1FUsqu24cGYJdvgBDiAiHEMiHEMrXflMpg88I3NeTq/Jyx6Qqo/BxMDo6o/icni/d5YVlmapt0Z01dB3tpNmAT/l7jTrLG7o9FBHBuW5ERGWrbfZyheY/Zjc/0O9cycm9ejMyhsV35oOdGd5AlciI5I6YmND9UNJMNXqviadEtbj+5FgM6bWI/v6Z4jIynRdnvS2HDIs42Luq9ieJOiKwu15CyitZix5HsGfofdkfiEQdeXQ6moLIKzvBv72G18XxyLP3Xnuni2Yn3clXoEkXlqLPP4PrQOX0W19uZ0eHNHBL9nJCSbub456zJ6l/RqrVOZks0cXkHit1ZwZkjpdwDOBy4VAixQ2UuGatMtssvj5TyASnlLCnlrIKCxIK0VFQyQTAc5bVVdRw5zoLWUQ4nPwnnvQ8TjmRYro2312Smr093NtS1M1WzDd2w3t0Q+vI9AJD1qzMiw/a2TipEA9Hc/ps0OiYeyHXRy9jSmVhNlGQINm/heMNX2EVilrOJchOniXdo9Spr+p9bdS/vRi/o1aK2M7b8WKxOoF3Z2Jepre9wZrSHuKzeMNh4zXwM38kKReVo8wbJsRoSVrQAHhz7H34rf62oHKKzjTbsOCyJW3DybAY8gTD+UEQxOaq1w3gicgh52Uk0rrQVkouLNrdyVuEQGtZGR6DP7t+ytofYwKSOzHRWT4fdVsGRUtbG/zYBLwN7A41CiBKA+N/MNEZRUVGALza34OwMMX/vPeCMl2HU/FgczElPoN37XNY3uDNa1A7AV78eK34o27P3STkj+SLrcFa5HRmRobbVRZlowVjYf2yDRiMoyTbS2K58ymle45fcrrkLkWCswDjX19yof5RmhWUxBZpBo+s3k6sLa14ZHmmm06OsVcscbMOjTyJPQwheK/4Vi8JTFJVjXvW/uUrTv3WvO9bsfJo7I4pmlmn9rXQIe8KWNYCZro94TH+zolWVo03rGC1qyU3CVaazF6EVkrYW5axrLaUH8rPgzVgSCEI/zPcWZ7j/q9ixlWK3VHCEEFYhRFbXc+BQYA3wGtBVEOIsIInbDxWVgeXjDU3sq9/C/rk7ZRcIwWETczlUs5QP1ypfobaLSFTiaP829qJ0j94najR8PfXPvNwxWtE70S489VvQComlOLHgzRcCF7Gw+l+Ky6H31hNBA7bEYhu6spw6mpTtA2ULtuDRJ9Z3CUDkjmKh+Sm+0CcWs5MoWZF2/IbcpNYUWTSE3creV471LGMClUmtme77muu0Tyja6NIYbMetdSS1Jj/axgHab3G2KRfwPHXtP7lD/++kXGXG7Nh32t2i3O9JiztWSDGRmKSI3oY5mrkecqmyWyo4xGJrPhdCrAKWAG9KKd8B/g4cIoTYBCyIv1ZR2e2QUvLxhiZuMT+C8ZXzdxkvb/qUBwx34Pnu3YzJsL2tk4ZIFttLD4O8MX3OHVtoo0i2srVJ+VTPUMsWADT9NJbswq93kO1XPnvJ4m/EpcsDTWK9gyz5sXTyToVjX7IjbQRMSbjPhaAgy0izgi0BpJQ4ok7Cpvyk1p1VfxP3Bv9P0bgkW6SDgDG5ih/l/g38UvcWrR3KZe5YQu34dY6k1hgdMcXCo2DqvCHQhluTnCXJml9OvczF5VLOypez6A/cqb8noeaj0mDFIjOfNJEsu6WCI6XcKqWcHn9MllL+Nb69VUp5sJRyrJRygZQyM2kfKippsrXFi7V9A8ODW2DGabtOGHcYfo2FssYPM9LbB2BDg5tPojNpO/z+XtsjdDHT+S6LTb+ipUrZ4mkA7wSmcEnZi1A6M6H5PuswiiMNBMPK1uXJDjXhNSaemZJdFKuFE2pXTsHpDIbJp52wJfEaJwAXBR/l0OZHlJPDH8CBB2lNTsGJWgspEB2KtmvIlk5CpsQtWgCGeAq1q005l8yL+qNZ5Tg4qTXmeBXhznbl5DAFnXQmqWhljz+AfQP3sEE/XjE5DK3rKBZt5FsTUHCMdowiRDSofAPUdNgtFRwVlR87X25uYaFmKRIBk47ddYLOQGvxHObK5XxX68yIDJsaXNjxMLaw/+aBuSNicRXe2nWKy1HXEcCRXwS6xGIKIo4RlIlmGp3KxSd5AmEKZStBS4K1VgCDI+aiki4Fzf6uAC9H5tJRnJy7aWxkE9P83ygmR1tnhGmBB9k+/ryk1omsYnKEh9YOZeKSQj43ZoJIS3KKljE7piB625RLWX84fCg1RQcmtSYrLxaAG3Qpp+BYI04ChuQsWia9FqtBS6tHOcVT52+jVdrJz+r//1ZjjP3GdHqcih1fCVQFR2VIU93Wyf2LtvDs0u24/Mp3H+6Nr7e1sdCwEsr3gl5622RNPZIi4WTz6i8zIkN7/RZWmy7Auu75fudaSiYAIFo2KCqDLxjhRP+LHOJ7O+E1+vyRGESEpjrluhM3uvycFfodW2ZcnfgiUzZnZj3I66YjFZOj2RvgpvAZBMYfldS6oKmAHNmmWLXpFm8QDxayc5KLwdFnxxREV4syGYAdHe1siJYj7YlVde6iqyhgsEMZBUeG/Ng7t5NvSs6aas4pZYssxeVXKHYt5McsfYSNyX0uAP/R386EmueUkYNYTJJL2LEYdP3ObRx+BAsDf8cllc9+TAdVwVEZsny0vpEFty/i5rfX87sXv+XYe7/ISIXcnZFSsm5rFeNkFWL8Yb3Os0/9GQBi2ycZkUPb1aunn/gbAEx2WjV5mF3KNpes6/BxkvZjxnoS77hsHrkv94aPpt6tXMBzo8tPjSzElmCgMwBCIB0jqHMr5ypr6fBgJEiBrX+zf3eitiIKcdKmUBxOoO47rtU9RRHJ9UUz5cQsFj6FYk5ayWFh8FbcY45Jap0tt4SQ1OJXyGLgqV3PR4bfML3zq+QW2go523ovX+j3VUQOhIarNNewteCgpJdOjW6kwKNQ489oFHO4A3+CliR9dhEb5HDcocRT/QcCVcFRGZJsaHBz0RPLmVRoYvnh1Xw+80OmuD7n4ie+yVjMSxeVrZ1s8Rh4ecEimHVu7xNtBfy54lH+6V6ouAxSShyuDUQRUNRHB+9utJoryPdXKipHXbuXMtGCJieB9ghx8sfM5LbwyWzx9e9aSxRX43Yu0L5OqUgu2+WQ6Jcc1N6/BSxRjNs+YoPpbIq9yV2ItPYSTCJES6tCGUwN33KR7g1y9cm5NCzDpvP30Mk0RLP7n5wAXTWGkkmJBtAXjmMvzdN8bZ6riByeePVggz252CiIdVlXyjUU1eh5xT+TSF4Singcry4bY1ChRr5hH6tNs2g2j0poeoHGzZnad+lsVLbDe7qoCo7KkCMSlVz1/ErKDT6e1/6B3I9/R/nGx7nN+CCbaxp4bHFlRo+/rDIW+z5j7Agw930HVDpqGjUdAcX7yLR5g4yIbMdjLgeDNaE1G0aczj2BI/AFlbOctDdUYRRhTIWJ/VACGHVaRtrCdDQr1+gy2rCG3+ufpkC2JrVuZmAJJ4ZfV6zeSiTe5iC7ILmqr/q8kWyKltHhVCavIhJP9c7OT04Oe9FIHogeTU0keRdKTxg2vsELhhso1CaZvScEuTajYkUYuxp+mhzJKzhXd97BCc33KiKHu7mauaygyJh8s1m/IQdL2KmIHBisXGf+IxvyD0loer7GzY36R6F2uTLHVwhVwVEZcry6spZ1te0877gbXdtmOOkJ+H09hvPeZsaYcu79eEtG6r10sbqmg9uNDzK68Z1+5+6V4+VvugfZ8u1iRWXY1uJljKglmJvEneD4w3g7ug/b25SrZ+FrisXR2EsScJN14+noNRy8/S7F5Ih0xFwqlrwEOol3Q9qKKcBJm1eZ7BDhaSCKQG9PPNgZwDD1GA4J3kZNNLlg3F7l8DYTlFos9uSylzQawWRzO0GnMi4q0baVWZqN2O1JVO2Nc0XkMWY1vqCIHEFXTOFLpv9TF8XRRkYElbFc+Dd/yiOGWynVJK/Ihox52KMdyAQrZPdHqydAfoKuVHtu7LyF3Mo2QE0XVcFRGVKEI1H+9cEmppeYyR01E465FyYeBVodomgSv5pTzqm+p3nv088yJsPW7VUcLz5G09F/gbjxZfmcqvuY4IYPlZWhxcv/IocTnXFGwmtGOvTMEJupr1EuDqezoxk/BnS5FUmtc5pKcQSUy17Sumtj7rp+upnvss5Rhl5EaG1Upi6PztdCh7CDNvEibsD3F5omhSx9Wn8LTuFIuJpyd56LXsWs2icUkQNvM53SSE62I+mlM8MrmdCZeGxXX4Q9LUSlIDs3eQUnaMxVTLHwdylaKViSOrPHUBPNx+VL3vqzM9F1b/Fq8JeM0SYWTO7IKyIqBdLzI1JwhBCvJfB4ZIBk/VHh8oe46Y21bGhQvnCaSu+8+10j29s6uXDBVMSRt8O0E3cY36fcwAWGt8n/6uaMHD8QjmBviv/oDu8/FdicW0K9KMTSskpROba1eHmFA8nd49iE1ww3+3jF+Ed0G95UTI73o7M4rfCVxAKduxGrhVOv2N2oyddAhyYnacXCGK9m7G6qUkQOc6AZlzZ5945ZE+F5400Mq1TGYqEJuHElWbW3C5fWgTGQnKuvN7S+VpxJtkfowm/IxaaQS2Z91v78X/gccrPMSa+NmvNw4MYdSF+xCLmaiUpBVk7yCs72ab/izNB1irjtfO11lIg2bLbEYq30egMuYQWfMt8Lpegv/2sisGsZ1h8QgDLOxyFEMBzljP8tYVW1kw/WNfL6r+ZgNyX3w6qSGg99sY0rsj5mgdkO7Hq3LmyFbBl5GrO3PMimtcsZO6mPFgYpsK7ezUw2ENEY0JYltu9660RKkww67Y+2+m3MzW5BJxJXEOwFw/BgRtumXKBgndPH1HJH0paCaPYw8ppdtHV0kOtwpC2HLdCEy1BIctVFwFYQK/bX2a5MOvI77MuYPA2Jh1zH0RmYLLbhcW1WRI4bLddRVCBIpXtQpz4Hc0iZYFZDoA2XxkEqfajDpjyy3VVEohKtJr3snQ3aMbyo0fPXBFKid0ZY88nBTY3Hn/bvfNTbihNrSopWXrwgX6s3yKg0+0z7nY1YAVtu4hZPl8hG59+9au/2pzb/QUq5qI/HJ8CfB0DOHxXLKttYVe3k7P0q2N7WyQOLlE29VemZDQ1utldt5VfhR9Cu6b0exIjDriCIjo6P7lRchtU1TvbWrCdcPBN0ifmvfQXTKJWNeBQsWja+4Q0e6vwVhJKIpxGCOt0wsjzKfF+jUclZ7vs5vjP52hy63JgK0Fq3JW05pJScG7yKVybenvRax6hZjPU/xirT3mnLAfCsf182lp+Q0toObQ4GvzIugDZvkGxballqfkMuWRGnInJUU8xWU2JZfjsTteSThwunAlWVja1rmWxOTWmL5o9ncXQS7R3pt0nQdLbQJu1JZ5UBlLuW86bhOnz16deyCrqacEszufbEvyN/zbuZe22Xp31sJelTwZFSPgcghJja3xyVH/h0Uws6jeB3o6t4NO9xnllSpXjZeZVdeXF5Defo30cjw7D/Fb3OcxSWsTzrQCa2vIsMKtvNe9X2NrxaO4bxCxJeY6rYm6poIVWVytydR6KSPF8lHYZiMGYltbbDOpLCgDLZS63eIIeIpQyPJN+sUj9iNn8InUt9IP3CYS5fGE9Yiy0veTuByWjAYjYrEvviD4bJC9ZQZE7N7ebV5WIJpe8CkNEov+28g31CX6e0PmzKxyGdipRbuF1/Aa8Up3ZRlPZSnNhod6cfBnBy9U38Vj6a0trwpBM4PfQHWgLpW+nfKTqP/+NiTPrE+qV1x2HUMFlTRaA9/XixiLeVdmlLqA9VF9JeRq1v9/JUJOr4/LcQYokQ4hIhhDIFEIYwGzZ8x37lRswdWznA8zb7+hbxznfK3Z2r7Eo4EuWt5Vs5U/8hYsIR0E9jx+C001kcmcC6LcrEVnSxqtbNwxW3IeZdk/CakumHMC/4L5YHkqvm2ht1Th+jqaHTnlhzy+4EHWMppBW/J30XRF2bixJaEY6kHTLkDRvHk5EFbFdAwWlqa+VPukcZH07tzvZKw8tMrn4qbTlam+tZZLySfdpeT2m935iPPZy+C6DT4+Q4zaeUR1ML4q4ZcSx/CZ2uiOWk1Rskz5a8tQLAOf1C5gTuotWXfnE5W9iZcFG7nemytrR50z8fmyKl1NimpLTWlhdzJ4VczWnLUWuZwFvRfRLqJN7FbLmSY9zp/58oSUIKjpRyLnAaMAz4RgjxlBAisQT5nxht3iAntt7H3R2XwexLkPnjuND4Hi98o2xHYpUd+WJLK3t3foot6oZ9Lup3/ow5h3Nh5BreqFIukdDtD7G12cW0ckdS60qyTdhNOtYpFJC+rdnNaFEHBck33uscdzQnBf6Palf6Fkdn3Va0QmIsGJn02nybkYnaGoKN6ZvbOxq2cY7uXYojqd1k7CtXMsn1edpyuJpjvwF6R3KZXF20OyaxIVKadk0eV0tMsdFmpRaoESqfzevR/dK+oEd9Ll4JXciczg9SWp9jjVkL0m78GY1ik66kG352keffziLDFdiqUnsf3ZnQ9DZ7GlO7Vhjin2fUm74b8/O8E7k1cio5lsQVnMmBVZwfeY6oQu1ElCDhX3cp5SbgeuB3wDzgLiHEeiHE8ZkS7sfIis01HKhZiX/kwaDRIGadyxS5kdbNS2lyZbDTqt9Fy7fv8+HrT/Cflz/iP59sYcm2NsUKlCVDrdPH00u2c+s767nno00s3tyiWDZMb7y0vAazQUd05DyomNPvfIfFwN4VuXy7dg0EPIrI8G1tBw/pbuOk7cmFpQkhuMr+Ied+d7YicjRXb8IsgljLJye9Nn/YOL6WE9nekX5GiLcpFsuTnWQNHACtRvCI/hambU0lDHZHOltiLjdb4fDU1hsLsIfTv2h0tsZcB6bcspTWbxl/IZeErkj7gu5pjaX+GrNTU7QK9QH2EutxtqfnLvO2NVAuWrClENgLUBCs4RH9LWhqlqYlB34nOqJIc2oKjtlqY4SmCdxp9ueSkl+2/YMF0RRrYlni8nem/11tcfvJtRrRJBG8Laz5GEQEl0uhasoKkJCCI4SYJoS4A1gHHAQcJaWcGH9+Rwbl+9HRuuYDzCJIzh5xvW/6yUS1Jk7RfMirK5Wr69EdbyDMB4/cSP6LP+fgby7l4lXHsd9HP+f+B+/hwH9+wqsrawdE0VlX7+L8R5cx55aPeO2VZ5j55SWctmg+sx4fR91Nk2h65XrFlInuuP0h3v2uATHjZDRnvZZwxs5xpe087jqPjpWvKCLH6qpWZmk24MhN/s640G5mTHgzUWf6/vMNbiMXR39H1uTkW0AMz7WwULMU/5Yv0pbD6e5kmyzBWpR4FePutOkLsfjTd+2G2mN3xI6i5C1JACFLEXnRtrSV9K7GkFl5qSk4XfEQrWlaTnzO2IXYnJOaglPiXcvzxhsJ13+blhyueD8rfQrtEQCyTTrma1dBe3pNWQPx2jPCmloRRWGN/793phkf5e9AR4SIKcUq0Vo9Kwx7Uh9JM4pESv60ZiFXaJNrUaLLip0/p0KNWJUgUQvO3cAKYLqU8lIp5XIAKWUdMauOSpysmk/wCROGUfvHNphz0Bz0e2pyZ/PicoXdVO2VtG1Zxi/uX8z1VdN5dPQd1J3wKvLQvzIlV/Jv20MU6f38+pmVHPfvL1hV7VT2+HE6g2H+9tY6jrz7c5Zsa+VXB47hX0eUsCC7DuuM49gy9lyqZBHhFU/x/vr0/cM78/a3DYwMb+P4GckV6Zo8czaN0oFbIQWnbetybMKPseuzTwL98D0BaN6YZLO/HljfLqkumItwJFe1F2LxBH/UP8GwrU+nLcencgYXZN+PSKIPVXc8xhIcwca05RCu9Cwn0lZMlvDhdjvTkiPqiv3wO4pSi7Wq8KxikeEKfNvTK4fv7fThlNaUgq7hh9ThYEd6n01ne1d7hOSL6wEYs2OKkUzTJdOuyeHi4K/pLNkntR3ojHQKMzp/egqOjCtIGmtqliSA/5Tfygsy8QSHHgl6MUkfOmNiLV66sOXHvtctNbtPP6o+bYNCCLuU0iWlnNfD2HAp5XYp5eOZE+/HhT8YZkrnUmpyZjG2e4rw/r+mTFPJ+le/Y22di0mlyZcl3wVXPdFHjqLDo2Fb8GbuPWshB07ouhOaj3afC9G2beOZvLG8smI7L779Hsf+u4MzZ4/gqoXjFavL8/H6Jq5/ZQ21Th83TKjhFxNNWPZZCHIc7HMSBp2BCcRiky59eBFLn13HwyYTc7NboLjX5LykeP2bzTxv/AvW1RugIvHU74klDl7S7M1RDZ9CyAf65GtPdMdSH89KGZ58Z+GicXsT/kKDe+sSivZOLY24i/zGz9mjMBdIvhGhEIJGfRk5nvSDr+s6fJQ6Uj+nAWspBe5FEI2CJvVYqWink1aRQ54utWBWTXYZzTKbzpYm7PbUAlEBVhn35DPO5VpLanfYdpuF4Zom6tvSs/KtcizglEA5a4uSV4AB7PH+VRF3ejcrgY6u9gipWZIwOQijQZNmcbnWsIm3o/twTH5qLkwAt9aRdqNLn7MJC6Cxpd6OI89mYPl2Z1pydFmiopbkFK3hU+cSeVfQVvktcFx6MihEf78an3Q9EULsXEv+FaWFSQQhxGFCiA1CiM1CiGsHQ4be+HBdE+cFr8K5z293GTtqtI5TdJ/w8goFrDiRMPK5Mwm6mvmN/3z+c8Ze3ZSbOFo9FIxDoxEcH3qLJyK/4/6Rn/PYV5Us+Oci3lydXpXY6rZOfvnYMs55ZCn5uk6WTn6JsyuvwbLqkdgFSQjodkHJtRq4//z5jCm0sempa4j+byG0pK/pV7d1Urj9HWx4ETtVLe4PjUbQUn4oRuknuvmjtORocvsZF/wOt6kUspO3FIwtK2CLLEPTmJ7ZPxCOcKbvCY53pX7f0WEZTn6wBtJ0yVzeehPndT6U+g6yy9GLCJ40L+j3Gs/lytInU14fmPRz9gr8h3rS6wO1JjqC97OOSXl9dvwOOdyRntuu1RPApNdgSTH2RW+LuWSENz0Fp1Xk8EFkJll5KSo4QuAWdvRpFpfrbNjEHM235JlTV6LX2+ewJpK6ggTgjVu0DPbUq/T9ovEu7g7+X3ohCfEYnmQVLVNWLucWPst9voNTP7bC9PeJdg9m2NkxmH5uXpIIIbTEKicfDkwCThFCpFYlKgM8urgKX8449thn/i5jjm1vcbPuAdat+JxwulHmi/6OqFnCbwPns/CQnzFvXD//EDNOQ0w8kkPr/s3KsY8w1trJpU8t5/A7P+PFb2pw+0MJHTYalazY3s4Vz6zgwH98whebm/nPrAZeEb+lYOvLMPe3cO47vd5t2016HjxzFk9yOJ6IDvncmRBMr7HjyytqOVX3IaGc0TAieddQ0fSDcUkLHSteTkuO1dUdfBydQdv0C1Jab9Jr+cw0j7Ukn9rdne0tXkaLOsK541LeRzB7JFl4vzeZp4I/FGF6dC15utQ/X1/FAs4JXk2DP/FaHD3R5AqQl52cub07BVnK9IGytq1jgsmZ8vqsuOVEutNzDc3adh9/MqSRzqvV0UEWWl96rqE11tmcH7qa3OzULdpVpvG0RNIrJWDd/DpPGG4m15z6Je3TUVdyb/CItOSoy5nFYYG/oytK/ZJm1YYYKerp8CX2m94TgY6Y4qrPSj42asKo4Xxb25HRZsbJ0J8KL3t53tPrgWBvYLOUciuAEOIZ4Bhg7UAKUdniZfVnr1LoXAXRCERD6FzVXOxsoeGAm3suGz7tRCLvXs9C/7t8vvlY5o9PLbCOyi+Qn/6Dl+V8mkYcwZ0HJBDAabLDiY/C1/eT/d71PKH/msX7/Yk/bbZx1fOr0L4omDHMwah8K8XZJowaiRSxQlMiEqTZJ6l1+vmmqo32zhBWg5az9qvgokkhCh47GQonwSlPQ+nMfkUZlmvh4qMP4LIXL+LRplvh7atjDTFTQErJymWfc7lmE+z115QaB+4/vpQLXrqShblzOCclKWKsqnHykjyQGw9OPrC3i2XDzmVjk5sj05CjtnorY4WPjpLUfyS1+WOgGpw168kZ339GWk80tLRRIVw0pVADpwtH6Wg+js7knE5B8nlYMaSUXNP5D2ToCGBGSvsoMMF9+jswbjoepl+SoiRwedtfabKOA45Nab3GYMaFFU1nepaTCvdyStKsjnCP47d0GIo5II19tHmDWA3alIradfHYyFv5emsbP09DjqinBW+KDT+7yLUa6AxG8IciKb+flqCe9XI4jjQUPmHNJxcX2z1+clKohgzQrs3j3fAh5OQm/797UL6LfTS3sPJfDxDJn4hGCITQ0OCYzpR9D2NMYXKFR9OlPwWnUAhxJTFrTddz4q/T7HaREmVA9zKrNcAOkWFCiAuACwCGD0/PZNgbW1s81H/zBkfrYk0Jw1KDDyPrSo/mhDkzel5kzoFJx3Dsmte58ZvNKSs4sngqL9rP4NaOBbz0i+mJ92ARAmZfBGMORrx9DfvNnMa7R+7Ftyu/omXVu2xuC2FZV0N5qJKJmirmBO4kjI5bdfdzrG4dlbpR/NKex7CiIPm5ORiOfDC239NfgpEHJNXE8IQ9yvhw3UL+s2Ejl6x4AsYfARN+lvS5WFbVzh7ujwkbTOhmnJr0eoDCLBMdRbN5p4q0FJzayvXMLpCYDan/WI8rzuKjtTX4vR2YrKnFaXhq1gDgGJF6fJNh1FzmfXU7txvGs2eK+2ir3UwFYMhPLXMJoDjLyHzNCvzVBhiXWtmtdmc7x2i+4BuZ6jsBR5aVeZpVfNsyNuV9AOTIdmrNKd7YxPnCMIdWykjeVvkD1lA7TlN6lsLK3DlUt6VnfT1+/ZUcrAsCh6W8j1yLIe16PBpfK23YKTWnHpc4p/4RTjM+RKtnM2U5qVmUtJWLOEm7hDzrgSnLocsqwCAisRT+otQUpQbLWP4UPoeHCpJ3te+9xx6sXjWZidXPYPB+/P32O8PHoanYf7dTcB4Esnp4DqTUpy3jSCkfAB4AmDVrVkasTAeMLWC/6x8ipBFotXp0Wg1ZxMxLfaGddTZZa55Dt/5V3P69yEo20FdK3t7k5bdNh/HnoydTnso/Uv5YOCPmjtEA09veg6o7OBhAa0AWj0aOOJ718+eC2YFY7UK74Q3KWzZCoApCWaDr5psdk7y/VQjBjcdM4dB/nsgsczN7WXJT8nc+/fV23tOeynnn/w6dJcXUSmDu2Hw6v/wfweWVGPY4Jen1UkoOqHuYQ7TLQR6TkiUJYEKeltWG8+j4+ApMR6aWnCgbY007beWpVUMFKC0qoEoWU+0MpqzgeBtjPaTsKdTA6aIw28Rd+nvYtrkKDk5RwWmoIhfQ5aReJVpoNLSKXHSdTSnvw+91YcNH1JqegvNU0VV4AmFOT2Mf9mg7lcbUM3UAJmmrsbo3Qho2HFugEa8uvfvkee0vslC8hi94SMo3Fzp/Ky5hZ1gaDTtNJhMO4aXW6UxZwSmpeo3LdV+Sbft7ynJ0ZZZ52puA1G4u2tva0BP+vnlnMgitnunn/xsidxGNhInIKOFwlAs0OvSG1CxK6dCngiOl3N0aadYSq6bcRXl824Ci02rQaU3JLxyxHz7HOCpaqnn72wZ+sVcSWQwtm4g+fw5Pt53DhOKxnLaPQtapg/8I+14GkSDYChEaLYJuwVkzT4k9FKYgy8iVCyfzi1cv4e724RyV5Nvp6Azx5rd1nDhrGObS5AvadWe/0XmYv/qM4Gefp6TgbG/rZHp0Le1Fe2BNUbkBGFtWSIPMRV+7MuV9PCMXsChvAv9IsaYHQHmOmeM1n2JbuxZmXp3SPhp9gi+ik9mrPPlqyl0YdVq2iwL03tTrR7mbYtlgprzUMoa66NDlYQ6kruA4m2soBjT2FANq4+RZDVS2pF5LSoYD2PESsaQXMD3P9Tojw+8i5TWIFL/ztrCTKkvqsWIADk0nUzUbqXV7KctLzWJhCrbTrnWkJUdXFWFPewOMTC39XuNvox07pWlYgU0lE3g9MpuQL/VCnSOW3cTnxo8IZ61PeR9odWi0OjSAPr0QurTo0xMbd/f0SSJzFGQpMFYIMVIIYQBOBl4bwOOnhxCYLvmE53Iu4OmlSTQglBLevJJgyzbWuc3cdOwUdFqFWgwIAdY8sJeAJvV/rFQ4dZ8RTC3L5tbXVxB84xrYnHip81eWV/GS5loutn2athx7j8xlkZyJrX0ddCSvL6/btImRmkZ0I9NxHEBFvpW1VGBt+y7lfWxoDaMpSS/93qTX8nPj10yofjblfSxhCleabsSQnVqNky7a9UVYfakXDgu0xbIW7UWpxwIBeI0FZIVSD6r1NMe+VwZHahe/Lo7veIyXO1N3pna6O1gXHUbYnt4NkrQUkCM8uLwpVmeXEnsa7RG60MYzfdxtqQde35v1a15wnJuWHGZHzHLic6ae4WYItOPRZKesMAJkjZ7Nr0KXsz2aumVMdLbSJu1J9aHaXenvKnmtEOL4Ph4nAL8eCEEBpJRh4DLgXWJVlZ+TUqZ+NRgEhMHK6bNHULt9G2tqOxJb9O3zsO1Tbg7+grkzJ7FXRerumN0JrUbwl2On0OQN0rHmXXjt1+B39btOSkndl88wWVNFWWl6d+YAFoOO+qL5sReb3kt6vWvDZwDkT9qlXFRS6LUaGi3jcQTqwOdMXg5fkHP9jzJbvyUtOQCc5mHkBVJPFa9rT68GThdeUzE54dQtJ55OH80ym9zi9BScDttoGqOOlNfX6cu5OPhr9OUz0pLDYLKQLzro9Pb/f9ITbdLG4cFbaBt9bFpydPWxSrVqrfQ70RNGJllrZWeM9i7LSeoKzvLgcNyOiWnJYYvX8vF3pB4Abgo58enTq0Ks12pwWPS0ppHxp/W30SGy0wr+3l3oT8FZBBzVx+NI4P1MCrgzUsq3pJTjpJSjpZR/HchjK8VJ1hUsNl7G2x8mYLHwNCPfuZYthgm8rDmU6w6fkHkBB5DpwxycuM8YLnSdg3TVwgc39Ltm6bZWTvA8hdM2Giakk3P0AxXj92C7LCC47u2k19rqvsQnzOjK+s8i6w9ffjx2piH5eji1VZu5RPca46lMWw6/vQKz9IEnNeXi2vrL+a0/tey47gRtZdilO+UWHx9bD2Oh7n8Yzba05Ph29IWcGLieSIr1ReqCVt6O7kNOQUlacmjjqbvOptTcdl1tHlLt4N2F3h6zzHnaUlNwfMEwT4YPxpuXprUxXgXZ70xRCQ4H2N/zLmN0qSvRAJaCCp6NHEhjNHUFxRZxEjCkefMa8vF59Gz2qHks5V2Ygu106tJs97Cb0KeCI6U8J4HHFQMk65DBMv5AIloTUzffR63T1/fkr+8j6ndxoftcrjhkAoX2FGJ/dnOuPnQCVebJvG4+Fpb9D7Z91uf81W/+m3GaWiwLrkurwm135ozL58PIHrhd7UlZLTqDYf7m/hlvTLglqUyy3jAM24NbQ7/Aa07+QuisWg2Affi0tOUgN5ZlE2xOvhhjNBJleKQakyn972r9iGM4LPB3/KR2bhtdAQqz0g8CKMgyEpXQ6k3xzrhhNbM1a8m3pSeLId6J3N2aWsFQsf4NXjDcQKEmNQtQF+a4YtHpTM1y0hqx8ofweQTKk6/63R1bwXC+ik7EGUzNrRN1NXBD9F6mhNIrsKnJLuE242WsI7W+awAnmf7DopJ0cjkBnQkDIbRptI2whp34DalX7N6dSLTZ5jghxIdCiDXx19OEEGoPqlQx5+Df51ccplnCW6/33dDMuc9vOZc/Yy2bzFn7VQyMfANMtkXP7382kWvaj8ZtGQbv/aFXJWNVVQs/a3mYevs0DNPTqX6xI9PKHfxTcza3l96eVBbUquoOaqK55E8/XBE5hpcP49+RY9kYTN50H6qPeWsLRs9IWw5LcSw42FmffCPD1pYG7KITmVORthy2guGsl8Np9KQWNHlq7V84T76Uthwjo1W8argez6bPU1o/vvJJ/mX4T9pmf0tuLIbH355irEfrFmZpNuKwO9KSwzxsBicE/kSVMbUg8naXBw3RtOM8skoncGro/1ivT63uU1f1YG0a7RG6yLfo6HCnHgC+zWvCZE9TDiHw6BwYg87U1kvJM4bj2ehIrf7V7kait78PAtcBIQAp5WpiAb4qKWI/8De0G4o5ZPNf2Li9BzNv6xZw1XPjmxv43D+Sm4+flnjNmx8hx+9RxrSKEi7xXUTLoXf3qGRIKbnprY1cq7sG+wl3pZyO3RN6rYa9RxXw5ZbWWPHGBKlf/SGnaT9gZll61VS7GF+chQM3besWJb3W2LaBFnLS/5EE8oaNZbz/EdYVJF+jpLVmAwCGwtRTxLsotQlO1X6Ia8vXKa2fEfiGcm16pfwhVgtnumYrgabUOlcb/c04NenHztmKRvJU+ECaSO0OW3qb6ZRGcnPTu0PPyc3jGzmexmBqFinDmmfYbDyDQpFe/yaNRpBjMdDWmVotHHdcwelKr06Hx72/5OcNt6e01t9axcXRpxilSa8NB4BP78ASSvG8CsG/w0fTVJhewsTuQqIKjkVKuWSnbannoamAwYLu+PspEk7++/LbhLq3b2jdAo8dQ/t/j+OlFTVceuAYZRp07sYIIfjb8VNZFh7DJe91EgxFYPnj0Bm/OEVCfPTG0yyraufwhUdgHZF+vMvO7D8mnyPbHyd0994Ju6kKNz/PNYbncViVUXCG5Vj4peFdDlx8TtJtLPSdjTSYUi+s153heTYCGNieQjE3b/1mAOyl6aUAAxQ5bNyoexjD5neSXhsJdJKDi4gtvbgXgOyCWNZRyJla7Is12IJHn76Ck5Nfwu/Dv2SjLjXLibazmTbsKfeh6sKk13Ki4Sus9TtfFhIj7G5CIyT2XAUUC/7AvKp7Ulrrj3dEN6WZ7QcQ0GVhDjlTWuut28BlulcpEamt707ImEtWtCOleLFIoBNzZy2FFoWydAeZRN9FixBiNPH2DEKInwOp526qAJA1YT6fH/YOz9UXccOra4h++yJ8fDPcP4+gz81ZrWcwd2wBvz44vQqqPxbGFNq4+fipLNnWxj8few75+q/hrpnw9Kn475jJwd9czHkjGjlpVvqZUz2x/5g8mshB374Zmtb1Oz8aiTLG+w1VWXsqFguk0Qg6sieiIQpNiXcgCUeinOy/lrempHYHuTMFNiOn6hcxcfmNSa+tCjt4IXIABcPSV3CKHVYayIWO5GNOnI2xGjgiheanO5Ofl4dbmpHu1H727JE2fMb0i7+b9FrsRg0dHc6U1hv8LTg1ysRX/E77OOMbX09tsbcFl7SQa0+/sq0DD3Z/auXQgq5Y1pMtVwEFx5CDNeJMaW2Xq8ykgCWpvuRg3ovsSXsKVi335i/53PhrJoYHtPtRxkj0V/lS4H5gghCiFrgCuChTQv2UOGT2Hlx4wCjql72K5sVzYdHfWaefyMHuP6Etm8F/Tt9zSLumdubYmWVcf8RE7t9k5xLbHWx1zKalag3LXA7+YL6ei884DU2Gzsf4oixWmfaKvdjYv8WgessaimklNHyuonJEi+JBwvWrEl6zva2TYDjKyOL03VMQU7T2MNUzrfn1WHf4JFgmJ/A3w+VYbelbHa1GHY2iAKM3+QtYR0PMnWRIoafOzpgNWlrIQedNIag2EiJbughb0r94AbykvZYjNv8ppbXVooTNxvQKY3bh0uRgDKTm/tP4WmjDjs2YniUJoFOfgylFy8nagiM5IvBXsnPS/78JmfKwR107WuMTJNgRy+KyKqBotU48nX9HjqXVk7yC443HdpkVULR2BxL6dsWbWy4QQliJKUWdxGJwqjIo20+Gaw+fwOP2Uzj6w+HU+Az4ozmcsv9wrl44fkjUIkiW8+eOoiLPyl/eXMtBlWciBPxsagk3HTOF3AwWnxJCMH7sONatH8WEDe8g5l7Z5/yWVe8wAsifllobgd4oHDYG5yYr5uqVGPdKbE3Lmg+5S/8fRmXdqZgcnVkVGNoC4K6HJKwg7a1NlGUrl+3n1Bcywr8h6XVt3gCe6EiyitPru9TFKsN0zJocklUPghE4KXADxwyboYgcXl0O5mBqWTJ3GC6kKN+UYrvPHenU56Qc66H3t+FKs6hdFwFDDln+1C5F9SEz38mR5KbQlmBnpDmPPOGmvTNIYVZy3/+wu5moFGTlpK/g5FoNmPHT6vGxY3el/umq42NVQI7dgT4VHCGEnZj1pgx4Ffgg/voqYDXwZKYF/CkghODMOWM4afZIWjxBci2GtJo2DgUWTCri4ImF1HX4sRl0ZFvST8FOhIMmFPLGt7OYWPMcOKvB0bs7zF27nipKGT4mvVoeOzOu2M530Qqm164g0Z/daNVXHK1djKdUuR8mmTMK2kC2bk7KzXNT7Xmsz9oXUMay5TWX4nB9Hgv+TqLa9lrTTP4Y/CtLy5Vx8T6VH6tpmmy/+FZfmBVyLCfmp55C3B2/IZdC75qU1rZ6gkxWKJ4vYMwlx59auvqXpgNwyhAKFDQgbMqjsGM10ahM2rpbXP02R+vbMBuOSFsOV/l83tkS4HBPIGkFJ9rZSjs2Cuzpx/KN2v4i60zX8H7LxzAmOUtMyBWzJGXnpddSZHehPxfV48B44Fvgl8DHwInAcVLKYzIs208Oo05LmcP8k1duuhBCUOYwD5hyAzBvXAGvRffni2EXgK73H6loVHKl+xT+M/4hhELxN12ML87ilvDJfDz+jwmv0beup04UYstyKCaHsSimGPgaEq+FI4Ne8mU74Szl4qSWl57OQt1DIJI7z/UdfvRaoVjJ+YIsIy0pVIh11WzkBM2nFBtTry7bnaC5gByZXL0mAOmq58XABewXSC3VfWcipjwc0olModr1K9pDWJp7tCJydOTP4NPoNFz+UNJr96h/hjP1ytSqjYw+mDsjJ9DmTV6ON8quZH7oLuzm9F12Vkcs1suXQvHDqLcFp7RSYLemLcfuQH+/GKOklGdLKe8HTgEmAQullCszLpmKyiDgsBgoGTGem9xHga33oNC1te20eYPsM0H5gOdiu4ltxvF85U08+6fIu4E6k7LB6Dmlo6iVebS73Qmvaa+NKUMiV5lsLgB7XiFbvXpCSWaFHLr2Om43/VexmK2Dgp/wnPvMHzL7EkRWfso/DfdRYFBGwYlaCjERJOJP/HMB8LTWUSZasJmVcR+uH30uC4O34g0kmVAbjaJ115GvUKZO29hfcFXo4u+rNCeDKeSkU6dM0HWeWUcBTtpdyX0uAK3eEBabXRGXnSVehDHoSl7BWWE/iFsipymiaO0O9PcN+14VlVJGgBopZYrd1VRUfhwcOrmITQ1OGr56rtdA3+wXf8H1usfZf4wyQb3dEUIwtdhM0daXoOabfudHfB2UR2vx5CoTPNrF8Dwb+wfuZkXJSQmvccZr4JiL0q+B870clhC/0T6Hc+OXSa0r9m4gV5f83XRv2Mwm8kUH/rbkAp4jzlqiUuAoUEYZ9hbvxR2hE3AmmSXjbulq+KmM+8GcW0qNLEjeYtHZygu+81noe1MROXLiFrp2T/IKpC3iJGhwKCJHkXMFS02XoK9LPnV+XvW9/FyX3Pe7N7TxG7OIJ/m+WKs0k/jIslARRWt3oD8FZ7oQwhV/uIFpXc+FEOnV+lZR2U05YloJesI4PrgSPush7bppPcOcSzFkFyfta0+UCaUOznfdS3T1M/3ObajbzppoBaJsT0VlGJYbiweobuunnUg3/E2xGjiO8vRTxLsozDZzue4VAlv6buGxA1KSF2nCZ0m/Bk4X+pxYHJKruTqpdcJdRwvZFDjS64fVhSzbizsjJ9ASSi4w1tceS3G35ChzTkpFKxdrX8PVmFxz10BHLFNHY1MmU6e8YwXfGc8huv2r5BZGQmRJD+E0O5p30ZVqHnIlr1jMcb3FTJF8IH2PWOM3Xd7kM9wsLWsYb029GvPuRn+9qLRSSnv8kSWl1HV7PrQrz6n8ZCnJNjO1ophXNIci174KDTsGdLo/+icBqUOzx+kZk2FiaQ6r5SiClf3fDa4NFHJk8G/YpyQb/to3NqOO081fceTXpyVc3XmDfiK3h35OSXGpYnIU5ufjlFbCbdsTXiO9zRgIEbalXwOnC3NebF+dSfaB0nsbaRJ5imVE5ll1FNBOe1tLUutCccUiK1+Zz6aAdn6nf4ZwvEVIorhbY4qWzq5MQHxWdjZWESDQkaRLJu5qjKbZ0bwLXbwRqvQmqeBEwtili4hZGTkwOXjV9gvWyOTdxL9pvJazQy8oI8duwNAoV6iiojAn7jmMv7kWEjHY4Z1rf7jA16/Ctv55Hoks5MA9lXUJdWdyaTbfRMdiaF7Tb0XjTY0xY+qYQmUsBN0pscIw37qEC+19Ex3Lo4aTyDIpFxhebDdRJ/PRuBJXLLyNsRo4mpxyxeSw58dcTMH25KoZmwONuHTKuTILdZ0sNV2KZd1zSa1r0hbxVmRv8nKUiTmx5cYsQcnGenS2xc6fWSFLkj035nILe5JT+PzGXPby/5vaYUcqIgfmHKIINL4kU/h9XYqWQt8RjYb3Si/mi1CSbuJIOF6vSXm3+2ChKjgqKj1w1PRShDmHZxznQ+Vn8Ok/AIi+fS1t2FlRcR5lDnPGjj+m0MYqJqCRYahb3ufcY7/6BX+wvqaoUtFFOCd+F9iWmBtCNK5hXHbyhc76Itusp0HkY/Qmrlg0+yTvRmZhKJqgmBwFudm8FJlDgy45C8gfs27k2fzLFJMjN7+IsNQQdSenWCyzHchl4SvIsSiTVZadH1NQou7kLBaBeHsEW54ylqTvq/96k1Nw2jrDNOPAlq2Q5USjxSOy0PuTcw35nF0NP9OvdN1FqSmIcCdXlDIaP3/Cqpwcg42q4Kio9IDZoOXUfYbzf9V70jztQiiMXSjfHPtnTg9cy8lzla19szMGnQZP4R6xFw191Dxx1VEa2Iotze7QvaEvjPU8ijRt7H9yOMAN9ZdwDq8pKoMQgg5DUVIdkiv1o7gwdCVZ5RMVkyPPauS34UtYZpuf1LoNXhva3OGKyWE3G2nFjsabnILT4gmQazUoVhndYrPjlUZEZ3IKTqV1OjeHTiEnV6ELqd5MJyZEkpaTzq1L+I3uBYr0yuXNvJZ3Lh+IfZJa4+powyNN6O3KVQ8+q/I6/ha9Pamqyt+7DrOGRhVjUBUcFZVeuWjeaHItBs6vPwbfmCNpdgf448dODGXTOGBs5u9yxowYxtzoA0T2vrDXOYGtscwLOWx2RmTIKyrHKa34ar/td260ZTNaogRylO+d9lL+xZyf91jC8xucMbdecbZyVjatRpBrNdLq8ia8Rrob+Ln3Kcbpkw887Q2NRtCuyUHvT26fl6w/k5vEA4rJIYTAKRxok1QsNuvGcn/kKPKy0q8e3MXbpp+xTpPc905Wf8WvdS+RZ1OuOvp3pSfwYSA513W9fTpTAg8hRyjXwTtiziUXN+1JpM674gqOUaEsu92B3U7BEULcIISoFUKsjD9+1m3sOiHEZiHEBiGEshGVKio7kW3Wc9OxU1hd4+TYe7/gmHs+xxuM8M9fTM9YP6zuTC93UB20sbmp96wG54bP6JRGiscn2NMhSYblWXk3shetmv798h3VMUuTvkQ5q0kX+Q47DUkU2Zu15Dc8a7iRQgUvogD/p32EK9eemPB8d81afqN9ngpdaj2bet2vNhdTIDnFIjvUjNag7Pm4Oud27su+Iqk1smUjI/QdaXc0786rhRfzDskpCGFXI0GpJSdHuZuVcoOHfN8WoknUbGqNp7fn2ZTLyBSWfHKFK6naQHWGkfwqeBnG0szFFg40u52CE+cOKeWM+OMtACHEJGL9ryYDhwH/FkKoJX9VMsrPppZwzyl7YDJoKc428cwFsxlTmH4H5ESYMdxBMa1YXjkHKnuuPmvY/inLo2OYMiwzgYEVeVZ+F76Az8vO7Xeuu2YtUSnIHab8D+Qos5crvbcT3ZZYFV6zt5aI1oxeq+xPnDTacURaIZJYcTt3Uyzzy5SrXLAzwGeOo3nBeFziC8IBsqSHoFlZy6Muq5DmzuQKMB61+Y/8Xf+gonLkmnV4vUkW2PM200o2+XbllL6D6v/H47q/JFVV2bb+ee7Q30ueVbkYOk1WAQ48tLoSL/FQF8ni9eh+5OYPjT5UkGCzzd2EY4BnpJQBYJsQYjOwN7B4cMVSGeocMa2EI6YpV08lUUbmWZGmbEoaP4EN46Fizo4TohG+Ms/jC38Oc+yZqcdTbDdhMWjZ0uiJdRXvoy2FbFpPjcxneLFCQZvdyHfYOV7zGe5tB5E1ck6/8+3BRlxG5d12IWspWlc01oC0jz5lXQTaY5lf9kLlYnAAagrms6SyjasTXRBPXZYKdTTv4oDoUgzOb4D+P5MuLKE2OvXKno+zWv5BUefXQOI1eXS+FtrIpkRBS5Kw5pKDhyqPH0eCwdzWpuUcoFmNRUELjtFegFZI3M5mIDGFJVy/hr3Eegqyho5zZHe14FwmhFgthHhICNGV01gGdK+wVRPftgNCiAuEEMuEEMuam5Xze6uoDDQajWDqyDKWaabC2td26T0khYa/eI6mdaRCaa69yHBITj1XrlwI2z7pc+6HOSfxF3kOpQrGvXRRVFhIu7Thb0rgAhbyYY868ZuVq8XThSbedDTSkVg144izFpe0kJ+rrNJXYg5R7FkHocQCZAPOWHyFJkvZu/OJ4XWcEnol8b5YUmKPOAkqVFzve8w55OAiEE6sXhOAPtCOW6tMynwXOlshOhGloy3xa4/G14YTu6I9CI1j5/HH0Fk0J27AYezWx7nbcA/WIdQLcVAUHCHEB0KINT08jgH+A4wGZgD1wD+T2beU8gEp5Swp5ayCgqGT7qby02Tf0Xk869sHOrZD9Y5F/5pXvUOz08W+o5W3mHTHWlCBLeruO5sLWOwfztacORmJTypzWNguC5Ft2/qfHFc+Inblivx1YciLWW3cTZUJzdd4GmiQORQq6AYBmOFfygva39PZuDmh+e0RM4+HFyDylQ0Al9YC9CKC39Oe2AK/Ez1hImaFXaqWfMwiSLszQTmA6/Nu54686xUVwxhPWfe2J56ibQi04tY6FJXDNmw6T8rDaAok7vbS+VpxaRxDpk0DDJKCI6VcIKWc0sPjVSllo5QyIqWMAg8Sc0MB1ALdbcLl8W0qKkOW/Ubn8V50FhGNEVY99cNAy2YKXzmZc7VvM3tUZhWc4pJyamU+4doVvU9y1TOs/j0m5iTfWToRynLMVMtCDO7+qxl3RrU8HF5IsFD5VH5r4UgeDi+kWZeYy/Kx8hs4T3OTYlWMu9Bnx47vbkmsNlCDvpz/C5+LsVi5FhrwQ+2WjgTl+L52j0JtGrrQxVOsnU1J1EryhLFnZSsqh8URk8OfRCdvc6idTr2yliSNDDPL0pCUomUOtuLR5yoqx2Cz27mohBDdfzmOA7puG18DThZCGIUQI4GxQPJdzVRUfkSML8rCZM3mI8fxUNCtaN2S+wmj40PjAsZmoIJxd0YX2FgTrSBSu7LXOZHNH/FH3y1MsfdddTlVbEYdNdph+KShX3dIvSjgz+GzMJYoH+xckJfPn8Nnsc0wPqH5De4QJrvyAeDmePXezgSrKrc7nWiIkm9T1pKkz465vDzxFOP+cOtyuCJ4Cd6iWYrKYXLELhve9sTkIODmYte/2FOsV1QO6/AZXBm8iBpN4qnWHdJKh0lha6O3mWfDv6Gi+cOEl1jDTgIGVcHJNLcKIb4VQqwGDgR+AyCl/A54DlgLvANcGu9wrqIyZNFoBAsmFnFFy7H497wg1jLiu5eRS//LK8xjyvixGTcpjy608m10JMaOreDvuceuu/IbOqWR3OGTMibHG3lncW3hfdDP+22or0VPOCOVpovsRgyE6GhOwHgcCXN87T+Yb1CoiWI3bLmxC2LQmdgFvXzZzSwzXqRozRcAS04RESnodCVWRbg5bOGV6BxMBcn3SepTjrLJ3B0+lsZwYhmOkY56jpUfMkKTXPXj/jDllPCu7kCqg4m3ajxL81cWDVeu0jUA8f5ams4ESwlISbZ0KtcPazdht1NwpJRnSCmnSimnSSmPllLWdxv7q5RytJRyvJTy7cGUU0VloDhqeineYISP1zfBdy/D82fjzRrJH/2ncfR05QNpd2ZkvpXFTOPrkjMg0nP6a7RuFevlMMaXODImR7nDQq2z/6jJik+v5CXDH7/vhq4keTYj/zX8kzlLE7ggeRpZ6H+bcboGxeXIzcsnIPVEEyzHL7zNtEm74hYc67DpjA08zsbsuQnNd9dvZJZYT75F2QReR+lo/hn+BVUysSBqd2vM8qVVqOFnd+aat6JpTyybKxqVtHmDiiue6Iz4NFYMCdZKCoajnBG4li3Df66sHIPMbqfgqKio7MjsUbnk2ww8s7QackfCiY/yp/x/YbBksf+YzDfGM+q0eAtmcJ/hTLD2cIcXjWBtX8d3siIjDT+7qMgW3NRxHXL5433OM3uqqKaIogykzms1gjZdETZ//5YT6Yq7j+zKK6G5NiNXhi5mZU5iKb1GXwPNCnY07yI/y0wUDc2exIow2tY+x7OGmxS/oFuNOkr0nXQmGHPiaYt9fl2uLSW5I3gjs5peTGiuu249T+n+zMTQOsXl8BlysYbaiSRQdLC1M8gyOQF9DPvEhQAAHvpJREFUobIxWoONquCoqOzm6LQazpszikUbm/kqUMFK+3xeXOvm5L2GY9ANzL/wxBI7m+vaoHHtroNNazFGvFRapipanXZninMdTKQSf9XS3idFwmT762g3DlOs59LOeEylZEXaIdh3ywZPcywgWp+jfDaXUaflU8McNsjE6slYA8049corw1ajjuuMz1Ox+YmE5ktvE21kkZelvHXtHe0V7F11f0JzA+0xq5o1V/m2BG5tNsZgYtlcnqYq9tGsx6GsYQ2AkKmAfOGkLYFqxu0N2zlG8zmlhsTbkPwYUBUcFZUfAefsX0FJtomLn/iGCx9fRkGWkUsPHD1gx59YksUFvgeR/ztk1yq+RVM403Y/TcXzMyrDiHwbW2QpocY+Gn92bEdLhE6bsoXkuuO3xasSO/vO6PK2xMp2WfMzI8tMWxt59Z/2PzEaITvcgs+YmQq187TfMrwtsQrTms5mWmU2ORblqvZ20aHNxRRILKbG5/PilUYc+cpbcPz6HMyhxBScLouTJUf5z2b7lEu4K3wczQm0OAlVL+NOw78pQdmYpMFGVXBUVH4EmPRanjh/HyYU26nIs/LgmbPIMil/keiNiSV2lkQnIIIeaFi9w5gvFOWLNjsjSjNb7XlEnoWt0RL07X3UfmmOKT+RvDGZEyRnBACyvarPaX53Gx3SQk5+ZpoX/oIPuLD+//ovshcN87DhVKpyMtOQ1aPPw5KgYmHwt+DU5KBTuIUGgFefiyWYWMzJV8WnMjnwEPl25S1JIWMOtkhHQq6hgCuWTm7PU/5/RzP2YL6MTqHJ3X8xyIAzpmjZ8zMf0zeQqAqOisqPhNEFNp6+YDbPXrgvM4Y5BvTYk0uz+So6CYmATe//MBAJ4Xn+IvaQ6zIu07BcC9soxRxo7jWby2sfxc2hU9AVT8mYHIai8fwtdAoeW9+ZQEtG/JKZgQcotCufzQUQspZgIASdfTfylFoDt/uPwlO8T0bk8BkLyI4kplhYgm14Fa750kXQmBdzHSZAsyeAQavFblLepRq1FJAvOmjv7N81FHU1EJYasvOUV4KLhIsDNKto6ei9WW8XkXiwem7BwLekySSqgqOiotIvuVYD9oIyNhinwrfP/2A12PwBBZuewy68zBjuyKgMeq2GettE1llmgb+jxznbKeb+yFEUF2auinlBQREPRI5iu+j7otTQ4SeKRvEqxt8TbxsR7ajpc5qno4XsYBNFWZmx+IUtheTIjl4z7LpzR9Zv+SA78W7sSclhLiBXOhPq5L3f5tu53PRmRkosNEw8m9+ELqHJ1b9rqDVqYYmcqGgn8S6KGhfxmOEWOlv7L2kgOltwYcVoUt6iNZioCo6KikpC7FWRy3OB2dC6CRq+jW1c+RRurYOt2fsqnoLcE62F+3G1+YZeG106139GHh2MzLdmTIZSh5liWumo+rb3SVJy8MorOMmyXPHMpS70jpiC0xXM3Bv+b55hselXDDdmpghjNKuUOplLwNO/FefL0FjcucoXYARoLF/IzeFTaff2r1hM7PiMqdr+q2KngnnYDBZHJyfkGnrL9nOuNN2UkfYmXdWuAwnUStJ1tuDSKFvVeXdAVXBUVFQSYlZFLi/492L7ca9A8VSoW4nc8DZvyDlMG5H5dHWAkXkWKls6kTsHOgNEwuz96Vn8Uvcmo/Izl65elmPm7/r/Mu7L3/Y+ydvCZPfnjDG7MyaHtSAWvOxp7jsWKNBWQ1Bqyc5QfEXLuJPYL3APzdF+itt5mpnl/ihjihYj9uXJyAKaPP27hmxhJ35jZoraFeu8/EzzFa4E2lc0ugMUZcrCF2+HEe7ovw7TvcbzubfgT5mRYxBRFRwVFZWE2LsiFxdWPvRUxKoJP38WYXM+t3UemfF+WF2MyLPyf5F/E35wwa6DbVvRyhDN5lGKdmbemTyrgRpRhK1ze+8Bvu2VAITtIzImR3ZBOacGf8/W/IP7nBftqKWJHIoy0OUdoCArdoHuL1vHv305t4k7GatLvD9SMhRbYaKoorW5nwt6sBMLPsJKN/yMUxCs5t+GuxA7BeP3xHW1l3Fm9OWMyIEtlpklPf2f77UeM+H8iZmRYxBRFRwVFZWEGJ5nYXxRFm99Gzd5TzqG58b+k3ZhZ8HEzKQg78zYIhtOrGibvts15qP2GwB8eZkLMAYQQtBqqsAU8UIvF49ovOu5Nl/ZlgTdKXZY+TI6hepg3+44naeOOpmXkcKHAEWGMP/T34ZY+0qf89xxV5o5rzwjcpREGnjbeB3abR/3Oe/7C77CDT+7MObELGURVz+uoWiEcZFN5Oh7sEYqgTWmwOk6m/ucFgpHOLbzBWZot2VGjkFEVXBUVFQS5qjpJSytbKfO6YNDbuTJKjt7Ds/5/i4+00wotrMmOhJNNAiNa3YYk9u/wiUtGEsz1w+rC589rri0bOpxvLMxlspuLcqcglOQZWQvzXqyt7zW5zxLZw0NogirMTNFGAtyHRygWY2usY+YJMDXFguGthf0HD+VLjnFMWtZpKNv15DH42FbtAiNXfkCjMD3lhNNP5aTQEcDWqIIW2bKCKDV89KkO3nMtx+hSLTXac0tzVyne5qJwb4/vx8jqoKjoqKSMEdOi92d/vezbXy8vom19S6OGoB+WF0UZBnZaJoWe7Htsx3GwlWLWR4dy+jCxBsdporMGxt70tqzgtMRiLI8OobivMx1Z9ZrNZxh/Iz9t/yrz3kv5Z7PR5bEWjqkQp7dQiM5aNx9Z+tEnLW0SDuFOZn5fEy2HHwYEO6+XVSNppEcGLyDwIh5GZEDvRmvsKLz9W05cTbFFD69I0MKDhCsOIgaWUBTH+7DtoZYDJcpN0MK3yCiKjgqKioJU5Fv5YzZI3j4y2385rmVjCm0ccremasa3BP5pSPYrh0G2xbtsH35PndwW/ikjPbD6sJRXMHlwcvwDDuwx/Hlw8/l+OCNlOVkJu6lC4+5lKxwC4R6z9h5NbI/rfl7ZUwGrUbQoinA2Nm3S0bjqadR5mQuqFYI2jR56Dv7tpw0uWLnKmPp+4Bbn4e5n+KHrnhHenNO5m4QxoY3cZhmCfV9NKntch3a8jNjWRtMVAVHRUUlKa772QSOm1HGrBE5/OukGQPWD6uL8UV27gv9jOik43bY/pWrkLVUMKUs8+muFfk2XovuR2W4ZwtNdXssU6jMkVkFJ5g1DA0SOqp7nuBuJLdtJSPsmf2MXIYisgJ9KxYvlV7F77ksoxW43fp8rMGmPufYlv+HB/X/oCRDQdcAb4z9C38OnILso8p0W0jPJ5Hp2IoqMibH6JqX+Iv+Ieo7eleA/W0xRSunJHMB8YOFquCoqKgkhcWg4/aTZvDfs/YaEGViZyaUZPFUcB5by4/5YeOn/yC68T1GF9iwZSjWpDsV+VZGiToCK5/fdbBtGycsPp7DLRsy3k5D5FQAIONZWzsTWv82D0d+z2hLhlKz47TaxlFLfp9tIzb7Hbjtme1W/XHxufybk/qcY25ezRhRS3GGgq4BtKXTqAzn0dpHo8v1xqmcHfoducUVGZPDlDeMfOGiua3nwpgA0Y6Y5c2Wp7qoVFRUVAaVWSNipf5XbdwKq54BTzPyk5vJa/6KaeUDo3CNyLOwULOMPZdeBb6d2gM0r6coUEVujiPjcpgLYkHMnoYtPY57GrbEWgEUZvbu/NuKczgt9H/0qt6EfOxT/wQzzX1bV9LFVbIf73rH9lnNWN/ZQIsmP6OlBMbKKs7TvkV9e++KZZ3Th0GrIc9qyJgcxtxYxpq7tRcLH/Ci6XhOtj2EMGSuOOZgoSo4KioqPypG5lvJtxnRr3oSXr4Q/ncIIHjUP5fp5Y4BkcFi0FFjjlsj6lftONi0FgB98YSMy5FTPIKDA7extfzYHsdDrZXUyzxK87IyKkdJtonOYAR3oJeU5/YqzvT8j+m6vosSpssIg4e5LKfV2bvFwhpowq3PXCsPgFHeVfyf/glamnpvo3Hkd1fykOn2jFQx7kLEM8UCrb3LUdkexJw39OJvYJAUHCHEiUKI74QQUSHErJ3GrhNCbBZCbBBCLOy2/bD4ts1CiGsHXmoVFZXdASEE+4zK5faO+ciZZ4Krjq9n3sIWWcYewzPTyLEnvHlTY0/qVuywPVS1hC3REsqKMpcd00VZjpUtsowad88WC237NrbLwozHAo3SNfO24Vrcq9/scTzaVhl7kpNZS9KE4Lc8bLiN9up1PU+IRnGEW/CZM1u3qSuuxtNY2esch78agz6zLkzssQDmaEfPGW5SSha2PcFh4qvMyjFIDJYFZw1wPPBp941CiEnAycBk4DDg30IIrRBCC9wLHA5MAk6Jz1VRUfkJss/IXCpdkq373Qy/r+O/bdMpzTYxpSzzKeJdFBUVU00Rsm7lDxulhOolLI+OZVRB5k3+ZTlm5mpWU7TiX7sOSonNs5XNlFGcnbl4E4CcvCImarbjr+9ZsfA0xlxolqLRGZUjqzi2f3fj1p4nhLysFBPwZI/PrBxxl2CwvRfXkJTkRpoJWDKsBOeM5IGJj/CCZ0qPAc/tnSHO5A2mhfqvuvxjZFAUHCnlOinlhh6GjgGekVIGpJTbgM3A3vHHZinlVillEHgmPldFReUnyGGTi9FpBE9/vR1vGD7d1MzCKcX/3969R8dVVwsc/+6ZybNJmkebd/Nom9qmD2gbW6A8Km8sj8VVUZCHV6+KylWQgihclLsuy3vlKqKoFXRhVUQqClpb5NWC3CrQVOgzfdGmadomaZMmzatNZmbfP2YCkyYtpcmc0xz3Zy1WzvzO6W/2nMXK7PzO77d/cdkd+limFGSwNlRGaG/MI6reLnbnzuel8CzGj43/cvXRKQnMS9jGrJ2PQPCoWieqPFL8bZ5P/jAJ/vj+qs/NzaVF0wg3D55YdDXt4LAmMCYvPlWM++QUTQSg58DgVXmP+FP5WPc3aCi9Mq5xSGakdIK0Dv5oqKezlVEcRuNVbLBPIJGkcTM50JPI/o6BtXB2NzSSJR0Esr23ggpOvTk4RUBsylsfbTtW+wAi8jkRqRaR6v37j19oyRgzMuVmJHPJtHyWVO/m/uU19ATDLJhe4GgMlQUZPBD8OKs+FLOSKnEUT+TfwQrfGRTHuQZOn7a08fgIQ/P2/id8Pl45XEHvmPjPBcrPSKZO80loHTyxCLXUUa9jKc6O76jW6Jx8ujQJWgffKbzpUORLviDOI1qkZHFEkkjoHLw2UPOeSCIYyI5/DalZXau42vcqdc0DJzw374mMrKXlj497HG6IW4IjIi+KyIZB/ovryIuqPqKqVapaNXZsfCeSGWPcc/O5E+gNKb95vY5Pzi2hqix+VYMHM7kggzryWRtbz61pM2t3tzK1MCPuoyZ9tC+B2b+5/4n6asr3v8jEMalxjyHg99GUUER61+CJxTPj7+PanrvjnvSJz0eTP5ekjsHnnIT+/mNeTFxIYXqcR/pE+M6ExXw3eM2gp/d1KU8EP0RyYXz3TQMYX/8MNweWsmuQBKejIZJoZRfF99GhW+JWMEJVB9nu9z3tAWKncxdH2zhOuzHmn9D04tGsXDiflVua+JdZztfwSEsKUJYzitQtz0D7Tjj/HvQnZzE39HHaq25xLo6iyYRqhXBDDQkx35eH31jMXaGneTr3ekfiqMuYRWKXMF81stt87Lm2IJqWT3JC/JZm91mceyf13Yk8Osi5UONmsqSdxLHxT4Yz8ieya+NWDveGBnzuHeF8vh78LC+XzYh7HEl5EyjZ+TLLmjsHnOtqbSSEj6Sc+O2Z5qZT7RHVn4BPiEiSiJQDFcAbwGqgQkTKRSSRyETk4+8wZ4zxvPzRyVw7p4SkQPy/OAdTWZDB/paD8NbjsPgKREMs7Z3NaeOcK4BYmpdNrebTcaD/JpPBvevYpsVMcGAuEMDOko9wW++XBiQ3dB7gwp3f4eyM4+8RNVx68mZS3T54AuNv28VuzaUgM86PqIAqXcft/ifZ3TJw5KShaT8+Ccd98jdAIHs8KdJDS+PACc9PBs/lxoI/xW1ndbe5tUz8ahGpB84ElonIcwCquhFYAmwC/gJ8SVVDqhoEbgGeA2qAJdFrjTHGNXPHZ/PTjrPomHgltO7mrSkLqdUCx+rxAEwYm8YVPfezqvKedxt7Oklt3sCacIVjCU5JdioHu3o51H3UZNbGDVzUuZQJqcfeLmA4TUluZsGR5XR1DKyFM6qrngMJhY48Phx/ZDO3BP5I3b6BW1icvfFenk++x5ERLbIjozOdDf3naIXDypaGdioKsgcmpR7h1iqqp1W1WFWTVDVPVS+JOXe/qk5Q1Q+o6rMx7ctVdVL03P1uxG2MMbE+9IFcQHiy5F5YuJWf9FzG2PQkynKcqwpbPmYUXSTzdlPMI4j6anwa5C2ZEvcNP9+JI0N5M+lzdK18sF97qDGydFxypzgSx2St5b8SHqNxx/r+J0JBsnsb6BwV35VcfTKKIp+3dc/ABcOju+voSI5/nSQAsiIJjrTt4nBv6J3mupYuvh5+lAW9zzsThwtOtUdUxhgzYozLTmVibhortjbTqqms2NzElacVxrU67dFSEv1UZMJ5b90G65ZEGvesIYzQnHU6fodiKcobSyfJhPf2r+zcsXsdLZpGYZEzu86PLo1MRGqr29D/RG8XyziH1pxZjsQxqiBS6bqncVu/9nAoRH5wL93pDs17yS7nuQV/4w/BeWxv6ninuWbvQa7xv0IZe4/zj0c2S3CMMWYIPjwtn1Xbm/na79fRG1Kunun8hOdJxfkUd2yATX8EQOfdypW+H1FWXOhYDGU5o9gYLiOluX9iEW7YxDYtZlK+M0UYi8dPo0f99Db0LzrYpil8+fDnOVJ+gSNxkB1Zeu0/2L82UNPenaRID74xDq1c8vmpKCsFhE37Dr3TvK92C0nSS2bpdGficIElOMYYMwRfmD+Ritw0ntvYyIIZBUwtdK6acp+ZpVk8FTwb3bIcmt9mV0s3G7oymV3q3NYVo5IC1CdXMLp7Nxxpf6e9p+cIWx2c7JySkky9r5Dk1v4jJ/UN+wGlJDv+y+YBSEzlYCAX6ey/wWhTbWSvsrTC+FZTjlXa+CL3Jv6GTXvfTXA66yPTWBPyvbspgCU4xhgzBCmJfhZ/eg6P3ljFw9fOdLSacp9ZpVn8PHgpKn744Sx6nr0bgKpSZ2sDdedMx4dCw7ujOP9Z8GMWp30urrt3H+1ASjnZXf1HTtJf+Cp/SbyLirz4bjwa6w9nL+WOrhs4EFNFePuRTB7s/Qi5E2c6Foe/cT03+p7lHzsiK9l6Q+F35kYxpsKxOJxmCY4xxgxRYWYKF1XmuZLcAEwtzKAtkMOykjth+jWs7h1PenKAilxnRk36JJXM4rHgJf02s9za2E5ZvrOJ1qqJd3BF77cJh9/dfymlpYa9kke5gxPAp5ZEis2ur393RdeqltH8OvnauG9b0U/+dAKECDXWUH+wi9W1LfQEQ7RlToVk50oaOM0SHGOMGeGSAn7mlmfz3w1VdF+xiIf2VTK3PNvRyc4AJaXl3Be8iZrDkUdjwac+yzUHH2GSg6MmAHlFZbT0JrKntTvS0NtNzuE6mtMqHL0nMxLqeTThu9Rte3dFV+fONzhrXKKzyXB+ZJ5NpW8XL9U0saKmiZ9xNYEv/PU9/uHIZgmOMcZ4wPVnlLKntZsv//ZNmtqPcMOZZY7HUFmQgY8wTetWQOMmpGYpiXqEOeXOjuDMKMrgtsDvaFq1GIBww0Z8hAnlTnU0jtSkJC7yryG46zUADrQe4qGuu/hM6ClH4yCrHBJGMS91Dz995W2eeGMX504aw6ikuG1mcEqwBMcYYzzgwil5lGSn8sKmRibnp3NuxRjHYyjOSuGDWZ1cXP0Z+PnFEO7lSb3I8QRnSuFoLvOvIWNLJJE4tG4ZYRWSxs9zNA7GTKLbN4r05rUEQ2G2r3+NJAmSPmGus3H4fFAyl3PLUmk/HOSKhGoWtX3xmJuSeoW30zdjjPkn4fcJT37+DGr2HWJyfoYr84FEhOlTZ3Dna1/kgYRf8OuU60jLn0FqorNfNX6fUJsxm/Pal0HwCK8FZrE6eB0fq5joaBz4fHSOmcGUhi38ddt+2jatAqBo2jnOxgFw3e/I9gdY3tJFzsvLCWzeC+kFzsfhIBvBMcYYjygYncL5k/MozHSmevFgLqzM46ngPO6ZvIxvtlzKeZPGuhJHT/kFJNFD+/8t4pd1Y1mZdQ0fcHguEEBm5flM99Xy9IuvMm7PsxxIGkdyjjNFD/vxR5LMcdJE6tZnYPx88Cc4H4eDLMExxhgzbKpKs5hdmsXjq/dSmpPKp84qcyWOyfOu4uXQaaS/fC9v79jOghkFroxqBWbfRENaJQl7V1Pl20Lgg592b++nVx6AH8yCng44/z/cicFB9ojKGGPMsAn4ffzqM3N46KVtXHVakWsTWSfmZbBk6jfZueGnpAbcqTANQHoeebf/jZvq26g5cDlTJk9zJw6As26B3k7ILIXcye7F4RBR1fe+aoSqqqrS6upqt8MwxhjjgoOdPTy2aicfnT2OkhyHKhgbx4nIGlWtOrrdRnCMMcZ4UtaoRL56sXNbIphTi83BMcYYY4znWIJjjDHGGM+xBMcYY4wxnmMJjjHGGGM8xxIcY4wxxniOp5eJi8h+YJfbcYxgY4ADbgfhUXZv48fubfzYvY0fu7cnr1RVB5TM9nSCY4ZGRKoHqy1ghs7ubfzYvY0fu7fxY/d2+NkjKmOMMcZ4jiU4xhhjjPEcS3DM8TzidgAeZvc2fuzexo/d2/ixezvMbA6OMcYYYzzHRnCMMcYY4zmW4BhjjDHGcyzBMSdERG4XERWRMW7H4hUi8oCIbBaRdSLytIhkuh3TSCcil4rIFhHZLiJ3uR2PV4jIOBFZKSKbRGSjiHzF7Zi8RET8IvKmiPzZ7Vi8xBIc855EZBxwMVDndiwe8wIwTVVnAFuBr7scz4gmIn7gR8BlQCVwrYhUuhuVZwSB21W1EjgD+JLd22H1FaDG7SC8xhIccyIeBO4EbEb6MFLV51U1GH35GlDsZjweMAfYrqo7VLUH+C1wlcsxeYKq7lPVf0SP24l8GRe5G5U3iEgxsAD4mduxeI0lOOa4ROQqYI+qrnU7Fo/7NPCs20GMcEXA7pjX9diX8LATkTJgJvC6y6F4xfeJ/AEZdjkOzwm4HYBxn4i8COQPcupu4BtEHk+Zk3C8e6uqf4xeczeRRwCPOxmbMe+XiKQBvwduVdVDbscz0onI5UCTqq4Rkfkuh+M5luAYVPXCwdpFZDpQDqwVEYg8QvmHiMxR1QYHQxyxjnVv+4jIp4DLgQvUilIN1R5gXMzr4mibGQYikkAkuXlcVf/gdjweMQ+4UkQ+DCQDGSLya1W93uW4PMEK/ZkTJiK1QJWq2o63w0BELgW+B5ynqvvdjmekE5EAkcnaFxBJbFYD16nqRlcD8wCJ/IWzGGhR1VtdDseToiM4C1X1cpdD8Qybg2OMex4G0oEXROQtEVnkdkAjWXTC9i3Ac0QmwS6x5GbYzANuAM6P/r/6VnTUwZhTlo3gGGOMMcZzbATHGGOMMZ5jCY4xxhhjPMcSHGOMMcZ4jiU4xhhjjPEcS3CMMcYY4zmW4BhjTmkiUiUiP4gezxeRs2LO3SwiNw7De8wXkTYRWT7UvqL9TYgupe4Yjv6MMe+fLRM3xowYIvItoENV/3eY+51PHIqsiUiHqqYNZ5/GmBNjIzjGmJMSHT3pK/q2U0RWDnJNrYh8R0TWi8gbIjIx2l4mIitEZJ2IvCQiJdH2j4nIBhFZKyJ/jbbNF5E/Rzd5vBm4Lfqe54jIt0RkYfS600XktWifT4tIVrT9ZRH5n+j7bxWRc07gs80XkT/HvH44uq1G32f6djSGahGZJSLPicjbInLzUO+rMWZ4WIJjjDkpqrpIVU8HPkhk5+7vHePSNlWdTqRy8/ejbT8EFqvqDCKbjP4g2n4vcImqngZcedT71QKLgAdV9XRVffWo9/kl8LVon+uBb8acC6jqHODWo9pPVl30s78K/AL4KHAGcN8w9G2MGQaW4BhjhuohYIWqLj3G+Sdifp4ZPT4T+E30+FfA2dHjVcAvROSzgP9EAxCR0UCmqr4SbVoMnBtzSd/mkGuAshPt9zj+FP25HnhdVduj+4kdEZHMYejfGDNEtpu4MeakRR/blBLZA+pY9BjHAy9UvVlE5gILgDUiMnvIQUYcif4McWK/94L0/wMw+Rj9hWOO+17b71VjTgE2gmOMOSnR5GMhcL2qho9z6cdjfv49evw34BPR408SedSDiExQ1ddV9V5gPzDuqL7aiWxQ2o+qtgEHY+bX3AC8cvR178MuoFJEkqIjMhcMoS9jjAvsLw1jzMm6BcgGVooIQLWq/tsg12WJyDoiIx3XRtv+HXhMRO4gksj8a7T9ARGpAAR4CVgLnBfT11LgKRG5KtpHrJuARSKSCuyI6fN9U9XdIrIE2ADsBN482b6MMe6wZeLGmLgRkVqgSlUPuB3L8dgycWO8xx5RGWMM9ADThrvQH9A4HP0ZY94/G8ExxhhjjOfYCI4xxhhjPMcSHGOMMcZ4jiU4xhhjjPEcS3CMMcYY4zmW4BhjjDHGc/4fABvk0bjJPHsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# choose frequency index (out of 5)\n", "freq_ind = 0\n", "\n", "# reference (constant polarization) wave propagation\n", "Ex_ref = (\n", " data_unperturbed[\"freq_mnt_xz\"]\n", " .field_components[\"Ex\"]\n", " .isel({\"f\": freq_ind, \"x\": 0, \"y\": 0})\n", ")\n", "\n", "# predicted rotatory power at chosen wavelength\n", "wvl = td.C_0 / freqs[freq_ind]\n", "n_minus = np.sqrt(eps0 - g[2])\n", "n_plus = np.sqrt(eps0 + g[2])\n", "rho = np.pi / wvl * (n_minus - n_plus)\n", "\n", "# rotation factor along propagation direction\n", "coord = Ex_ref.coords[\"z\"]\n", "src_coord = source.center[2]\n", "dist = coord.data - src_coord\n", "factor_x = np.cos(rho * dist).real\n", "factor_y = -np.sin(rho * abs(dist)).real\n", "\n", "# rotated polarizations\n", "Ex_theory = Ex_ref * factor_x\n", "Ey_theory = Ex_ref * factor_y\n", "\n", "# extract simulation data at the chosen frequency\n", "Ex_num = (\n", " data_gyrotropic[\"freq_mnt_xz\"]\n", " .field_components[\"Ex\"]\n", " .isel({\"f\": freq_ind, \"x\": 0, \"y\": 0})\n", ")\n", "\n", "Ey_num = (\n", " data_gyrotropic[\"freq_mnt_xz\"]\n", " .field_components[\"Ey\"]\n", " .isel({\"f\": freq_ind, \"x\": 0, \"y\": 0})\n", ")\n", "\n", "# plot comparison\n", "fig, ax = plt.subplots(2, 1, figsize=(8,6))\n", "Ex_num.real.plot(ax=ax[0])\n", "Ex_theory.real.plot(ax=ax[0], ls=\"--\")\n", "ax[0].set_ylabel(\"Re[Ex]\")\n", "ax[0].legend([\"Simulation\", \"Theory\"])\n", "\n", "Ey_num.real.plot(ax=ax[1])\n", "Ey_theory.real.plot(ax=ax[1], ls=\"--\")\n", "ax[1].set_ylabel(\"Re[Ey]\")\n", "ax[1].legend([\"Simulation\", \"Theory\"])\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "25d1052c-a146-465a-9021-16e55fc69ca6", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }