[14:18:39] Created task 'linear' with task_id 'fdve-0c4fea65-4cb9-4273-98c3-18c6102a5331v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:18:39]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'linear'\u001b[0m with task_id \u001b[32m'fdve-0c4fea65-4cb9-4273-98c3-18c6102a5331v1'\u001b[0m. \u001b]8;id=213236;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=518273;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "140bdf2617854c3ca9a0d56bc6acda4e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:18:41] Created task 'quadratic' with task_id 'fdve-b79892a6-6cee-437d-8ce1-6fb874cf98ddv1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:18:41]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'quadratic'\u001b[0m with task_id \u001b[32m'fdve-b79892a6-6cee-437d-8ce1-6fb874cf98ddv1'\u001b[0m. \u001b]8;id=855593;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=626328;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f19cc4327a1841049a92349a3c09b6e1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:18:43] Created task 'exponential' with task_id 'fdve-3ebbc177-ac49-4aad-adfe-887d05429781v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:18:43]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'exponential'\u001b[0m with task_id \u001b[32m'fdve-3ebbc177-ac49-4aad-adfe-887d05429781v1'\u001b[0m. \u001b]8;id=220679;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=684543;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fb431e227ce44275b495bbd9569733c3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Estimated FlexCredit cost for linear = 0.12\n", "Estimated FlexCredit cost for quadratic = 0.12\n", "Estimated FlexCredit cost for exponential = 0.12\n", "Total estimated FlexCredit cost for batch = 0.35\n" ] } ], "source": [ "# Initialize a simulation batch.\n", "batch = web.Batch(simulations=sim_tap, verbose=True)\n", "\n", "# Get the estimated simulation cost.\n", "tot_cost = 0\n", "for bat in batch.get_info().values():\n", " sim_name = bat.taskName\n", " cost = web.estimate_cost(bat.taskId)\n", " tot_cost += cost\n", " print(f\"Estimated FlexCredit cost for {sim_name} = {cost:.2f}\")\n", "print(f\"Total estimated FlexCredit cost for batch = {tot_cost:.2f}\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the batch and store all of the data in the `data_taper` dir." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[14:18:47] Started working on Batch. container.py:402\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:18:47]\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch. \u001b]8;id=85837;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=443496;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#402\u001b\\\u001b[2m402\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8813adee5b4d48e98ebdfbc24843a9ec", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:19:47] Batch complete. container.py:436\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:19:47]\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \u001b]8;id=989470;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=320077;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#436\u001b\\\u001b[2m436\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "batch_taper = batch.run(path_dir=\"data/data_taper\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Inverted taper results\n", "Now we will see the field intensity and the modal coupling efficiency for the 3 inverted tapers." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "97ecf655583b47b8812712973802d802", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:19:50] loading SimulationData from webapi.py:512\n", " data/data_taper/fdve-0c4fea65-4cb9-4273-98c3-18c6102a5331v1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:19:50]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=772758;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=461711;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_taper/fdve-\u001b[93m0c4fea65-4cb9-4273-98c3-18c6102a5331\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f1636bd05f6b4d34b3b0d9cd882bff29", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:19:59] loading SimulationData from webapi.py:512\n", " data/data_taper/fdve-b79892a6-6cee-437d-8ce1-6fb874cf98ddv1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:19:59]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=425812;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=890348;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_taper/fdve-\u001b[93mb79892a6-6cee-437d-8ce1-6fb874cf98dd\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "608c8905847c471885ed2346f587d5f1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:20:09] loading SimulationData from webapi.py:512\n", " data/data_taper/fdve-3ebbc177-ac49-4aad-adfe-887d05429781v1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:20:09]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=509679;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=545724;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_taper/fdve-\u001b[93m3ebbc177-ac49-4aad-adfe-887d05429781\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_tap_results = {tl: sn for tl, sn in batch_taper.items()}\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAMWCAYAAAC6NwiHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebwmRX3v/6l+zsxhgFkYmIWRRRYvi4hENtEEh+XFgEpCROOeYQkXZYYI4wZJZEnMHTWJkCCiyTUzXiPXLaJxiQiEJSq44I8oSSBC2BSGoLlzBoaZc87TXb8/equqrqpenv08n/e8njnP07V9u7q6u771/VaVkFJKEEIIIYQQQgghBsGgBSCEEEIIIYQQMpxQYSSEEEIIIYQQYoUKIyGEEEIIIYQQK1QYCSGEEEIIIYRYocJICCGEEEIIIcQKFUZCCCGEEEIIIVaoMBJCCCGEEEIIsUKFkRBCCCGEEEKIFSqMhBBCCCGEEEKsUGEkhBDSVTZv3gwhBB599FEAwOrVq7F69eqBykQIIYSQZlBhJIQQQgghhBBiZWLQAhBCCJnbfPvb3x60CIQQQghpCC2MhBBCesr8+fMxf/78QYvhZPv27YMWgRBCCBlaqDASQgjpKeYcxjvuuANCCHzhC1/An/7pn2KfffbBLrvsglNOOQUPPfRQIf33v/99nH766Vi8eDF23XVXvOpVr8J3v/tdLc5jjz2Giy66CIcccggWLFiAPffcE294wxuyeZQp6fzKO++8ExdddBGWL1+OffbZpxenTQghhMwJ6JJKCCFkIHzoQx9CEAR4z3veg6mpKXzkIx/BW9/6Vnz/+9/P4vzTP/0TzjjjDBx99NG48sorEQQBNm3ahJNPPhn//M//jOOOOw4A8MMf/hDf+9738KY3vQn77LMPHn30Udxwww1YvXo1/u3f/g277rqrVvZFF12EZcuW4YorrqCFkRBCCPFAhZEQQshA2LlzJ+67777MXXWPPfbAu971Ltx///044ogjIKXEO97xDpx00kn4x3/8RwghAAAXXnghXvziF+OP/uiPsvmRr3nNa/D6179ey//MM8/ECSecgL//+7/H29/+di1s6dKluO2229BqtfpwpoQQQsjoQpdUQgghA+Hcc8/V5jb+xm/8BgDgP//zPwEA9913H372s5/hLW95C371q1/hl7/8JX75y19i+/btOOWUU3DXXXchiiIAwIIFC7J8Zmdn8atf/QoHH3wwlixZgh//+MeFsi+44AIqi4QQQkgFaGEkhBAyEPbbbz/t9x577AEA+H//7/8BAH72s58BANauXevMY2pqCnvssQd27NiBjRs3YtOmTfjFL34BKaUWx+SAAw7oWH5CCCFkHKDCSAghZCC4LHypspdaD//sz/4MRx11lDXu7rvvDgC4+OKLsWnTJlxyySU44YQTsHjxYggh8KY3vSnLR0W1SBJCCCHEDRVGQgghQ8lBBx0EAFi0aBFOPfVUb9wvfelLWLt2Lf7iL/4iO7Zz505s3bq1lyISQgghcx7OYSSEEDKUHH300TjooIPw53/+53juuecK4c8880z2vdVqaW6oAHDdddchDMOey0kIIYTMZWhhJIQQMpQEQYD//b//N8444wy8+MUvxrnnnosXvOAF+MUvfoHbb78dixYtwte+9jUAwGtf+1p85jOfweLFi3H44Yfj7rvvxq233oo999xzwGdBCCGEjDZUGAkhhAwtq1evxt13340/+ZM/wcc+9jE899xzWLlyJY4//nhceOGFWby//Mu/RKvVwmc/+1ns3LkTr3zlK3HrrbdizZo1A5SeEEIIGX2ENH14CCGEEEIIIYQQcA4jIYQQQgghhBAHVBgJIYQQQgghhFihwkgIIYQQQgghxAoVRkIIIYQQQgghVqgwEkIIIYQQQgixQoWREEIIIYQQQoiVsdqHMYoiPPnkk1i4cCGEEIMWhxBCCCGEkDmNlBLPPvssVq1ahSCgrWoUGSuF8cknn8S+++47aDEIIYQQQggZK5544gnss88+gxajMd/5zndw5pln4Jvf/DZOOOGEQYvTV4SUUg5aiH4xNTWFJUuWIPbEHX4LY6s1Vvq8RunVqWwhrj+SJQbRNobN4j0+j4WBIsF67g7RoAUgPvg8IaSnDPsdJqVEFM1g69atWLx48aDFaYSUEi8/4cX4719tw7LlS/Dd7/x0rLwVx0ojyS+swCgojOPSELujHFZXDLuqEM7Va9SP82InEgKCSmNXaIFK45Ai5dx9ThIyYNK3x6jcYaPcr/3iF7+Inz/xDH5071/j1446H1/5ylfw27/924MWq2/QkZgQQgghhBBCLExPT+Pyyy/F1Vefi+XL98CVV56D97//9zE7Ozto0foGFUbSd4Tx0QNF8aMROD5q/v5/5QJaZHB9SHPq1PMcrveBuEAT0g/oRUBIT5AYfjfUucTHb3g3dt11Er+7dg0A4LzzX4OJiRY+8cn3DFiy/kGFkRBCCCGEEEIMtm7dig/+yWew8UMXotVqAQAmJlr4Xxv/J/7kj/8Ptm3bNmAJ+wMVRtJznBZFr+XIb0msbUEcOuuV3TpKKjLHLI60MnYK5y8OHbQuEtJVJGhZHAR/+r/eiaN+7WCcfvpx2vHXvvYEHHrYfvjQh9cNSLL+MlarpG7bti1ZnamFUZgiPDExN9Ykcta0t6PvV6Rqd7CHTqlQz4+d3Y6ZA48xLn7TCbyHho45cE8SMkyM8h0lpUQYTmNqagqLFi0atDiVeeyxx3DYYYfgzrv+Ci972f8ohP/whw/glJMvxX/8x0N4wQteMAAJ+wfNG4QQQgghhBCi8FfXvR+vfe0JVmURAI499lCsWXMs/uq69/VZsv4zN0xYZGjotjWxsiWxKxbEQY2f9KrcMbK6pNefVg1CBgvvQUK6Cu+owfH89j1w4IEBELn7UwcdtArPb1/aR6kGAxVGQgghhBBCCDGJIqDd9oePAVQYSWPqWxM7sCTWsiDS0zqmSj3MsQfdiFoaOX+xE+ZYGx5lRuy+I2QY4V00ZEjw2QYqjIQQQgghhBBSRNLCCFBhJIQQQgghhJAiUvqVwjGxPlJhHGK6uRFE0+bslaHBQjbefRJL6Y6rqRiCLTaGZzcbX52O8KiZEGPzEB9fRrh9zjV4rxHSEbyDhhjOYQRAhZEQQgghhBBCCggpIaRbKRRjou5TYRwTOrKpdWsRm1LLXnUL4jBYCTuhivyDt0K6rseIjKaNiJWRC97UZUTa3zgwAvcXIcMK754RIZJAO/SHj3aXtBJUGAkhhBBCCCHEpMocRiqMhBBCCCGEEDKGyAgIS+YwjsFubiNzihs3bsSxxx6LhQsXYvny5TjrrLPw4IMPDlqs3iLEcHwQWD/C9k8EECKw5NNy5pPlJ0Tlj05rAJ/eU+3cB4F57YaUEXCXoztqHSLQHXXASKl/CCGVkcaHjAipS6rrE43H1Rzi3p7OnXfeiXXr1uGee+7BLbfcgtnZWZx22mnYvn37oEUjhBBCCCGEzDVSl1TXZ0zU/5FxSf3Wt76l/d68eTOWL1+Oe++9FyeeeOKApOo1g9Xn62+B4VkEp9Qy1h+rXfeoKq9nonRDzLocnsVxaP2pA62LVWCbGigDf7YQMrrw7pkjRBEEt9UYHYXRZGpqCgCwdOnSAUtCCCGEEEIImXuUuOCPycDaSCqMURThkksuwStf+UocccQRznjT09OYnp7Ofm/btq0f4hFCCCGEEEJGnSgCvBZGKoxDy7p163D//ffjO9/5jjfexo0bcfXVV/dJqu7jdAntecHVXU79rqbV3DaHYyEXO527e7rqoHuuqmn9Dd41dUgY8nqgK2oVxsPFZygZ8vuHkGGDd8wcR8KvFI7JM3NkFr1JWb9+Pb7+9a/j9ttvxz777OONe/nll2Nqair7PPHEE32SkhBCCCGEEDLSpBZG10eOxwDnyFgYpZS4+OKLcdNNN+GOO+7AAQccUJpmcnISk5OTfZCuR/TV8mYfO3Bb/+yWs+rWwkGMVdS/qX3n05lFL62/7loaB2dlHIIH5pCP8tGy6GMI2s+4M+T3DyGDhHfHmOOdw9g/MQbJyCiM69atw4033oivfvWrWLhwIbZs2QIAWLx4MRYsWDBg6QghhBBCCCFziiiK91v0hY8BI+OSesMNN2BqagqrV6/G3nvvnX0+//nPD1o0QgghhBBCyFyjzCWVi94MF+O5oEdv9Pm6C9X441eTUfR4bEJWcmmrIkP1kSK1Xpq3zxZ6sVdj/xjwyNoIPBfoimoyHqOxQ88I3DuEDALeGUSDi94AGCGFkRBCCCGEEEL6RhQBoWdgnwrjXEZ4t6wYFotAs+0murGVhWMBnEoWun4s1FO8PlVka2aFrGYN6Wxri+5YGftnhR+ghWhEHszD8gwZHmhVHAgjcr8Q0g94N5BGSOmfpzgmz9kxVRgJIYQQQgghxEMkuegNqDBa8Vkfgf5ZD4To9PK4rW5+i5z7/IXo/zpJsrDHTZkV0359zHOuZ3HspaWxM+tiby2LtCZWgRZFk/F4gQ4NI3SvENJLeCeQ7iNL5jD2T5JBQoWREEIIIYQQQkwiyTmMoMJICCGEEEIIIUW4SiqAsVUYBWBb9KXiRS9zWdWyrGmrVvMWHV0ev4w+19JBuJ2aqG6oPnmK7qpA8dy74aIaYJjc7LrvhjqgcxvhB+14u6EOz70wlozwfUNIJ7Dlk74TRSVzGMejVY6pwkgIIYQQQgghHrjoDQAqjDpVt7GoMbpbxxpZSCuqbZGhp/FbB0vl6ZV10WoJtERLxg9d52FaFM145RbHTkaCqlkZq1n/6i9007lVsY8PtTlqARk/q+J4vAiHljl6HxFig62dDCeSz2JQYSSEEEIIIYSQIpEE2p7BU7qkEkIIIYQQQsiYIqXf7XRMrI9jqjAGsC8KU9H9qqrrKtBRQwqquKRWcCEVFeT178vop9J+hqJV7lIpI6vLrOoGWOaCmobbXVOB+Lq7F8Gptjejm266ozZzQe2BC+GYPAxdzB03VLqXDi1jfo+R8YCtnIwktDACGFuFkRBCCCGEEEI8lG6r0TdJBgoVRo2qVrYaI/V1rJFm0iC2MNax/lWN22TrDJfVTi3Ta6ET9rDMkmbKlJSnWh1Na4/Loui3NLqtjH7c51ZuDSy3Kla3KHZgKaIlozKjY1mk5XBk4P1H5gBsxWSskBIypEsqFUZCCCGEEEIIMZGyxMJIhZEQQgghhBBCxhPOYQQwpgqjSP6ZVHdBa7pATD3XsZaYr/1usjBNlQVvfKhukoUFZyznIxBY3UAlooL8aXpVRs0tMy1PyS+9bjbXVPdCNzbquqU2cUf1u6FWc0GteE4djnANq/tlJ/uYdsJw1AddTYeSMRlNJnMftmRCypERID0Ko6TCSAghhBBCCCFjSqlLav9EGSRUGBU6tWaUWyXqWQhbwTzr8U62wKiCajk0DZRSs/Y5tsqwVaNUv6aL2RQXy7FaGytaGm0L3dS3PNajrnXRb1UskbOCZaP7lrGyuut1W3RtgdJby6OA6JOVkVbErkMLICEavCMI6YAyl9QxeedQYSSEEEIIIYQQGz6lcEwUxt6aBwghhBBCCCFkFIkkZNv96cRR6EMf+hCEELjkkkuyYzt37sS6deuw5557Yvfdd8fZZ5+Np59+uvPz6JDxtDCKoNn+iCWujU3c5Hxub4FwuaS2apcTl1WyCEsiS8HlVT1v4xSFsOx1KIuL22gL5hinrC6Io7vDikaL4JhuqP49GZtjdy+t64rqkMkRv9xNssE5lo2Oee+VJnXa+TiVhOyLW2paVvfosQuq71p2uADWUDEmI7pk9GnaUpverbwzCOkyEj2Zw/jDH/4Qn/zkJ3HkkUdqxy+99FJ84xvfwBe/+EUsXrwY69evx+te9zp897vfbVZQl6CFkRBCCCGEEEIMZImFsckqqc899xze+ta34m/+5m+wxx57ZMenpqbwqU99Ch/96Edx8skn4+ijj8amTZvwve99D/fcc083T6s2I6Uw3nXXXTjzzDOxatUqCCHwla98pb8CiKA7HzVLz78JsYvlMx8t0Wr0mRDz4/SYKHwEWggwkX1UOVTZhZiAQKB/RP4BYstg+onPMdCslmpcM1zN15aXdh2MetR+G2Wkx4wLCnMc15S1G9itixEK1iYp8096yPhXTK98ZKjnYXyk6wP4P0k8X9422d2octfHtS1OrzDvy+bUPN86dV6l7rt2/QbAKMhIxo7SZ2eP8+5meYQQBxLWLlf2kUAYhti2bZv2mZ6edma5bt06vOY1r8Gpp56qHb/33nsxOzurHT/00EOx33774e677+76qdVhpBTG7du346UvfSmuv/76QYtCCCGEEEIImctE8M9hlMCPfvQjLF68WPts3LjRmt3nPvc5/PjHP7aGb9myBfPnz8eSJUu04ytWrMCWLVt6cXaVGak5jGeccQbOOOOMQYtBCCGEEEIImeNIKSFDj/0+kjjmmGNw6623aocnJycLUZ944gm8613vwi233IJddtml26L2lJFSGLtHgOZTyuticUMruEZakBEmxHz9UAMXPttCL5Ewj0XZMjp5/AlE2SI4+oI50nT1VO8jpVqljHRXUmUxHHMhHCkjmPsyFn6bezRqC+lEmrtgtoCPWYbxWxdaWTinsAiPes76npG6y2kL5sI3hcV7KmJfbMXixlpI1xtc+RbupGz/zLJ7rJqDQz/dT6tga2flVLh3K7aRute3du1Vvn59YNTcT311NmrnMmDq1FY/W+owXUX1vIdJLkLmFKlLqie81Wph0aJFpVnde++9+K//+i+87GUvy46FYYi77roLH/vYx3DzzTdjZmYGW7du1ayMTz/9NFauXNn8HLrAnFYYp6enNR/ibdu2DVAaQgghhBBCyMgQAbLtDq6zAP8pp5yCn/70p9qxc889F4ceeije//73Y99998W8efNw22234eyzzwYAPPjgg3j88cdxwgknNJG+a8xphXHjxo24+uqrByxF3WmiScsTAVrILYxVrYtmPGlYEyUitFLrmcytZ1FmNQsyGVpanGoWR9XaKERgyKNuh9HSrG5mXAFjawwYeZlWUmHkBxTuYiFapRYh0yIbb2Gip9F/GVZUAFIWtz0RIjTiFC2WmXVCpvVss2QF9jRaOpuc3aF0JN9rlfLfC7Utif2ygHksQ82sjdXy7tb1s+UzBLbDrtNJfTWujzpt0Ba3odWxG21jWNpAN87FzKNX5zZoK57vvGhtJKQ3SFlPKfSxcOFCHHHEEdqx3XbbDXvuuWd2/Pzzz8eGDRuwdOlSLFq0CBdffDFOOOEEvPzlL++OEA0ZqUVv6nL55Zdjamoq+zzxxBODFokQQgghhBAyCqSL0Ls+Xd5e+ZprrsFrX/tanH322TjxxBOxcuVKfPnLX+5uIQ2Y0xbGyclJ66TTeMuFYRlf1VEHnNU5jJHDwmizPKpWMjVcnReoziEsWh3rWxzjfEJAtJLvaVgyJiH18uK8dXlFMpMytRRq8w3NOY2yaDnVjG2IMlnyNFIbhTUtWhKysPVGoRwZZXLGGPENOWIiqLealNKIY1gfLePDonCdg6J1Quhp3S28ydOt/thSZYth7Xuxn+NcUbl8FoswYF5HwzKcIkThOvbDOiDhaR9dmntaHU97tNSPSi+ssJ1Z0Wti5lVicexm20jzGtSbsJft3Nu+R5C659JLLxNCxo4yC2OHN9odd9yh/d5ll11w/fXXD92OECOlMD733HN46KGHst+PPPII7rvvPixduhT77bffACUjhBBCCCGEzCWk7N4cxlFmpBTGH/3oRzjppJOy3xs2bAAArF27Fps3bx6QVIQQQgghhJA5h+Qi18CIKYyrV69utD1BdYqLlfQbkblRhpiQ8xEl7oqBIpvNZVFd3EbdNkNzSbW4qtrcVFUXVTOdmnfLXGBH5o4zkSGjVBZ9yVxPs60v0kjpQi5F2ZG5q6ZxlPoouPQ53HRN7y/LgkB6GqlcD0PGLI1RtmWoqbCQjjDlbRnhgMtNTzvX7HzC4iFXmiGje67hTe/dsCTc3c4yHNdLWKLLgjun4fJquE1388pZa9pZ/+Vup51sd2J3102xuO0CA3HdLcjgpOHiZr5yBn3fduPeHNA59ModNV7wrT904xwGtRBOU9n73VqayDnIu9In7/C+5UcfGQnItrv2ZTSXHODdjJTCSAghhBBCCCH9QjWIjCtjqjC2MIgp8eaCKn4CBGhllkWr1UwdU5LQrJFpWJnl0bdATi54/juwhaf5CDWJKe882EbVNetbkt60TuYyhUUroS2uzcpXVjYsFiRRMZ312tjSGfk7HN+tFmTD+uqSxYrN1OWh6hYucwPTMuk+93j9FVddFi2VlRYvMl5C0rhWqs2+c9zPH6+1sAcLhGnlFerUsf2N6hHQA0usdpbWc7bXXzNLq+5lUaRoeY7LSn42KNGk2xbnHPWZ7l7UpxfWunrnVANzyyb0xqLTfCEqC9L+LOmVJWpULKKdymmmHxY5rd5F3RCkZplzERkBEecwjqvCSAghhBBCCCFuZCQQhe5BM7qkEkIIIYQQQsiYIjH4KeXDABVGhXouo10q0+Pq05Kqu1ziwiSKtu/UhTN2RVXdSqXTVTXLK3MDLXezBByLuqC4oIw3DxTdUMvSuMoGLHtUijzEm4dSdmGRHsdiKAUXMqdbabkra3zM5X5bvf6rpKsbJy6rwhOyB74Ybje9LpdTQfbigkVaqPJ9XqFehaMd+hYuKrg79ektVX3xoU4WBnMsMGRx9S26tENz3y267pquvhXqrXDO+rPY6mpaw1W1CvbzlCi4rBptSWTxjKSF/G2F+s87TtfJiLlngTbj/SWUc2jS0gtSVji3PK39HO3u0OmXSD/U4UJMTd2gq2duW4yrO4tHlde9ius8HM/gLrqcV5ezSl3767M/ctbIs4sLhfVCvlGBFsYYKoyEEEIIIYQQYsE3BikxHvM5x1JhFEJ0zZrosxDWyscizwQmLBatfPQ2tywmQYhgs0RGhlUgs4Roa+a474aodOuBavlY41sspnYZ7FbMvNyKFjl1HYkqFtAGca3lJhSsoUqIiyqWMNdCQYDbWpqH+56EHrlKLJXVLHj9WZCnkiy+a1BlEaMsoGSBqopy2baCcUnXHXr9ynNb0/XBaodFVrHGClu4mr7yqTgWsimMnhctq9Wssmr+vmtttzoLW3ial14JelIbFS1Y3drqRhpWovj8AzWCsoWSGTeNb6OCRbSGpbGYl41UFrv8gOscysrqlRXbIW9caPwTapup+1xtao135GNdcM5caKiCF0FJ3ZW3kzIs8lrbcJ367FZdolk9qukqWl+dHgg+OUd4ZZhICoQ+C6PszCdjVBhLhZEQQgghhBBCvMgSC+OYzG+kwkgIIYQQQgghBlIKRJHfwjgOUGFU6JZ7aWk5XnfYIIkjjEVv7BQWa0ldPE1P1j4tJFKbCmL53C3tWVZc1MXjDut38fS5Lpruc2qe1Vx7iwtFWOJUcOV1u7+m5VRbmMcWt7aLbo2ygDLZO3eF9e716cq34p6fcdzOXIyruuo2cdGttHdnF6naJsr2KdUW7LIuIOU7LzVv/8vd9nw2j5U6IPme8RX3Xy3uE2umq/6MKn+31a8Tt1xpInPBDTOeskBbh0P0djda85p19n63t2PXlAT/+bjdfl17fVaXvYqcRXfh6tNOdPQ+SqfuzGq9xTlZ9rctuKjr+NzJi2FN20SVKQpV67RqHfpkdcuT5+ZYyE9xrfZfv86utRQR0N5eK82wIBG7pfrCxwEqjIQQQgghhBBiEK+S6lEYuUrq3EUg6OliNc2wLXpjjOhUWQbcM9ThGxUPPGGukaSyUfb+b1JSE6Wu6thcmlhru7E9Ql1La1a21xKhh9nKsKVX49msnWX5FqxLnu1iXGmc8mVbxVhGp12WRYfF1mfprLSFSU1rXh2LYemiQx2GW9OUnE+dRZ3MvMq2ttGfc9Us3rZyVHzPb+s7wmZ97NJyB2Vb9hQtshUX0bHQrYVtysotk7nOAmMubNfJeqzuta4gS7et9d2WUZWvzEukyTvK1o6a9K06XVQsL9ywKhvyCW0BHDNuNbmdW4tVOOaiahuuQhVZqlxrd7+vmaxShpie/u/SeMOIlAIhXVLHU2EkhBBCCCGEEB90SY2hwkgIIYQQQgghBpEUCL0KIy2MBN10OS2juG/ShIhdUoVh8Pc1TdONQHU1VYNSNyr1mBZXy1ONY5Zn/Daks3k1BP7NwnyBNfOae1RtjVWcYSLrsJjF/dT0lPPs32l6ukSOsOKuctIRz37cns7mTmtLU8TnotOpO3GZK7F63zVxO3a62Za4ElfJw7v4kzBd3MrLU12jZFDmkqq605kuzh53VYd8ZQjpWnDEfKZWmypQyU2rqps1qp0zUP+861DHRbvM/VS/vtX3SfXVa2X31Jouq165uuCWWrXsVO66rrKuuu6VS3BTuuVa7nI9Tb9rx6xu5h73w4oLuFWtx7L6a7LgVDeua0GODt1mI9nGtu3/2ZEMg8TndsptNQghhBBCCCFkTIk4hxEAFUYr3bUq2vKqNtIzAQEh4iV6hLBbBeMSkuPJ7zQ8UL6baWPLnFC+FyVNj6dWS1v+KnlZqmzFcOdvR/l2PAv4VLx3m9ziddKUySEcFgLXehRlZZvl2S2IdszFzIHiqJnpdhE5LIbSEUcNdaaVxbJ9mwl44xXkL1JmPaxThyZV2mEni4+4ZK8qc2GTA8e1coUX69dtDa5iaXZZmcvztlgXpWw0scTnoRGHG/EdHhy2tFWxn08xntWqKuE87zrWa6/F3Zq3Wy4zL+0617R4u7BZedVjxesoivGUIqv2ANRcfRKXtgTfYnWWZ4Tr+hQ9N9QwuzdG0bLffXNJWsd18q4S17x2tmue91/snlppGtv9ans8+14ZTRem8xEoyojX46MDDxtruZ6wql5uqkxtOYPHK5Y9bEjpf6+OiYGRCqNK54pi1fRqPPveVFIKzAtaaIn4cSZEnspUAltZdqKg/AUiv4HVsFgB1X/DPJ7d93m+AsXwVPFRFUa1s2wqmmYNNHN/lQWFy+r+WjzkjGvKoudT7ZFgUxIKMij7k6lhLgXDPF48p24/roqClCsX9rAsXfLSixzx8vhpxyLHpRTqiodb0fUrksXymmDWWJW2WFQ+OpPCNo+iTl3IQjzhj2M57romZYMLeltwK6pmDVkVqYbV6BvQ0gbBRPGo+ny0pVEpG0hw3VvWAY/KeVQfXLAPrLh/Vx3QMeP6XNT1slwDazYl0YwT/y0b3HQNbLraQEqzKRHdtkYoyp9nkMwcjIsc8dQ4KnUdGuvtGthZ3lrfwzxW6NPk/SHzftX7LfUfJP2ay1blvq3+bHDjat9NznImCvCdrQ0SDgESAqFjygJAC+PY0D8l0Y/piy5EgHmBQEvEimGsFMaKm6lkBOkImkASP5csCNQHocgekukxAZk9UDOFUlUsAYhEwckVzVxBVB/OebmKQmS+sIX0Kknqb71mi3mqD/Ti6L6OUJQ089YOjA2mC50Oh3wuhVVoshZlTMOLAwBSS2PLT6j1V6g7U54OFRDHQ1BbLcypzCkKnKF4pOldSl7kCIssearhPguoIar3mA/Xa6E4yGIbSNGvry0sxTu6K8qVomIn3lHXnutkpouyelbD1eupHDcGCGx56tdHKUc9j4oDE9pxd5ICtnq2DvoUFA+ZHTevc35fu585cdpqra/O6ny2e9alpMXp7Uq9KXFkjaPKaClP2vPw5ZPHrdIBk96BvMK7xBio08K1aye1Y+b1zeMl4Zbr6JO+6nV3YbYH232Xxc2Ou651cSBPD/fJUR6nG/iUctt9qfZrAKAl8jNXv5vxBGTh3Zse7zZNFcvCAIzjnehL45OjyrmWOcWYeaRl7Ahn8LePlWY/nMiyehwe/viP/7hRutWrV+PEE0/0xhl7hZEQQgghhMxdkmH1eHBbJIPt2W+RKI8iH0zXLJTxiHh+LBsWKnpQCZGVFijHMj1LCEiIrCwzLM3Vlq+EMEYjVFXZMcBboVZyylWfMhOJS2F8vj1dmvewEkGg7bEw+gb1+s0jjzzSKN1RRx1VGmcsFUYhgg4ti72Y4xjf1pFsAwAEAiycFyAQsZUxtSwKAUwo1kYBYELkVsKJQLUM5mEBgIlk9bzYKim1UdYJAaSjc2mYSEbjguSvQDxCB6TWzCj7LiA1C2Qg9JE70zIWh8v0p2LFVNKZljY1TSHMTGMZKVTSZwUD2V6/2UhyoB+HcRxB/mjOjylypPm2LGEBIIyhb9FKh0mzC6rkJbS3lxZXfaspfsWZq5Zm7nIMjzfFZ7ZQhp6lyw8qNxtqf2VZPOVYVqzVvJHGtcle8lI0h7TVn4Z5XOskBEpjDJLroF6n5Bpp10c107daWt66v5Rx0VzD7k5/xqRi1GCzTqMkjqPu43mBluujXEPv9TOvmypDFt9zPupXr+nRcdyoQuG6zmrdp/duS722Qr/GE8oNrt6HLfXGR+7ykZWn3pOeNmejrF1rZmTHdU3S1LlHrdc30tNLCf26qvepVK5d2iQjCZkuABsl6cM0n7jpSgCIBGQkELXjTqiMEP+OBKSMP2EY/40igXYUZItVhJFIlsYPEEpgNmqhHcUd8J2hQIgWQglMS4FZGaAtY/vlTASEMu4wzkTxGyJMmnJbCkQyPo22BACRhYWJSSJCgAgSUshYRsj4NwApBKSUkImiEs9PS+pGZP9Bpu+s5OWizb8U6fszCcu+p0qQyOPEDTDrGwTpiqEiV5pSBUrNS1deRNZ3aikv3/xrnAe028WQB3p8oaQHdI+p9HzV+GkF5Zb8RDlL+kVqZoGRd35mRbzrLZhxtVercMat+tp1e1bpGdqm+nRKmcWwW+wQO/pTUA+InyPuihqmVVI3bdrUs7zHUmEcBaSMMNkSmAiQKIwiU/BaIlbIUiVyIlHAWomCiOQYhEzCYkWslcQRQsaKJHK3jIkgypS9lqH0BSLKFMlUiRQizk+kymr2PUkT5IqbGg4R931V5Sx+/yS/JxQlMn6/Jfmg0HFPFbAsPFP0ik/f7JinU4ggKFcA0rRpmNqRhNFJ1DqSIj+prMOZftJjyd9WkFYSMDER/w2SE06VCiGAiVZ2QjLNRwTIBsJUzVd70xi/s7qq8ebQlDTTzy0qhmUKi9l5TX8ngxlZXqoCY+kIp2HSEqaGa3JZzySm0COwdOyFyI+r7SOIh2jUaxArDsn3VgsIBGSQ/g3ya5Acc16TQaFeN1UhkMY1CdvZb5E6EkayeN2jPK2QkX79k2sloqTDHCllhmFedvYdQLsd/03lC6P8ezvUj7WTMkIJ2Q4TDUBCzoRAGEGGMlZQpiPIdvw9mo47CbIdIGoLtGcnEIYCUXsC02ELs+EEQhmgHQlMR/PQjgTaCDAdBgilQAiB6UggQpAoHMBslCgUIsBMiFh5kAIhgFCKuHpFcvpCIJISURQfkzJ+/oRSKt/jZpgqHKk7YnpM7QmqSkR+LFUe8nT5fPcg+as+MpNjAZJOf/wc0+bAB7lqkltl8nn4mhKTlZd0/tPbSenSB4EityV+Kr9I0yfP45ZyTkgVFE3pEIXbLQAwH8Au6kEzjkeR8CkZgeN41TEDb94WJcIVDsdxr5Limfphy7owHcT8XdGFt84Yinv6hbQoau7zycsq5mdT+KpeF1++NhnsZelph+htUYntMzODFqEjfG7Ew7oP4/bt27Hbbrt1LT8qjLXozDRjs2qmcxezMJnvtbXrhMBEohhOBBItxA+XeYHM5ioGkJgfJHEEMBFEiWIZK3QTiXLZClIlMf0eAQJoBVFimYwghEQQSASJ8hgEsZLXakWZohcEMlPwggmZKXVCAGjliltqXUsVNTGRCqz8TcMMBSzr1LhG7g2rWz5ZU1HM4ox1pc/MU1MKAyNPkSttQYB8MmigpA30PIIgVgZShSBV/NK8JoL49RUIoDWRH1fjjTl9H6iLZKJ8REAYQrRnYwUj+Y2ZGYgoAtohxOwsMBtCRGGslMzMxErJbASxYyY+FpsvgOfbQFsimpWIngPCGYGwHWB6xzxEMkDYbmE2CjDTnoe2DDArA8yELcwitobECkdsIWlDoB3F1owQsfUjApKNhAVmEz1Jirh4IFY+Qgkgs2IIRIjvnVQXEyLRy9LetKJjpJ1qdcC+MJKPvGOeWgWyjnpSQHZLJQ+KlpZHZu/Qb8fUSqHES5WMdC62ettBxCqGPictVxiC7ATy/ON/eWsLgiCLryIAoJV8FGyd2fnJR0vrSWMeVz0wsjBL51bAiK8cU702XGXrioh+x7msLFpdOeMUy/MtTKbn45Db1sG2LO9RNl/b92h1BRXbglFXFTrwVsXDlNXVLmzHStKa9eWb56/WmVW5cdRp2VvKNw/OOX/TcdwuV4kA8CmQ1fCltyq8NeaxVnFuqyJ/U8tgk7rpxqIu26Z3dpzHoIhk/A52MUwWRpUVK1bgd37nd3Deeefh13/91zvOjwrjgEkVRZl14uYBAKJoB3afkJn1cF4QvwwmEuVxQuQWw/lBlFkdJ1sRWiLKFcb0dxArfrFCKDExEcYdqEAimADERKw4ionkkyh/YkLoyt68xArXCnLlbiK1fiW/W0F+LFXgWq38d0sNMy1uQbmCBhSta62kKauWHUBXCNXf5ncbNitaasWQUfxibMe+U4FMLBqz7cwSImZmY8tLYuXIFQ4JsWMGsh1BtCWiHbNAG8BMhGhWItwuEM0KRO0WZnZOoB22EEUBZqMWpsMWwijArGxhOpxAG0AoY8ViJlUwhMBs4oIVWzZil6rYw0sk7lmqghGPkEWJ6xVkbtWIktH+WK9I6lsgswEIrRerdNKTg6rbUGZhSKwFuVJQXAlY7cALpJaGVCnJMtW+m5aLLP+0Q65c72yMIrV+QACYh0DMS2RDovDoaVSsI/RZ59/SUWsBYnc9fho0AWCeZZEU0zAe5yf1PCwde3uYmae9M5mntciD4jFNJqu8hmxGvsVFomTWgVT7Vlk6Wx1bFiYxz0GVzxdHC3OG2OK6Or1mJ98uk3attIWRit9dC+qonVFnh7+kjlxyVk2vnYfH3KSdQyGer8PuDKpNaefdVpYljVUmn5Jad+y5JL61/MCMY2v8zcqrLkQFfGV5wrrZDmrhHX1wh3V1t7YG5SuReiuDTXsSAiPskZo4i3sUxiG1MP7d3/0dNm/ejJNPPhkvfOELcd555+F3f/d3sWrVqkb51VYY165di/PPP790NZ1ecf311+PP/uzPsGXLFrz0pS/Fddddh+OOO24gslShbK5kGp79VSbWbpOxc4yMABHpvQop45HzdPn7+BaVmZIQJd38ZNoIkByL56AECGXcKYuVCJnkISFFPJdCSmQvbSkEJCIIkc/BSOdciESbiJWAtDNT7DUKEUDI3HqYuiYBQCt1dcq67vn+k7kblKoA5HHS/FoidTtK52GILM/USzRWTOzzNVI3KwBoBarLk1Jmmi4tC2aH1qI4KFXhshCoYWaHW0wAmNA7+wJ6nGTKI+Yr6XUXL70zLQpl56P7urx5p73Q6bedjxJHrR+zc5vJkx5LrOj6MShppEPJ0I9DPXe4FYzC6qWmsmPpjNuUHRTS6emtnXtb3oElzNaxdszLNdNoj5wqHXRHub68AGiNX0tnk8MWNztvm1ZryTgw/mp5CctBnVodNlseZkeobo/VFj9vrEo0z8iEehLm+QSWi1AmkpJGRrI4r9OH3efOH6dsLm6la2QW0qvhfUddBBYhq9Rb3T6l77Sq5GWTE3C0wx50eNUB17r5l91bVe+9OqaffNS+epo68V3XwzZ9otu4yq5LB7IG20dXY4y31fApjMPJWWedhbPOOgvPPPMMPvOZz2Dz5s34wAc+gDVr1uC8887Db/7mb2JioroaWFthnJqawqmnnor9998f5557LtauXYsXvOAFdbNpxOc//3ls2LABn/jEJ3D88cfj2muvxZo1a/Dggw9i+fLlfZGhVwQivhSt1iQAYOGCF+LRF0xl4QIBAsSL9QRoQSQ+UrErVpw2QAuBbCXfg+T/IFe0ZOK6lcwSEVJkcePjIstT/Z1aWYI0TFHGhKJUZdP5kCpkmfCKcqbnF//O/6rzXazKmBoX+bM69RjL0loUsCyNpVztL/JFhPLzjjvc2tLbyTG1b2sqVLqil3f4VSuOqUSpCoypQBXKVxUZodap1BQltWxNQRPKAj6qAqbFSeIpCpCp+KhKj6Y4FRYnUuRQtFarMmOmVbVcxbNYE0SNZ8bRFA21YUCPaFF0XIqJMNPa8tGUAdPybVOIiielz8u1KFiF4xaLullOIYM0vKRTb0tWZTEXWx2pabO6VJUiSz3Z0vqULJecKd3qsNkW4vF1lDVZHHVmxqt6ng3MGQLQ5x+b+ahhvvwNGaW1/VRoY53S7X0fvNeyy/J3S3avNaxLSoTZZsqoo0h2Q0affJ3U8yDabN0F25rGqVtuhXqUzz5fv9whQV3byxU+zCxbtgwbNmzAhg0bcN111+G9730vvvnNb2KvvfbCO97xDlx22WXYddddS/OprTB+5StfybTVT3/607jyyitx6qmn4vzzz8dv/dZvYd68eY1OqAof/ehHccEFF+Dcc88FAHziE5/AN77xDfzt3/4tLrvssp6V221Uq2OqVqXH5rViq+JksDsWBEsgZQghWokCFyuEASYyRVDIAC3ZyhTAFlKFMVb6Wln+sYqpWvXy1UFFpsRoyp6i6KWKoWpZaom8420qeaqCV0W5S7+bip36bEstaRDKaq0wFTo1P6nJmy7ok6ZTV3wN1PTIF/bJzsVQ2ITyXbVsqb9bqf03/a0uBAQ9P9ValSpoWVyhp8t0ASW/+Iu6wFByKK2cNH0ATRFTw6F4/CINS9tIttaOQ9EKLHmoc0IzWQJLGqHnbSoJBUXKUKJsfpCpu7P626YopQsOqYdtHfSiGTFPr8qYnqhNUfIpOoElTJPTEV7VGmUZBa/Ukbfl6zvuKzM7Z1NZ0NNKm8KopnMpVC7Zq/aPqrz0q3SOUwW0yqi+Vl9GmJneVS/9wNdb6rcsZDRoooz1Wwnr9v0MlCu5XgW25mJtVelmtTaUR05u76IQ/UUCXgtjtX1jB8fTTz+NT3/609i8eTMee+wxvP71r8f555+Pn//85/jwhz+Me+65B9/+9rdL82k0h1HVVn/84x9j06ZNePvb347dd98db3vb23DRRRfhRS96UZOsnczMzODee+/F5Zdfnh0LggCnnnoq7r77bmua6elpTE/ne79s27atqzJ1k0xxTBU+MQ/z5CQk4jXFW5hIFEWBCTkvUxBje2OqHopYEUSqRCW/sz6nqKQUqkpVrCylHXpDIVT6sqpyF8ATVtQTdOVSse5liqVHEdS380jj5FuJ2JRAXUG1K4A25U+1zqnbgCCLm4Yl5xVEufyqkhiYSp2yPYlF2csUxkTZKyiDqu6Rhk0ox7JwtZLUi2VX8vStBPILli06pIapFxRCV+ZcipzpwxtYOsQ2Bc5ndXJZq8oUPlNxy8pUFTXhkaWoKElbWEHJtSmn6jE1reUYPAqWJa41jlmmideaVJLPIJUc0j147UhdhqXNeOVoecLSKBXi1MKTX9fLGiLmj+6SKVIK716Lw2pg/PKXv4xNmzbh5ptvxuGHH46LLroIb3vb27BkyZIszite8QocdthhlfLryN7/1FNP4ZZbbsEtt9yCVquFV7/61fjpT3+Kww8/HNdcc00nWRf45S9/iTAMsWLFCu34ihUrsGXLFmuajRs3YvHixdln33337apMhBBCCCGEkLlJuiq569ONVWR7wbnnnotVq1bhu9/9Lu677z6sX79eUxYBYNWqVfjDP/zDSvnVVvlnZ2fxD//wD9i0aRO+/e1v48gjj8Qll1yCt7zlLVi0aBEA4KabbsJ5552HSy+9tG72XeXyyy/Hhg0bst/btm0bWqVRJu6LEvEKm5GcxayYzlxSQ7Qzl9S2CGOXVJG4pEJxSZWGS6r0uKRmRpwyl9TU6tcPl1RhcUmNE9IltZsuqXJALqluy+Rcc0nNcu2xS6r2qqJLapGq73K6pLqhSyqpC11S65c5h11SMdPuohD9JZJA23PefVi2qBFPPfVU6dzEBQsW4Morr6yUX22Fce+990YURXjzm9+MH/zgBzjqqKMKcU466aSCFtspe+21F1qtFp5++mnt+NNPP42VK1da00xOTmJycrKrcnQDqS0eoB+bDeO9aqaj57Aj2poEAs5Fb0T1RW+EuuiNFNnKq6O56E0eD4CyBJDuKah5NiqKqFmu9te76I2eJxe9gabEli96o7jfKl6f47PojUMBdcQvKMcFGeA47lCulHKE8r8ebip0NsXSk0a4ZHV8N5RuYVOMytL65nK65Ezhojc5XPTGjfdadll+LnoTw0Vv6oVXkamJ3F1Y9EaM8KI3wPBunWHjC1/4As4666xMWfz5z3+OVatWZduVPf/88/jYxz6G973vfbXyra0wXnPNNXjDG96AXXbZxRlnyZIleOSRR+pm7WX+/Pk4+uijcdttt+Gss84CAERRhNtuuw3r16/valmDIJLx6EvYngEAPLPtlzj0V6vjfoSE9hIWQiTbXsTHEnsRpJSIoG+1EUUSMumkR8l8SIl4K40wiyeTPJK/Il71SWbbaqSlxN+j5NaJMnmSv+pcuThrTWahWDsBIN0yI91WI1aWgkwpjedTiixNtv2GyLfk0DYMV77HP4NM2Uvz0JRORYlVFV/dKpnEFXlHVlVUrUqtWoamXBp5ohhmGsuscqB4DMZ3/TwNxatQtmKtFcXjppW2eMyUvV/bagCjt61G3nnJ8g5giacUw2019GPWvBwKpSpWnb6nLY+h2FbDUh+2eBU7N/3YVkM7xG01quM7rSp5cVsNbqtRVnZdOpBVjPC2GhH822p0e2yqU9785jfjqaeeynaPOPzww3HffffhwAMPBAA8++yzuPzyy3uvML797W+vm6RrbNiwAWvXrsUxxxyD4447Dtdeey22b9+erZo6jKjWRNuejGl4+jeSscIYRTswf3orJkTcSZ0XxB3eCQFMBBITQqKVuFjODyK0RNypnmxFaIkIgZBoCYmJ9Hcg0WrFf4NAYmIiBATi3xOAmIjXeRITyaeVKFETAmJC5NrEvETJagVAK7E2TiR+iOnvVpAfSzWcViv/3VLDglQbQ7aoSPoRSP6m4Yq/40TsYAskI9itpCkHiPM0LCwiyH9nbrRBPsFcpFqbYj2NRyaT842SoCix1kkJyAgijIAoivs5UQSEIRBGgJQQs7Nx/EgCUQixczYLD3bMQrYl0A4hd4RAOwJmgGhGItwByNkA7dkWZqcDzIbzEIUBZsMA0+EEQhlgVgrMhPPQlkCIAKEUmIkCRFKgLYFZBIhk/KCbjQRCGVdXJAVCiCQsftClgw/pMSnjepAy3sczHwBI6htZ1SdhQntnpoo6FOU2U85FMlAglL5yEGRKcxq/pWiQAYTWkW0p1uVcSQqUsrKkqtgFw5xlXKOouFrCbL8LAwVwKH8OGeN4RUXV5m2rKvLF/H1hZp52GVXrd1Hu4jFNJqu8hmwO5V8Ly+oRnjA1n6IybZ6DKp8vjhbmDLHFtecTmPk7ZHIPBBQHHGzXBtD1Mdd5ldWRS86q6bXzMF95rnMsxPNcky7qNqWDCLayLGmsMnnkrG04K4lvLd/0aLZFcsnYRL9oemF8ZVU3ZPcPr9XWHdYtg66XgVWKgk1JFwLRjp39l6VLlG6r0T9RKiGNa2D+bspILVv0xje+Ec888wyuuOIKbNmyBUcddRS+9a1vFRbCGSVyhTJVHGcBAEJM4Lm2wISQCITARIB4pqIA5gWxoigQd5rmBwECgUSZjLK5dC0hk/QSrUTJFEi/R4AAWkGsKE4EUWzpCSSCIEr0s9j1sNWK44oAcVgAACGCCZnNc4uVyORvgHzOW6qwqUpnEidX5kT+EG7lCh0mFHczxaSVrdKZKX7IlUnNBBcUe2MTSTdTCEihlKsqrgDCVJlNlVafApuZ9QLITOFtAfPnKfkGSdnJ79ZEfrwV6LIapDfpfAC7OVsSSRFqO4m/Kda/vI5FMiggojB+G4QhgvYsEEoIKYGoDczMIkgGAkQ7BNphHH82AmamgVACs8lgQDtR/NsRsH0WaAtEMxHC54FoRiBstzC9YwJhFCAMJ9COAuxsx7/bUYDpaALtZCSzLQPMyHggIIyQHY8QFx1BIJLxoEAbsWIvEa/kJjMvgtyNJoI6zyJV/HMVR4j4pZjPSc7rKTDmmGqKejIJtqW4uQZpaoHMAyB+DqQeAyK/tZTrE3/i+JnbepDLkrmsC2OAIpUTxWOpvNm5WNKpFJQhSxwzH1dc83fZNFBz0CE+ZrEgw4ivHFO9BVxl2xT9vDw1TE0jK8Qplmcq0S4DqVNuS1fMft38HSJvH991vNAWTEXfODdr3kW5igMI9vJt+kVZWrO+XINC8W91oKZYlnPAwXrUXqZJQf4skWuwxSZXiQAobw+dpLeFWY+50ldQHKvI31Q3bFI39RZ1scfdNm09PBJI+LfVGNZFb7rNSCmMALB+/foBuqCmXa5mQ0XS40ufh+VWr+fbMlYUBRBEItOxWomOErtAiswK2RLARPIUmRAAhEzC4hdJK4kjRKo8pvqVTBTG+Hsr+Rsk89ECESXl5dtDiEQhzRbEyb7LTNkEUAhPFU+ROtJmxsAk/kTecdAWXREweiS5cpqFp98tph+R92CS44piqbiF5TqGqkyKpDyRp1UU3FwAQLQUgTSFNy5PFCyqieKpWltTBVIAmJjQFdVWS8nfsLIGqeKZnkOQ/zXnt1nnttV46KnDbebQm9rO07D0WPo3MuImri4iy0vm7i9q/ulIWRomLWFqeJ5b5o5tpdBTtfg9poMEADC/BeyymxJXFK9B2rhbLSAQkEELrUCglcURWBi09Gs/LKjXLfsuleuVHAvb2e/UGR5RVLzukdTbgHr9tWsv9fRhmJedfQfQbidzu5O8wihW8tN4kYQI099JWDvxCAiThjCTDhQgPjYjIUMJGQLRtIAMAUQthLMCs7MtRO0AYdTCdHsCs2ELUgaYjQR2RvPQTpT86aiFUAKhDDAjRZx1JBLFPrb0RxCYDQVCSMjkWCxq/FxoRzJT9qMonhqQNm1VyY8gAaGpBNn/2ZvK0DJNj4AAIn92WRV2oTwyAy0sVd4DJf9scAEinjog8sBM4U8Ki8cQRDbIAKNsQPE0QC6bUpwSpv+u8oZ2KvBaxv40uvLtDqs7mFErb1E87gqH43ihvrQwj9Jpy9edVZJHNeXKVx+F9B4lyNcWXEqXVdGvkL6s3m352mSwl1U+QDHMbJ8ZXZfUUbMw9oqRUxjHBSECTIcSs5FIFMR8xc+J5A2d6jwTQmYv4olA3WsxDYsfQBOK21iaX/pQi1cglVpYvshLuiqovrJoS13ABMbeiOriJ4iVRXUEPVU+kcmautIZi6YA2u/i/DAU4tjCzfRZwVD0qnT2Z6Afz5TZTLHU91RMBM/LS/NtWcKCokKb7XeYX1Alr1TZTBVSJa5yvGCBTePkJ6+V2TGqPma6OyhP1swVIlP0jDSR/jcqi6ccy4rVlFdDTtuTvO7CAa6eX5UBBuU6pavEatcnvTkBfQ8udUADQGFY2tULdJ1bpqw54kpVQVeOKfFkqpCZcZRrKH3Xz7xuqgxZfM/5qF9919A1Lme66Lmu8zwRm/OVNPOVgaHdlOsm8gdyfi1tg0dpXlUWB1JlcVHWrm2DJ+Y1SdLUuUet1zfS00sJ/bqq96lUrl02fhAr6ekxKQGEaT5x05UARCQQRQIyEoAUkDKAlPFvKQUQCYQyAGQcL5StZMn7VqK0C4RI3fYn0I4EQiEwGwZoJ2GhFJiOUrd9gZlE2Y8EMBOKxI1fZKsmpm78YXJMJuffTkanYqu/VJq3RCTStQbStQDi93cEACLKFP5UVdeMF4ZSrb/f0vn/+bFW9txIlrIT6mJ2QZaHua5AOhCgK/zxyuzZ4ABUz408r2xygBBZ3iKVIE0bKGWnAx2pDLBgVaq0inErf4Vbyx7RZTm3Fa+/WoUzbtXXbmXlXVgPd0RTS2VddsyG5ZGGlHhgz11RXfL47Co333wzFi9eDCBf7+X+++8HAGzdurVRnmOpMJbNKyxH7ZF02vvWezf5wioBZqJEgYM+OtuKFGUOyL0lBRBE6cNZ6atm33VlUlXwVENZS5tThMyNRFUwU7nS3kBqqdT1l1yxCpTv+bH0t65cpvFTebK68c7P0tOp4bpbjnJuUMjOyx5XGMfMhWTUMLfyqirDUI7Jwu+0UBFIXf7MIgukFtpYoFz51k7LbJ6dNve0ZOVY4VkZCUs8of3O9RdhxIszVF080u95vzYohKnh5ncznu23izL3I/uAhdTagtYO0njZIIV0DlDoxxQCU0H3vMi0ayesYc5rkdW3fi30ehaW66OmE854at6aDoPitVfEKRw38W2wDOj3uIrpFum6183tbIIgzMLLBq6K8/2a9zTK2rStnovfzb+ueKI0j0i51oD7emnXx3L6dZbVcHWu42scJvU7mw12tpIwESCZQiEh5qvPYVm4jqqXTFaMci8D+n1acMMteeb6wl1OSfrz1/a8ReH+Ld6n6r2pJHOk8+cR/1bbgExkkImynsoTSpE/a2RsjZcSijIePzdi43/aGxFop0q5CLIOfOwsEM/pl0n62ST/KIIyxz9WzNtRbuWPJDLrPgRiy34iY1siseyLZIFAmciRfE+e8wAQCgmIeJGDMG29Il5CMFUm84UH82P5AK/6zMkV9pRMiYdIlPRM/VaU7dbQWxxnw9H1SU3Grrzhw8batWu13xdeeKH22zqnuYSxVBiHmXQzitTC2BISAvkcoVxRU35H+YOnpSpp0JVJoLjHoUBuncyVQZGlT5XL7LfIX4iqcUR96KkuLMX5ObIgPxy/9fdoMU/f/IyCW4xjkYg4P+MFb6Z1yOean2NdxMMSbiq+LmXZVHhVS633PDqcx+HqlLs6fLrRUe3oG52KrENpV/YiR1hkyVMNN5e9LnjKWs6lbg25HrFZ27e0D9f1tYWllLlRlY1oFg2tjrr2XCczXWZI0vJVr6dyPDlmM2pl8yq1c1DKUc/Dc56usI4UDtiNt4XnmDFQBujPyfi3+5kTp63W+nwKsJmD7Z71OQPYrm+McS9Z46gyWsqT9jx8+eRxq3VmbHMcszDzXWIMFmrh2rWT2jHbgkq6NcoyqOSTucPnstkefAMp6v1nv9b6fVoM98lRHqcbFO/HSAsTABZkR2TS55GZh4/aJ9L6R1n/J/6tbVnlec93g6ZbNBSdeezvRF8anxxVzrVMzzDzSMvYEczg5tLch5N0cMEZ3j9RKhH1aOXdsVcYh8XaWCxbYDaSiISAgERbFke6s/0PM4uDKHRsUstk/D1XVHQFT7eUFDu/Qnl55uW6XqhCiZ+mUcNV+dRwXxwzTC3XFW7LwxfXlEXPp9pLw9rZLBQirWFV5ppY8+v6C83f6QSqd+TNzmNZpzEboVaOmcqk7bhLITLT2MLN8ppQGGSo0A7K2nNdbB2GOnUhHfGccSzHy5RNMw9pCTevhiutWZ7vWBUK18PyDAP056J5THuWOcopm6rq9CqueMyehz2mrSxrOaai6bgnzfS+9udqV8Wy7aGppUU7VogT/3Xde+o70AwrfLfI0GzacTNlwU1eP75BMpfnsRlPjaNStwvq6w112p31Xc/CQGyhT5P3X8z71TcgXIV+7dVX5b6t/mxw42rfTc5yJmqVRxpSJLjoDUCFUSNVHpspjoD9MWjLy/e4zF0SZqMQbZG6IeSKWv4SSxTA1MJoGek2lUt9epuu+BW8F5UHbh67+kvYjOPrkJnp1PLtFDsL1dK5y+t2mjI5XC+kusqsq7w6L4ZKnUSPBc+mBNhlkP60RqcGqN4hLVMM7efor6Re7+usu4XUa5FF2Yt166N8EMCtuMXlm7GlM6ySAupJ78+7eMJNlxE33XQCUyEpPLOEM8xMWxX7+RTjyYrxfPm68NWfLURXPgwLg5GXdp0dMrmOu7DNS9NW+i1cR2GNl8evWm6OT+JOupM21zHX9TGPuq6Lmt5sF3XrvgrZfMw6bbCKtaswYFC85urKz7aB6nzupKUNWS5ct+6xqqhy+fK3tYmye9Vfrhtfe1bbqypTO9kybhQZpUVvDjjggEbuppdccgl+//d/3xuHCiMhhBBCCCGEGMQLW7nDh2nRm82bNzdK98IXvrA0DhVGC527qao0d76IV1qL5zCq61xUHd0B9NEp3b3GtFYacbU81ThmecbvkhF5oIrlsAqyQl5zj6qtsUqrs4+YFQ/6LEtFa4JbDp8Lmsu65LMsFdM1H2H1jWZ3uult2ahz1RFkF3WsNK78XXl4R7SFuXVJeXlSqX0zvTeuae1EaMQ1yhbF/MsQ0n53ac80CQRo2cMLIpTfrdJxp9rrsuSc0+M1z9uK47kaeZ4s5rlk71HhCNeub7nMaRxfvdrCKh9r+K73bZdVlaplp3KXXWNTpkJdO66J61gVmbqBr2xfPZv1p8pk+64ds9S975xsdW+TrWo9ltWfr21o5WqPqc6va0GOiveRESEjQruj8gdJvGmUxyW1j7KU8apXvapneVNhJIQQQgghhBCDeDVfd/iwLXrTK6gwllA2eti5BTKlmE9b6iPKrv2DtJFmT6N2pY9Ld4e5/KF9+cV5jg51bvgmczw6tVIBzedHeK1nBcuNzUrntxxZR1xL8i1YGyx5lKUplGXO4URx36e6Vpk6FhVrnJrWhzqjwGVxOw23pik5H3d9WdqIsZJb8Xp7LGoeC0qhnBqWCS3M9gSzWiO64+ZQaJsl5+g7r7LnTZM5LlUwyy2TuVcWrroWRJelpPQe6oJ1UZOjyzKq8vksvHHc+u8XWztqYnG0tgOXPL46Ny2NhT0S7ZbHOG41uataE+u040bWOwdVZKlyrd39vmaySjnK+zCOzhzGXkKFkRBCCCGEEEIMJEZnDmMvGUuF0TXy02hkrMEIo30kK80nD2tbLCTFVMaIrsNS0ouVz/pFXcta1ZE93zwQ79wtr9XJkU7YLV618lDjVJin5LOOxeVUm4thi+u29lU/LvXdpzX8snc+6u+ey+e+RtbrUrG+tLAK8lUd7e+FlbDbVG0ThXMuWKPU+arV226aOsdvXbPOaSrMkSpbArn+buzF+cBlFsXqz6jyd1v9OnHLlUvhk0m9jzv1wLBbQ9zz2ppgb8eOa9nYwuuaR1td9ipyFuVrav0x5vN2aLmuIlf9um15wrq3In7zOq1ah/U2KqkqjxrPf/06u9b9fu90EynHRyn0MUpeg4QQQgghhBDSFyIAben+1N1+a+PGjTj22GOxcOFCLF++HGeddRYefPBBLc7OnTuxbt067Lnnnth9991x9tln4+mnn+7eSTVgLC2MLpqM1nfLKpmP4EZJHCAUodfaVHUFwipzwfzlVB99rGvJrLqiXxNrGVAyz6eONayuRc1Rbp05XmV56al91gb/9fNeswb1l4V30ZJWtcyOZKk5X7HOHBvn3EnvPLSq59qtoc9eLznssuq6LU9A+Uh5MbxOG3FYdDxWCnecsvzrzjkMPeFGXlXuowpWuDiabfO58uwLSWrIbL8/XPVVYR5p1yxJHlkK8zUbzAG03XMVr5OfuvLWfa6m8swCUPdZVKhjgbKucN2gzQthOazOWyxrJxUplbf5M6h6m2giF+BrG9Jr3ZzVZLS2do+c5pz1UaLbi97ceeedWLduHY499li02238wR/8AU477TT827/9G3bbbTcAwKWXXopvfOMb+OIXv4jFixdj/fr1eN3rXofvfve7zU+kQ6gwEkIIIYQQQoiBBCD9G9rVyu9b3/qW9nvz5s1Yvnw57r33Xpx44omYmprCpz71Kdx44404+eSTAQCbNm3CYYcdhnvuuQcvf/nLa55Bd6BLKiGEEEIIIYQYRBJoR+5PJIEwDLFt2zbtMz09XSn/qakpAMDSpUsBAPfeey9mZ2dx6qmnZnEOPfRQ7Lfffrj77ru7f4IVGUsLY+wq43MLrZFXlzZDtbmftS0bnZZtP2Db7Fp1KdUWjtDcVisualJjg9pKx811Lhq4ZtZayt+Zh39J//y4f2GOPF61sl1ujU1cbH3p6saJy6rgYtWDiez9WqCpmsts1YVUfPVaZUnz8gUJekn1BQyKrpnV8SwoVMWt1OvC2A0Xzfz5L6XpGtYupMmL6GTctYPztLqf6QhbYIm7ZvHcm1PnOlVv6Xk7SqXM0qbnVrg2lvd9lW2qCvjbWUd3a0F2wCd/Naq4pjYh1GpPAsV2ZT0PE8d5NZXRck8Irf8DXc5KMqqU3a9NiOVztuXmGdevR+dzs8L1LilglBdeBMrr7kc/+hEWL16sHbvyyitx1VVXedNFUYRLLrkEr3zlK3HEEUcAALZs2YL58+djyZIlWtwVK1Zgy5YtNSXvHmOpMBJCCCGEEEKIDwkg9AxCRlLimGOOwa233qodn5ycLM173bp1uP/++/Gd73ynUzF7DhVGhV4v+2uzYPqsPaEIvfGKm6MXLYkuK2Kan2tj39JNfks2ZLZb/apZ3epseVB1q4MqFj+bNadSuoqL5JRtG5CntcjhilupzfZnYZm5QdlCPu4R2GpxyywUrvy7cU18Wz14LEraSHIPNl+utFAD4LOuNRq7NvJQLREQtkUdAocFo/nIeeXr3fB8rfGSvPKrqp+3PV0dK6qnrXbTImdJL2wLJDms57XKrmDNbYKWh7TNkkquTZPFWZzeK92hvO5V6j83+i9ns2fbYOqzWZ5dzcvaXn0ZjK6FUUr/SqgSQKvVwqJFi2rlu379enz961/HXXfdhX322Sc7vnLlSszMzGDr1q2alfHpp5/GypUra0rfPTiHkRBCCCGEEEIMIsSrpLo+dXVhKSXWr1+Pm266Cf/0T/+EAw44QAs/+uijMW/ePNx2223ZsQcffBCPP/44TjjhhC6cUTNoYSSEEEIIIYQQkxKlsK7tdN26dbjxxhvx1a9+FQsXLszmJS5evBgLFizA4sWLcf7552PDhg1YunQpFi1ahIsvvhgnnHDCwFZIBcZWYQxhXwa3kwUdyqnn8hoiSj6FfGwuiyWup2b5mUuqzU3V426qu5r64pUvIlO2gEzThWMqpyt1sy13dzXPwS6feazKYikuF9TqC6b40wwH1RdbKaPpvVtjj1FvPZYvLgHY7t0eLqJhIGznWsUF0XHenSyMUmthEYcc3W7V2ZowlrLienK5kANd2SevkHFv3CDNvPSFcZQStHuzoUu0557pxVOp9Jy6WEYvUPPu9jn0+i3glL1hHr2iUzn79Ta1leOTdxBv+TplDm8vpJwIQNunMNY8uRtuuAEAsHr1au34pk2bcM455wAArrnmGgRBgLPPPhvT09NYs2YNPv7xj9crqMuMqcJICCGEEEIIIW6ixPXUGV4zvyqD+Lvssguuv/56XH/99TVz7x1UGDV6sKBDTVRrVFvMZN9dW0eUWdNcC9k4vydpXZbEqlZEn/WwbMGcKovPlC0802TRmSqLzXTDWlg8v7AkvJhHErF4qNI4XhNrQf3pzlUsUFKiwYIONlmKW9B0h2aWIMB1LXq1zH05hUUVLGXHAW5rWkyyFVDXJC2pY6eFs4+j1k7LW0qXFooaJm+AYZKlJhLNrVxl+faLUbHYDVO5dRkVOVNGTd65hPdxOCYXZmQWvfnTP/1TvOIVr8Cuu+5a2JuEEEIIIYQQQrpJJCVCz2dc1pUfGYVxZmYGb3jDG/DOd75z0KIQQgghhBBCxoBIuj9jYmAcHZfUq6++GgCwefPmjvOK3Qp74bDSDRSXVJm7pFYdw6izf2KVxWxcLqhO91OPq2iZ62kdt9Om+xyqslZboCZO5ZazghwA/G6n/oVP4jJLFkuxpOvuQyyWv/SuUdz1vAupqGT7wlW9JzvYm6wJFV3zurGQC5DXcS9fQt6aS2Vy1m8fx1NL6l6VsJP6aryfWKdtsKbbZzfbxqDfgL1s54M+t25jXcynQnxCSOeUzWEcYe/9WoyMwtiE6elpTE9PZ7+3bds2QGkIIYQQQggho4JErDT6wseBOa0wbty4MbNMDo6my5FHCDGjH2qQl81iVlxApwOLYiKrTUafRbHTRWz6sYCNrdyYeovY2ONUsRBWWDSlx0vvV8m72rL8QPGcdYujy0LntDwOwbBexwu/qHVknI/LmlC3xLlmbXExkPO0br9RMW4HzKVr2o123q/66OtCSxasC1c5wggh3UFKIPRtETQEfZF+MNA5jJdddhmEEN7PAw880Dj/yy+/HFNTU9nniSee6KL0hBBCCCGEkLmKRKw0Oj+DFrBPDNTC+O53vzvbpNLFgQce2Dj/yclJTE5ONk5PCCGEEEIIGU9kshqqO7yPwgyQgSqMy5Ytw7JlywZQ8oAXvbEurFJEXfQmp/MFJ+xuqs32VIzDR9kNNU5ZPOJ223XKA6CaO2o1BITlnFKngEQei0tjt1wZi/JUjVg1ZoQqTg5mHVRfHKc3NHNDDVB675r15tl/sKf0azGhKqSyjMobeVTkHAGGqBVqDJMb6KDLJ2QciOB3STX7z3OVkZnD+Pjjj+O///u/8fjjjyMMQ9x3330AgIMPPhi77777YIUjhBBCCCGEzClKF70ZD31xdBTGK664Ap/+9Kez37/2a78GALj99tuxevXq/ghR0TJYK0vPyERb7rQeF2g1LKto/aoki2NRm+xYD7fLsFrnSrbLsJVhP1Z1kZvOEEJYzsOwFMYRFUHsW03k52mxzAkjP1uwjbKnXdctTp1NnU7roF+Wxo4XtsmoYGVUaVLvvms5TJbDulS0vhLST6rcUU1batO7lXcGId2l1CW1j7IMkoEuelOHzZs3Q0pZ+PRNWSSEEEIIIYSMDRKx26nrMy4K48hYGAkhhBBCCCGkX0hwWw1gXBVG2ZtFb7o9zhDJWetxUeJa2ik+t8wy91NXelnm1lplUZkKrqh2GbvvZgq4XE1Td+GwEDeWxeWaCjjdU1OkLHXDlE2cBrxZltXdYJwU+uGO2ptxQ7O+utw2R9nttA592u+QkE7p9x1pK493BCHNkVIiokvqmCqMhBBCCCGEEOIhAhB61EKukjqG9N4TuZ41IYx0C6PIrBPVLYyiQ4uDz9TuskRaF5xpalUEGlsWXce6id3KCMSWxuJ1Uq+H39qYUmJ1zDOLozQcz3a3/cFOcx7UFhr9m5Xgq9/ett05S6+trLRgkhGjV1stETIOyGSu4rhDhZEQQgghhBBCDCQkQo/xweeuOpcYS4Wxc+tBf0b+QzkDQLUsllOI6zhVIepbjqpY67zzH50WyfLtPPI87HHrWxLrtgH3lgh+K2OK39oIuOqhxOqYZ2aVrYBzM/gxmftWEQExBGufVb1HaYnsK51YMMekY0FGA27dQUg5ESRCj2dfL7ZjG0bGUmEkhBBCCCGEED9+l9RxGUChwkgIIYQQQgghBhEk2h4L47jMb6TCqNEDs3IHLkgyihuo9C1yU3AtLXd9TDLV43SwuElVc3zpXjUOt1Kfa6DLFdXvotr0mvjdUuNyXXn73VPVPFLceXWwUEoTd7oxdaNL3XQH75paBl1XRwbX/Tem9xgZTejKSsYJCQkpPNOtxHi0bCqMhBBCCCGEEGIQIfJaGDmHcU4ToaPtdPs0GhzJCttnSHOD+KK1QRXXtbhJZsVssBhOJSouSlNmzSlb3KZ88Zv624TUwb0Ajop9yw1bXirl+QI92aZhzK2S6j0z/NZGH03u7fF4EQ4cWh7JGFD2JmFrJ8OJLFnQcTxa7pgqjIQQQgghhBDiJhISbdF2h4/JwCoVRkIIIYQQQggxiO2LtDBSYVTpgftP3Yakub9VcUk1y8vS+J0/nPswyrDRHo3dpuq+itXideu6VpOpultqSrXrrLqoVnNPNemBu6qLDveFHFbmjntqVVxtZjxGVAcOXVXJGFHlrcGWT/pNhBAhZp3hnMNICCGEEEIIIWOKRITQ45LqW0F1LjGmCqPsaJiql5YFNW8JdwOthsei5Bmh9lntBmF9rGptVFJUjFUn3+F6IHRubTQZkCXJZ4kccivK+FkbVcqeA8N1v8w5zPtmyO8VQroFF84h/SZ2SfWtkjoerW5MFUZCCCGEEEIIcSMRIZRul9SotlFjNKHCSAghhBBCCCEGsmRbjXGxa1NhtDAs5mUpm7ikVlxMxetzbXc3EwgqLMTTwf6WlWl2fZpNTK6Xppl7aLV9GV2k7qndcU01sbWFPo2m2dxVh9T1ztzfdFieIYPDbDfjMQI7MLg4DiEA/D0Q3g2kCbJk0Rufu+pcggojIYQQQgghhBjQwhgzpgrjaIz/N7MYlVsl420fXKFFa1dmwbLeMNUWwREV4zWle8saN8unM+ted0anqm3n0Q3Ua9lny9GILPYx3gvi2BhgmxlnRnhRKUK6TVX/J94ZREVK/xxGbqtBCCGEEEIIIWOKRATJVVKpMBJCCCGEEEKIiYRE6FlTpP7Wb6NJ/zfVa8Cjjz6K888/HwcccAAWLFiAgw46CFdeeSVmZmYGLVqPiXrykTK0fGTyaWsfICwciz9pfD0fZ5loG5+oq5/u1Wd18joYvDvq4Agw0MeIEPlnSBHJP5ISWD6k76j3zhDfP4T0G2H5kPFFyhCRnHV+6JI6RDzwwAOIogif/OQncfDBB+P+++/HBRdcgO3bt+PP//zPBy0eIYQQQgghZM4hvVZEuqQOEaeffjpOP/307PeBBx6IBx98EDfccMPcVhj7uiiBYulSRpt1EVRLQDuJamwnoMVvwU1enpnHMNG7RWS6b1nsz4I3LgIMfDGTtB0N6WIeqZVxXF4u9eA2HANnyO8fQgYJt+sYX6SMEPkWvSndbm5uMBIKo42pqSksXbrUG2d6ehrT09PZ723btvVaLEIIIYQQQsgcQJZYGMdlyGAkJ4889NBDuO6663DhhRd6423cuBGLFy/OPvvuu2+fJCSEEEIIIYSMMvG2Gm3nZ7DeXf1joArjZZddBiGE9/PAAw9oaX7xi1/g9NNPxxve8AZccMEF3vwvv/xyTE1NZZ8nnniil6fTdeSg/skoHk2R0viE8ce5gI40PvriOa6PvojOcH06x3Xe3aN7ss4RhnwRDy6CUwUuhjMwuBAOIbWwLZLDu2fuEPeLbYtFJp8xmUIxUJfUd7/73TjnnHO8cQ488MDs+5NPPomTTjoJr3jFK/DXf/3XpflPTk5icnKyUzEJIYQQQgghY0Y8h5HbagxUYVy2bBmWLVtWKe4vfvELnHTSSTj66KOxadMmBME4jD4PthHmNiujrhNrVtFKEjpHpaUsu17tDha/8S2u0ysGN8l5+KyJ4/Gw7DYCggvglKI+N9jO+o75TB66Zw8hw4vZo+HdM6pwDiMwIove/OIXv8Dq1aux//7748///M/xzDPPZGErV64coGSEEEIIIYSQuQgtjDEjoTDecssteOihh/DQQw9hn3320cKGz9rSRYbl3IT9ZpC2OUYNrI950upWY90aOTeXNB7etj0iD0chhuceckArYx3S58OItL+5CC2OhDSGFsfRRCJK1uJwhY/HlRwJv85zzjmnh4uSEEIIIYQQQoiBzBeDtH3GZeBsJCyMhBBCCCGEENJPJEpcUsfE64UK45jQdPxDAO7RE4eralye3V3VuZ2AECh3Ncvz7MS63Hxxne4xGtbxEX8IjkQd0y21PnRNHRrSZ+mI3GuEDBNqT4R30DAj4Z/6NB7vIiqMhBBCCCGEEGIQu576Fr0ZD3WfCuMQMwxN0CeDcFoeXdbCwGlJEWUnW8kCmZfjY1xu7mrM0ZExXuMxgJbGoYGWRkI6gtbGYUYC3FaDCiMhhBBCCCGEFIkg6ZJKhZEQQgghhBBCrNB7ggojaY7t9nEukuN1KfW4qqKiq5O2kE3T0Z6R2GWmBuMx6qUxog91LnzTCQHGsq0PIyOw9ykhww73axweDjzwQMQWRoHilQHiqxMl8eY2Qo7RhK5t27Zh8eLFAFqwX/jhYmJi9PR5Z616VyZ1K2rOVVVr5V8VKowjzwg/zqgwdsIYtvVhZYTvQUKGkblwR0kpEYbTmJqawqJFiwYtTmWef/557Lbbboj7h7Y+YgQgwvPPP48FCxb0V7g+M9d6yGTASMsnDpDFT0Zk+aT52f8VC7bkby3Lh02OXn36Ue4YUes6E0J6hhBdGsAjhABw2rZI79l1113xqU99CnGfyuxjxNbF//N//s+cVxYBWhiHmlG0MNrottUxzrPm9Ru6Dox6fmOm3PWCOfAYo4WxE3gPDR1z4J4kZJgY5TtqVC2MABCGYdIfN62M8eB8GIYIgrlvf5v7Z0gIIYQQQgghNWm1WvjHf/xH6FbG2Lp4yy23jIWyCNDCONTMFQujibfmSy2B5TdmbetjbRnIwJljjy1aF7sBrYxDxxy7TwkZFkbtzhplCyMQyx8EreRXC0i22ZDe/RnnFuOhFhNCCCGEEEJITYQQ+PGP70VqWQQkfvKTfxmwVP1lrCyMU1NTWLJkCWI9efitSK3W3LQwmpReiUoWv+pjHx1bILXMhr8dDS3j8+jxQutitxifkd6Rgvc5IT1jVO4uKSWiaAZbt25NPP1GEyECxLUuxsq6CIzZPozPPvts8m00LnIYhoMWgRBCCCGEkI559tlnR1phfOyxR7H//i/Ez3/+xKBF6TtjZWGMoghPPvkkpJTYb7/98MQTT4ykLzXpHtu2bcO+++7LtjDmsB2QFLYFArAdkBi2g+4gpcSzzz6LVatWjc0iMXONsbIwBkGAffbZB9u2bQMALFq0iA8AAoBtgcSwHZAUtgUCsB2QGLaDzhllyyLhojeEEEIIIYQQQhxQYSSEEEIIIYQQYmUsFcbJyUlceeWVmJycHLQoZMCwLRCA7YDksC0QgO2AxLAdEBIzVoveEEIIIYQQQgipzlhaGAkhhBBCCCGElEOFkRBCCCGEEEKIFSqMhBBCCCGEEEKsUGEkhBBCCCGEEGJlLBXG66+/Hi984Quxyy674Pjjj8cPfvCDQYtE+sxVV10FIYT2OfTQQwctFukxd911F84880ysWrUKQgh85Stf0cKllLjiiiuw9957Y8GCBTj11FPxs5/9bDDCkp5R1g7OOeecwvPh9NNPH4ywpGds3LgRxx57LBYuXIjly5fjrLPOwoMPPqjF2blzJ9atW4c999wTu+++O84++2w8/fTTA5KY9IoqbWH16tWF58I73vGOAUlMSH8ZO4Xx85//PDZs2IArr7wSP/7xj/HSl74Ua9aswX/9138NWjTSZ1784hfjqaeeyj7f+c53Bi0S6THbt2/HS1/6Ulx//fXW8I985CP4q7/6K3ziE5/A97//fey2225Ys2YNdu7c2WdJSS8pawcAcPrpp2vPh//7f/9vHyUk/eDOO+/EunXrcM899+CWW27B7OwsTjvtNGzfvj2Lc+mll+JrX/savvjFL+LOO+/Ek08+ide97nUDlJr0giptAQAuuOAC7bnwkY98ZEASE9Jfxm5bjeOPPx7HHnssPvaxjwEAoijCvvvui4svvhiXXXbZgKUj/eKqq67CV77yFdx3332DFoUMCCEEbrrpJpx11lkAYuviqlWr8O53vxvvec97AABTU1NYsWIFNm/ejDe96U0DlJb0CrMdALGFcevWrQXLI5nbPPPMM1i+fDnuvPNOnHjiiZiamsKyZctw44034vWvfz0A4IEHHsBhhx2Gu+++Gy9/+csHLDHpFWZbAGIL41FHHYVrr712sMIRMgDGysI4MzODe++9F6eeemp2LAgCnHrqqbj77rsHKBkZBD/72c+watUqHHjggXjrW9+Kxx9/fNAikQHyyCOPYMuWLdrzYfHixTj++OP5fBhD7rjjDixfvhyHHHII3vnOd+JXv/rVoEUiPWZqagoAsHTpUgDAvffei9nZWe2ZcOihh2K//fbjM2GOY7aFlM9+9rPYa6+9cMQRR+Dyyy/H888/PwjxCOk7E4MWoJ/88pe/RBiGWLFihXZ8xYoVeOCBBwYkFRkExx9/PDZv3oxDDjkETz31FK6++mr8xm/8Bu6//34sXLhw0OKRAbBlyxYAsD4f0jAyHpx++ul43etehwMOOAAPP/ww/uAP/gBnnHEG7r77brRarUGLR3pAFEW45JJL8MpXvhJHHHEEgPiZMH/+fCxZskSLy2fC3MbWFgDgLW95C/bff3+sWrUKP/nJT/D+978fDz74IL785S8PUFpC+sNYKYyEpJxxxhnZ9yOPPBLHH3889t9/f3zhC1/A+eefP0DJCCGDRnU/fslLXoIjjzwSBx10EO644w6ccsopA5SM9Ip169bh/vvv51x24mwL//N//s/s+0te8hLsvffeOOWUU/Dwww/joIMO6reYhPSVsXJJ3WuvvdBqtQornD399NNYuXLlgKQiw8CSJUvwP/7H/8BDDz00aFHIgEifAXw+EJMDDzwQe+21F58Pc5T169fj61//Om6//Xbss88+2fGVK1diZmYGW7du1eLzmTB3cbUFG8cffzwA8LlAxoKxUhjnz5+Po48+Grfddlt2LIoi3HbbbTjhhBMGKBkZNM899xwefvhh7L333oMWhQyIAw44ACtXrtSeD9u2bcP3v/99Ph/GnJ///Of41a9+xefDHENKifXr1+Omm27CP/3TP+GAAw7Qwo8++mjMmzdPeyY8+OCDePzxx/lMmGOUtQUb6aJ5fC6QcWDsXFI3bNiAtWvX4phjjsFxxx2Ha6+9Ftu3b8e55547aNFIH3nPe96DM888E/vvvz+efPJJXHnllWi1Wnjzm988aNFID3nuuee00eBHHnkE9913H5YuXYr99tsPl1xyCT74wQ/iRS96EQ444AB84AMfwKpVq7QVNMno42sHS5cuxdVXX42zzz4bK1euxMMPP4z3ve99OPjgg7FmzZoBSk26zbp163DjjTfiq1/9KhYuXJjNS1y8eDEWLFiAxYsX4/zzz8eGDRuwdOlSLFq0CBdffDFOOOEErpA6xyhrCw8//DBuvPFGvPrVr8aee+6Jn/zkJ7j00ktx4okn4sgjjxyw9IT0ATmGXHfddXK//faT8+fPl8cdd5y85557Bi0S6TNvfOMb5d577y3nz58vX/CCF8g3vvGN8qGHHhq0WKTH3H777RJA4bN27VoppZRRFMkPfOADcsWKFXJyclKecsop8sEHHxys0KTr+NrB888/L0877TS5bNkyOW/ePLn//vvLCy64QG7ZsmXQYpMuY2sDAOSmTZuyODt27JAXXXSR3GOPPeSuu+4qf/u3f1s+9dRTgxOa9ISytvD444/LE088US5dulROTk7Kgw8+WL73ve+VU1NTgxWckD4xdvswEkIIIYQQQgipxljNYSSEEEIIIYQQUh0qjIQQQgghhBBCrFBhJIQQQgghhBBihQojIYQQQgghhBArVBgJIYQQQgghhFihwkgIIYQQQgghxAoVRkIIIYQQQgghVqgwEkIIIYQQQgixQoWREEIIIYQQQogVKoyEEEIIIYQQQqxQYSSEEEIIIYQQYoUKIyGEkKHkmWeewcqVK/G//tf/yo5973vfw/z583HbbbcNUDJCCCFkfBBSSjloIQghhBAb3/zmN3HWWWfhe9/7Hg455BAcddRR+K3f+i189KMfHbRohBBCyFhAhZEQQshQs27dOtx666045phj8NOf/hQ//OEPMTk5OWixCCGEkLGACiMhhJChZseOHTjiiCPwxBNP4N5778VLXvKSQYtECCGEjA2cw0gIIWSoefjhh/Hkk08iiiI8+uijgxaHEEIIGStoYSSEEDK0zMzM4LjjjsNRRx2FQw45BNdeey1++tOfYvny5YMWjRBCCBkLqDASQggZWt773vfiS1/6Ev7lX/4Fu+++O171qldh8eLF+PrXvz5o0QghhJCxgC6phBBChpI77rgD1157LT7zmc9g0aJFCIIAn/nMZ/DP//zPuOGGGwYtHiGEEDIW0MJICCGEEEIIIcQKLYyEEEIIIYQQQqxQYSSEEEIIIYQQYoUKIyGEEEIIIYQQK1QYCSGEEEIIIYRYocJICCGEEEIIIcQKFUZCCCGEEEIIIVaoMBJCCCGEEEIIsUKFkRBCCCGEEEKIFSqMhBBCCCGEEEKsUGEkhBBCCCGEEGKFCiMhhBBCCCGEECtUGAkhhBBCCCGEWKHCSAghhBBCCCHEChVGQgghhBBCCCFWqDASQgghhBBCCLFChZEQQgghhBBCiBUqjIQQQgghhBBCrFBhJIQQMtRs3rwZQgg8+uijfSnvjjvugBACd9xxR1/KI4QQQoYZKoyEEELGko9//OPYvHnzoMUghBBChpqJQQtACCGEDIKPf/zj2GuvvXDOOedox0888UTs2LED8+fPH4xghBBCyBBBCyMhhJCRR0qJHTt2dCWvIAiwyy67IAj4iiSEEEL4NiSEEFLgO9/5Do499ljssssuOOigg/DJT34SV111FYQQAIBHH30UQgirS6cQAldddVX2+7HHHsNFF12EQw45BAsWLMCee+6JN7zhDdY5if/6r/+Kk08+GQsWLMA+++yDD37wg4iiqBDvhS98IV772tfi5ptvxjHHHIMFCxbgk5/8JABg06ZNOPnkk7F8+XJMTk7i8MMPxw033FBI/6//+q+48847IYSAEAKrV68G4J7D+P3vfx+vfvWrsccee2C33XbDkUceib/8y7+sXqmEEELICEKXVEIIIRo//elPcdppp2HZsmW46qqr0G63ceWVV2LFihWN8vvhD3+I733ve3jTm96EffbZB48++ihuuOEGrF69Gv/2b/+GXXfdFQCwZcsWnHTSSWi327jsssuw22674a//+q+xYMECa74PPvgg3vzmN+PCCy/EBRdcgEMOOQQAcMMNN+DFL34xfvM3fxMTExP42te+hosuughRFGHdunUAgGuvvRYXX3wxdt99d/zhH/4hAHjP75ZbbsFrX/ta7L333njXu96FlStX4t///d/x9a9/He9617sa1QshhBAyClBhJIQQonHFFVdASol//ud/xn777QcAOPvss/GSl7ykUX6vec1r8PrXv147duaZZ+KEE07A3//93+Ptb387AODDH/4wnnnmGXz/+9/HcccdBwBYu3YtXvSiF1nzfeihh/Ctb30La9as0Y7feeedmpK5fv16nH766fjoRz+aKYxnnXUW/uiP/gh77bUX3va2t3nlD8MQF154Ifbee2/cd999WLJkSRYmpaxWCYQQQsiIQpdUQgghGWEY4uabb8ZZZ52VKYsAcNhhhxUUs6qoytvs7Cx+9atf4eCDD8aSJUvw4x//OAv75je/iZe//OWZsggAy5Ytw1vf+lZrvgcccIBVJrW8qakp/PKXv8SrXvUq/Od//iempqZqy////X//Hx555BFccsklmrIIIHPRJYQQQuYqVBgJIYRkPPPMM9ixY4fVqpe6fNZlx44duOKKK7DvvvticnISe+21F5YtW4atW7dqCtxjjz1Wq9wDDjjAevy73/0uTj31VOy2225YsmQJli1bhj/4gz8AgEYK48MPPwwAOOKII2qnJYQQQkYduqQSQgipjcuyFoZh4djFF1+MTZs24ZJLLsEJJ5yAxYsXQwiBN73pTdYFbapim9v48MMP45RTTsGhhx6Kj370o9h3330xf/58fPOb38Q111zTUXmEEELIOEKFkRBCSMayZcuwYMEC/OxnPyuEPfjgg9n3PfbYAwCwdetWLc5jjz1WSPelL30Ja9euxV/8xV9kx3bu3FlIu//++5eWW8bXvvY1TE9P4x/+4R80l9rbb7+9ELeqO+lBBx0EALj//vtx6qmnVpaFEEIImQvQJZUQQkhGq9XCmjVr8JWvfAWPP/54dvzf//3fcfPNN2e/Fy1ahL322gt33XWXlv7jH/+4NU9zcZjrrruuYI189atfjXvuuQc/+MEPsmPPPPMMPvvZz9aSH9AXo5mamsKmTZsKcXfbbbeC0mrjZS97GQ444ABce+21hfhc9IYQQshchxZGQgghGldffTW+9a1v4Td+4zdw0UUXod1u47rrrsOLX/xi/OQnP8ni/d7v/R4+9KEP4fd+7/dwzDHH4K677sJ//Md/FPJ77Wtfi8985jNYvHgxDj/8cNx999249dZbseeee2rx3ve+9+Ezn/kMTj/9dLzrXe/KttXYf//9tXJ9nHbaaZg/fz7OPPNMXHjhhXjuuefwN3/zN1i+fDmeeuopLe7RRx+NG264AR/84Adx8MEHY/ny5Tj55JMLeQZBgBtuuAFnnnkmjjrqKJx77rnYe++98cADD+Bf//VfNUWaEEIImWtQYSSEEKJx5JFH4uabb8aGDRtwxRVXYJ999sHVV1+Np556SlPcrrjiCjzzzDP40pe+hC984Qs444wz8I//+I9Yvny5lt9f/uVfotVq4bOf/Sx27tyJV77ylbj11lsLK5zuvffeuP3223HxxRfjQx/6EPbcc0+84x3vwKpVq3D++edXkv2QQw7Bl770JfzRH/0R3vOe92DlypV45zvfiWXLluG8887T4l5xxRV47LHH8JGPfATPPvssXvWqV1kVRgBYs2YNbr/9dlx99dX4i7/4C0RRhIMOOggXXHBBJbkIIYSQUUVI+tMQQgipwFVXXYWrr76abpiEEELIGME5jIQQQgghhBBCrFBhJIQQQgghhBBihQojIYQQQgghhBArnMNICCGEEEIIIcQKLYyEEEIIIYQQQqxQYSSEEEIIIYQQYmWs9mGMoghPPvkkFi5cCCHEoMUhhBBCCCFkTiOlxLPPPotVq1YhCEbXVjU7O4s77rgDJ510EiYmxkqFGi+F8cknn8S+++47aDEIIYQQQggZK5544gnss88+gxajMZ/45Hvw+xf/FT7+8Uvxznd+dNDi9JWxWvRmamoKS5YsQeyJO/wWxlZr7urzpbVfagGuP0IlRuCa9wuJQd320YDK9TA+j8A5QZ2rJWrE59PBzyjeJXWu6SieHyGjgpQSUTSDrVu3YvHixYMWpxHbtm3DwQfvj9/8zVfi61//Hn72s8ewcOHCQYvVN+auRmIhd0MVGIXuwVx2m+1cYaxfN1QYhwFeA9I/6rQ2tsy5B68pIcPFKPdrN37oIhx2+P74xCffjVe96jF85M/W40/++NODFqtvjJWFcdu2bcnIRguj8CqZy/7RtDAOFloYFcbnETgnoIVxMIziXUILIyHDgZQSYTiNqakpLFq0aNDi1ObnP/85DjnkRbjtn67Bscceirvv/lecvuY9+NnP/hN77733oMXrC1QYh5i5pDB6a7tLymFPFMJejYYNyW3Xf8WRCiMhc5F+3UW9fnPzaUBI9xl1hfGcc87Azp0z+OyNH8iOvfF3rsIee+yOv/mbrw9Qsv5BhXGIocKYQoWxV1BhxNBcC0JGGSqMhBAXo6ww/su//Ate/vLj8NP7N+OAA3Jr4kMP/QJHvfQ8/OhHP8aLX/ziAUrYH0Z3bVsy1AjjowcK/aMRWD5m3vZ/foFEs0+vGESZhBDSI5qsDGC+J6p8CCGkn7z3vb+Hd7zztzRlEQAOPvgF+L3few3e977fG5Bk/YUKIyGEEEIIIYQofPvb38YPf/gA/uAP3mYN/6MPrMV3vvNT3H777X2WrP9QYSSEEEIIIYQQhS9/+Xr87u+uwdKldjfavfZajLe//TT8/d9f12fJ+s/cmSRHBkaz+Yn+sYrK8xHnoguneU49nGMnIAa4YiohZK7hW5l2Dj6tCSFzGCFWYcGCKSByr7+wYMF87Ny5rI9SDQYqjIQQQgghhBBiEkVAu+0PHwOoMI4Iw7CfVPO9E93WxEqL1TSmnx7XPXxgqHXAFT27D+uXkK4yipZE3vmEECtSAmHoDx8DqDASQgghhBBCiImUfisiFUYyaJqO0vZ8dLfblsTKVsRhXqPJJ1sXrY9pXXXxAcV5jAq2tjgmLwNCxhHe3YQQL3RJBUCFkRBCCCGEEEKK0MIIgAojIYQQQgghhBQQUQQRui2MQtLCSAZNkwVfujHSUancogtmc7fTZq6moodbasiujhip59elB4sQI+qWGqCnCwT1Al87G5ORRULmIrx7CSGlSACR52khMZorfdWECiMhhBBCCCGEmFSZw9jqnziDggrjXKNrVrcGC9h0YEXspbWwCT55OrM+dtHaONJWRmDkLI02qrRbWiEJGRp4NxJC6iEBn9vpmLzjh3nZSY2NGzfi2GOPxcKFC7F8+XKcddZZePDBBwctFiGEEEIIIWQuEkmgHbo/PnfVOcTIKIx33nkn1q1bh3vuuQe33HILZmdncdppp2H79u2DFo0QQgghhBAy10hdUl0fLnozXHzrW9/Sfm/evBnLly/HvffeixNPPHFAUvWawejzzRavscta3dV0UA7gYe0U5jk1d1HtgmtmD9xSAfTZNdVkjj18q94DY+LWQki/4B1FCOkYKSG4rcboKIwmU1NTAIClS5c640xPT2N6ejr7vW3btp7LRQghhBBCCJkDyAgIPcaFMXFJHUmFMYoiXHLJJXjlK1+JI444whlv48aNuPrqq/soWXfxWvp6UmA3rYf1LYbdWPimvrXPJWd1y6MqdzNrY4dbTaTlj6yl0cRnWZ9j1kcVWiIJ6QjeGYSQriNl7JbqCx8DRmYOo8q6detw//3343Of+5w33uWXX46pqans88QTT/RJQkIIIYQQQshIU7boDecwDifr16/H17/+ddx1113YZ599vHEnJycxOTnZJ8kIIYQQQgghcwZaGAGMkMIopcTFF1+Mm266CXfccQcOOOCADnITA3a5q0hf9ib07LfoLN/tbtq5W2ln+xSWlV/dZdQ8x2ouqs3dU7u0AE5ccPM8zCwtbtGDvWeaOkXMoRFAXxsfkxcXISls8YSQniIl5zBihBTGdevW4cYbb8RXv/pVLFy4EFu2bAEALF68GAsWLBiwdIQQQgghhJA5hZR+pXBMBmpHRmG84YYbAACrV6/Wjm/atAnnnHNO43yHz4Ki0t0ppuXWP7vl0J+ul9Ngu29Ncp1LuTVQrZt61sZmlkagsVXMPMcuP8yqLsY0PPcR0Hk7HRELpa19j8nLjIwPbNGEkL6R7sPoDB+PJ9LIKIzN97ojhBBCCCGEkJpEJS6pXPSGEEIIIYQQQsaUUpfU/okySKgwWihzueuXq50QE6jm/tjNPQ89i+A0duszy+pe/Umrq6BNTv8IUL3Fauq5pzZzTQWK59ElF1WVHlruu7WP6HC4ttZt+0M04thjF2VCuglbJyFkqEi31XCGD9H7vodQYSSEEEIIIYQQE26rAWBsFUbR0RYEdSwnda0jat6xZarpJfJbRPzWwmrnJ0RnC4nI2n7fxbq0nUc1q2P5wjjVLIKptbG6pTGlc4tjShe24mhKHx6U3bJUqvTealnn3ujz6KR6zcfkRUeGD7Y8QshIIKOSOYzj8TQbU4WREEIIIYQQQjxIcA4jqDASQgghhBBCSBHOYQRAhbGeS16P3VeLaTu5PP5yfe6knbqaVkHKqFI5utuq65z066K6qdrdU4EqLqr1XEjNhYfqu6hWK8dG9/errEynLq1VGdBeki6669Jadv16+DKieyrpE2xdhJCRhKukAqDCSAghhBBCCCFFaGEEQIWxHmXWlG5bQUST7TLKrU2VrCtNrIx1FrEpyT+1LNrOp7hYjnvbDnNRnGoWR3scm0XQbQ0su3buh497y5Ny6lkne29JttPg4dpLS+aQLXxVxHeduvii6mAhsG7TSwn6ZBMfCwbfUgghpMdICYRcJZUKIyGEEEIIIYSY0CUVwNgqjAGqjzPXsZp1d+w6qGphrGJV7MdcM0Ver6VLRk4LTWqN8VkWy62Oat7u+Y15DPMa2+qzutUxl6nOnMe62C2UfbnOFfCfe78smxXv3U7qrMLIYlVrZDNLZPW2WpkeWxoH/W5tUv5w3FX9Z9DXihBCBk6pS+p4PCnHVGEkhBBCCCGEEA+lFkYqjIQQQgghhBAynkQSsu3x3KGFkcQ0cZ/rzkIUIsjdFm2ulKXpe+z6515ABoBwh0mXXBZXVdVNT3VFNRe+cYfZnMnK3VTjWGo+VesyT9Mr99DY3bNTl9beEp96+dYi3UZ3he1m+3e057rX2DMSWcV1tZrbquu8az6XuuCaOldeo+l5zFXX1LlynQghpCeMiRXRBxVGQgghhBBCCDGJJEAL43gqjCL5V5fqi1J0YpXM07bEfG+KXlsQTUyLolp+weKHwGqBlIgKlrfMKmQuZuNYHEdCOrcPkTLybi0Sy1nl2suG9Ws/725S3ag16L2B3I+Xett/VKfbls1czk7uNeU6VL14jvrxPbfKn0/mOdRcFKjGNZurr0+JuWFlnKvXhxBCug7nMAIYU4WREEIIIYQQQnzICN45jJIWRkIIIYQQQggZU+iSCoAKYy2auLGq+F3Gii5vrWBe7TLquFFWcZ1UXU1FstCKzZ1QCIsrZtV7yLJAjpTSvr9kyR6OPnfUJpiutlUQtRak6eWDpnt10W0323LPzE7KKz7WmrrA5nI2c3ONy61zHSKz4LICsq9lz6fi86fm4jg93p+R9AdePUIIqUGZS+qYQIWREEIIIYQQQkwkIEOPwjgmyuR4KowiqL8cfhVKrFF1l80PRH0LYz3c21ukpBY7qW0XkUQzz1ca+ZXvaOFECIdVS7Sc1qKsOM91EEK3/pUtFFLXYtnEIjlIqspbz2paqeSS8Gr1XtXy6b7dq16vZlbL+hZKd/suEpU/xypaIPX7oGRxHFuZhsxmjFF/nc6FhW6A0b8OhBDSd0oXvemfKINkPBVGQgghhBBCCPEQL3rj1gpHzE7QGCqMhBBCCCGEEGLCbTUAdHNVjD5w11134cwzz8SqVasghMBXvvKVQYukI4L6HzML5d+EmN/xp4UJ60eghQAT2icrWbSyTyqnEBPxB0H+EeZHaJ9AtPT4CBCIiUK6wMw3jQvHcdHSPma5Img5P2b9q+fajY8p27B/WsE8tIJ5CIKJvnzy6968jmMHQZHcLa2aH7M9TZR+4sdk8eOWUVg+E4UP0LJ+inFt+QmlPuzyAQEgWslHeD++f978sweXI+/sueb+DBujIGNT5tK5EEJIX0gsjK5PJy6pH/rQhyCEwCWXXJId27lzJ9atW4c999wTu+++O84++2w8/fTTnZ9Hh4yUwrh9+3a89KUvxfXXXz9oUQghhBBCCCFzGYl4Kr/r01Bh/OEPf4hPfvKTOPLII7Xjl156Kb72ta/hi1/8Iu688048+eSTeN3rXtfBCXSHkXJJPeOMM3DGGWd0IacAgx1rVRyePYuqtMT8Srl5Fy4RaYl6nJbxO85jIomrLpQBSHXBDtHKFsjItvBIyq+6QI5tew5zcZk0j7JtQqSMam0lYl72bm8XAdHtxWFyui6rQtW7oen2FFk5Zv00cf5X8ihbtMhFrcWJZOXaSf6WtNm0bXuzVeXzL7hjz8dcZMdY7Mm8jloekRGkBBauf8m1yJJ6FqKyHRxGF59eLJTWLWrUV/xMJ4QQUgUpZddXSX3uuefw1re+FX/zN3+DD37wg9nxqakpfOpTn8KNN96Ik08+GQCwadMmHHbYYbjnnnvw8pe/vHZZ3WKkLIyEEEIIIYQQ0hciQLY9nwbj3uvWrcNrXvManHrqqdrxe++9F7Ozs9rxQw89FPvttx/uvvvuTs+kI0bKwliX6elpTE9PZ7+3bds2QGkIIYQQQgghI0PqkuoJD8OwoGNMTk5icnKyEP1zn/scfvzjH+OHP/xhIWzLli2YP38+lixZoh1fsWIFtmzZ0kD47jGnFcaNGzfi6quvLhxPF2jpFeXublUMuxFasLukFlwThScsi5Ifj+XLZYgQKS6hkea8ZnNVTYvLXFUTF8GCq2qWSVRwOQUAKXz11KrmNuhwAe3UdXKQ9NL1tA7W+u/wtim23eouvLZ6KRPHuWenrVxXe7PEreIK62q/6p6W7jaexnHJX9ZOWih9w1kJYbqvZimk9FR45N9ntqJbb1avHT+eu30PDYszjquN+uq+eK3V2KP7pIxp2lRG/bwJIf1BJhZGdwTgRz/6ERYvXqwdvvLKK3HVVVdpx5544gm8613vwi233IJddtml+8L2kGF5C/aEyy+/HFNTU9nniSeeGLRIhBBCCCGEkFFAxuNuvs8xxxyj6RtTU1O4/PLLC1nde++9+K//+i+87GUvw8TEBCYmJnDnnXfir/7qrzAxMYEVK1ZgZmYGW7du1dI9/fTTWLlyZZ9O2M6ctjC6zMG9xmZNq4uU+qI3PmuCzUphxld/q5Y9iQitZNxAtTxG2cIc5ZZHZDEcY7bCWDgnO+y33PTECDwmO6z22kpZa9EYZx4NF6ypc26WRZd8cavmXRZPSmm3YmqRIq+F1WXFTM/Fev9o52mGu++t/Hxs8rgX6XFfQ+N+d9zLZnr/LV+nzSnP4BH2NjCRtcZ4k/oqsT7WXdJpEPTiVeDKcxhaS6fnOwznUMYotDtCAGRzGH3hrVYLixYtKs3qlFNOwU9/+lPt2LnnnotDDz0U73//+7Hvvvti3rx5uO2223D22WcDAB588EE8/vjjOOGEEzo5i44ZKYXxueeew0MPPZT9fuSRR3Dfffdh6dKl2G+//QYoGSGEEEIIIWQuIeG3NdQZk1y4cCGOOOII7dhuu+2GPffcMzt+/vnnY8OGDVi6dCkWLVqEiy++GCeccMJAV0gFRkxh/NGPfoSTTjop+71hwwYAwNq1a7F58+YBSUUIIYQQQgiZc0QCMux8jn5VrrnmGgRBgLPPPhvT09NYs2YNPv7xj3e1jCaMlMK4evXqLi1m0sJg92EsR4gWJuQ8q1taYbEYUdxnseCSmgyPSOT7Fha+K660gSePtExAL9ftXBd5QzuhtmvkcF/2ruF0D+4CEmEXFr9pKF+N613ZvbRinlWePVmZThfM4j1USFuWdx25POdW5vJaJUz3dlTzm2cpz7JoUaGeyq9F9XdAuihXxeiNy+kFrgWTnA3LcrDCYk2eRYyKZTvoZz31Yp6Cxy2612fWq9eRLd9BteZOz3GQ51JHdrrOzl2k7J6F0cYdd9yh/d5ll11w/fXX4/rrr+8s4y4zUgojIYQQQgghhPQDKYHIY2GcQ9PkvVBh7CLdWOxGpaVcHm1kOPkaKQtLBGgVRo9VS2RkLHSTfa+wYE52zHK/tMw4/WZMLIYp/azjbixsAxSt33VTa5Rc7zoyZ1bYsjwtCzYV4zSz8sVp6y1olYe55bfew15rY8OwhtbNPG//m9a1tUv5dZawWTn1GP487MaswS32FONoi6a12rWdTOGI63ws7zKX3Nq2TiPYc8rkd1hVHedddqalr6Yebu2lIfXtsLSgHhTnPKtOz1e5Dr2yAncioZm2l3dCJ3L28w6dK90zGQm/whjNlTP1Q4WREEIIIYQQQkxkiVI4guNkTRhLhVEI0XVrYFMKm9wrtBzz/lLLSJCEaxZDwxKZWiGdFkjHPdCZVWhuEFRYwt5WT750w16vmtWlg0GzTq2TTSypLit4J/l3Yx5kZM45LsZolq/nLeWyija1hJZvI9LMCtnEuuqcy9lkjidQwQLcwArqza9OfLNsu9XUzNNvzKkxD1itO2ueejvTLD+NLak2+Zq+r2vUtWPhCimqWmur4ZyH2kW0NuuZJ5wFdcOnztro7Netah24z8M4B0X+qmdSkMB707jan7t9Ce9zz423ZrpglfZZzYF6uk/PrMlDhpQCkUdhpEsqIYQQQgghhIwpstTCOLcUZBdUGAkhhBBCCCHEoNTCiLkzX9MHFcYG+NxIG+dpcZENpP3yqDGlsWWFueVGZF1aPUq/9J1u1V0wFrfnYOjtlhyduqo2ky2qsHBNnfxtW9sUy6yy6EuJS6ZrF4Wmi9Q03LpDk8lB+fm6XEbrud3a3G2t163igl4uGVwulR2553bYJnxyuRPUdZmt54LrPN/Y981TTi/c8xu4sjsXjwrth7tK1e2mqj2/MpxtJILdvbJLz/yKbqmiqsti4TzS6xvo4Ul2ErLR9bK6yFaS0Tg3jwu3el9Vybmy63KZnLa20KFsVjF8KYXAKE/0k0CJS2o/HM0HDxVGQgghhBBCCDHgHMYYKowKvbAcWsvxLrgTJHEEJhwWRpWCpUNb86ZZK64zViJktTqrahHsZJymH1ZHAeGt12EdZxrG5e67acns5PyqyqHdaxWSVJGpStmlFqfSRXVqnGNpWdXy8Vl0XZvH287DZrWssmWIGce5VZDvt8VyZreiVrdaNlmoKA6r0b47WHCqziJEpqWz6lYudRctKubZXQtrZa+CCvXai8X0qi6qpMXTXkM2K72ZZzesvfq5F/tTDd6NFiu1Lru/TdYqqrZFcdgWsGsuW2db/eT46jAu4rmulNN3ZKw0OoM5h5EQQgghhBBCxhMpBcLQPRhEhZEQQgghhBBCxpRIAiFdUsdTYRQIuuZ+2j0XlGI+LQSam6XN3dHnSlDmHmkLt7l1utwMBETBy6SsNlwSVZ0EX9fttBvbAQ2rm2nKsG155Ht4CjGYh2unLrmdyFzX9baue1A36rMbzlXVXfuK8Vx1VNg71vhtXxTHHUd1e/XGM13dlHRmmXZ3V6k97Gwuuq768rkY93of16qLAul7/9YIM/Kp4uLb7b1I9ThD3NOruXhSlYWbOnUbNjH7UWZ/SA139iOUNM69V6X93lTjV3FD91G3T9ivKUy9pBcLT7nqRcoQ09O/7Hp5fUEKuqRiTBVGQgghhBBCCPERSYEw8rikDrlRoVtQYSyhF5PY7RjLRQOYn1weIYTXymWTUI2tjuyZFjp10C8twxwILKQxy6pgZbQNLvrOyWc1CyrfmxWtlh3c68M0xtjJefSKysunDxndWgSgDtEQGztSqraxbp1LYWmOQr7SG55exoKlUvkZWeObcshCnPJ8zTDT2mOnrO5cVrFuekLYylDl162xbitwGs92DHBbfF1xbL/N+Hl+PgtdZw3UVtdNLE7uBYBM63foDdct4NUXc+pkAaKCdTFbsC8oHAtUS2PFhfIA93nZrIx1LIy2sDrXzxXXedzSj2xqoeyWVbDqYkpNMc85itrYtv0/e1pmr5Dwe+GMwKu7K1BhJIQQQgghhBADWWJhjOiSOr5016poy6vayM6EiG17QojMymcabNSRzjQsi1s4jkJcm1UxtyIIyzG3VU2NY7MslVkmfXm74pfdpnXz6yQeUH/h8HpWweqRm1obu/nY6zSvwVpMywsX3vlTplW+P2OQ3Wqrvrrv5WXx1VLBegjAlEa3/uVhaVozf/V3nr8sHFPjaWU4LJW+NK6nf7eM2mVtoMrbzSajXrfq8WJ92fLy1q9hCfbWq0OOokW3KEuerryyTSuiz/PGV+VmOptcTSzaWh3JtN7sVmzNiq7lUX0+cYp23kKtg8RmJtPfebjWfxHVreG2882s1tq8xjTMls59Pq5z9a2VYPZt1HMJoPa7lOOyvP9Wht3qXzm5lW5ubaUSQBQadRszeKwnpfUeiZJ5imNiYqTCSAghhBBCCCEGsYWRq6RSYVTo3LJYNb1vg9XEH18KzAsCCAgIEY/YuCyGqrUwC1OshIERXw1PR8GEJV89b3eYLZ5ZjhLTGWa7HW3HbNYPlwWniVXSVUaVtN65lxXK9ecvvWXUab1VLFFlVrE61qy6d1aTqY9NLV/BgIYH61hQK9WfKJ5HFW+AsuN6HnoZde7FTrFZDG2lZ3GUo6746vEsfjKSXJY+Ssqqakl0WT9NylYZth5XpNC8RUrS27JzFV827zNOK7RjkREntQrbjkdaPmqY21JcsMxpBzpth4l1zPJuE9Dbvih5NqeHbRKVWcXVdNISBkivJdy8Flp+Hotwim9NArVfIIR+PK6f+EDLjF9oh6q1UA+0nhtQsFgX2oZx/oDDcm455ro7zT5X+j0/r7zNJMZUpf1Iaz+pynvA1haAaorKIBdkUa/rTCRx5/8bmCgdEc9h9DyzuejNeNA/JdGPOQFZiADzRAAh4odtURnMH0yqBK1AVwDTB3l6TH3gFR/u8S/zBWl7uJkvSNuLwLyF4rhxOk3xLMTRKe/0VFMWqy7GY8qUp6/XAfG9CKytpkaHvyx/H2a6ai24XFEwsV2XqoqgSyZhqaNiudUJSvLz5VW1HPfgQ3WF3BXXlN+Xxj4QJLV8zOPxsfx7EAday1fjFe/97iqRLvcgs5Q0njbHxKn4pAqgKHTEIiUsjuvIQzlz3WVQWOPUpXBNtfpXrqdyzExnpqmD7Zxs55y7BuZ1aavD9HskdaUoj5vmmyvxNgVLV6DsgwZlKJs7xL+V+kzfpfF3mbwzU/XX9f4rb/NVlGFfXcS/zXrQw83Bjsi4RnEmJQ3BfAYgP9e8DyKzOov7LXk9mXVUpmBnYnmutUTeVtS6KQ5GNG8jxfeQLCiAcR8rLiU/5/S8ZfxXAC3lnNPjmTSeevDdc7bBgE7pVPlxtfsd4QzwaEdZD4wyC+MwLVj3x3/8x43SrV69GieeeKI3ztgrjMNGtgKWBOYFAq2khzahtFWXUpgqhKkymCuCIhvxStOZD+08rrRaG7O0ynGzc1plZDt7aTg7wJZjWkbFF5cvrS9/3yLJvnybKqiuTrMptk2JsZ1aMZ01+0qKW1WFpE5aoFzZL8vHp9DZrcdlSlg9pTzJtJJcPqVIVIhn3hP6KLa7cyEsSpswFED1uxpHPZblkx4L0p8y/65MUhIBgMCuJGbjcGm6ggaJcswLU9YrMqo162gp6cyFAbUkkVDCFSXIkj7rsNnMNtAVWv27S3g37nYgdeU9yK+L6zoJKNcGcF8fB5r8aV2o9ZOFqfWTf1frT+ZaJWSyz1luFcr3PZMSjuNF5b1JXZv1a94T6bEgkNp9FQRRVv9q3at/jVpRS9V+SaMubfWjnp9UjkVR8Zj6V6+7vMzMQl5hwY70vAO1z5DUixASQRAhCNLvSZ0F8XNDQCKYSM4qaYtZf8J4ThQo1Et6XGhtK2qn4clxo71kilWycEnapuJzF5AygISAQAthFH+XCCARIIRIjrUQyQCzsoVICrRlCyECTEcBZmWAthR4PhRoI0A7Eng+AmZDIAQQQmAmAqSUaEuJWRkhEiKeQyiAtgghRQQpZKy7q/e2iPV5IQRaIoAQAkIKCBEgSH4HhuGj7n7V9qpvrgXZyp8VOzsRZ6BEAELfPoxDZGF85JFHGqU76qijSuOMpcIoRNChZbEXi+KkrqjJk1EAky2RjFSJ2MqYtMkWcqUQSN09RDbSp4/yAaoSmE7K1kdMzdGyTIREQnV0WpE6e4noYWZcNY46eptS3Z0q7/TkZXisGg5Z6ipQPitOIa4nnq1s3yijXU63wuyy/LjSlykxVRUYW7i1vEI9VlO8y/J152/NvlQu17PffGRo7dbxSHB1HAvxmyhewhGm/s46sMXRDKGOIrWUGztIvBlUl4bk4SCE0E0LxoNEqGlUobLzKNFQqvipV+nHaD5cai9Z0W5sfpVJOpn3sovx9SH/QnmFRTZc/psqFfzMrXWfxknrPj0+ERjXD3Fj0tKJ4nWqIpO56o/NhKXWp9rb18Ki3GQYybje0rBQSa9dEwmEUbEcVSyrn3GCY5QxO1W1DgNAtAIkmhDERKC3+VYrr9tWy16vWubJd+eqSUZbSutWRqq5MTke5ecWRnmbC420URwmJCAiGWseMn52ybaACGM1SYZxHISJgjULIBIQUYB2uwUZCciohXZ7AmEo0I4mEMkAO2YnEGICs1GA52Ym0I4CzMgWZhLlaTYSiBBgZyTRlkAoA8xGiRKVnNasjF1qIwBSSITxVYYQsdIihIBEqpwGikKfKkoCQdL+AxEgCJJFAoVAKz2W1H1LBNmzsKXkpQ2oTygbXmS3WH4NhXHLmIveTACYJ4AFehbaNCD93as3y8IUIpuMynct7hCzY3YHbhq0EA2RUnhXQh2mOYybNm3qWd5jqTCOAlJGmcLYEuo7KFEekbs9tFQFEYpimISn31tKTyuzWCbhNveS9LfPLSeOo4xeI88nPpanTXG5Y5QpXjYlzuWC51SssvN0Ky82RaqJ9aeqsmS+gMri62kcZZj9brXj6VBcikqPQ8FRrBUmRUVIl9eZ0FTGRMlxS7qCUmTDzM82QQmwm2sLb2i9Y2jtX5cpUAC0VfcC47vFpG9VylSFTFUsUkUBQOKukD9M0lGnQMQd3jSvVit5wKSdZSXfQse4BZk9PAJIs6zsd0uXWTlPqVaGkldeQTW7Q6YZUVMS1fvccjzrrEeF+AUzEKAokfkxYZaJpLPuE9nqWhHk555d3+SVHYhcAQwSa8hEKz7WasX1n4aPAmGoK4BhCMgo7oyH7fj5KwEhJUQUJfEkRDuCkFFcPVEEEUogbMfXYGY2V5RmZwHEmopohxCz8QehhJxuJ98BzEhEOyTkLBDNCsxsn4ewHWC2PYHt05OYiVrZ5/mwhbaMrUs7Q4FZGSCUQBvAdBR/jyQwEwlEUsZWKyHQljKz7sXHg9iyJJE0HpHcmvn9na6UHt+K8b7MQojktgwShSkd74mtThCxN1KqnpiDwbZ1DJLivN476aMPAsAuxfD0626WY06PJfVxZZNRzcNo0tq0HJG/q4sD3/Z3e7HPoofHaX0Du5ESD9Z4rn6RGk/tWxXSofjO1eQbgdv8uZnRtTBK+C2MvvmNg2T79u3YbbfdupYfFcZadDaOY7NqphbFLCx7BoRYMAG0EuuiqhhmCiTih82E4iOfWxll1i9MFcCW4m5jm1+gWiZVpS77DV15C5T84nSpcgXtyZbnoyiWFhcXNY7tWBV3O18883gmTPrVolSVuRiZipT2QLe429SxEBXiq3E9vrvC9vYG7NYEdbTAVp75Rk+PuRQeM65HUTILsypOpqxaOZaKcp27ee/ZLAA2uc04poxqvi6rghovu8aB/tc8nilzym9NmYq/y0DkikWQnGdmSdIVCmhxBRC09Hhjhk2FyzrPsYlVs2ZkcZLOOoQtTfFv/D1JqYTlHdPkWssIIoyA6WkEMgRmQoiZaYh2O1aSZtsQO3YAsyHEbBvYMQPsmAVm47BwahaYBsJpYPa5FtrtFtozE5gNW3h+Zj5mZQvtMMAOGVuEQimwMwoQpoqOFJiRAiEEIgnMRgEixMoOBNCO0vliaRc5UYIgsilwIvueKyoQ8a98vEJkx2LlJz6WztMXgUBLzMvqLhDzrdaW9KemYOjRrAoJjDRquBbHDJuERiDiDtR86MqRT2HRZZCFMtQwxXCfhOXvV5f8+Xs4fV/7lY/sPWw7f6Pc/Lztg6u2uFp88zVhyS+7vpmMen/ApiSp9aimycu1K1YFxa+mN4z1mPq9MNjpUTq1OnAPTttlK4gxlGybnh60CI0pszB24L3bU1asWIHf+Z3fwXnnnYdf//Vf7zi/kVMYr7/+evzZn/0ZtmzZgpe+9KW47rrrcNxxxw1arMakimI6sJr+jqJZ7D4RK3aBUJRCoSiGQmJCpNbCWCGcCPTJ160sXaRZG1WFTyRpIVJFM1esgswVJHkIB3lYPocBhWPp7+xveizIH+jOeVEAbFaseP5DmrcR6FC6Cr8dkxgLlqbCb+O4mndBORBamoJFSMtfwOwZON36DJkzq09WrhJmU2Q0y5BxzKqsGXkU5DKUHVWuTD6HvIUyDeUvMMPy37IQloRm5Qr9NwSEmn+QuCIJwxoXJI5HynlrboAQEEErD2upF0O5bsJ0OdK7M1pnT0r9e9I5j+epRECU3E/tJJ6MABkCESAS1zQhI4gwOZZYZhBGQNiOP+0oVjhmku9hBLTD2LISSsh2CLkjjE0jsxLh8xLRLBC1A8gwwPTOCURRC1EosLM9gTBRMtoywEw0gXYkEEFgZ9iChEAogWmZKhvx/KG2DNCW6VyQxDsRQRwGASBxS5OB5kUYe9jFFSbjaPF3pPdKEq40f6FUcJA8oOLHhcgUtdy4mitxmiuY2dSzsqApJmaY6TamZFXZWpLJAABiPoD5ihKyWCs3S2ccK3ROJ/Xy5ydxdlfPQ+gddKdFCvkzXlVK8kel1OQIkvdTXk/5YiCazIWOfl6GTelIZ5pp8jsUCiNpsSwg66i7vUl9XiKWwUj13LTHm3tQFL4w9Zh5wZN4mpJiG1g1Gy7gHqA02qbT0F8yjm5VaCxptOektXGbN4v9uxbNNfBnk7OKPcCnnfnkiyO45cqy8OTvSVeZfmuX6h6tzw+pVlWBsjmMw2ph/Lu/+zts3rwZJ598Ml74whfivPPOw+/+7u9i1apVjfKrrTCuXbsW559/fulqOr3g85//PDZs2IBPfOITOP7443HttddizZo1ePDBB7F8+fK+y9MNUgUx+yvjv0EQoLV4RXZ/y6Tfmo7mphOjQwCp8SDtWwlIhCK2ToZJOamFMo4uslE5sxOguaAiD1PJ+89CfyYaI31ZMtWrq53HKD679JL0paRFIUsBoXmSqXFkkrlUVlAzvc4ytyDE5xqm6aWyGp9Q0iQPjHSORZw2sOYtZTwfQ5Uhm2gvhLban1S+Q8RzddSV4CLl/KHkk83vyM4nnz+VPtukUmnZsSx+nD6S8TyWOKrUFsxLO+9CpHkrcpjXz/LMzK+xMH6n4fYXurk5tKqCqZ1/W9GKmugsJzDkERb58nzyVqdZ0ZWC68xxsfWLfO5hWnkQACbsLmIwOruusozfVa0waRwtvIXMS1KNk9mHMvn1JeVdCo65/L5paTGtLGr9qfOw8zzz5SvyOjHKUp6Bunu9olR4lBfVGqJ28l0Ki+aSbygppoJiKiVO1/kgj2PLJ/+hh6sDfGo+8aCFMYinDgaqF9AcnBNKuHMgT+gnYCoFhjLgVALUZ4BNsXAOtrmfDV5PAS2eqRHYO436IKXtIekoO05sl82q3KRhDq+HQlkFE1gxyyoKipnOnNBVR0lxxdXOyZbOc86+cqrMKW56Pk2Vs0K7SjDc3LW4trAqefaLKIJ4bsdgZegIAem4v4eZs846C2eddRaeeeYZfOYzn8HmzZvxgQ98AGvWrMF5552H3/zN38TERHU1sLbCODU1hVNPPRX7778/zj33XKxduxYveMEL6mbTiI9+9KO44IILcO655wIAPvGJT+Ab3/gG/vZv/xaXXXZZX2SoS9XFdQIRX4og6X0t3HU//GT3x/O5MSKAQIAA6YI9iWKJeGUvIO1E59/j8OR3Mtk9DgsACQSOIbpA+67fJKlCq5ZhS6elKeRhv/Fc6W152GSrksZ2rEqerpG/wlFLx10bBbbJZMnbLUfamQVa1rzMfCx5eMoOHBEL7cDRpzKVIzOOu9+ndOCMNM6BbTPc6Jfp56lH8VmIbDKkxwrhlnMpyOZQmlQ5ckUmVy5065auKOUyyUI9m0qUGqYqU3p/3WYVUstXymuoVGXu7gUlKS+7JdLnndSM2uqKlWaa2FCs5O1QioRiqM6sMarbvaEEFRSgKsqPeoGUNFk6RTMsKDg25SaJn7rIOhcNKnhAKPeT1bNB+e3qbGuNNyiORpiyqFqvUNKZMmbzMi3nbUtXWWmrGM+nIKryueInWOedWvKxqiS+tL6wKrIVFEHHE9T1YO14q7ESzDnGNcqWvvBOrG/DtC+CBeGrsx5iq++mssht2zsVZ2BEEmh7t9XooO31gWXLlmHDhg3YsGEDrrvuOrz3ve/FN7/5Tey11154xzvegcsuuwy77rpraT61FcavfOUrmbb66U9/GldeeSVOPfVUnH/++fit3/otzJs3rzyTBszMzODee+/F5Zdfnh0LggCnnnoq7r777p6U2Q9SG12qWM5rxWtr7RIswi5iYWalCsQEBAQCtBDIlqJcBZjIlMIAQoosTEBkypl6LP4ttN96R1/tpKRyQglX5VfiOKw42vmWKk+FQ4UyTXn09MUQ5yvGWVZ1uQoGMqtiWyWdkcZSnnluZhTXYHpBHl88R5/LpUDZ8rApamY/VQ3T2lZFhUw9VrT2GQoDzDablu9XztK8VWVJLa+JcpYqZgWlyVJOK5NPagqYbiiR2nkX9kc1LF15vepWLr2vr7vXaYoaoFmz1PiaBcq0Rqn5tgwZU0UuVdLU44riJlTzo0UxyxQyUxnT4imW6WxSXZIufe5pLttJPuqiPYUGpyhApiJlWqtUhcilQGmVY5ThUp4U9+tCmBau5in0DrqSd6YMqbIVXNFN2ZT6TJUll4XMnDfrU3K0B4TlyVbXukTIiDFM6mxTWaRolUcaYnznPUzXx8bTTz+NT3/609i8eTMee+wxvP71r8f555+Pn//85/jwhz+Me+65B9/+9rdL82k0h1HVVn/84x9j06ZNePvb347dd98db3vb23DRRRfhRS96UZOsnfzyl79EGIZYsWKFdnzFihV44IEHrGmmp6cxrUy03bZtW4OSuz/aZrM6popjkEz2D8Q8zMMuucKYKYmxgihkkCiQAYLUjRXpsdyFL/0dlyuUjiuy8DQsPp7+VmVTlcL8uNFF0fIx4yiZKWGGAtRlpcye1k4TBc2Wv08WX3kuy54rvk3xciV3jMEXlDlfvj6lzhVu++1S7tTyim00DS/ORXJZ4fT8qlnhVCUvLU8ry6Ls5bLpCmPgUM4yJVdTAN0ujZqiplnzFBk0Jc2i7KVyBOpxFKxxWphS+ZprokURTCrHquyl+cXhqUJlKEMTajxD4cuUMZQqe5mip15cQFH20gpP0mY++oGu3NkUO1XBUcPV9GmZ6Zxbm0JkU9aE0K1VpgJkhhUsZIEenp2rJT8kSpyp/KVlFeRN/1qOUTkjhIwB8b6b7ufdsCqMX/7yl7Fp0ybcfPPNOPzww3HRRRfhbW97G5YsWZLFecUrXoHDDjusUn4daUNPPfUUbrnlFtxyyy1otVp49atfjZ/+9Kc4/PDDcc0113SSdVfYuHEjFi9enH323XffQYtECCGEEEIIGQHSRW9cn2F1ST333HOxatUqfPe738V9992H9evXa8oiAKxatQp/+Id/WCm/2hbG2dlZ/MM//AM2bdqEb3/72zjyyCNxySWX4C1veQsWLVoEALjppptw3nnn4dJLL62bvZO99toLrVYLTz/9tHb86aefxsqVK61pLr/8cmzYsCH7vW3btgZKo+qv3R1ro1T37MrmOcTHIjmb/Z3FzmwRE9UlNZItBMqqAhNCcUmFxyVV5ta5gkuq0uDpkpoGFK1fxfLMLKuVT5fUNEyvMb9LqtG+MiulHpkuqbrVcXhdUqUWPs4uqSJNr8ZV/3bRJVVbhZkuqYQQ4kVK/zTXYbUwPvXUU6VzExcsWIArr7yyUn61Fca9994bURThzW9+M37wgx/gqKOOKsQ56aSTClpsp8yfPx9HH300brvtNpx11lkAgCiKcNttt2H9+vXWNJOTk5icnLSGDQupopgqkbNhvJLUzmgbdspn6y16I0oWvUnI3F/1rqfyTf1uKCm+RW+k5WVuxpOY24veZPnUkMmq5LrkKMurXA5daTOuoSPiaC16IzTPRFv5gfJLVdYGv+iNvSwuetN00Rtl+x/FhXY0F73R02sY8dXW32TRG5HlqSq45s1gcbNNfyfH9O1sMoHc52IqoWb4CC56Y4WL3jQqm4ve9JduLnojRnjRGwn/thquxXYHxRe+8AWcddZZmbL485//HKtWrUKQPBuef/55fOxjH8P73ve+WvnWVhivueYavOENb8Auu+zijLNkyRI88sgjdbMuZcOGDVi7di2OOeYYHHfccbj22muxffv2bNXUYcRmTbQRyTYAIIxmAADPTP0HVvzny7LB9CBIp9wITIh0wDfuhE0E8eYOAsBEgKxjlg2cI+6w6Z1YqYUD6uC5OUdLvxucFiohCy8wU6mRjpsuTaaWpD/D4whpbcrYZJFvTSHzrSciqdiFZbyFhRD5sdR9IN9eI+6QqW4FkRIus/xjOUKZyxklVltb3lLZ9kLNQ91SA9lvoZQltSWcVVmESPJO8s/qQpFTrUf10S5jE3MSRyCyjIvJZAjDdj1M0npT09r6L0LteSt/inHygJapyBr3TtxHV+Pn2oCwhAeqhQW5AiySyOnvQGncAeIbIO/XikzOvIxcvux7oOQNIFAUgvgey+shV5QURULkK+BqU9JEPjdZXzlf5Pe20smPt8/JZUkHilpG2jJlWb0S2rxN6OnUODarr83im5eVWlWLx3WLrq44a3qPdVuNtDxFyR3pbTWU9wmUuIrV15ZP/qNogdbiKheG22p40pvx4siwwW01KuRRFlfbb9eWrqaVOXvBOd5wqhxjvK1GwzMoMuLbaiTDnZ7w4eLNb34znnrqqWy7wcMPPxz33XcfDjzwQADAs88+i8svv7z3CuPb3/72ukm6xhvf+EY888wzuOKKK7BlyxYcddRR+Na3vlVYCGeUSBXK9G8kY4Uxiqax12TcqQkEMJG8rFtCopUof4GQmBDAhAAAiZaQmAjiZt0Syl8Rj9wHSecr7XgF6ch7khZJnlmnSciso5dZBQLdTU31slKPpb+zv0pHI3Ob0zyZjM5JoHeysjC1A2LpcBQ7JsZvh7YrzN5y4bdxXM3bHAE3Oj0F64CWv9bDtcd3dnqUnlTBpGZ5gapxzWO2UXwzj4Jc6QlCJ3PRC4odFGdnzrAAFNzV8t+yEJamU7UrQ35rfRiWjuSvNHskZeV1gjpaG0XKKImMhyHS32Gyo2okgaidjDJE8Ys4ioB2GHds2u04H4n4ezsEwihOP9OOj4USmA0hp9tAGEHORpA72kBbAm2J9nYJ2Q4QtQWiMMDMzhaiKEAYtjATTqAdBghlC+1IYFZOoB3Fgy07ZAtSCoQRMIMgGbgJIKXArEwHPgRmo7iNh8mTIIySvUllLBpEMhCTDOLIZBxKIh+0iaSuyAN6+88GBIJUuc+V51y5DjIjWvyMjPNRm3orud7pMZH8SxXzdCGxuKkLpekKTb48TVJOmk4gyyN+/sbnkfmJJAp9kAw+ZTpBkkZkgxrCyCevC9cjTVXG49/5szmuQ+XxoKXPn/EBlOd8ls5urRZafrpynh6L5TQV8uKxvBzdgq65k5vvIfVczbIAmMp7mmf+Xe8Wasq74cadl5P81R5vuszaMV+YeswccUniaY8k2+CBzSDrMr4az3Xn467kMWjVmyxpNMXd8m4vZBTYvzsHF5zCJEFVHuc+JdAnn4lDqXV5MpWlq0xTJbYpirItn9/Z37K7SLythjt82CyM0hDI/N2URqukDpL169c7XVB7T9pimnUUpceULxMLYxpHiHl4Zmf8fGgJ1Yog0BL5CzwQMvstko5GqoOIJDzIwvJGM5G9yXRLo93KmL941NH7vCOijsrn+cTHLC8tdYRdCTM7K95w28tQ6zzY88o7XObLX5pRtOMBzPiOtM7jeXc3/h0V0vg7J/byi2VYTgJGh0WVw6v/2OPZlHlnHqbi7kroGuwuGwS3Kf0+zPzMXnQWz5KXrRNjG0DQ0ujKqDmYEB9Se8HGd71nrse3DToUVvxEflFaATAxAcwXwG6JAiWS1UXTOXpCoNVqIdOCUqU/zbfV0s8paOUKfBDoZUEtW5kDaJynprboplI9j6qYz1l19D1S73PL8cytICrEj49JQIZKugplAhAlLm9W90a1PrPrm7yyU1fSZPBHIgAmWvGxViuufxFAJNdBGG0n+6so1sVwoTxn1O95nrlimLdVzaotzPKV+IrCnQ2IyEQZbUcQ6fcojJ+/kYx1oDAeahBSAmEcLw6LIMJkEEVKYGY2ftaFEcRMG4AEQkC028BsCDEbApGE3NkGZiOIUELOSEQ7JKJZATkLzGyfQNhuYbY9ge3T8zEjJzATtjATtfB8GKCNFmYjgR2hwEwUe5+0JbAzjAc/ogiYjoBIytgzRQJtKREm7iahlJrXiYS7neQrmivvYaVu08EP1XsiHeRIw60DAFlbQJbOZ0y1v08Lh4x3s57WjGMfVDCOW2RJf2cyifxdreaTlm17txf7LHq4Krd5XnH88niufpEaT+1bFdKh+M61DY4MM8/NjJy6oeG3MI7ABegCo30F5zBCBJgOU0tioiQKAJCZUpiNggsAENmDU3XPaikvAyFE9tA0DVuqO1fxQVt8MMUvJ5l/h/1Bnn3PvllGcR2Ly5gvLfu2CnZFrxjPXp6tXDNOUbn0xPXEs5VtU5z9cjoU4TiBNV9XetfLJ8+/mpJsC7eWV6IEu/Ipy9edvzX7Urlcz/7C9CHV5uXQafTjDgUcyJRws3ina58a0Wddt1nWkzhCtUq3lBs7SJQDtTeXPByEqowqx9MCndZxVaE1TkSTzOdCl1JlsFRT9JTvmvKIYpwknVR93c342jFD0VTTKulkHmiX19VYzYEFs+6TOJkFNT0+YfE+EEGsmIrkyWLzNKgikzTq1lSGU5/57HtScdIMi3JNKZJxvaVhoZLevCZqmGrBSL9GlmuW4tCEslNV6zAAxIIg+y0m4u/zhcD8ANi91crqVrRaQBDE+aTKeqLlCBEklm4RfxcSSJTx+Gui0iVix1dHxDM8ICGi9P0cxAp1lHRPo/j5IEIZW+HTPATiNMkxKRGnybVSCAjIME4bm/mT/CIBKWNlWUYCiAKE7QAyFJBRgNn2BMLEwyCUAXbOzsOsbKEtAzzXnkBbBpiJWpiRwPNhgFkpECHAzlCiLYEQAWZCibaUiUOFxIyUiUItEckIoXKtw3SNB8dNb+4jnbrh60qi4l2gDoIo31VlMu0nJZGydNkh45ZRYluNoQVlUZEvjauNxxqPTFUpV5up1r/B8LNjtsqDeziJkoEgZ3j/RBkoY6kwVp1X6KabK6caI9HpiCxihTEdqJ9Qng6t9CWH/GGTWvxShS99oKjuUdnDBrlSiTQ+FBcqmP08oT2o0uOmdc+v7OV5x+H2u8860K5l5FaYKhmYPDLmmEqdHmpT5IBi/8ql8BbSGb9typ7t1IrprNnXVpBLZamYFnC3Axu2fFyKrysvnyxxGptiXIKtTVZQWF1ZuOI1sWIXw6Txt5ifvvoplO9pjzVVgtMBmtzVreA+3kTRNSO7MC9M2VvZqNZcgVCOGXloSSKhhOcCSkv6bN6wPklYKVs4vlcUXsHdDqRWj9l0gcB9nQSgD1a4ro9LSlXMtC7U+snC1PrJv6v1l6WTcR1Jqc5JF/m8bkUvjI8H2XdTpmp1rWPWr3lPCBHF79lAavdVEER5Z16pe/WvUStqqdovadSlrX7U85PKsSgqHlP/6nWXlxlBj+vD9LSJ+xj5dJUgiDARAPOExG5JPYlAZlNQgvnJWSVtMUgUaaQu461UkUr+JR0MkU6ol8p87OSflOnxIFZ+Uw1dCmQrXEmRpYAAojCIF2KSiWeDTDpLMkAk4xsnioKkbgKEMrbetxN3e4kA07KFSIpYaYbAdNTCTLJP344wwKwE2rKF50OJdpR4+kNgRsaK/ayUaMsIUgiEMoKERBshQhEiXkMgPiYVL6R0vYHMeiz1npm5YGDZ4n5V8Fm7y7CVP9MeXZdUQPjvkyHUhW+++WYsXrwYQL5A6P333w8A2Lp1a6M8x1JhHGbS0SohAsxG8ahcS0iE6miYTIYRYbhjwK1Mpsc0q6KixOXKhq44qn+hxCss36/IA0s6NS5gjNg54uRx3fmospiUKXCu8kyZ8vT1ngo+BdaqpNRUZpq6oViMTRXwK9E2qiiqLlwy+ZSyvNzq+BTSsryqllNHkdfCjQEZe94eJdO8ZpZ45lwu83h8zBikUe9jh6W2eO93943qenmbpWSdajW+wwCVLzwlCspGpITFcR15qIqmGkdVZDrozJV5KNi2fjHT+bwayrCdk+2c1cXJcmNjsQ7VhcpklkaNm+Yrsnw1BVFJn5PLU2fk3+YF45uO4ZuKER8vb/Pa4mapYgf9r68u4t9mPejhNgOwGh5nUtIQLAO1tmksundTXk9mHdmmqtjwXWuJvK2odWM6AujpJGJzqkBaA742UnwPSa0PZA7Yt4TEPACTAlgo4jm26VoRLeWczWk5QWKdzhdVE8nqz0nNiXhhNolYcZapNTttGyLIFOpO6dS90tXun8c0/m9HOQ+OUbQwrl27Vvt94YUXar+btJexVxiHxdpYLFtgVkYQUqCdPpSyuEAyPqb8Th4zUf6yS48WXByUcHX+gpmvnncxD6v1wjiLYmdZOMNszdequFnyrKo0uvIsLyMtx4/vHqzSOqrIVsF7rXEeuizVFZoy6t4ZTd59TV9zdQcCukUdhb9S/dUYcHCVXWrhrzBwUKWj3ARb59pWehZHOeqKb/VeNDrkrvSZhUaV0aFImmHe+TCe6nMPcNmVwPLBNkv5FeSyefPGaXWFuth5dx/XvIhR7PADbqXKDLeH1iUu1zbNWQBW5bBsANImkatdmPWh/jXP06wXNV/zWmj5Wdu1jm+gVe0X2Aeh4wPm6sc+rx3z3rCeG9Q6kNZ4Pq9yFds1cd2dVpdToZ5X3mZSJdm2WJSaf5X3gK0tAFDc30O4GOT8OvW6zkRuGYedCP5tNaIKVvp+EpWtmtuQsVcYCSGEEEIIIcTGYIaVhwsqjAr5CqVNLYU2rd6WV7kThBACs1GUWP7yfeJiN4Q8tmrzyucZ5FZDKKNadsuh0H4DunWyeKya1cJm7jbH46u4n2rpG1gL6+bXSTygvpWrnltp9chN3VWF51dnedVn2Fd+81nSzFHdXlndTLrVVn1138vL4qsl08rXxFpTcFm15i8Lx1xWRK9F0ZHG9fTvbOVz9T3gj1nl7Wa1xJRaOeJFTFx5ees3q2dZKMtvqVXjSWc8kyrzs0x/kuIUB6XOffkYgTa5CpZS1eKmna/9eJTVm1EHWbgrD9v18teNvgCMWgdC72Mo4YHRz6g6x852vrZzLViuS84xxXWugUc+s2+j7fcL1RNMPV7sZ5lpy7C12U53Syi71k2x1V9bzvakrH4wSi6pBxxwQCN300suuQS///u/741DhdFC526qKs2bUjtVYJFv2G27v60uI+p3y4MrD1PT2B9qhTRmWYX4Fnmsyp7voewMqqFIVIvYiWLS39XJSl7kQ6hgdWteRb/pfN+i+ulLdl4YCqq2sW6di/n0LOYrveGmImIeN8swXSfzOOUd+GK+Zpi9M29SvraPPWU3FrrwlaEphpoLoXlexXi2YwC0hT2ccYwaUdPY4rvSuWSsjGOgNj9W/23gktGULzJcDgt1ntaJACKzvszfSv/GVpc+uVTM81XXXzCPqYuypAu2VEFb+EVrK/mCQ9le1q7zttwWtvOrc/1ccZ3HLf3IJu0FMGTv4Jb3bfPWDcxzjpKt40YRiRLlfIje3Zs3b26U7oUvfGFpHCqMhBBCCCGEEGIgpfDPYeyjLGW86lWv6lneVBhLKBuF6dwCmVLMZwbt2LqXjF7YRjWrbPTrimLLz+ZK4LIS2dP7cd1yVS1RPlcRe761otvzGOCk8SoMmxGvbNGOjo13DehkiXCgM5nruv3UtW52ozq78cKrWsd13OB81itXOl8cl0WrEM9j1SpYDi21Z7UQma6JrnN2WH3ifHrbNXFavGSkya/Gc1p2bGHG+9R+Pv40arX57i3pWQgkjzNEpgETT9/D2uYs8YtW7YrpKrazgpVR2K2OcZijH6GkcfW3dPdTpX3Jau2wCnUtfk0thMNE3TqqgqtepBzdRW8k/O/IIX6KdBUqjIQQQgghhBBiIAGE3jnR4wEVRkIIIYQQQggxkPDPyx+E19QgGEuF0WWGbzRpvcHEYbsba5pPHhYWprpbyve4LzV1t6njgll1AnupK6nH7bYqdd1VmxDv+FjBDXjIGEbXq26u0NbJ+VWVw3evWeNXyLdK2WVuQ1XkqnyOZWVVzMf35JKW/SLj47bFTKq5y5nP4SruaWVxtDyzFRrLXShdMsUxm7lQ1mrfHSxm4V0oxqzjLrs7VnWPq70gVUl9VHelrrAQTNemqNQr1x+vyoJA3XBNdLujpkea4Wtn/jZZh2rTYtRzGqaZa0AnsnW+yFuMrw5HWamKJC2MwJgqjIQQQgghhBDio8wldRRWOO8GVBgVmk70rl2OZSQwH5lMloiWQFuUL0NctuR43eXGa1Nz0LBbE8X7YU0cV3q1NxPQedtrakkst9XXy7+aVa88Th2LTuV0DcMqhXtkKj/f6pa4PIXt+VW8ltbrVse6VWHBkLI8fHlVTVst/+5a2Irl+/MvWhqbLQfRiwU3mlh93PXZj0U6WhXj1ZPFfU6O+umW+cdqYbJsKVFxpbbieZgLIPkXxaqKsO2U22Q1OU891pWtsrdSmZwVrm03PJCsdZgFiq5ZMQeBlCUuqTXz27hxI7785S/jgQcewIIFC/CKV7wCH/7wh3HIIYdkcXbu3Il3v/vd+NznPofp6WmsWbMGH//4x7FixYpmJ9EFRn+ZJ0IIIYQQQgjpMhGAMNlaw/aRni03bNx5551Yt24d7rnnHtxyyy2YnZ3Faaedhu3bt2dxLr30Unzta1/DF7/4Rdx555148skn8brXva7LZ1YPWhgJIYQQQgghxKDbFsZvfetb2u/Nmzdj+fLluPfee3HiiSdiamoKn/rUp3DjjTfi5JNPBgBs2rQJhx12GO655x68/OUvr1lid6DC2IBuutKkLprWBRIcLqm+fcCs+385wga539coEFQwwNvqyZdu2Ou1W227yWJQncpRJ03lBTacLlzGzx64apbnW38BFa/rUQeulF43TK+bVv1zr7toSqkrVIeLotRt6/Xid2exIp0a90mpG5lnoZ7GLmg2+Zo6Q9WoF6cLcndd6XRXw/JpJ03wy2ypk264Cwphaa6Bo7yKLqnO83C7plY9E1UCCRRdO7WMXO3P0768z71yuaxxbO6nTS5dQ9lMCnWYBRTrcqRdUlGy6E2HpzY1NQUAWLp0KQDg3nvvxezsLE499dQszqGHHor99tsPd999NxVGQgghhBBCCBkmfIMwEhJhGGLbtm3a8cnJSUxOTnrzjaIIl1xyCV75ylfiiCOOAABs2bIF8+fPx5IlS7S4K1aswJYtW5qdQBcYS4UxHunovqWnyZLavpHh0GMdBIoLefgsiKqVQ7NIVlwYohuLNZDO6Wcdd2olTOnMqto76031rSbKF5xoarmL0zZc+Kam5a4ni+j4hlYrXIum1rvy69z5diV2Or8nOhtpr7h4U+UyOrfAaVF6tmBWP5579RaEKTtTlw0tS9dkUZUmdMmaVLUc/ayU9qqcb6NyG14HZ3aW/N1XpP4CSF2TSwu01XEX8+9WXjY5R9jCWGVbjR/96EdYvHixdvzKK6/EVVdd5c173bp1uP/++/Gd73ync0F7zFgqjIQQQgghhBDiQ6JkDqMEjjnmGNx6663a8TLr4vr16/H1r38dd911F/bZZ5/s+MqVKzEzM4OtW7dqVsann34aK1eubHIKXYEKYxfplkUmJUTbOmJbZYNr1ybU0mVprLKxtXUj6irn3LvR4W7X+Vyht1tjdL7cfGNLRI3rXX0j8O5tGN7LLRcazdHzlucYsfdaNZttoRCHdudZUd161lk7Heycm5rPtYqyVr/vumt57Bq9sMr1yAJXmtZr0eo+/bpKZjnZOXaxnfTqXJyyN0jbS0bFVicd30cNWWJhjAC0Wi0sWrSoYn4SF198MW666SbccccdOOCAA7Two48+GvPmzcNtt92Gs88+GwDw4IMP4vHHH8cJJ5zQ9DQ6hgojIYQQQgghhBhEEgibrW9kZd26dbjxxhvx1a9+FQsXLszmJS5evBgLFizA4sWLcf7552PDhg1YunQpFi1ahIsvvhgnnHDCwBa8AagwEkIIIYQQQkiBslVP6lpPb7jhBgDA6tWrteObNm3COeecAwC45pprEAQBzj77bExPT2PNmjX4+Mc/XrOk7jIyCuOf/umf4hvf+Abuu+8+zJ8/H1u3bu0gtxCdTRvuPVJGaIvZ/HfNhTEK7qQVXFHVfIquplXcU+sv81+M12PHhTFxYe314jjdcAVu6vLXaMuNqm6nnW63kZVX4dwabufQC5dR//k0WfSm24uz+OUoKaRZuiGk3vOxQn3VqJtB1mIv3BpdDINrYae9k2Fq8Z2e4yDPZZjqkQyObm+rUeW9t8suu+D666/H9ddfXy/zHtJ0c6O+MzMzgze84Q145zvfOWhRCCGEEEIIIXMcKaX/M2gB+8TIWBivvvpqAMDmzZsHK0gFurMQS4RQztjzb7AEvm8rDd2a6LYkmhZE02rovG1qbsDtkrMOo71J7HBYQXuxoFAn59bMslijHdRaUKfCAjhVtpXoYHuI8vrormXQX5clsnR9UZYyut12h2VstcF5ldT9KDwpq2x03s08B80wy9YtxuEcydyg1MLYN0kGy8gojIQQQgghhBDSL6Qs31ZjHJjTCuP09DSmp6ez39u2bRugNIQQQgghhJBRIbYw+rx9xkNjHKjCeNlll+HDH/6wN86///u/49BDD22U/8aNGzNXVpXYDWyQi95UcysKYXdJNani+lZnEZvarqdG+dY9HW0L83hvwO7uoddpOcPAMMjadVffjq9fw4Vz6rifVo5b1e2y8/0Iy6+Df9GZxu6ljV+avdlXsH+EvdkDsFvUrK9hq91OmEvnQggZPmhhjBmowvjud787W0LWxYEHHtg4/8svvxwbNmzIfm/btg377rtv4/wIIYQQQggh40EE6bUwDn4ovz8MVGFctmwZli1b1rP8JycnMTk5aQkZtIVRwWO9cC16Uyt7R/62LTBsW1/4rImFrTsqWhGrWiBdcZvE8cnTVUZ0245+uVR0ZzuOTvKof571LbtVreNVZenEWpjSfFGajiyHFWQbtsFZ55thjgwjz42zIISQ/iBld7fVGFVGZg7j448/jv/+7//G448/jjAMcd999wEADj74YOy+++6DFY4QQgghhBAyp5Aom0I1HhrjyCiMV1xxBT796U9nv3/t134NAHD77bdj9erVA5KKEEIIIYQQMheJINH2KYzjoS+OjsK4efPm4d+DsRvudspIRbsLLqlVy9IDLC6jFdxIzRGYyovfVNg70ldOMUJ399OrQy/2Luwlg5O3O/Xe+UJA/drr0+9W2izfCrJ3Zf/Dzsv5/9u7+yg7qjJf/N9dp9OdQJIOgby1kJiAAgohdyAE9IoguSTgYswQHRScSSA3M0oHbwjgEL0Q4nWMw7ggCgzKXWPC4hpRHIEZUBQiLyrgS/hFiLOSITEYIC8GMN0Qkn45tX9/1Kn3Xbuqzqlz6pxT309Wr3RX7ara9XLq1FPPrl2t9H2qqmuTPMBQs1baD0RETUHqv+KKcl5tmYCRiIiIiIioUWJfq1GQiLGYAWNOr9VIm80y5VDqZQgYicsm6lAmxeswEnWCo8o6KjORybOf7nwSdLCRMqNW/wxca5xpGv9Kj2yXV3tnR8kzhLUtt36vn0h+/mm/jmxq5V2fVs42CrTfviEiqicJdUeR7vhinFWLGTASERERERFpmFKirEke6ILJdsKAkYiIiIiIKMDKMOrHFwEDxhTqm3a2D0e3SWnZ1DdJVTc/ra7pXBK6ZomNbH6q2w9xTUiTNzGtfl83vvlmlGapR1h934eZ3Wcgm3pWsR+qWG7681P9mr9S82KzVCKi5CT0Gca6v9+7STBgJCIiIiIiCjAhMay5wcomqW2s/g+o1pLZcacte16rkaYzm1qmSUObcdRmI9O8ziOigx3t3Z647Z/0VQPV7Mf6Z/Va525W/bLdUeq3bTLarzXWr7ZzV5XrUEWd7Y5hWuVITaqVO7zxCq5Hu+0nIqKsSMiY68FinEELGTASERERERHpSGYYATBgJCIiIiIiCrHyi7oWdcXAgDFWfh2HSNNt0id1zftEVNNTdxohGtuYSts0sMp3KVbXDDXJO+OS7OP0x0GrdOxSD83RbLYBn90M1zO7pvLN0XwWUDfhbIYjI612aYoaJWr9WnFfERFlyYSJsoi+5pKieTsYzBIDRiIiIiIiooD4DGMxbq0VNGA0UZd7xhlnVUyZMIskvZlEdbbRWzWRZN0js5a6eiS/yxL3AatXpzZZZxOrz6TVJ0PYHJm9OE12N67O26wxr+PJUJ23R5Izbz1r0O7ZwizFbatWONsQEdVCComyGI4crwsm20lBA0YiIiIiIqJozDBaGDCm0eDsjUyaYVROo783HJWJdMZVsew04rOEacrVmlEEkmRq0mXvqt9+jcsSttBdsSbLnDb2C6JB+6mJtjGzgK0hzX5qnqOLiCg5EybKiM4wMmAkIiIiIiIqKIkyyhjSji8CBoxEREREREQBEhKmpidUKZhhLIYm6/DC2yGN1KTA48V0WqNZ76TNRXXNWpNIuhzPFAlLZdOxTb2boGbX9DTHpqVN1IwxjeZqQsL9R+0v2HyVRx4RtQIJU5thZKc3REREREREBSUhtW8taI3e6WtX0IBR1nR7s57ZCe+8rYMwSeaqpBgWM11kel3TGU5gXPJOeep3bznLTm2cedYps1j7SaX1XqGQhebKBibVxHccW2CfU/uL6jCHRycRNROJMkw+w1jUgJGIiIiIiCgaX6thYcBIREREREQUIKUJU+oyjE3coihDDBgVmuVugZRJO71JVk4IT4c6ylUsQdXE0p5O/aGoreOb+kj/4a1nBzfVN0XN6CSUUxPEZvkcZaOFvxDYBJVaSJJ3O/KIJqJGicswFuWMxICRiIiIiIgoQCImw5i6x//WVPiAsbmzINkehOpEgzdD6M9UOpnF0HTeTnb82TZvFrM63vpk/yGsPtvXqNdmZLDOTfaqmOZQjBM6s4lUBN5vGR7xRFRPpiyjrAkYzYJ0etOM7QlDXn75ZSxZsgTTp0/HqFGjcPzxx2PVqlUYHBzMu2pERERERNSWrEapUT9F0RIZxq1bt8I0TXzrW9/CCSecgC1btmDp0qU4ePAgvva1r+VdPSIiIiIiajOxTVILkmFsiYBx/vz5mD9/vvP3jBkzsG3bNtx1111VBowt0qiuIc3LPAd6oDmpu/hgInq4Ujzc/NSdRvVuSD1rfrXdrcnuBarVnQBy7eCmDsdL831SinM3LxKbnRI52DyViOpKSu1zitlddza3lggYVfr6+jB+/HhtmYGBAQwMDDh/9/f317taRERERETUBkyYKGveWlCUZqktGTBu374dt99+e2x2cc2aNVi9enWDapW9hmd3KndJRKhjc3UW0n9TJXkWUq2U012a2psS1F7vGk82bZdZLMbJN6QgdymJ6iX4bcNPFBHVLCbDWJQTTa6d3txwww0QQmh/tm7d6pvmtddew/z58/GJT3wCS5cu1c5/5cqV6Ovrc35eeeWVeq4OERERERG1CfsZxqgfPsPYANdeey0WL16sLTNjxgzn9927d+O8887DBz7wAdx9992x8+/q6kJXV1et1SQiIiIiooKRfIYRQM4B44QJEzBhwoREZV977TWcd955OP3007Fu3ToYRku8EaRG+TTNsw79iO0rpaLJKgCUQ53mVIpX6PeXEK1zhya7k0PzdXTT2KaoBWl6WpAvE6Jmo/qm4qeRiNKwMox8hrElnmF87bXXcO6552LatGn42te+hv379zvjJk+enGPNiIiIiIioHUlpwjQ1AWNBbgq3RMD42GOPYfv27di+fTuOPfZY37ii7KjEstgeMa+3iMpACt2ihe4OjFHVfkzeoU569TuuMrwT1bLZxTa6G8fzD1FL4Ws4iCgdCf11SzHOJC3RrnPx4sWVNsThHyIiIiIioqxJaTVJjfrR9qDaRloiw0hERERERNRYMa/VKEiGkQFjM8srgxq33Igmq1KTsK6+uaqXf/6tk2Guw90nNkdtnJY5zogoDYGiXOoRUbWkNCHlkHZ8ETBgJCIiIiIiCuEzjAADxqbmPQTTdO9Sr0PXqUNUxiUyU2hEZrAEhD6D4+vYJu1dnEY+otugO0x1yHY19lUaTY7ZRKJCsb9h+MknIjUTUupe/cYMIxERERERUUExwwgwYGwZzXA4RtVBm3mMfEWHUZmnJvMYNc/Q/KO0yV0fZr3qi9uXKFOx3xVNiJlGIlJjpzdAi7xWg4iIiIiIqFEuuugiWAFhVFBojfvoRz/auErlRMjW6WqyZv39/eju7gZQQnPf67R0dLRGAli7JSMzgPp7FSLp/tFmGNtEnT+ijX2GsQmzvsU5BRI1RCtmGG08GxBlT0qJcnkAfX19GDt2bN7VSUxKCcMwYJ29SooS1rONplmGaPPrUWYYqWZS8eOOlOEfAFbgoPqx5xn9D3Hzj1xmi2hg3dnhDRFlSXdGifyeICJqQkII/PrXv4b6rGUNe/75TW0fLALMMDa1VskwqlSXdQSS3MNInH1MvMwm08CPZOMDRmYYidpZmk9TM56VeTYgyl6rZhhtQtjXpt4so5VdLMp7GJlhpLrQ3knWZtCis47uvBNkHuOWmXdmsl2yoUREqC5rqGqdEvdDRNRof/jDDvjPQtbvf/zjy7nVqdEYMBIRERERESlMnz4dVpsIE+5rNgSmTp2aa70aiQEjERERERFRhDfeeB1usCjx5z+/mXONGqt1H5Krgvu4Zms0bGmnx0uDa+J7diXy/Y22smKO4Xsdcc1Sq3r2sY32gVd+nd004fZs033crtI+I5e0fDM+T9dMmuVTUq9nJJtl/YjakX0928rXtePHj4d17WkCMDBu3Lh8K9RghQoY33rrrcpvrfGAarmsCpSIiIiIiFrLW2+9Vel8sjUdPvwOHn74YVx88cV5V6XhCtVLqmma2L17N6SUmDp1Kl555ZWW7K2JstPf34/jjjuOx0LB8TggG48FAngckIXHQTaklHjrrbfQ09NTea8htZpCZRgNw8Cxxx6L/v5+AMDYsWN5AiAAPBbIwuOAbDwWCOBxQBYeB7Vr5cwisdMbIiIiIiIiisCAkYiIiIiIiJQKGTB2dXVh1apV6OrqyrsqlDMeCwTwOCAXjwUCeByQhccBkaVQnd4QERERERFRcoXMMBIREREREVE8BoxERERERESkxICRiIiIiIiIlBgwEhERERERkVIhA8Y777wT7373uzFy5EjMmTMHv/71r/OuEjXYzTffDCGE7+ekk07Ku1pUZ08//TQuvvhi9PT0QAiBBx980DdeSombbroJU6ZMwahRozB37ly89NJL+VSW6ibuOFi8eHHo/DB//vx8Kkt1s2bNGsyePRtjxozBxIkTsWDBAmzbts1X5vDhw+jt7cXRRx+N0aNHY+HChdi3b19ONaZ6SXIsnHvuuaHzwmc+85mcakzUWIULGL/3ve9hxYoVWLVqFZ5//nmcdtppmDdvHv70pz/lXTVqsPe///3Ys2eP8/OLX/wi7ypRnR08eBCnnXYa7rzzTuX4W265Bd/4xjfwzW9+E7/61a9w5JFHYt68eTh8+HCDa0r1FHccAMD8+fN954fvfve7DawhNcJTTz2F3t5ePPfcc3jssccwNDSECy64AAcPHnTKXHPNNfiP//gP3H///Xjqqaewe/duXHLJJTnWmuohybEAAEuXLvWdF2655ZacakzUWIV7rcacOXMwe/Zs3HHHHQAA0zRx3HHH4eqrr8YNN9yQc+2oUW6++WY8+OCD2Lx5c95VoZwIIfDAAw9gwYIFAKzsYk9PD6699lpcd911AIC+vj5MmjQJ69evxyc/+ckca0v1EjwOACvDeODAgVDmkdrb/v37MXHiRDz11FM455xz0NfXhwkTJmDDhg34+Mc/DgDYunUrTj75ZDz77LM466yzcq4x1UvwWACsDOOsWbOwdu3afCtHlINCZRgHBwexadMmzJ071xlmGAbmzp2LZ599NseaUR5eeukl9PT0YMaMGbj88suxa9euvKtEOdq5cyf27t3rOz90d3djzpw5PD8U0JNPPomJEyfixBNPxGc/+1m88cYbeVeJ6qyvrw8AMH78eADApk2bMDQ05DsnnHTSSZg6dSrPCW0ueCzYvvOd7+CYY47BKaecgpUrV+Kdd97Jo3pEDdeRdwUa6fXXX0e5XMakSZN8wydNmoStW7fmVCvKw5w5c7B+/XqceOKJ2LNnD1avXo0PfehD2LJlC8aMGZN39SgHe/fuBQDl+cEeR8Uwf/58XHLJJZg+fTp27NiBL3zhC7jwwgvx7LPPolQq5V09qgPTNLF8+XJ88IMfxCmnnALAOid0dnZi3LhxvrI8J7Q31bEAAJdddhmmTZuGnp4evPDCC/iHf/gHbNu2DT/84Q9zrC1RYxQqYCSyXXjhhc7vM2fOxJw5czBt2jR8//vfx5IlS3KsGRHlzdv8+NRTT8XMmTNx/PHH48knn8T555+fY82oXnp7e7FlyxY+y06Rx8Lf/d3fOb+feuqpmDJlCs4//3zs2LEDxx9/fKOrSdRQhWqSeswxx6BUKoV6ONu3bx8mT56cU62oGYwbNw7vfe97sX379ryrQjmxzwE8P1DQjBkzcMwxx/D80KaWLVuGhx9+GE888QSOPfZYZ/jkyZMxODiIAwcO+MrznNC+oo4FlTlz5gAAzwtUCIUKGDs7O3H66adj48aNzjDTNLFx40acffbZOdaM8vb2229jx44dmDJlSt5VoZxMnz4dkydP9p0f+vv78atf/Yrnh4J79dVX8cYbb/D80GaklFi2bBkeeOAB/OxnP8P06dN9408//XSMGDHCd07Ytm0bdu3axXNCm4k7FlTsTvN4XqAiKFyT1BUrVmDRokU444wzcOaZZ2Lt2rU4ePAgrrjiiryrRg103XXX4eKLL8a0adOwe/durFq1CqVSCZ/61KfyrhrV0dtvv+27G7xz505s3rwZ48ePx9SpU7F8+XJ8+ctfxnve8x5Mnz4dN954I3p6enw9aFLr0x0H48ePx+rVq7Fw4UJMnjwZO3bswOc//3mccMIJmDdvXo61pqz19vZiw4YNeOihhzBmzBjnucTu7m6MGjUK3d3dWLJkCVasWIHx48dj7NixuPrqq3H22Wezh9Q2E3cs7NixAxs2bMBFF12Eo48+Gi+88AKuueYanHPOOZg5c2bOtSdqAFlAt99+u5w6dars7OyUZ555pnzuuefyrhI12KWXXiqnTJkiOzs75bve9S556aWXyu3bt+ddLaqzJ554QgII/SxatEhKKaVpmvLGG2+UkyZNkl1dXfL888+X27Zty7fSlDndcfDOO+/ICy64QE6YMEGOGDFCTps2TS5dulTu3bs372pTxlTHAAC5bt06p8yhQ4fkVVddJY866ih5xBFHyL/6q7+Se/bsya/SVBdxx8KuXbvkOeecI8ePHy+7urrkCSecIK+//nrZ19eXb8WJGqRw72EkIiIiIiKiZAr1DCMRERERERElx4CRiIiIiIiIlBgwEhERERERkRIDRiIiIiIiIlJiwEhERERERERKDBiJiIiIiIhIiQEjERERERERKTFgJCIiIiIiIiUGjERERERERKTEgJGIiIiIiIiUGDASEVFT2r9/PyZPnoyvfOUrzrBnnnkGnZ2d2LhxY441IyIiKg4hpZR5V4KIiEjlRz/6ERYsWIBnnnkGJ554ImbNmoWPfexjuPXWW/OuGhERUSEwYCQioqbW29uLxx9/HGeccQZefPFF/OY3v0FXV1fe1SIiIioEBoxERNTUDh06hFNOOQWvvPIKNm3ahFNPPTXvKhERERUGn2EkIqKmtmPHDuzevRumaeLll1/OuzpERESFwgwjERE1rcHBQZx55pmYNWsWTjzxRKxduxYvvvgiJk6cmHfViIiICoEBIxERNa3rr78eP/jBD/C73/0Oo0ePxoc//GF0d3fj4YcfzrtqREREhcAmqURE1JSefPJJrF27Fvfeey/Gjh0LwzBw77334uc//znuuuuuvKtHRERUCMwwEhERERERkRIzjERERERERKTEgJGIiIiIiIiUGDASERERERGREgNGIiIiIiIiUmLASEREREREREoMGImIiIiIiEiJASMREREREREpMWAkIiIiIiIiJQaMREREREREpMSAkYiIiIiIiJQYMBIREREREZESA0YiIiIiIiJSYsBIRERERERESgwYiYiIiIiISIkBIxERERERESkxYCQiIiIiIiIlBoxERERERESkxICRiIhI4+WXX4YQAuvXr0897fr16yGEwMsvv5x5vYiIiBqBASMRERGADRs2YO3atXlXg4iIqKl05F0BIiKiZrBhwwZs2bIFy5cv9w2fNm0aDh06hBEjRuRTMSIiohwxYCQiItIQQmDkyJF5V4OIiCgXbJJKRFQwr732Gq688kpMmjQJXV1deP/7349vf/vbAIBDhw7hpJNOwkknnYRDhw4507z55puYMmUKPvCBD6BcLgMAFi9ejNGjR+MPf/gD5s2bhyOPPBI9PT340pe+BCmlb5kHDx7Etddei+OOOw5dXV048cQT8bWvfS1UTgiBZcuW4cEHH8Qpp5zi1O/RRx9NtR62J598EkIIfP/738c//uM/4thjj8XIkSNx/vnnY/v27U65c889F4888gj++Mc/QggBIQTe/e53A1A/w/jCCy9g8eLFmDFjBkaOHInJkyfjyiuvxBtvvJF+hxARETUxZhiJiApk3759OOuss5zAbMKECfjxj3+MJUuWoL+/H8uXL8c999yDD37wg/jiF7+IW2+9FQDQ29uLvr4+rF+/HqVSyZlfuVzG/PnzcdZZZ+GWW27Bo48+ilWrVmF4eBhf+tKXAABSSvzlX/4lnnjiCSxZsgSzZs3CT37yE1x//fV47bXXcNttt/nq+Itf/AI//OEPcdVVV2HMmDH4xje+gYULF2LXrl04+uijE6+H11e/+lUYhoHrrrsOfX19uOWWW3D55ZfjV7/6FQDgi1/8Ivr6+vDqq6869Rk9enTkdnzsscfwhz/8AVdccQUmT56M3//+97j77rvx+9//Hs899xyEELXtKCIiomYhiYioMJYsWSKnTJkiX3/9dd/wT37yk7K7u1u+8847UkopV65cKQ3DkE8//bS8//77JQC5du1a3zSLFi2SAOTVV1/tDDNNU370ox+VnZ2dcv/+/VJKKR988EEJQH75y1/2Tf/xj39cCiHk9u3bnWEAZGdnp2/Y7373OwlA3n777anX44knnpAA5MknnywHBgaccl//+tclAPniiy86wz760Y/KadOmhbbZzp07JQC5bt06Z5g9f6/vfve7EoB8+umnnWHr1q2TAOTOnTtD5YmIiFoBm6QSERWElBL/9m//hosvvhhSSrz++uvOz7x589DX14fnn38eAHDzzTfj/e9/PxYtWoSrrroKH/7wh/G5z31OOd9ly5Y5v9sZv8HBQTz++OMAgB/96EcolUqh6a+99lpIKfHjH//YN3zu3Lk4/vjjnb9nzpyJsWPH4g9/+EPq9bBdccUV6OzsdP7+0Ic+BADOPNMaNWqU8/vhw4fx+uuv46yzzgKA0LKJiIhaGZukEhEVxP79+3HgwAHcfffduPvuu5Vl/vSnPwEAOjs78e1vfxuzZ8/GyJEjsW7dOmUzS8MwMGPGDN+w9773vQDgvHvwj3/8I3p6ejBmzBhfuZNPPtkZ7zV16tTQco466ij8+c9/Tr0eUfM86qijAMCZZ1pvvvkmVq9ejfvuuy+0rL6+vqrmSURE1IwYMBIRFYRpmgCAT3/601i0aJGyzMyZM53ff/KTnwCwMmgvvfQSpk+fXv9KAr5nJL1kpYOctOuRZJ5p/fVf/zWeeeYZXH/99Zg1axZGjx4N0zQxf/58p35ERETtgAEjEVFBTJgwAWPGjEG5XMbcuXO1ZV944QV86UtfwhVXXIHNmzfjf/7P/4kXX3wR3d3dvnKmaeIPf/iDk1UEgP/6r/8CAKeX0WnTpuHxxx/HW2+95csybt261Rlfr/VII2lHNX/+85+xceNGrF69GjfddJMz/KWXXsqsLkRERM2CzzASERVEqVTCwoUL8W//9m/YsmVLaPz+/fsBAENDQ1i8eDF6enrw9a9/HevXr8e+fftwzTXXKOd7xx13OL9LKXHHHXdgxIgROP/88wEAF110Ecrlsq8cANx2220QQuDCCy+sy3qkdeSRRyZqTmpnK4PZybVr11a1XCIiombGDCMRUYF89atfxRNPPIE5c+Zg6dKleN/73oc333wTzz//PB5//HG8+eab+PKXv4zNmzdj48aNGDNmDGbOnImbbroJ//t//298/OMfx0UXXeTMb+TIkXj00UexaNEizJkzBz/+8Y/xyCOP4Atf+AImTJgAALj44otx3nnn4Ytf/CJefvllnHbaafjpT3+Khx56CMuXL/d1cJPleqR1+umn43vf+x5WrFiB2bNnY/To0bj44otD5caOHYtzzjkHt9xyC4aGhvCud70LP/3pT7Fz587UyyQiImp2zDASERXIpEmT8Otf/xpXXHEFfvjDH2LZsmX4+te/jjfffBP/9E//hOeffx5f+cpXsGzZMpx33nnOdDfccANmz56NpUuX4sCBA87wUqmERx99FHv37sX111+P3/zmN1i1ahX+z//5P04ZwzDw7//+71i+fDkefvhhLF++HP/5n/+Jf/7nf3be85j1elTjqquuwmWXXYZ169bhsssuw9VXXx1ZdsOGDZg3bx7uvPNOrFy5EiNGjAj19kpERNQOhKz2iX8iIiq0xYsX4wc/+AHefvvtvKtCREREdcIMIxERERERESkxYCQiIiIiIiIlBoxERERERESkxGcYiYiIiIiISIkZRiIiIiIiIlJiwEhERERERERKDBiJiIiIiIhIqSPvCjSSaZrYvXs3xowZAyFE3tUhIiIiImprUkq89dZb6OnpgWG0bq5qz549uOmmpfjyl/8VkyZNyrs6DVWogHH37t047rjj8q4GEREREVGhvPLKKzj22GPzrkbVbrppKdat+zE6Ov4Od931UN7VaahC9ZLa19eHcePGwWqJ2/wZxlKpveP52D0QmwVOfpdKZL2/2yFD3SYffYn2WI/qmHlXoL21yWeEKIhHNjWSlBKmOYgDBw6gu7s77+pU5fe//z3OOOMv8L3v34xL//pm/H//3+9w0kkn5V2thilUwNjf3185UEtohYCxo4MBox4Dxpq0yUefASPVTZt8RoiCeGRTI0kpUS4PoK+vD2PHjs27OlX56EfPxvHH9+C2tVdjWe9t2LPnTTz44M/zrlbDtG5DYmo5IvDjHynCPz6G4ic4/+h/8ZVTLF/30w7aed2IaiElg0VqKzLwQ0TJPfHEE/jFL17EF//33wIAbrxpETZu3ISf/5wBIxERERERUWGZponrrvt7/MMNl+GYY6zmtJMmjcd1138S113/9yhKQ00GjERERERERAH33Xcf9u/vw+c+t9A3/JprPoFXdv0J999/f041aywGjFQXweanvoaO2maQqqan/sM0VbPTIjUxzQq3DRWR3Qy1IHeLqf2xCSpRbQ4fPowvfGEFvvSlKzFqVJdv3JFHjsLq1Vdg5cprMDg4mFMNG4cBIxERERERkce/3HUdxo0bjcsun6scv2jxfBxxRBe+dff1Da5Z47V3N5zUMNo8VGSWKvp+ReJeTWvOgDXrPZMm6v3Su42bLPvCHlKpak12LBPVikc0UbZe+q8y5s2fg1KppBxfKpUwb/6Z+K9t7f99zICRiIiIiIgoQEgTGB7WjC/GrRoGjEREREREREGmBMrl6PEMGInCqmt6CkQ1/Yxtepq6yWmzNjFNK249cmr+YO+Pgpwgm1P7N32pGx631AZ4FBM1kgRMzfduQb5XGDASEREREREFmfomqdpgso0wYGxiTf1Cg5Qd2WgziYmyiNlkDkWGr4nI92Wtqu1RjJNW8Tq6KcZ+rZuC3P2l9sUjmChHkhlGgAEjERERERFRiDBNiLKu05ti3NRlwEhERERERBTEDCMABozNrZrmk1kduLHLTtn0tIoOcdSzaZ6GumnrUv8mrAbauflisZqitu9+rKuCfHFTe+NRTNRETAkMa3pJNWX79LeowYCRiIiIiIgoiBlGAAwY20+mGbjGZBFryxqWapg2iuZOUg1U65l91tHeznXMUDXw5MisIkUqyJc0tScevUQtQpqA5hlGmGZ9LkWbTMskUdesWYPZs2djzJgxmDhxIhYsWIBt27blXS0iIiIiImpHdpPUqJ+C3LxsmYDxqaeeQm9vL5577jk89thjGBoawgUXXICDBw/mXTUiIiIiImo3dpPUqJ+CBIwt0yT10Ucf9f29fv16TJw4EZs2bcI555yTU63qLZ94vrp3JkY0X03U3LTZcvlJ61N701Xv9sn3vY4JNKB+xWmCyuanVWn2zwhRAI9YohYnTYiyrtObYnyft0zAGNTX1wcAGD9+fGSZgYEBDAwMOH/39/fXvV5ERERERNQGYju9aVxV8tSSAaNpmli+fDk++MEP4pRTTokst2bNGqxevbqBNcuWNtNXlwWm67RGnz1MlqVrhtdkVJ/ZU61j9VlHe1s0XaaxjvVpr4xiMe4yNlSzfRaIEuBRS9RGYl+rUYzv/pZ5htGrt7cXW7ZswX333actt3LlSvT19Tk/r7zySoNqSERERERELS3uGcaC3CJquQzjsmXL8PDDD+Ppp5/Gscceqy3b1dWFrq6uBtWsDhqSfUv7uovozGHybGEj7lMkv+MTVe/qMn3e7VOf13PEy+huVx2yO62ZUSzG3cNcMZNILYZHLFFBSAlon2EsxtmgZQJGKSWuvvpqPPDAA3jyyScxffr0vKtERERERETtKvYZRgaMTaW3txcbNmzAQw89hDFjxmDv3r0AgO7ubowaNSrn2hERERERUVsxzZhnGBkwNpW77roLAHDuuef6hq9btw6LFy9OOTeh7VCmeZrNZdt0s9pOaqKnS14/kfG6yNhmgkmWp59HcL3TN1EtobHNUjNoOpnhnbLm+RwBbFbaRApyN5ZaG49SIgLATm8qWiZgbLqeI4mIiIiIqH1JCUhdUFiM+KRlAsZGiso+NjpjIoS9e6LubFT/wvu0WcPkGcJ6dNQT3u5J6pM+C5ks45ju5kWjsoxV3uHK4EZM4zOJxbib1xZ4o4+aHI9QItJik1QADBiJiIiIiIjCJPRBYUFujDJgJCIiIiIiCpLMMAKFDRiF+47DFHcGdB3leGXVRM9tNpp2N8U319Q36YxeTyEa8Q5FQPraiyfZ7smareqbqdrl69E0NZl088ynGWp9mqCymWlLK8gdVmpNPDqJqGp8hhFAYQNGIiIiIiIiDRPAsCZgZIaxILSvmkBVd86TZiLj51Pt7tEvPy5L2KgsooqdWYyrgwzd7Qmus3q/2VnH+ExjfMZLCJFplrGu2cUq6pldJpHZw7bErCI1AR6FRFRXUupfnVGQ70IGjEREREREREGmZIYRDBiJiIiIiIjCpAmUNZ3eMMNIAOKbrHplfNAIkf49i7qmnImaymbdHFX7oLCnWKVhUVT9g01Qg+Wim6hW2zQ1WQc4WUneHDVFfVIej9U3QW1Qk9M8TsppPv9FUJAvRmo+PPKIKBd8rQYABoxERERERERhJl+rARQ2YDSQ7FUNQKrsSdJshOpuhGJaI0mGMUFGUCSsl/5VG2H6jmPsmVrroM2gSVOZ/fRmvOIyivZ4fWc40a/e0Gca65tByzy7mOJuV/qsYo3botXuxFVb33bLTLbafqOWwqOLiJpWbIaxYTXJVUEDRiIiIiIiIg12egOAASMREREREVGYlJB8hpEBY7w0zTQTNtdL2kTUsJpzpmkqmrZZaZJ3LoabeaqXpW2iKsLjnKaYwTrY72IMNFNVNVFN3jTVmqOuE5xqmqVm/S7GaAmOrYT1SN4Mtcrmpxlsj3pu0YY0Fk3Y7LwlFOTLkOqPRxIRtRwpgTLfw8iAkYiIiIiIKIjPMAIoaMAoKv/Sis/MVPNKiuisVkl0KsekzSICyTu+AcKdsKiykMpsXMTmkTCV2chgnZQZR0+m0N5nUZ3heLOK1XSCo+8AJ/o1G/Z6RGcaSwA0PWw1UObZxdSv7shfkjrUJRfoHN8tmmmkltEMnzMiorbAZxgBFDRgJCIiIiIi0pGmhNQEjNrnG9sIA0YiIiIiIqKg2CapDBgpoNHNWEvGiJj6VNMENprdFFPVYi7UuQxKyqarSZqqBpuoust1F6xrnurdD3Ed4UQ1WbXXQlXB+jRNtd+pGW6aqlzvFMv1zMieSXQRiITNUrN7/2QrnkrtOmfWeLSVm6EmOK6ylvWSWnjra7XiZ4uIqKWw0xsADBiJiIiIiIjCpK87DeX4IihmwCiM+tzxVxxRabOS3uyPIfQZxixJyHDGUtWJjC/rpMomqjq38Wf5dJnRLLKNcR3hhMcF91FlPtrXhgTXwbuciM58ALiZRi8366jqnMg/vWrbBfZDcB7BTLDimFRnHaPXMemyrOV5l9Maajo7tHI2UacOmcZGHQ+q5bTiXmqVzw8RUduI7fSmcVXJU7ZtGomIiIiIiNqArGQYI39quJP31a9+FUIILF++3Bl2+PBh9Pb24uijj8bo0aOxcOFC7Nu3r/YVqVExM4z1onj9RKzQs4Hufe+OiNdqVEv9MnvAhAxkgSoZL1Gq/O15TtDzwVA/sxj4O5BxDN7Wj8s4WtOE6y0V2VBlNjdin0hpql8XIs1wJe1ZaTOj0YSi/v5lqrKO3un1r+SQwW0cmkH87S8BEXvWC23zKpYlgFRn13pkVKrOLNU1c5jHvbsqb4smyCrrNEuWTKK1sozNst2IiArFlMCw5gxcZS+pv/nNb/Ctb30LM2fO9A2/5ppr8Mgjj+D+++9Hd3c3li1bhksuuQS//OUvq1pOVloqw/j000/j4osvRk9PD4QQePDBB/OuEhERERERtSNZebVGxE813n77bVx++eX4v//3/+Koo45yhvf19eFf//Vfceutt+IjH/kITj/9dKxbtw7PPPMMnnvuuazWqCotFTAePHgQp512Gu688868q0JERERERO1MwupqIuqnisY6vb29+OhHP4q5c+f6hm/atAlDQ0O+4SeddBKmTp2KZ599tto1yERLNUm98MILceGFF2YwJwP5NkbyHF2aZqylKpukRjY9DTUXtP62G0S603XA9DZDhb+ZalQTVaewYhlu5fRNVFXtrgQUTV+D62I3nw118GLPN9D0V9Hc1hquew0HIseJUGc2+o5qpK+TnODY4HLDH1PveqpbSnqbsaqbvIZe4aGcj6eeUZ+Z2E59Ats59qPnXWYzaKn7aikkWa8E34TeA7Ag3YtTMglO70RETU2aEjKmSWq5XEZ/f79vcFdXF7q6ukLF77vvPjz//PP4zW9+Exq3d+9edHZ2Yty4cb7hkyZNwt69e6uqf1ba9UoIADAwMID+/n7fDxERERERUawEnd789re/RXd3t+9nzZo1oVm98sor+F//63/hO9/5DkaOHJnDylSvpTKMaa1ZswarV68ODRfCUL6+ICu6zJQl2Z39EpJlGMPZN/Vw4fnbqqNbD9P3+gtTm3UMZhytZQVeRWG/9iLwOg4hAq+6gD8z6Mvw+TJN8a/msF7hERpszUeEM19SSm0GS/tKlECmVUV3HAiUNOO9dVUvQ0TsY/U81GX8iaG4e/+ajnecty1Ez8NdVJK2G8EOjdo8L5H0XNSg7SBjsuN+6V7pAjTHa1ZSnf3r9V2Rcn9a593mk2brxJVtxvUjomKTJiCHdQWAM2afgccff9w3WJVd3LRpE/70pz/hL/7iL5xh5XIZTz/9NO644w785Cc/weDgIA4cOODLMu7btw+TJ0+udVVq0tYZxpUrV6Kvr8/5eeWVV/KuEhERERERtQIJ695o1I8ESqUSxo4d6/tRBYznn38+XnzxRWzevNn5OeOMM3D55Zc7v48YMQIbN250ptm2bRt27dqFs88+uxFrG6mtM4xR7YeJiIiIiIi0TMDUNLKKbVToMWbMGJxyyim+YUceeSSOPvpoZ/iSJUuwYsUKjB8/HmPHjsXVV1+Ns88+G2eddVY1tc9MWweMeVG93y8tKaM7vYlqhhhs4hgs5/1bVjqNsYeVYHimN2DC26RU1TmOdeh4m6la8/M3VbWGSV8TUqGqv1CtV0SzTVGKbUIZ3VTTs52i+nCxp1U0Y/WO1zWvklI6HeuoC6ibyfqXE99AK775c7IyItR7UbAu+rpa80hSl7SNzsq593yTvs51UtN2SP6NluSdnDb9uzlNdXNOb4dNofllT7vZqmpumvT8HrPNo5adoGl33kdkvT6Sqvnmva5R0m6DZl0Pm/b7rGG1IGpCdoZRNz5Dt912GwzDwMKFCzEwMIB58+bhX/7lX7JdSBVaKmB8++23sX37dufvnTt3YvPmzRg/fjymTp2aY82IiIiIiKidSBmTYawxYHzyySd9f48cORJ33nln071CsKUCxt/+9rc477zznL9XrFgBAFi0aBHWr1+fYk4l5J62iCFECR1yhPN3VLZJerM6Ak5m0JrG38mNneWT8P/uDPN0UFNC9OslvK/nsPJO3vF2Jzbh2zHOqzqC/WJUspLhV1MAMibzFdcWQJdpdMokytIlzbjos5fO8mIOv0T1TrRutW6/bLOcyRI63mWOiCwVnqqKlyElEP/ak/rKJsOp+bZTLU+7nzSvWol4xYr+tSqa16hUs+6xB1nyFiDajq9iqV/dE79QzfEl/S06nMHplpBaoq2QRedAMZ0kAY3PdmV1pZD3etiqWZ+oaZp5HfLOirZbBrrQpABM3UVdc8cTWWmpgPHcc89tnuZhRERERETUtqwMY3RQWJSwpKUCRiIiIiIiokaQJmBqXquRptObVsaAsUZZdHATpQOdymZ2viZOEjA9zc2C7ye0m6x6m5EGm6qqhvv+Fv5hhqpMUOB9iwBCDU7d5rO6ZodxHUdU6pHwE2uqGn5Edn6Tohlf0gYlSZpvJmzyGLfO8U0LE3YOFFePmPpm0nRWOVFtZ+nUTQWD01e5/LTThVv6Ja+3u+3jOi3yNAtV9lOjW6bncxLxTk7/LIPr7zmjBJeTRUufunZsoxJ8/22C5SdpymvNLGIZwXkEZh8xPJumphl+B0asn7KIYn1rvdGffQdJCg1sVlyX9YnotKrh9a9i2nomgmo9OhrVZDmLo7ggCTWHlAJS0+xUN66dMGAkIiIiIiIKiGuSWpQIupABoxCirpnB2OUnvCNbkiUAJX/HNh52tsxAyZ819By9pix7yviPain8na+YEXd1q85CqTIVNXQYop1W+1lOv8yqpkmSOarUM2pbh2XTaY8ysxqcjyajmigb18DsqXqaajJv2dYl8fqlWn422WvdPtSto5SmJhkhEWwhYHWgpSqrW4a6Q6x6EFllihTSZcrDmdngPMI1dV99VCmsngd0Gd7kEmVH67I9FesXoOoQzapJre3D9N/PaTtCis4SA8oOn1JmTiNrE9ovya47gutX7/qHZukMrDazrclOZ5SVDtVMWdc015jhOqtaDaSta3XbNcF865Ddb2qxGcYG1iVHhQwYiYiIiIiIdOI7vamtP+1WwYCRiIiIiIgoIO4ZxqJgwJhC0qakVc071ERWoGR3fiDdThC8TQvtKazmbZV3fgWar5qqdxvazR9kcHhj8upmis5k6imL9Q2+BzOppE1Ss2zCmcW7HbN6PySQrqln8ia87hRZ1CGuKW9NzXhreIeovglpxDtbq52fsuMtxTBdu5yI+TfqnFNvzvaLe/9q9Fj3V7vjIOX+SrbdrVlkfZ6N6zgpUIcqm77JiGa2rrJyVLLmwKptmrCpZsr1kRGd2/jroejwSTlB/Lopcxw1N5WM+1oLbM9AR2v25zvplovM06Ta9oH1UxxP3vOOO+ck3xnhbeers7ae3mkTdvwlqq1rTD2dgSm2a6bbsbVICZQ1GUbTVL1FvP0wYCQiIiIiIgqQYIYRYMBY16xhaFmJOtoxKmUFDBm+ZxE1ByfT5XvjRv3u3mfRYlvI/DoeyoIUZk1Pelezf5J0XmPNO2GGLaJDpWqWmWa51rKr23hpMtSx21hEbwNdVjNqPaOySJHlUwxPs8zouqeZh6pjg/C2j9zGKbOWaXjrm3UHZmk7XMoqo5tkn4eWVWPmNm5dq9m2WT/Nk7azpmpfd5M5txcY5ejw/k7fagCIy3z691/09U7SfaY6J8SvR9LOoJJlceOOyahzXFRnUmkz8f7rMn+d1XWL2u5JWhGot11cndX5LvX2TfIZV+/T8Nw0LW6kBHA4wbKaj5RA2YzeTqZkhpGIiIiIiKiQpCn0nd6Yxcg+MmAkIiIiIiIKkLCyiEVXyIBRwKipKWp93uFoN0V1u7IZ4UlyxzbzSdm6L2p+hmJ4VDOR6HlELVM/IG2nAqq6trI0TT91Ur0LTlbfqjaLhl9ZNptOut667RxVn6jh6mab4WHKcoGmsImnCzZZCnV0laTZWGB5zvtBkzU5VTXjraYJr69MRk0Jg+fnaudbTQdQSZsYB+sU3nb6ppbBfZyqqbBTIIPtnfC7sNZmqmmbPcfuuzo1W9Wdg9QdRSU/hpJSXdsEPxPBMkm/e1XrF3dsq8pUQ3fNVm1nbWm+K4PbyFsf3+8RnwlV/ZMcE6Htm3JbKo+HGq5/05z3fGWkicHBvqqXmycpRWyT1CIoZMBIRERERESkE/9aDQaMhVWfDGIy9t0lIQQ6UHLuatl3aONqFjxsvXfF7Iyc90aZ986vd7g3e+edp79McFnq+QbHOdMrP2PRHzx1+bSdhFcnatl5MtvjjQS50d0Tjd62iiygomyobxJVli4wKFgf7/jg1KEMU8zyVDfSw/NQZQ8i6piic61UGe8aCSGUKfM0dYjKQCv3YWBYOPMXM96TqdWVlTDdruyFLtMYk0n2zT/b124Ymm4f4jKMcRkPbQdCysy8et2StGhI1hFYis6qquzgKMm4uOyRLvPlHWek/BZVrX+jMo2JO3RL2dFYlFA21m4NFvgfcLexar9EbePgttRtx0Zkn1XS7Muo4aYcxtsH/xi7rGYkAZQ1AWNRrsUYMBIREREREQVIKbTNTlX9xbYjBowe2WUW08zHDPzvTjvCvlslrKcu7SxdVPbOySAGxhmBcsIzL8DOngnf36o1sLNsbtYzXAfvGvgzjuHxqmmDmUhlJ9ApMpNRmcEkH+9qTgF5ZiJFhs8DZiXpY6lJN1ut2zfpnUBNJ/bKbF3wC0OZddT8ra6XVI4PzUeqfwcUWUvNtKryqjJxmzDLjGLcs1VZfdxUNY5aD90x5N1+4XIR+1ORrfUO884zKuucNuOsKlMr1a7StTSJewbdHpukmsrndqvdBjJqfiky8BHLDM4j6TPQOt5t7GsZFGydFH5kWdkCKY24VgqqNVGeY5JkfmMO2DQtA5JQbVchRKi1l3dbGtK7/cPz0dG1CvG1NkiwjZ06RA33fhCr2DxJPgtBw3IQr+Ln6RfWBEwJlDU9oTawEU2uCh8w1h4kZt0g0jqdSinQYRgw7GAR3sDQogoAvcFfMPAzhH3CU8/L/jgY3nl7hzufF+H7W8D/vzvc894joS7jHeYtFwoqg3+HAlQZGu5O6/80R12D6vZk1DSJA50GBnO1BFWJjuYE70/U3XCInTZQLkGDmWQzTiW+svrgIGIaXYAWuIOZdP6mp67eYumavKrXV92UNU71B6BqX4dvIoUrlbK/rEhJbgbotmt0QAcEbzaobhjYw6Tzt/pGhFNOMU61hCQ3MLzLDYrbvr4bgkI9Jur7Qj2dXcbbLDfBZzLm5kYowEsa1AdLRQT8vmMhonywnGp8GsHvQu93re/7PfI7WIS2fdKPk357Ss04/fZRDVMHmvHT6aYH9Oec4DWRfT0U3HYC/uECMvKGuU7UNrGPfe0xGVyHiGVkcaqMOlx1h/GgaeCXBzJYeC5inmFkwEhERERERFRMUsY8w9hETVK/9KUvVTXdueeei3POOUdbhgFjkwg+VCyEgRHCQKlyV8sQ7l1AQ/ibRHibijpl4LkbBtXdMeG74+u9O2ZUMkj2MLfJhZvNi85SykBZ7zi7vP92jPfupjNNpQ7BDKmKEaiHS4bKOLNXZD998wz8LSKyarrThKGYJslpJa6MLlOXpFlqdLY0etrguiTJ5Ab3f2Q5IbVlgtvet29U+y5BBjQLoWcaEtzZDt6l9GZNQnfUPWW15RTzU2YGUyw7qpx/ftHTJMkmx2X+7fFxx0fUcVatuKyqLuNob2PVtvUOi8oUutPb03qmiZhfeD+IUJ2rzYAD6VsGuPtDhlqb+B+RcL9n3HmEh6URzngFj/nK/4rt6pSJ3L7haVTbyzvM7SQqennVdJgR9Z0ZvCZwWxnJyne5fz8I33d9eNvH7Qdlhq/yv//85RmvOaatsuHPiao2un1QC3/LLHe72dvMEBKGkM51U0lI59rH8P5u1zrwGdBRnTdMWK3IIASEqLRSEIa1HSvXfDKmpVzUstN8V9b6DN+h4TLW/THx4pqKCYFh2Rqv1di5c2dV082aNSu2TCEDRiGMGpuiZtkM1Z5XpSmqfRqUwAhDoGRUgkWEm5SqgkJD+ANCbzBon+SCJ0DAf5K0T3pAcBn+AMwAfIGd70tMcdK1auW/+Iv60rL/9v7vb8YabPLhv7j0LsM73l5mcHywjG5eqrJuOU1wY00YKRyURZ/MVbOJKq9qDhtaH1VwK9Tjg2VF1DYX/vFCdeEfGGevmP3xFJChV725f0vFMPgf1rHHh4ao5udK+5o27deu59mH8Hyjx3n/lppy3oXbF2Oq5jOhZ7qCF9MxX3ppms1F3pSIOI6Cx4rzu+d4cM4dBnz/V2oXHqY4DhILPK+SZL+p9pcMtFFU7R8pg3+7TVdlYN9GlVPN01kVaI6J0BC3XNKbZEJI5xxj3Zj0/+79jDs3Ln3Do/c7oP58RtF9Nrzr5v6vH+fuB9V+E77xum0eFTAB6S82jeD51PO7AenZvoBhmJ7fpWcfSGc725+t8OdK8ZkKUJ8nK+sjPUGO3cmvqDwN6L34FgKQVjlIVK7NrN9l5XpHSmuY8+ydtK5ITHu8ac1XCoGyWbLKVs4YZdnhTFOGgXLliUQTBsqmNcyEgbI0IGGgLIEB04CEXV5goCxQlgJlAO+YBoalQFlKlCUwKAXKpnUFN1i2nkQsAxiSVqhnCuuqrgwTppCQkJBGGSYAWdkfEtJaJc/3oP28pAnT18Oq8zylZxumfc9p2l5xvXTv29UZNA5Xvcy8SaT7/svTunXr6jbvQgaM1av/CxycTKMAukoCJcM6FXQYbmBo2L9XAsOScP92g0IrSCvBDS7tQNAb3Nlf9B2Vk5VvnBP0he+yCc9yKtUNBaPeIM73N/x33bwZBDegdO/QwalP+IvSLRt98akLUOKCneB0uml05XwVtv9UHE6+zJpqfGiYpnxM4OSUDwZkvkLhMiIwzFfeuegQ6mG+ssI/f8PTGZN998P53bt84T9IvZXQpJt8D/qnfdAzKgKKfGBGPVz6r1AD02jmbc8vMF/pv0rVzFtRn+ALojP4QgxtpuAA3/4SnmPIe9IJ7PfKRWfljlmlHKwToVPO++G1/w8c2Gn2edz28o5W9WBjVsp6UyiectIbjdjlpGcfV8pKb5oB0q2D6Z/e+dX0lo+pa3CcTnDTeZuneO46WrvVsz9Knn1nGLCbzETuT+9xELUfvcsPMu0biXbnJO6GsC+qndlKd9Hev0Xl6lBAQErpL29KCMOobH9ASFkJeCq/Q0CYlcL2V7kJSFO45/YyrAAJgCwDkIAhhfU7Kv9LAWlaP5AC5rCVUZKmgClLGB42IKUB0xQYNjswXAl2Dpc7UHYCGgMHpYEhs4SyFDhUFijDCnqGTaMSBNmBjvW/Ka1gd1BagY8JgWGzEvhIuAGPVUWYkBBCVDplkZUAx3Nc2t/ngQPI/9oub0cywnee9h5ezv4TwjcP91rC/3ewUxr/tOGR/g6DfNWF8LwxJrguI33z98/Wd1oKrFfw2VOvULY+8HXnXUbaVhUpi8cKnkKi5n9o6BC+n/GyG0VWPk9RminD6HXw4EEceeSRmc2PAWMDqbKaqvfb2MO7SgIdzvesmzHscAIwK4jqqPxeqgSMdjNWu6ydCeywv7dhB5bqZhalQNBXMqyybrbR3/TCCe6EHRy6QWDwjqe1HSS8d5jd6z6pLIfKvFVZJ+/dUDcACgSUnsAoFAypAiG4w4PBkTW/iJODqkwwQPIuWzmt/+LXX9+Ii2/vuGBgpSqbIMjyXcCrygYv7rzrJAzPBaPhlrHTC87fhjvc/tueR0eH51vXCEwbWLZ9AEFAGp4ydl0qfOd7VZoqUTvKGtKRvsDCVP/ulFXM3/Rc/Jr+Y7xSMFQutFxf8YxvmQaPB8O3wa1FeveXvS2Nyu/O8eAeM9IoVf43gFLJHVcyfOWyW4XA8Q9P79S+C77Kha1IMF1lO7v3j9wnXnzjzMrwSjApDAEhTacMICDKdvc5ADzjhBTWcSJNN+CR0p3ncNmZtzBNJ+AUw2Xr/7Lp/l2uTDM4BJgCwjQhTQkxUIasBLPysGkFQkMScgAwhwGYAuawwODhEuSwYQUlA52VgMXAkGngULkDZVNgSJZw2LSyN8OmwIBpYBh21gcYsrM2AhgqW5kj07RCkmEpYYpKAAPArGwDCeH8bsffql5n3b0gQz2DRgUfQOUwdcqpA49QECP8AUawdUswsAgGFao6qCibqHpnJOBc7dllOwCMqBQ5IrAcxVehuj5CPTy0XhHDg+sQ1SLHm8FOUkerrAyV1XXuE9s6yFm+v1xU83htfUP1CN+Edo+V8HpY4/U3hNNwzzD1c3BwoI5zr6/KvSLt+GY0adIk/PVf/zWuvPJK/Pf//t9rnh8DxpyJYJrHOfLKGNVhBYwlIdFhuMFchxOYWX+XKhlAO3jsqJzU/NNJJ6AUkOgwTF8AWDIkDGFWbvRWAjcAJWFW/rZOXFYTl8o1vlG5eKmME4Z0mrcYHVYd3Otyz+9WixFnte27d0IAosP/zecLvJxvJ2cl3ROyHZjEZaO8Z+Oo4EgxH2WAZNfLWkH1PLzDVONU5VRBTFTw50bR/gt0wzM8NMy7HYzwvKMCMNUFvj2NN0g0KrcXDAGUOvxlnP1kIMsL/SR8F2OKC3vvcO9FnvcGQZp5WL/DUyY8re+CxbP/4uahHh+sU3gZUNRZWa/Y5VcGmZXAREpgaBiABMrDMMplYLgMmGWIsgkxNGQFIuUycHjAmma4DAwPA4eHgeEhiGET8p1BYMgEhkzIIRPmQQk5BJhDAkMHSygPGyibBg4NdMKUVlAyXDZw2OxAGVZmZbBcsjIsMDAsrd75pLQSO8PScLIqw6aVcQEq40yr+m6mxQ46gLLpdnov3eSRlW1JeLXgv3i0/vAGEKGLbOHPZQRPSYCA4ZmpgZJzMg1dqKsu5gN/B8vp7m9FXQgHpwvNPzDCEFZFBNzgxTsPI1DeGuYPHvwX0f5hwdYoqvt4bnNO+2/vIsPBgB00+Jbr/CEhFMGN/55coE5QBwTeQEG3Td3yimGaS1nV4x+qaX2PSgQKusllGRrvX69krXJC66mpo+4RElVP3lFfv6pl6YYlHZ+4SXeohU+ybZWkt/Jm0j/QugGjGZNhjHucIy//7//9P6xfvx4f+chH8O53vxtXXnkl/vZv/xY9PT1VzS91wLho0SIsWbIktjedernzzjvxz//8z9i7dy9OO+003H777TjzzDPruMTogySJ5M9KGr7ypjmAMSMkSrCCwhGVoK0EKwh0s4USnYZ0MoQjbNMZPQAAPK5JREFUhPu7ISQ6DdPJ+nVUytlBoB0Y2r87f3dIJ4snDAnRIa0YwnDjBCu4A2AIiJKoBH5WsGEYAEqGdbIzhHXB3WG4wVvlR4jKOOtBTeuOumG4ZSAgSnZAIyA6Sp5vqJK1vMrv1vwM+Jo22T+lyn1fQ1hl7QsxQ0AYJesMbkXA1q+ewEoIWNkNw7q/LLx1C2RKrGpaZYXvCtD6234wXQQDO6dcya2nfXHufMsFA47AcQbVOOFmJyrNioSA98GcSvZKWF/u1i18JzNhZSyk9b00XLayHfYV9fCwVcY0rXGmlanAsIQ4PASUB4GyhBgqA+UyMCwhTQk5MAwMmRBlCfNQGShLyGEB85CVnTDLVvOrwcESymYJpmlgcLiEYWk4AcKgWaq02hMYNEsYhvVSXScYkMKqIgyn3LCEJyOBSrlKleEGBqbplgH8QYPdPDDqFQi2pN236+7IW+PdgE+XZfDdmQ9c8AeDgaiL66isQXA65b0SxTgEhnlCYUC4jbhUmYPAavgvtgPzj7z77rm3MaqkLq/OWviDB+949TaQyn1j33ALLStQj6jALtThT7B+ygt09XDv8r3z8N9oCF58+6dPfPGbMEBJc0Ef9cy08rECbzkD4fEpLsB1ZUPjQh9uTf2dgyRmeZp5+lRxiaIKmKKWo7yE8d2U1ddFqE50mvlF10tT6dBJMeUskt681G645CIvC8MHXbCA9V9tl6WWtI8i1rrMd7KodD5aNcO4YMECLFiwAPv378e9996L9evX48Ybb8S8efNw5ZVX4i//8i/R0ZE8DEwdMPb19WHu3LmYNm0arrjiCixatAjvete70s6mKt/73vewYsUKfPOb38ScOXOwdu1azJs3D9u2bcPEiRMbUoesCSfYqPxfuYvR0dGBo6a+F0DlQsAqBLsnVAFUrvSAQXdmvvOxfanhXNjC85C+PaxyZ6Qsre8vUwJyIPCQPoSnRzK3iY8J6dyRt4a5d+FVTYJM53cJ70tq3bv17nys4f6PoXeaal/Ga1M9JK5/AbKE966yoZgm6tkKb7lgcxNrXHD68EjlPJ2LS/902gvcQNYpLhAJjRPBcQasLplGqJcdXpXwckX0eN+1iKqcoq7B8gYqCWkniFBnKKKaNQWXEbroR3Bfq3rIC87DXwfDMz+3PsmDjEQBRuDYC2YOjMAZw81AussNXpz7MjC+h8DUAYD62WH17971APwXWeEgAoG/A+eHyGeVI4ZHHLhO/X3jA9tLdSB5kvuheRqA8gLcmUZxwa1KhwUaqwRHW+MiojIg+UVstWWA6IvOwAdY+7yxrwWGbj6ec7MuIEiSvosqG1UvXVnVCd43XnNh3eBWGQDU20NVR9UxoKqvt5z9DGiW4uan276+cpX/q+vjpXq66lXbWWPaXtzSSFgn4+1D9atDnVnPMEYfV83eIc6ECROwYsUKrFixArfffjuuv/56/OhHP8IxxxyDz3zmM7jhhhtwxBFHxM4ndcD44IMPOtHqPffcg1WrVmHu3LlYsmQJPvaxj2HEiBHxM6nSrbfeiqVLl+KKK64AAHzzm9/EI488gm9/+9u44YYb6rbcRjCEtStKpS4AwOhRR+Hnwy9aH3RhXZTbPVsJ0eEGECjBep7G+t+AdTtd2D3dOdO50wPWZb4dnIpKKZuAcKY3rJL+6ZxlBwMkfzASDKrs8SVvRs43PjgdfNOFgpbAdGkDqKjgSZvBqUwQFeREBR++ZGFgeDAo8l5TJsraOH/L8LqG6miGt4Mzzp9dCWU7QsP98/GWDe3LmGZYqmZJwf2i7AnXs9xgdsW7z8Ljwk3HrGdvPeviCRZ98wcAT1lVMOT73VMPKzvvD1KEJ9AKBjOqICQUtESU826ESpLeX8Y7zhdkBA7k4M4MBiSBDSGCB0rwdzdidZfnjAt8+nR3NDzz8EwQKhIKFnQBQlRwEvuQmD0uUN43b0UkFz6IFPPS1CVyG2u2Y3AeUdOkVsOFf2gfaeqSNJhUlVeQWQRhuotm3Uk87bycMorpk161pg0eqq2PVzXHVvBZ7CzUfIwH6OpYSxSRZRDdiGgmQX3lW+/Uvx51YmUYNQFjLee+Bti3bx/uuecerF+/Hn/84x/x8Y9/HEuWLMGrr76Kf/qnf8Jzzz2Hn/70p7HzqeoZRm+0+vzzz2PdunX4m7/5G4wePRqf/vSncdVVV+E973lPNbOONDg4iE2bNmHlypXOMMMwMHfuXDz77LPKaQYGBjDgaTfd39+faZ2q5W2mKipXA3bA2FmyejQ6onQ0xopJkMJ0yhnogAEDJVlCyQ4UpUCpEiS6YaV7IVZyllPJTkJUghRRufj0BxVWGXeAU94TjHmvB71BQ7AJXdTNX9/8vQFS8DrVM1xbNibIUi4Xnot6zzLd+gfG+ZYtA9sgnGnyXUd7AhNVABXMJJU8nfaEMlee6VTN03zZo4jgSJUxUgde3nKBesc0C/M2BwtOG8rIqDI0wcApIqPjC5ASZnGEr2zgoPPOIDSNIjAKXuh7giFhR2nBZ2fhmReEG9B4DzLDu3II3LUQ/sDEmcYIX0x766cLQFTlvB88w7uhPfWP7KnUPw+pGmcE5hUc7/ydMLiJuLCNfPQkUD70LjNtZisiwPGlQaEuY5fLI1tERJQD2fV23lWoWlyGsdFJ6KR++MMfYt26dfjJT36C973vfbjqqqvw6U9/GuPGjXPKfOADH8DJJ5+caH413W7Zs2cPHnvsMTz22GMolUq46KKL8OKLL+J973sfbrvttlpmHfL666+jXC5j0qRJvuGTJk3C3r17ldOsWbMG3d3dzs9xxx2XaZ2IiIiIiKg9mYD1Hs6In2bt9OaKK65AT08PfvnLX2Lz5s1YtmyZL1gEgJ6eHnzxi19MNL/UGcahoSH8+7//O9atW4ef/vSnmDlzJpYvX47LLrsMY8eOBQA88MADuPLKK3HNNdeknX2mVq5ciRUrVjh/9/f3N23QKCv3KCTKAABTDmFIDEBaL2eCITpgoAwhBUzRgaFKLtEQVtNSu1mpnXU0YAASKNnNWJ3hojK/yv+V5TvdxMOTVYQAPK/esMoBuiai3kSFt2morlmoN2uYNCvpnVdUZtKZp6e8m6wQgSygfzpf74NCta6eLJdn2f56+Z9/U2Uo3Xkkz1K65cLNPL3LCC/XnVdcptK7PsFspao+wSalqsylfxmB5/E0GUxVpxbBDi2CTTvV8/RM6xkXzF76luc9oLwJPG8CMJjZNNzPiDfzGTrAvfPzZPlCTTq903mbcRrR4+1Ku5002XUJZPpU7ZtVzSpVWcdQHb0ZOM8y7NoEp/HNT9cUNUmGMeILO2nTSyH8c9BlFz1102ZOg7+r5qHKTPqOR+sPqZp3VMYztC1V6xsepBTVhC/YFE9VTtVcL2mTwLRNPImana7XFK9aj++45WTxPGM1z1ImXf8mJKHPIjbrmu3Zsyf22cRRo0Zh1apVieaXOmCcMmUKTNPEpz71Kfz617/GrFmzQmXOO++8UBRbq2OOOQalUgn79u3zDd+3bx8mT56snKarqwtdXV2Z1iMLvncvCv+wofJhAMBhsx+HzAPuM4xS8wyjyOgZRideEBCmHexl/wxj2hfuNuczjP5p7en96x4Ihr3Xeopp7GV5L/mzf4YxWScudt2s8XyGMZ9nGE1/kFupf3s/wxgM1BTTeeX8DGPoLFCnZxhFVF0it3FMs14+w+jgM4xxy6qyPl58hjGduO2ZRpM8wyha+RlGCX2nNw2sSxLf//73sWDBAidYfPXVV9HT0wOjcvy/8847uOOOO/D5z38+1XxTB4y33XYbPvGJT2DkyJGRZcaNG4edO3emnbVWZ2cnTj/9dGzcuBELFiwAAJimiY0bN2LZsmWZLisPphwGAJSHrT5P33z7TZxZvgQA3EepBJxkgnM9Z3iuBO0ylf/tS1Xnf2kd2ALeOybWuHLliJeVkc5pUAinx1MAMIWEgPD0eur2oArnXWXCM04ClXeVVWJQDFd6SbWf8XJ6Sa1cCNt1NCF9wWq+vaTaZezx4Wlao5dUwzdOdz2uvEYW4XH+gDSw7PCqhJeruLYOzieynKKuwfK67LCqrv56sJfUxvaS6r8A8+0LX7zl//wHr1fYS2p4tDUuIsAEouOCJBevSS9wo5YR+ABXfRPBV9ZzbtYEaKFxulVJE+hFlVWd4H3jmyy7qloke0mtH131WriXVNHKvaQi5rUaTRYxfupTn8KePXuct0e8733vw+bNmzFjxgwAwFtvvYWVK1fWP2D8m7/5m7STZGbFihVYtGgRzjjjDJx55plYu3YtDh486PSa2orszKL9vymtgNE0D+GdfS8r38No5PweRrspnSjZw6wo1noPYyVi7ag0T7VTayXPewXt5neVK23nXYsG4HTcYc/H22yuZLhf7qUSICrvehQGUKpM63QWYr8z0XC+QOzlCOdFktZ4IeCWBXzvYQSE9Z5IO9AqeeojKuvkabfovEfSLgu4J9Tg/AHAKLkXR/Z0hvviOGceCFxEIfpl8c5NA8B6ryLgfmEI4d4VNeGE60JWXsBeeTmh9f5GCZim9XvZhDC972Ecsl7abprWC9ulCWHCeufi0LD1fxnA0DBE2QSGTUhTApX3MMphCTlQtl6COASUD1fewzgMlMsGhgY7YJoGhsslDJVLGC4bMEXlPYxlAyasdywOlksow3oP45A0UEblPYwSlXc3AkMAhmE9Z2BWbpoMS1G5gSJQrtzQkAIwTWeLuO9frIRF0t2kvv3K9zCGxyEwLOoauW7vYVTUM1hemQgNZNO949XbgO9h9P8dfeWU3XsYTd9wvocxYriGNqaKq0dgmSLqw+qMj/gwRswvul6aSodOiilnkTQQzyi4rf49jBVZJEob/B5G853Dtc0gR2aLdXojAxclwb+rVVUvqXm59NJLsX//ftx0003Yu3cvZs2ahUcffTTUEU62vIdC+k+Mt/mp0N6J8QeOQnTgrSGBDgGUhESHYeWRSkJUgsVKAGkHkZVhHaLyzjnIynSyMp1EyZ4OEh2G6WRGBCRKhoQhzErMJp0LHju4tJvOGYbpibXsulYukIxKkAkr6ATc58PscQCsQNO5+qr8bc+nw38FJLxXVN4r2Uo553zqBGci8GUmPFetwp3AkxYKBmyq+fh6oFReNWuai6l6g1SlCp119QaUIlxe9RyTgP/OqeEZHhrm3Q5GeN6eHjGd5lqG4VnHynJ9vWwawAgBjDCAIzqtHJshgFKHv4w3iE55t9wA0Fn5aUa+TLQnleRm1zzjnYyxPzpTzUM9X+9uE6Gy/iDJ3d9Jp/eP99bFcwMDsG5EmAAggeEh6xq4PAwxXIYolwGzDFE2IYaGrJsO5TIwMACUpfX70BDEQBkYtm4k4NAg5GDlBsOQCfOgFfGXB4GhdzpQLhsolw0cGui0vsTNEobKBg6bHTBhYMgUGDRLGJYCw9K6kTAgrXCpXLmJUK7cFxmGgbJp3SiQUlZuIrg3B+wbByYA05SQ7o60bhIIz7tt7dYBmgtK/3VzpbxnXDAg9T7fbZeJbQUQPJUol+0pj+Cxop53KDDUjNMl7OLKBoerbjREtRDwlnfXO5C1V0wT1RTfKhd9g8G3XMU0UTd54prnB8sF5x8s55ZXDEsYwCvnp3gEIHwjIjAv3zqHb1Ko6qldT00dg+tW7Q0J1bJ0w5KOT3yTJfCh1r6XNmYdm1n/QLOFVcnFZRibrk1qnbRUwAgAy5Yta4smqLZghtFVwqHhSibRAEqm8CTvpHMxYQigQ9jBJCoZRPcCpMPuYEV4s5Ju4Cg8fxtOkAhnnB1M2s3s7GF2wCoqr6ewL1bsbKbhfAm7waZ7vSWdH8Abx0hlOVTm7cZGVnAKeE+2Zc+zWYG78p6mWoEkXeydUmeYt1yCpkZCdWWiuwIz1OX89Q1+Wyu+AYPBsqpsMAhVpFOcACGqrCqA9mxwNxPsDSqFfxo7aHQyyoY7j44OzxWVEZg2sOyoALdSF3e9veupGh99sR+azkvR3Eeqfvd+43inUTUX8g6yx3uelxHKby8ZKhdarq94xt9yoRsk4dyg9O4vYQAjSkBXCRAjPceDe8xIo+Tu40qrAgBO1l8A6DREU95EcD5/pmn9blaa4Uv3XaiQ1jnXOs1VzlvSrOwzYV10S9P9PJruPray/fY8K60CvP/b5aS0svyojBs23TLlcqWlgLUcDJsQZatlAYbdcbIsIYbKkMOVvwcqLQiGAXNAQg4DsiwgywJDh63WAeVhA4cHuzBUFhiWHRg2gcPmCAybAoOyhIGysIJ2KTBgGlaADyuwH6oE9mVY1bAu2IxKoC+dYL4srUcX7KDdNK0mjvaRbUJCCMPX8tHellLAaurvCfbdYNA+D7r7021H4s4jmNlXPVfvf9QB/vH28EDdvOOiAk+viEds/TNSlI36elF8FarrI9TDQ+sVMTxYr6i6q1oi6OpolQ0Hm9qbGcEse7iKsUF5klYk6nqEA2pvawXlPBRRSoJvMCV7TtVOn8TBwRZukir1zzCadd1yzaPlAsZWFg4KowlhYKAsMWwICBNOptDKAMIJFgFRCfDgtvb0/F6qZDicINH53VqOfdLpqFy1+MY5J3BZma87vZ2B9Pe2CV857x1K39/wfmF6euz0lPH1JOrUx98Eyf2ikv67mQL+cr64Sir/D5cL7g/1Xb+k5XwVtv9UNd/xNH5Ujg8Nk9HjDP0XSrDzE2e4r1C4TDCIVgbaiisYEWzr6P27cuC5iTnhD2x1WWNvJRTBr28677LTiMocRQVdEUGar2lIXFtW73gnULD+l04RbxlNvVT1CTVbUVY5ldBmirrJEdhfviy/t8l35WTh7HPvdJHvgLT/DxzYafa5cnt5g/yIss7D3m6zb2e46T55bVYCNnce3mmlu5+dYcH5+6eX7oz95XV1DY7TCW46X8uPyrCSgOgAMNKzP0oCnUKgs7Jfx1buZkbuT98NJXvZihNh1L4MrZ9in9llNPtKuClkOL0ASDuwF25ALivP2Zue6tpt2SGsgBvC6rvODlrLEpBW53GVrgsq/fZXllSudNNvWj2bSxMoD5esbLYpIE2rib40DZjSsILrsgFTlDAwXEJZGhg2Bcoo4bBpNeMfhsAh0wrOhysXv4fLAiYETCkxWGmKb0rr4nfQtIJyCYFhaQIQlXFW/wNS2Fn4ynFauX4ABGRl1wlRGQ7hZN7tz3nJc3Ow0t975XeBYNDsBoP+eaTtPM8/bXikv98C+KhaB7jThcs5X2u+awr/euluBIQy7IGvO+8yNI0alFIWjxU8hUTN/9BQi2cYY8Y3m5/85Cfo7u4G4Pb3smXLFgDAgQMHqponA8ZU7EMm6j5f7dxOSayAsSQlDCEwbNrfr1YAGQrc4F432YGk8xggwsGkfcJyX7PhSR55snxuVtF/R8sp72nOE0xiuVvJ06NkTGcf6h4w3Xm64wI9SiqazyRtWqQqo5uXqqxbLuYupeZsbQSm1TZ3SbBstw6KwDH0hagvk7SZjCroDgfp4Wmt/6WzYk4G2dOs2ZnG+TsiWI4JlEPjkiUNtbRfGKa79PB8o8f5r3U18/DFK8L3v69Y8Fo68Eb7uHdJpQkooy5i3GNFKo+b0HHmHA+ec4ciOay8yaI4DhIz/SuQZL+p9pcMBG6q/SNl8G/hbGsZ2LfefeYtp5qnsyrQHBOhIW65xE3qPDfs7NYk3t/tz7bd669/uH8aZ7nec0SKr1vdZ8O7bu7/+nHuflDtN+EbH97m0p3OVwf/Cpmh/eLeNHQNO7+pbpy6zWqt78UOITFCAEcYJuxWO0aH24LH2f7C/WyFP1fRNy6dEsrzZPjYdz4jwXGB7WtFm5WQTBiQsvJyL7tHd18kWhkvrKbnAsJ6tt2s9FNQOWOYZsm5VW09727dmJBSWM+5w4AJgbK0AnATwKAswZQCw5VAeUBaGfCyKTBoWsOtJu7AoFl5xg3AUNm6KVQGMGSabqAhgGGYMGFawbZhWsF3ZX9ISEjD7QzQfQQAkEJWAmpruAGjcu3mDtM/7hRm1HANa1b5xN7QcOs+wyihf4ax2Tq9AYBFixb5/v77v/97398i6ktao5ABY/LnCqPU9lxj9LysQBGw6jVkSlgtbKyg0QqYJILvUPQ2Z/FmDt1Az/5SdgNGO6C0fvMOD9w8Ft47WcINtuAP+mAvw3PhELzz5gR+ocDM87szgfT/HSinmj68J2SojDN7zTMVqnklvXjy1ytd4JK0jC5RontmxSkTdTGf8HmXqHmEAu6I8lGBeVQZbRCu2ncNerYjdKEXsVh/4i8QiHgDj8D03vlryynmp/oCC9ZXN8+ocv75RU+TqHUv9MdUqOOXmBtAqnlUQ7ntvOMD28OfCBahMk5Q4RnmJLng/98MBBje4yWYZLTnF94PIlTnpK9AU5VLmpgNn4fVNwqDTe28sw928pNWsPrhY77yv2K7OmUit294GtX28g5z5q1ZXjWvp4v6zgxeE6haCQHuflDdrPVusbj9oLzhUPnff/7yjNcc01bZ8OdEVRvdPlDXqBxXEID6ZreARGdl+BjP4zsCVv8Q9rWPFZRXfrdrHfgM6GsqnPsFwcYF9ni3kYH6+0ElatlpvivDNzb89YpzqDyI+xMvrbmY0n2TgHJ846qSiFmPV9KgoAFjMwoHrgJD0kQZAoYUvoxa+KF/uymfdIJBIHji82Qo4b0jCWdebkDnvePvGe6cE4Tvb+EbKkIXCf66+st4p/eWC2+NwN+qL8zAcHfa+GBHtcwk0yS9sFFl+eolbWtL37RJCiX4klHNJ+2Fp25efvXYtvGVzeKC3HdaD3whJ52/9/kJ/4WZZlmIvkiLKhM1nywleW5IdfGTRaAIqNdXFyAC0S2BpaJM5PhgAKkIMpXlFONUS1C2sA0PirxxELd9/UGfekzU82zq6ewyboWSXJTGtbgNB5TBOai3WWg+Uv17VEvgNJ/FtILfhd7vWt/3e2D7e7/Pk3Sqo6LfnlIzTr99VMNU5500x3DS3qsBxbaC6qa7VSLYkssaGmwBlUzUNlHdHIo7tqOWmcWpMupw1R3Gg2ZJM7a5ScQEzDGtc9pF4QPGbLONtlqyjnaGUWDYNJ3fDQhfgOjlBn92OOYP1MJ3uvyvZPAGmfbfugv+4MnUO8xdg2BGIDxeNW344jC6HvElw+umL52+jHp5+UhyB7PRkl7IJw68a9y+SQM7XbEkQUWSC3T9xb6/RDUXr4DiwlQzraq8qkzcJsyqC28AEc1mhOK32qgvPFVhWVzwrisXsT99+1aGhiULSP0LC++zcKXr1eeRb1jou8r93YjZe/bYJNUMrj9Q2zZQz08xLDSdfpnBeSiXk/I8Hvf+4GCPvNYwf5ngtEmFj7vA38ppwpKsc9x5RbUtk85bRbVdrRvu/u3p3Zaq5yBV73xOUk//OcBz4yTBNnbqEDW8xjtsST4LQcOVV8a1IhmTYWymK6/p06dXtX+XL1+Oz33uc9oyhQ8YiYiIiIiIgiRap9Ob9evXVzXdu9/97tgyDBg93HcgZvtcYjLhZQ7Z3anbPbHJ+NxluOmm6i6Zt3z4jpi3bHCeup69dD2JKZ8TTJEpjC7vPqNRT3lmDqNU8+wLuXSf0uhtGx6RoAPSRNkNfZPRYNl0GSV101J9dkC93LC4O/hZZhzjRN1ZTVOHNJmK4LDQNo0bL8xEZaVny3unCS9P9YoX9fqYCZ/pSsqQ0U3OnO+DiN0gYr7ZVOvljlN8JiPWLVEmS0Qsy3NoRXX8odz+3t5fhKacdh3V41TbzTvM93vgusY7Lm0nKKr1l96uYhFYb2+Zamm2nUpUubR1CG5jp5+JwP+Au41V+yVqGwe3pVM/e32l6R9Xw7WI8nhJcL0b2pci/fY1PR03tRqrUyRdk9QGVibGhz/84brNmwEjERERERFRkNQHhU0UL9YVA0aFuPcl1p6BTDJviWGUnSMxaTv4kMg7uhHP/Kme94u4ax89j6hl6qVtd13NMxfNLCqzkVbajE61S82i85Nqny9Rzivheuu2c1R9orM0yZ5BUpYTwTvLCacL3pEOzCfJNMrlCXVmRplZU2RhdN2tJ7mrn+Y9tTrB87OU1d2Vj6tzmixRaJ/J4D4L9Z0Znof7bgJFZjHZfvMXyGB7J/wurPr7qyJyXSLWIXbfZXSsheerO7fEZB815dJIkkUKZc0SfveqWyHoj21VmWrostDVfFaBdN+VwW2UNJOrKqOrV3D7hbZvjRnSqGFJpc2OO2Xq9JlrBBPWK1R044uAASMREREREZFCUbKIOoUMGL13Q6q501LtnRJ9ZtKszNsuKzCU4hkT1R3/LLM3QbXeMQYAEXiBcat9IiOfdUk6fRUrnDQLmfg5jwTrkCbzmebuZ7XHZ+SzV4pDspZnlqrJmEWdG9I+75Eqe6VYZnTd08xDlU1IkcnSnCdrzTjU3rt1snknKx+Vldasf8IsTDh7E3xYNer4SXieqENrmiy+G7x066Lcjk2XyUh6fOiOl+htoM8O6jOL3jHJJGm9oNonyY7HZJnOuGMybTYx7bO8/md1/XVOnl0Eos4RMZ95APF1Vj9PrN6+ST7jSfdpdL0a+Sx71kwJlDWnlRZetVQKGTASERERERHpxDZJLUjAWL+H8YiIiIiIiFqYjPlJY82aNZg9ezbGjBmDiRMnYsGCBdi2bZuvzOHDh9Hb24ujjz4ao0ePxsKFC7Fv374M1qR6hc8wpmkaVcuDwoC+qYzb9MdumipginB6P65Di2o7wLCGN+Y2idOkMOc+a7JY32qbpeqaO/rmn7RcgmZYiR5Mr7LzgLRlgHRNx5JuL+8UWdQhrjmuqommO662TkfSNml0x2XTRFI3nbqzBl03cvmec+ot0edPWybpeTrNds/2tRlRzdyiVPty8PimaxGvzEjULky1TRN23JNyffT1UdRD22FO/LopmwJX3QQxqcB6hF4qn+7zHdmcuZYXzSs76lHVK8l3hgFgyDfEV+fEzYOTt2+srq6qjm5EeE5ptmuN27Hlm6TqXquR8mL2qaeeQm9vL2bPno3h4WF84QtfwAUXXID//M//xJFHHgkAuOaaa/DII4/g/vvvR3d3N5YtW4ZLLrkEv/zlL2tal1oUPmAkIiIiIiIKktA3O00bCz/66KO+v9evX4+JEydi06ZNOOecc9DX14d//dd/xYYNG/CRj3wEALBu3TqcfPLJeO6553DWWWelXINsMGBMIYuuoYGI7pUVd5/LlTup0Z1yRLzY2TPc20FI6GXeoWxk+i7KU3cQUcM2rHbaaqZLPI335ep1yZhl0111ko5rasqWAbEZM2s+2Wcf3Wnq1DlPirrU+lJp9fITrldsxjJd5yFJxiXPjAHVduqRtWozX0mkW49qMmX6jI4zOKPMrT/jE/Hi7YjtmckurSrrVuv3dEQHJVW+4kq/L5JlGnVzEFFlhAgM9Ldiip6ff/3qXX9rmYpy3uNKOYOoTGm63knSHabWZ9a7hSTg1lW5vRPUK2pcKNuYVEQ9gQTbNYEqtmMrZxilBMq6gLHG+ff19QEAxo8fDwDYtGkThoaGMHfuXKfMSSedhKlTp+LZZ59lwEhERERERNQskmQYy+Uy+vv7fcO7urrQ1dWlnbdpmli+fDk++MEP4pRTTgEA7N27F52dnRg3bpyv7KRJk7B3795qViET7PSGiIiIiIgowMowysgfExK//e1v0d3d7ftZs2ZN7Lx7e3uxZcsW3HfffQ1Yk9oUMsNopcYzal5axXuqkjZHK4tyRIcT/lsdSZqdeptA+pqvSvXwqHomKaOat0qyZpnZNmFM907BFO/BTDrfBjbbTNIEJIvmxpl0lFNNc5Ua37dWa7O9at/3Vvt74urR9LaWY0nxbsa0HX64E2rrUZVAk8lki6jlXmoV+zd109K0naaoxTWu9DW3iyxUj/vOCbZhzc0Lw6w1jXrPq8hkGdH7usrZaZbj33OB9YpqShy7wGzrHzltqP5B6Tt1yursEpqPsq61dTqVSYtuxTCRwTm2dRuXVidJT6hnnHEGHn/8cd+wuOzismXL8PDDD+Ppp5/Gscce6wyfPHkyBgcHceDAAV+Wcd++fZg8eXLK2meHGUYiIiIiIqIAKYGyGf1jSqBUKmHs2LG+n6iAUUqJZcuW4YEHHsDPfvYzTJ8+3Tf+9NNPx4gRI7Bx40Zn2LZt27Br1y6cffbZdV1XnUJmGLNUe7Yg2jAG3eVE3N/QdVyTJJNo/64appo2uAx7SKheiu0Sld3L69UETplEXeInu6eW2fIyen1FbL1r6CjFXUY26+xdajWy6pQqXqOWY8mms4AU2fLY5aXPEKbuOCNmflrBzEloFknuk1p1StvBiUr6THY127c6iaZLmunJojOhRK0i6keZkXFGZrvkRmRp6r0+9V6HajPjumnrJbi8tJ+GRtW3aNnBLJgAhjPsJbW3txcbNmzAQw89hDFjxjjPJXZ3d2PUqFHo7u7GkiVLsGLFCowfPx5jx47F1VdfjbPPPju3Dm8ABoxEREREREQhUuqDwrRB+F133QUAOPfcc33D161bh8WLFwMAbrvtNhiGgYULF2JgYADz5s3Dv/zLv6RcUrYYMBIREREREQVIxLxWI2XEmKTV0MiRI3HnnXfizjvvTDfzOmqZgPEf//Ef8cgjj2Dz5s3o7OzEgQMHaphbGekbDDSWlCaGxZB6XNT7EgPN/nQd1Cibonqm9zc7jW6iGmxmqmpeGmqSFdE8UdnJTlTZmA9cLZ25NKQTl0TNUhvZHLT67emqR+c2tXUckIVWfn+UK2Uz2sRNsKtoalpF5yypBOav7Ywiphmluj5JH/2vsulyzs0ykyxPudXq9DnJ+9NXS7PIJPNptGrWp1nqbmu2+qi0Qh0pmbhuMouyr1um05vBwUF84hOfwGc/+9m8q0JERERERG1OSomyGf3T2F4N8tMyGcbVq1cDANavX59vRRLIpiMcE2U5GF8MmoyjLsOo7cgmKuvo3kcJZhLjsoi6ZVvDVF2kJ8ukxpaPnE99O4SJf+1FK2X+4jN9yTJx2b1yoG0k7SykQdshXSctMfsztiVA/dXc8Udo/2R0eVDF/myWT4K3Hlm21WmW9UuileqaRLutD1FWkrxWowhaJmAkIiIiIiJqFFMCw5r7hGZBosm2DhgHBgYwMDDg/N3f3w/Azuzk+QxjsjvUZSTLMAZFZa7iXoeR9NlEXwYi7rnJ4HgZnK++fGS5tFnDyPlqnqfSZADjs4O1ZAZbLCOY6JmrDLNWDVfnlvtNnUHN/tnHZlhbuw6JvgWaZP80Ry3CdPUKbt9mXQciIh39NUwxzmy5PsN4ww03QAih/dm6dWvV81+zZg26u7udn+OOOy7D2hMRERERUbsyJVA2o3+YYWyAa6+91nnnSJQZM2ZUPf+VK1dixYoVzt/9/f0MGomIiIiIKJaUEmVd794MGOtvwoQJmDBhQt3m39XVha6uLsWYvJukemiaNibt9CbxoiKbqupfjdHIJqjKV2soX7eR9FUd6k9y9Os6qus8uZYmprU2L42fPmGzwtgOShrXhNVdZvbSf/Ir2z9p5zRVyaOxR36dt1Ax8MggolbH12pYWuYZxl27duHNN9/Erl27UC6XsXnzZgDACSecgNGjR+dbOSIiIiIiaismgLKm3alZkJumLRMw3nTTTbjnnnucv//bf/tvAIAnnngC5557bk61CsjgdRreLM5wxhnGpMt1B+qzfUlej5GkUxvfPJNkEyPrpng1R1Ud10RkJavMIuaeQcysU5ras4fNcFpNUoeaXkxeVSay2Tr60ajxy9G7dfI8HpqkjUliAs3x+SEiKhIJGWqJV0S5dnqTxvr16yGlDP00TbBIRERERERtQ0qgXHmOUfXTQrd7a9IyGUYiIiIiIqJG0jasKUjysZgBYwPfw5ju/XN+phzSjhcZJ4h190mSND+NmkdcxzaNaobaHE1QG9CBTSad12SzLGt5rSfVe/pCEyvWuK4d5jRIHZ7TiNoqWS+pDbY+AL7XkIio0UwpMax5vKkozVWLGTASERERERFpSOhvtNeSGGolDBhTqM9BEXXXwkDZVGcY3cyiPlvlmyZFhiM+y5Usk6gtm3FWMWr51bwmo9GZxSTbO7tsX4bZxYSapZOTNDLPSHn3TatlG3PoAa7FtlBuGpWhJSIqKhMSw9qAsRgYMBIREREREQVISJR1TVL5Wg0iIiIiIqJiktA/p8gmqW2sfjs3y851TZQr72FM07lNZNmIVRYift76Zp3eRWiaayZtggpEvs+ynh3cWGPyec9iIwmIhMe/gUTHs6p5pWZ7JG1qWM/Tb27NHVutKSq1rGY90opxWUVE7UTCRFn3WFFBzmyFDBiJiIiIiIh0mGG0MGCMVYdXcibsdl+a1h0NqctQhTKE4bLaDm+8fXGkfE1HmteVarNwKTKK7vzSZhatOUaPqVd2MSsJMn72fo6pk/DkH/QnOtXxUGXW0Vlgsu3VrBmSxNopmyhELh3fUPthJz1E1GpMmCiL4ejxohhnMAaMREREREREARIy5l2LDBiJiIiIiIgKyXqGUZNhrEdLxCZU0IDRRF0avdXSbEsxrSkTdJYSKKPqxMaetYhZZ4myoolrjRJ3mKPfdnEd71TTyY01Nq5+9T8RCCESNm1N2RFNgnkmb57qrUNQim1US1PNPJpFtlPT0lqkOKaI0kryKeORR0R5kAIwha5Tx2KcnQoaMBIREREREUUzYWKYGUYGjLFyvKMuk2QYldPo79dqX6Uhy4letVEviV/hEVuu+TOLXumyjEDqzmdSZhuBNHfN4o6XjLYls335S3lMEWWFHeYQUR6sl2oMRY5P0wFkK2PASEREREREFCJjgsJi3LZiwEhERERERBRgwsSwiM4w6p5vbCcMGOvQrCqrB2Clps20nr6JoJRl7TsXdc09G9VcNWnTVM8UCUslmW/SZrHZHjvJm6UCiTvAcWfu/p74XYjqRmDpj+8kx0wxTrhthc1TqQmwwxwiqi99hpGd3hARERERERWUCRNlqXmGMXWCozUVNGCUVd1ybPRdBDfbFNX5TSlieILOciJT6OpskJ2RjO+Ipx4dk1S33dM/iJxPZtErfZbRVt9so2/yqjvH0UmTuS7GybmlRHVIxMwjNQHdtxKPUCLSM63XzkVgpzdEREREREQFZcJEWfOIGAPGAmuW9shSxj3DmO4ZR+HJAoRv/NvZyvBdFCFExAcieVZI98xkNbL5gKabR3WZxfSvRqlOymcabcHMUAYZR2dWdfscVXMsFeOE3nRUmUdmHamJ8HUdRKQlpbZ1XbPEDPXGgJGIiIiIiCiA72G0MGAkIiIiIiIKkJAoa1r8FaXTm8a8I6FGL7/8MpYsWYLp06dj1KhROP7447Fq1SoMDg5WOUep/dc8zEx/pCwrfmTlZzj0YzWnLAeGS8+Pf17aZWPY82PW/JPNttPzr2szN0e1Gaj5Iy2E+1MjofiXH6OGH8qU9xjL6FgjypqI+SGiYpAy6vq58sMMY/PYunUrTNPEt771LZxwwgnYsmULli5dioMHD+JrX/ta3tUjIiIiIqK2Y8LUZRibKtFUPy0RMM6fPx/z5893/p4xYwa2bduGu+66q70DxoZ0DuHJggXu9PsXb2da3A+N0JaPeuWHf5nBeeQh29dkNDqrqFJlBzhB9r7JcPvU55Uc9ZY0y1iMu4x1wddyUIvhqzqIisFqe6i7tivGd39LBIwqfX19GD9+fN7VICIiIiKiNiSlCdPkM4wtGTBu374dt99+e2x2cWBgAAMDA87f/f399a4aERERERG1AQkJU5NFbI2WUrXLtUeHG264AUII7c/WrVt907z22muYP38+PvGJT2Dp0qXa+a9Zswbd3d3Oz3HHHVfP1cmcvmueOvyTpnWnRErFT9n6iexERwZ+/B3nRP2EO9Jp/E/1VOtUvdrrUyd17JikeTrFyQI70skcO8ehFsTOcYjah5VhHIr8YYaxAa699losXrxYW2bGjBnO77t378Z5552HD3zgA7j77rtj579y5UqsWLHC+bu/v7/lgkYiIiIiIsqDjOkJtQlv9NdBrgHjhAkTMGHChERlX3vtNZx33nk4/fTTsW7dOhhG/F36rq4udHV11VrNHOVz18I99BXbWMqITFBZmQFwE2bR+0uIWjJzus51qtW4jmuaMqMYpQ6d4IQW0ZKd4lRD9Xkoxl3KmnjPMa302aHCisoy8uglag18htHSEs8wvvbaazj33HMxbdo0fO1rX8P+/fudcZMnT86xZkRERERE1I6kjHmtBgPG5vHYY49h+/bt2L59O4499ljfuJbK0BARERERUUuw+/iIHl8MLdH7wuLFi+vQYUmbUnZYU8UPAG8HN77OblCO7DQnen7qeVmd59TSQY2+U53qfuqjMcevvV3rqIGdj7RPhzhJsFOcVIId4rBTHGohQvNDRE1Emk5HjqofMMNIRERERERUTDKm05v27WvBjwFjM8szgxq3bKH+8MiI7IjQzS5iXn5GpVq1bRORYRai+TLc7X2Xy84yFuPk7P0ctfd+zZTq8910n1MiveBRzCOYKE8mpBzSjG9cR4l5YsBIREREREQUYD1CpMkwFuSODgNGIiIiIiKiEBPQ9JJalFZADBibWDPetHCayqhuqQiBqA9OZFNVCP3tGaeJWdIPpL7DkOZrRlqtYpygVLwd4BSveSpQ5H1fFb67kVocm6gS5UnGXGsU4xPJgJGIiIiIiChEAlL3nCIDRqKQqI+FAKLv3kdmHo3IuzZOFim2853gvde02ZdmfYVBk2aRmKFpAvYx26THSDNjtpHaQFTXbTyiibI1atQoJMkwWuXaW7NeLRMREREREeXiqquugnUrJipgtMZ99rOfbVylcsKAkYiIiIiIyOOEE06AldOPatFjAhCYPn164yqVEzZJpUwE7734mswEm35pO7KpvG9Rk/73dnqSvslqEJv1xWripnsCoiAd36gY4PFbg+C5oYmPc6Ik2DkOUfb27/8TJkyYAOv7NviOZIk33ngjn4o1GDOMREREREREAccccwzcG7T2bRgJO4AcP358XlVrKGYYqS5UdzbjX8kBRGdM3HsbsR3l+CqS8B5rbCayQJhpoSJihzjUZrzfajyiiar3zjtv44gjjoD1SRKwP1GHD7+TZ7UaihlGIiIiIiIihVGjRuGee+6Bm2U0sWHDBnR1deVcs8YRsn3eZB6rv78f3d3dAEqI7pi6eXR0tHcCOHYPxGb9kt/vUGYfa9EOGck2+egX9xlGgM8w1lmbfEaIgnhkUyNJKVEuD6Cvrw9jx47NuzpVMU0TpVLJ+btcLsMwipN3a++IJMCNjVvjVFmgWL5K3D41aZPjq9gBY5HXvQHa5DNCFMQjmxrJvp5t5etawzDw2GOP4X/8j/+BJ554olDBIlCwgPGtt96q/NYad+XL5XLeVSAiIiIiqtlbb71VaenXmubOndvSQW8tCtUk1TRN7N69G1JKTJ06Fa+88krLpsYpG/39/TjuuON4LBQcjwOy8VgggMcBWXgcZENKibfeegs9PT2Fy8y1i0JlGA3DwLHHHov+/n4AwNixY3kCIAA8FsjC44BsPBYI4HFAFh4HtWvlzCKxl1QiIiIiIiKKwICRiIiIiIiIlAoZMHZ1dWHVqlWFen8KqfFYIIDHAbl4LBDA44AsPA6ILIXq9IaIiIiIiIiSK2SGkYiIiIiIiOIxYCQiIiIiIiIlBoxERERERESkVMiA8c4778S73/1ujBw5EnPmzMGvf/3rvKtEDXbzzTdDCOH7Oemkk/KuFtXZ008/jYsvvhg9PT0QQuDBBx/0jZdS4qabbsKUKVMwatQozJ07Fy+99FI+laW6iTsOFi9eHDo/zJ8/P5/KUt2sWbMGs2fPxpgxYzBx4kQsWLAA27Zt85U5fPgwent7cfTRR2P06NFYuHAh9u3bl1ONqV6SHAvnnntu6Lzwmc98JqcaEzVW4QLG733ve1ixYgVWrVqF559/HqeddhrmzZuHP/3pT3lXjRrs/e9/P/bs2eP8/OIXv8i7SlRnBw8exGmnnYY777xTOf6WW27BN77xDXzzm9/Er371Kxx55JGYN28eDh8+3OCaUj3FHQcAMH/+fN/54bvf/W4Da0iN8NRTT6G3txfPPfccHnvsMQwNDeGCCy7AwYMHnTLXXHMN/uM//gP3338/nnrqKezevRuXXHJJjrWmekhyLADA0qVLfeeFW265JacaEzVW4XpJnTNnDmbPno077rgDAGCaJo477jhcffXVuOGGG3KuHTXKzTffjAcffBCbN2/OuyqUEyEEHnjgASxYsACAlV3s6enBtddei+uuuw4A0NfXh0mTJmH9+vX45Cc/mWNtqV6CxwFgZRgPHDgQyjxSe9u/fz8mTpyIp556Cueccw76+vowYcIEbNiwAR//+McBAFu3bsXJJ5+MZ599FmeddVbONaZ6CR4LgJVhnDVrFtauXZtv5YhyUKgM4+DgIDZt2oS5c+c6wwzDwNy5c/Hss8/mWDPKw0svvYSenh7MmDEDl19+OXbt2pV3lShHO3fuxN69e33nh+7ubsyZM4fnhwJ68sknMXHiRJx44on47Gc/izfeeCPvKlGd9fX1AQDGjx8PANi0aROGhoZ854STTjoJU6dO5TmhzQWPBdt3vvMdHHPMMTjllFOwcuVKvPPOO3lUj6jhOvKuQCO9/vrrKJfLmDRpkm/4pEmTsHXr1pxqRXmYM2cO1q9fjxNPPBF79uzB6tWr8aEPfQhbtmzBmDFj8q4e5WDv3r0AoDw/2OOoGObPn49LLrkE06dPx44dO/CFL3wBF154IZ599lmUSqW8q0d1YJomli9fjg9+8IM45ZRTAFjnhM7OTowbN85XlueE9qY6FgDgsssuw7Rp09DT04MXXngB//AP/4Bt27bhhz/8YY61JWqMQgWMRLYLL7zQ+X3mzJmYM2cOpk2bhu9///tYsmRJjjUjorx5mx+feuqpmDlzJo4//ng8+eSTOP/883OsGdVLb28vtmzZwmfZKfJY+Lu/+zvn91NPPRVTpkzB+eefjx07duD4449vdDWJGqpQTVKPOeYYlEqlUA9n+/btw+TJk3OqFTWDcePG4b3vfS+2b9+ed1UoJ/Y5gOcHCpoxYwaOOeYYnh/a1LJly/Dwww/jiSeewLHHHusMnzx5MgYHB3HgwAFfeZ4T2lfUsaAyZ84cAOB5gQqhUAFjZ2cnTj/9dGzcuNEZZpomNm7ciLPPPjvHmlHe3n77bezYsQNTpkzJuyqUk+nTp2Py5Mm+80N/fz9+9atf8fxQcK+++ireeOMNnh/ajJQSy5YtwwMPPICf/exnmD59um/86aefjhEjRvjOCdu2bcOuXbt4TmgzcceCit1pHs8LVASFa5K6YsUKLFq0CGeccQbOPPNMrF27FgcPHsQVV1yRd9Woga677jpcfPHFmDZtGnbv3o1Vq1ahVCrhU5/6VN5Vozp6++23fXeDd+7cic2bN2P8+PGYOnUqli9fji9/+ct4z3veg+nTp+PGG29ET0+PrwdNan2642D8+PFYvXo1Fi5ciMmTJ2PHjh34/Oc/jxNOOAHz5s3LsdaUtd7eXmzYsAEPPfQQxowZ4zyX2N3djVGjRqG7uxtLlizBihUrMH78eIwdOxZXX301zj77bPaQ2mbijoUdO3Zgw4YNuOiii3D00UfjhRdewDXXXINzzjkHM2fOzLn2RA0gC+j222+XU6dOlZ2dnfLMM8+Uzz33XN5Voga79NJL5ZQpU2RnZ6d817veJS+99FK5ffv2vKtFdfbEE09IAKGfRYsWSSmlNE1T3njjjXLSpEmyq6tLnn/++XLbtm35VpoypzsO3nnnHXnBBRfICRMmyBEjRshp06bJpUuXyr179+ZdbcqY6hgAINetW+eUOXTokLzqqqvkUUcdJY844gj5V3/1V3LPnj35VZrqIu5Y2LVrlzznnHPk+PHjZVdXlzzhhBPk9ddfL/v6+vKtOFGDFO49jERERERERJRMoZ5hJCIiIiIiouQYMBIREREREZESA0YiIiIiIiJSYsBIRERERERESgwYiYiIiIiISIkBIxERERERESkxYCQiIiIiIiIlBoxERERERESkxICRiIiIiIiIlBgwEhERERERkRIDRiIiIiIiIlJiwEhERE1p//79mDx5Mr7yla84w5555hl0dnZi48aNOdaMiIioOISUUuZdCSIiIpUf/ehHWLBgAZ555hmceOKJmDVrFj72sY/h1ltvzbtqREREhcCAkYiImlpvby8ef/xxnHHGGXjxxRfxm9/8Bl1dXXlXi4iIqBAYMBIRUVM7dOgQTjnlFLzyyivYtGkTTj311LyrREREVBh8hpGIiJrajh07sHv3bpimiZdffjnv6hARERUKM4xERNS0BgcHceaZZ2LWrFk48cQTsXbtWrz44ouYOHFi3lUjIiIqBAaMRETUtK6//nr84Ac/wO9+9zuMHj0aH/7wh9Hd3Y2HH34476oREREVApukEhFRU3ryySexdu1a3HvvvRg7diwMw8C9996Ln//857jrrrvyrh4REVEhMMNIRERERERESswwEhERERERkRIDRiIiIiIiIlJiwEhERERERERKDBiJiIiIiIhIiQEjERERERERKTFgJCIiIiIiIiUGjERERERERKTEgJGIiIiIiIiUGDASERERERGREgNGIiIiIiIiUmLASEREREREREoMGImIiIiIiEjp/weu3eJxXjQ6DAAAAABJRU5ErkJggg==\n", "text/plain": [ "
[14:20:13] Created task 'sim_50_linear' with task_id 'fdve-a991273f-5479-431e-b237-b46591ecf261v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:20:13]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_50_linear'\u001b[0m with task_id \u001b[32m'fdve-a991273f-5479-431e-b237-b46591ecf261v1'\u001b[0m. \u001b]8;id=705670;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458325;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cd2b96061bb748ae8176685ecf62851c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:20:14] Created task 'sim_50_quadratic' with task_id webapi.py:139\n", " 'fdve-4e01bb58-5916-4c68-b332-14df193011efv1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:20:14]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_50_quadratic'\u001b[0m with task_id \u001b]8;id=994243;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=723449;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-4e01bb58-5916-4c68-b332-14df193011efv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "43afe2a8b8b545a18d69494d23fde398", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:20:16] Created task 'sim_50_exponential' with task_id webapi.py:139\n", " 'fdve-08d598bf-32d8-4ae5-bf8f-ab5c4e7d925dv1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:20:16]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_50_exponential'\u001b[0m with task_id \u001b]8;id=405763;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=608981;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-08d598bf-32d8-4ae5-bf8f-ab5c4e7d925dv1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7446cc6a8d5f48068189789da8dc814d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:20:18] Created task 'sim_100_linear' with task_id 'fdve-f5d5981f-4d19-4881-8ea9-a1154588d919v1'. webapi.py:139\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:20:18]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_100_linear'\u001b[0m with task_id \u001b[32m'fdve-f5d5981f-4d19-4881-8ea9-a1154588d919v1'\u001b[0m. \u001b]8;id=431533;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=544747;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bd4b913e076e4e09bff5608d65da2752", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:20:19] Created task 'sim_100_quadratic' with task_id webapi.py:139\n", " 'fdve-dd2ef482-688a-4b74-a513-b484d47de3c5v1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:20:19]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_100_quadratic'\u001b[0m with task_id \u001b]8;id=932376;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=207706;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-dd2ef482-688a-4b74-a513-b484d47de3c5v1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2ebac90a7e8a4297b582072994831691", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:20:21] Created task 'sim_100_exponential' with task_id webapi.py:139\n", " 'fdve-9752d3f1-11fa-4eb2-a219-ab72291b9deav1'. \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:20:21]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_100_exponential'\u001b[0m with task_id \u001b]8;id=984983;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=676635;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m\u001b[32m'fdve-9752d3f1-11fa-4eb2-a219-ab72291b9deav1'\u001b[0m. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4470657ef0de4f3882e4ed2fa29b0c17", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Estimated FlexCredit cost for sim_50_linear = 0.22\n", "Estimated FlexCredit cost for sim_50_quadratic = 0.22\n", "Estimated FlexCredit cost for sim_50_exponential = 0.22\n", "Estimated FlexCredit cost for sim_100_linear = 0.42\n", "Estimated FlexCredit cost for sim_100_quadratic = 0.42\n", "Estimated FlexCredit cost for sim_100_exponential = 0.42\n", "Total estimated FlexCredit cost for batch = 1.93\n" ] } ], "source": [ "# Taper lengths on the sweep.\n", "taper_sweep = [50, 100]\n", "sim_sweep = [get_simulations(tap_length=t_l) for t_l in taper_sweep]\n", "\n", "# Make a dictionary of {task name : simulation}\n", "sims = {\n", " f\"sim_{tap_l}_{sim_name}\": sim\n", " for sim_l, tap_l in zip(sim_sweep, taper_sweep)\n", " for sim, sim_name in zip(sim_l.values(), sim_l.keys())\n", "}\n", "# Initialize a batch and run them all\n", "batch = web.Batch(simulations=sims, verbose=True)\n", "\n", "# Get the estimated simulation cost.\n", "tot_cost = 0\n", "for bat in batch.get_info().values():\n", " sim_name = bat.taskName\n", " cost = web.estimate_cost(bat.taskId)\n", " tot_cost += cost\n", " print(f\"Estimated FlexCredit cost for {sim_name} = {cost:.2f}\")\n", "print(f\"Total estimated FlexCredit cost for batch = {tot_cost:.2f}\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the batch and store all of the data in the `data_sweep` dir." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[14:20:29] Started working on Batch. container.py:402\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:20:29]\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch. \u001b]8;id=124000;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=689137;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#402\u001b\\\u001b[2m402\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f85d3b51226b4e1abf9ce9ab6c09b3c3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:22:31] Batch complete. container.py:436\n", "\n" ], "text/plain": [ "\u001b[2;36m[14:22:31]\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \u001b]8;id=21004;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=771935;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#436\u001b\\\u001b[2m436\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "batch_sweep = batch.run(path_dir=\"data/data_sweep\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print the simulation log corresponding to the longest inverted taper to inspection." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8c64973732764a53a7a95484f4f499af", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:22:34] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-dd2ef482-688a-4b74-a513-b484d47de3c5v1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:22:34]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=370633;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=579890;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93mdd2ef482-688a-4b74-a513-b484d47de3c5\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Simulation domain Nx, Ny, Nz: [3477, 126, 136]\n", "Applied symmetries: (0, -1, 1)\n", "Number of computational grid points: 1.5829e+07.\n", "Using subpixel averaging: True\n", "Number of time steps: 8.9104e+04\n", "Automatic shutoff factor: 1.00e-05\n", "Time step (s): 5.3908e-17\n", "\n", "\n", "Compute source modes time (s): 0.3339\n", "Compute monitor modes time (s): 28.5612\n", "Rest of setup time (s): 5.7972\n", "\n", "Running solver for 89104 time steps...\n", "- Time step 2364 / time 1.27e-13s ( 2 % done), field decay: 1.00e+00\n", "- Time step 3564 / time 1.92e-13s ( 4 % done), field decay: 1.00e+00\n", "- Time step 7128 / time 3.84e-13s ( 8 % done), field decay: 7.76e-01\n", "- Time step 10692 / time 5.76e-13s ( 12 % done), field decay: 5.40e-01\n", "- Time step 14256 / time 7.69e-13s ( 16 % done), field decay: 4.18e-01\n", "- Time step 17820 / time 9.61e-13s ( 20 % done), field decay: 3.55e-01\n", "- Time step 21384 / time 1.15e-12s ( 24 % done), field decay: 3.02e-01\n", "- Time step 24949 / time 1.34e-12s ( 28 % done), field decay: 1.31e-05\n", "- Time step 28513 / time 1.54e-12s ( 32 % done), field decay: 1.40e-07\n", "Field decay smaller than shutoff factor, exiting solver.\n", "\n", "Solver time (s): 42.5757\n", "\n" ] } ], "source": [ "print(batch_sweep[\"sim_100_quadratic\"].log)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Parameter sweep results\n", "\n", "Now, we will get the batch results and plot the modal coupling efficiency at the central wavelength as a function of the inverted taper length." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4f04375411a446ec99d66aa57ade61ea", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:22:36] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-a991273f-5479-431e-b237-b46591ecf261v1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:22:36]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=868704;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=30705;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93ma991273f-5479-431e-b237-b46591ecf261\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "badb5bafbe86499eafe8a596357751de", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:22:38] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-4e01bb58-5916-4c68-b332-14df193011efv1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:22:38]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=756247;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=990038;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93m4e01bb58-5916-4c68-b332-14df193011ef\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a2121e101d204777a10ce57d4ede1eb2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:22:50] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-08d598bf-32d8-4ae5-bf8f-ab5c4e7d925dv1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:22:50]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=662965;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=767478;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93m08d598bf-32d8-4ae5-bf8f-ab5c4e7d925d\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d88512dbac094a76a85a03c18c96a340", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:23:04] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-f5d5981f-4d19-4881-8ea9-a1154588d919v1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:23:04]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=827384;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=824833;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93mf5d5981f-4d19-4881-8ea9-a1154588d919\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:23:04] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-dd2ef482-688a-4b74-a513-b484d47de3c5v1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:23:04]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=274250;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=493;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93mdd2ef482-688a-4b74-a513-b484d47de3c5\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "17c664bbba5340469f95da696b7ded03", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:23:18] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-9752d3f1-11fa-4eb2-a219-ab72291b9deav1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:23:18]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=238030;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=642039;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93m9752d3f1-11fa-4eb2-a219-ab72291b9dea\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "coup_eff_tl = np.zeros((len(tap_names), len(taper_sweep) + 1))\n", "for i in range(len(tap_names)):\n", " coup_eff_tl[i, 0] = power_tap_25[i].sel(f=freq_c)\n", "\n", "sims = {\n", " f\"sim_{tap_l}_{sim_name}\": sim\n", " for sim_l, tap_l in zip(sim_sweep, taper_sweep)\n", " for sim, sim_name in zip(sim_l.values(), sim_l.keys())\n", "}\n", "\n", "for j, tl in enumerate(taper_sweep):\n", " for i, sn in enumerate(tap_names):\n", " data_sim = batch_sweep[f\"sim_{tl}_{sn}\"]\n", " mode_amps = data_sim[\"mode_0\"]\n", " coeffs_f = mode_amps.amps.sel(direction=\"+\", f=freq_c)\n", " power_0 = np.abs(coeffs_f.sel(mode_index=0)) ** 2\n", " power_0_db = 10 * np.log10(power_0)\n", " coup_eff_tl[i, j + 1] = power_0_db\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As shown below, the longer the taper, the higher the modal coupling efficiency, as is expected due to the increased adiabaticity. However, the quadratic shape profile seems more advantageous for this case as it achieved a steady state coupling loss of $\\lt$ 0.6 dB for a 50 $\\mu m$ taper length. In contrast, the exponential shape needs double this value, and an even longer taper length would be necessary for the linear profile to obtain similar coupling loss. Detailed discussions about the effects of taper profile over the coupling efficiency, bandwidth, footprint size, or taper/fiber misalignments can be found in the literature [[1](https://www.mdpi.com/2076-3417/10/4/1538),[2](https://opg.optica.org/prj/fulltext.cfm?uri=prj-7-2-201&id=404538),[3](https://www.sciencedirect.com/science/article/abs/pii/S0030401811006389)]. \n" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAEqCAYAAADK0yCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIFElEQVR4nO3deVxU1f8/8Newg2yygyCLC4uoiZpikqi4UW64pKJJkmZpgjvWxz3D+mQp2k8zcyk1F0I/lqYhoiIRrqCYoiIKEkiKgIgsztzfH3yZGgGZwRmG5fV8PO4j77nn3vs+DJ/PvDn3nHNFgiAIICIiIlIzDXUHQERERAQwKSEiIqIGgkkJERERNQhMSoiIiKhBYFJCREREDQKTEiIiImoQmJQQERFRg8CkhIiIiBoELXUH0NBJJBL89ddfMDIygkgkUnc4REREjYYgCHj8+DHs7OygoVF7PwiTklr89ddfcHBwUHcYREREjVZmZibs7e1rrcekpBZGRkYAKn6gxsbGao6GiIio8SgsLISDg4P0u7Q2TEpqUfnIxtjYmEkJERFRHcg7/IEDXYmIiKhBYFJCREREDQIf3xA1JBkZwIMHNR+3sABat66/eIiI6hGTEqKGIiMDcHUFSkpqrqOnB6SmMjEhovpTj38sMSkhaigePHhxQgJUHH/wgEkJEdWPev5jiWNKiIiIqHqK/LGkBExKiIiIqEFgUkJEREQNApMSIiIiahCYlBAREVGDwKSEiIiI5FICXURiFEqgq5LrN5qkJC8vD4GBgTA2NoapqSmCg4NRVFRU63kJCQno168fWrRoAWNjY7z++ut4+vRpPURMpCALi4qpdS+ip1dRj4ioHgkADmAE2uMGxiASrkjFAYyAoOT7NJp1SgIDA5GdnY3o6GiUl5fjnXfewbRp07B79+4az0lISMDgwYOxaNEirF+/HlpaWkhOToaGRqPJxag5ad26Yq4/V3QloobCwgKXdbrhw7IvcBp9oAExAOAe7BGAA+iDWKzXmY+OSvpjSSQIgrITHaW7du0aPDw8cO7cOXTr1g0AcPToUfj7++PevXuws7Or9ryePXtiwIABWLlyZZ3vXVhYCBMTExQUFPAtwURE1Ox0di/D1RvaEEuqvulXU0NAh/blSL6mU+25in6HNooug4SEBJiamkoTEgDw8/ODhoYGEhMTqz0nNzcXiYmJsLKyQq9evWBtbY0+ffrgzJkzL7xXaWkpCgsLZTYiIqLmSqKlU21CAgBiiQgSreoTkrpoFElJTk4OrKysZMq0tLRgZmaGnJycas+5ffs2AGDZsmWYOnUqjh49Ci8vL/Tv3x83b96s8V7h4eEwMTGRbg4ODsprCBEREdVIrUlJWFgYRCLRC7fr16/X6doSiQQA8N577+Gdd95Bly5d8NVXX8HV1RVbt26t8bxFixahoKBAumVmZtbp/kRERKQYtQ50nTt3LoKCgl5Yx8XFBTY2NsjNzZUpf/bsGfLy8mBjY1Pteba2tgAADw8PmXJ3d3dkZGTUeD9dXV3o6qpmqhMREVFjo6EBaGoCYnHVY5qaFceVRa1JiaWlJSwtLWut5+3tjfz8fFy4cAFdu3YFAJw4cQISiQQ9evSo9hwnJyfY2dkhNTVVpvzGjRsYMmTIywdPRETUDOzcCXz4IXDqVEUCIpH889/evYH165V3r0YxpsTd3R2DBw/G1KlTcfbsWcTHx2PmzJkYN26cdOZNVlYW3NzccPbsWQCASCTC/PnzERERgcjISNy6dQuLFy/G9evXERwcrM7mEBERNRodOwKxscCBA4C9fUWZvX3FfmxsxXFlaTTrlOzatQszZ85E//79oaGhgVGjRiEiIkJ6vLy8HKmpqSguLpaWhYaGoqSkBLNnz0ZeXh46d+6M6OhotGnTRh1NICIiapREImDECGDwYODwYeDNNwFVjHRoFOuUqBPXKSEiIqqbJrlOCRERETV9jebxTYOWkcGlwYmIiF4Sk5KXlZEBuLoCJSU119HTq3inCRMTIiKiGvHxzct68ODFCQlQcfxFPSlERETEpISIiIgaBiYlRERE1CAwKSEiIqIGgUkJERERNQhMSoiIiKhBUHhKcGlpKRITE3H37l0UFxfD0tISXbp0gbOzsyriIyIiomZC7qQkPj4e69atw88//4zy8nKYmJhAX18feXl5KC0thYuLC6ZNm4bp06fDyMhIlTE3LBYWFeuQ1LZOiYVF/cVERETUCMmVlAwbNgwXL17EhAkT8Ntvv6Fbt27Q19eXHr99+zbi4uLw448/4ssvv8T333+PAQMGqCzoBqV164qF0biiKxER0UuRKyl544038NNPP0FbW7va4y4uLnBxccHkyZPx559/Ijs7W6lBNnitWzPpICIiekl8S3At+JZgIiKiuqn3twTfvn0bV69ehUQiedlLERERUTMmd1JSXl6OpUuXYujQoVi1ahXEYjHGjx+Pdu3aoVOnTvD09MSdO3dUGCoRERGpi1gsxsmTJ/Hjjz/i5MmTEIvFSr+H3ElJWFgYNm7cCBsbG2zduhUBAQG4dOkSdu/ejT179kBLSwsff/yx0gMkIiIi9YqKioKTkxP69u2LCRMmoG/fvnByckJUVJRS7yP3lODIyEhs374d/v7+uHHjBtzc3HD48GEMGTIEAGBlZYXAwEClBkdERETqFRUVhdGjR+P5IahZWVkYPXo0IiMjERAQoJR7yd1T8tdff6Fz584AgPbt20NXVxdt27aVHm/fvj1ycnKUEhQRERGpn1gsRkhISJWEBIC0LDQ0VGmPcuROSsRiscyUYC0tLWhqav5zIQ2NaoMmIiKixikuLg737t2r8bggCMjMzERcXJxS7qfQMvPHjh2DiYkJAEAikSAmJgYpKSkAgPz8fKUERERERA2DvOuOKWt9MoWSksmTJ8vsv/feezL7IpHo5SMiIiKiBsHW1lap9Woj9+MbiURS66aK6UFERESkHj4+PrC3t6+x00EkEsHBwQE+Pj5Kud9LL55GRERETZOmpibWrVsHoOrTkMr9tWvXyowxfRlyPb45dOiQ3BccNmxYnYMhIiKihiUgIACRkZEICQmRGfRqb2+PtWvXKm06MCDnu280NGQ7VEQikcxMm39nT03tEQ7ffUNERFTx/R4XF4fs7GzY2trCx8en1h4Slbz75t/jRn777Te88sor+PXXX5Gfn4/8/HwcOXIEXl5eOHr0qHwtq4O8vDwEBgbC2NgYpqamCA4ORlFRUY3179y5A5FIVO22f/9+lcVJRETUFGlqasLX1xfjx4+Hr6+v0h7Z/JvCbwn29PTEpk2b0Lt3b5nyuLg4TJs2DdeuXVNqgJWGDBmC7OxsfPPNNygvL8c777yD7t27Y/fu3dXWF4vF+Pvvv2XKNm/ejP/+97/Izs6GoaGhXPdlTwmpS0kJ8MsvwJtvAnp66o6GiEhxin6HKjQlGADS0tJgampapdzExERlL+S7du0ajh49inPnzqFbt24AgPXr18Pf3x9ffPEF7OzsqpyjqakJGxsbmbIDBw5g7NixcickROogCMDBg0BICJCZCbRuDaxdC4wYAXDWPRE1ZQrPvunevTvmzJmD+/fvS8vu37+P+fPn49VXX1VqcJUSEhJgamoqTUgAwM/PDxoaGkhMTJTrGhcuXEBSUhKCg4NVEiORMly+DPj6AgEBQFZWRdm9exX7ffsCV66oNTwiIpVSuKdk69atGDlyJFq3bg0HBwcAQGZmJtq1a4eDBw8qOz4AQE5ODqysrGTKtLS0YGZmJvf7dr777ju4u7ujV69eL6xXWlqK0tJS6X5hYaHiARPV0aRJwNWrFf+WSGT/e+YMMHEikJysntiIiFRN4aSkbdu2uHz5MqKjo3H9+nUAgLu7O/z8/BRe0TUsLAyfffbZC+soY4zK06dPsXv3bixevLjWuuHh4Vi+fPlL35OoLiQSoKYJbGLxPwkKEVFTpHBSAlRMAR44cCAGDhz4UjefO3cugoKCXljHxcUFNjY2yM3NlSl/9uwZ8vLyqowbqU5kZCSKi4vx9ttv11p30aJFmDNnjnS/sLBQ2iNEREREqiNXUrJnzx6MGzdOrgtmZmYiIyMDr732Wq11LS0tYWlpWWs9b29v5Ofn48KFC+jatSsA4MSJE5BIJOjRo0et53/33XcYNmyYXPfS1dWFrq5urfWIiIhIueQa6Lpx40a4u7vj888/r/ZxSkFBAY4cOYIJEybAy8sLDx8+VGqQ7u7uGDx4MKZOnYqzZ88iPj4eM2fOxLhx46Qzb7KysuDm5oazZ8/KnHvr1i2cPn0a7777rlJjIlIFDQ2gpqn/mpoVx4mImiq5/i/u1KlT+OyzzxAdHQ1PT08YGxujXbt26NixI+zt7WFubo4pU6agdevWSElJUclS87t27YKbmxv69+8Pf39/9O7dG5s3b5YeLy8vR2pqKoqLi2XO27p1K+zt7V/6URNRfdi5E6hcAqgyAan8b+/eFceJiJoqhRdPe/DgAc6cOYO7d+/i6dOnsLCwQJcuXdClS5cqy9E3BVw8jeqbIAD/+1/FOiUZGRXrlKxbBwwfznVKiKhxUfQ7VOGkpLlhUkLqUlICHD5csaIrhzkRUWOk8hVdiah+6OkBo0apOwoiovrT9J63EBERUaPEpISIiIgaBCYlRERE1CAonJTExsaqIg4iIiJq5hROSgYPHow2bdrgk08+QWZmpipiIiIiomZI4aQkKysLM2fORGRkJFxcXDBo0CDs27cPZWVlqoiPiIiImgmFkxILCwvMnj0bSUlJSExMRPv27fHBBx/Azs4Os2bNQjLfq05ERER18FIDXb28vLBo0SLMnDkTRUVF2Lp1K7p27QofHx9cvXpVWTESERFRM1CnpKS8vByRkZHw9/eHo6Mjjh07hg0bNuD+/fu4desWHB0dMWbMGGXHSkRERE2YwsvMf/jhh/jxxx8hCAImTZqEd999F56enjJ1cnJyYGdnB4lEotRg1YHLzBMREdWNypeZ//PPP7F+/XoEBARAt4YXclhYWHDqMBERESmEL+SrBXtKiIiI6kbR71CFx5SEh4dj69atVcq3bt2Kzz77TNHLEREREQGoQ1LyzTffwM3NrUp5hw4dsGnTJqUERURERM2PwklJTk4ObG1tq5RbWloiOztbKUERERFR86NwUuLg4ID4+Pgq5fHx8bCzs1NKUERERNT8KDz7ZurUqQgNDUV5eTn69esHAIiJicGCBQswd+5cpQdIREREzYPCScn8+fPx8OFDfPDBB9L33ejp6WHhwoVYtGiR0gMkIiKi5qHOU4KLiopw7do16Ovro127djWuWdLYcUowERFR3ah88bRKhoaG6N69e11PJyIiIpKhcFLy5MkTrF69GjExMcjNza2ylPzt27eVFhwRERE1HwonJe+++y5OnTqFSZMmwdbWFiKRSBVxERERUTOjcFLy66+/4vDhw3jttddUEQ8RERE1UwqvU9KyZUuYmZmpIhYiIiJqxhROSlauXIklS5aguLhYFfEQERFRM6VwUrJmzRocO3YM1tbW6NixI7y8vGQ2VcnLy0NgYCCMjY1hamqK4OBgFBUVvfCcnJwcTJo0CTY2NmjRogW8vLzw008/qSxGIiIiqjuFx5SMGDFCBWHULjAwENnZ2YiOjkZ5eTneeecdTJs2Dbt3767xnLfffhv5+fk4dOgQLCwssHv3bowdOxbnz59Hly5d6jF6IiIiqk2dF0+rT9euXYOHhwfOnTuHbt26AQCOHj0Kf39/3Lt3r8Z37hgaGmLjxo2YNGmStMzc3ByfffYZ3n33XbnuzcXTiIiI6kbR71CFH98AQH5+PrZs2YJFixYhLy8PAHDx4kVkZWXV5XK1SkhIgKmpqTQhAQA/Pz9oaGggMTGxxvN69eqFvXv3Ii8vDxKJBHv27EFJSQl8fX1rPKe0tBSFhYUyGxEREamewo9vLl++DD8/P5iYmODOnTuYOnUqzMzMEBUVhYyMDHz//fdKDzInJwdWVlYyZVpaWjAzM0NOTk6N5+3btw9vvfUWzM3NoaWlBQMDAxw4cABt27at8Zzw8HAsX75cabETERGRfBTuKZkzZw6CgoJw8+ZN6OnpScv9/f1x+vRpha4VFhYGkUj0wu369euKhii1ePFi5Ofn4/jx4zh//jzmzJmDsWPH4sqVKzWes2jRIhQUFEi3zMzMOt+fiIiI5KdwT8m5c+fwzTffVClv1arVC3stqjN37lwEBQW9sI6LiwtsbGyQm5srU/7s2TPk5eXBxsam2vPS0tKwYcMGpKSkoEOHDgCAzp07Iy4uDl9//TU2bdpU7Xm6urpN9uWCREREDZnCSYmurm614yxu3LgBS0tLha5laWkp1zne3t7Iz8/HhQsX0LVrVwDAiRMnIJFI0KNHj2rPqVxHRUNDtjNIU1Ozyvt6iIiISP0UfnwzbNgwrFixAuXl5QAAkUiEjIwMLFy4EKNGjVJ6gADg7u6OwYMHY+rUqTh79izi4+Mxc+ZMjBs3TjrzJisrC25ubjh79iwAwM3NDW3btsV7772Hs2fPIi0tDWvWrEF0dLTapjUTERFRzeq0eFpRURGsrKzw9OlT9OnTB23btoWRkRFWrVqlihgBALt27YKbmxv69+8Pf39/9O7dG5s3b5YeLy8vR2pqqrSHRFtbG0eOHIGlpSWGDh2KTp064fvvv8eOHTvg7++vsjiJiIiobuq8TsmZM2dw+fJlFBUVwcvLC35+fsqOrUHgOiVERER1o+h3aKNYPE2dmJQQERHVjaLfoXINdI2IiMC0adOgp6eHiIiIF9adNWuWfJESERER/YtcPSXOzs44f/48zM3N4ezsXPPFRCLcvn1bqQGqG3tKiIiI6kYlPSXp6enV/puIiIhIWRRep4SIVE8sFiMuLg7Z2dmwtbWFj48PNDU11R0WEZFKKTwleNSoUfjss8+qlH/++ecYM2aMUoIias6ioqLg5OSEvn37YsKECejbty+cnJwQFRWl7tCIiFRK4aTk9OnT1a7zMWTIEIXffUNEsqKiojB69Gjcu3dPpjwrKwujR49mYkJETZrCSUlRURF0dHSqlGtra1e7/DwRyUcsFiMkJATVjT2vLAsNDYVYLK7v0IiI6oXCSUnHjh2xd+/eKuV79uyBh4eHUoIiao7i4uKq9JD8myAIyMzMRFxcXD1GRURUfxQe6Lp48WIEBAQgLS0N/fr1AwDExMTgxx9/xP79+5UeIFFzkZ2drdR6RESNjcJJydChQ3Hw4EF8+umniIyMhL6+Pjp16oTjx4+jT58+qoiRqFmwtbVVaj0iosaGy8zXgounUX0Ri8VwcnJCVlZWteNKRCIR7O3tkZ6ezunBRNQoKPodqvCYEiJSDU1NTaxbtw5ARQLyb5X7a9euZUJCRE2WXEmJmZkZHjx4AABo2bIlzMzMatyIqO4CAgIQGRmJVq1ayZTb29sjMjISAQEBaoqMiEj15BpT8tVXX8HIyAhAxV9qRKQ6AQEBGD58OFd0JaJmR66kJDk5GaNHj4auri6cnZ3Rq1cvaGlxhXoiVdHU1ISvr6+6wyAiqldyPb5Zv349ioqKAAB9+/ZFXl6eSoMiIiKi5keu7g4nJydERERg4MCBEAQBCQkJaNmyZbV1X3/9daUGSERERM2DXFOCDx48iOnTpyM3Nxcikaja6YpAxQyBprYENqcEExER1Y2i36EKrVNSVFQEY2NjpKamwsrKqto6JiYm8kfbCDApISIiqhuVrFMyZ84cPHnyBIaGhoiNjYWzszNMTEyq3YiIiIjqQuGBrv369eNAVyIiIlI6DnQlIiKiBoEDXWvBMSVERER1w4GuSsakhIiIqG4U/Q5VaFnWfw905YquREREpExyvyV43759KCsrQ58+faClpYV79+5BIpFIjxcXF+Pzzz9XSZAAkJeXh8DAQBgbG8PU1BTBwcHSwbc1SUtLw8iRI2FpaQljY2OMHTsW9+/fV1mMREREVHdyJyXjx49Hfn6+dN/DwwN37tyR7j9+/BiLFi1SZmwyAgMDcfXqVURHR+OXX37B6dOnMW3atBrrP3nyBAMHDoRIJMKJEycQHx+PsrIyDB06VCaZIiIiooZB7mcwzw89UWAoyku7du0ajh49inPnzqFbt24AKqYp+/v744svvoCdnV2Vc+Lj43Hnzh1cunRJ+hxrx44daNmyJU6cOAE/Pz+VxFpSAvzyC/Dmm4CenkpuQURE1CTJ3VOiTgkJCTA1NZUmJADg5+cHDQ0NJCYmVntOaWkpRCIRdHV1pWV6enrQ0NDAmTNnarxXaWkpCgsLZTZ5CAJw4ADQvj0wZgzg6lqxX4+5GxERUaPWKJKSnJycKrN9tLS0YGZmhpycnGrP6dmzJ1q0aIGFCxeiuLgYT548wbx58yAWi5GdnV3jvcLDw2VWqHVwcKg1vsuXAV9fICAAyMqqKLt3r2K/b1/gyhW5m0pERNRsKZSUHDt2DIcOHcKhQ4cgkUgQExMj3T927JjCNw8LC4NIJHrhdv36dYWvCwCWlpbYv38/fv75ZxgaGsLExAT5+fnw8vKChkbNzV60aBEKCgqkW2ZmZq33mjQJiI+v+HflcJXK/545A0ycWKcmEBERNSsKzeudPHmyzP57770nsy8SiRS6+dy5cxEUFPTCOi4uLrCxsUFubq5M+bNnz5CXlwcbG5sazx04cCDS0tLw4MEDaGlpwdTUFDY2NnBxcanxHF1dXZlHPvKQSICa1owTi/9JUIiIiKhmciclqpixYmlpCUtLy1rreXt7Iz8/HxcuXEDXrl0BACdOnIBEIkGPHj1qPd/CwkJ6Tm5uLoYNG/ZygRMREZHSNYoxJe7u7hg8eDCmTp2Ks2fPIj4+HjNnzsS4ceOkM2+ysrLg5uaGs2fPSs/btm0b/vjjD6SlpWHnzp0YM2YMZs+eDVdXV3U1hYiIiGrQaJZl3bVrF2bOnIn+/ftDQ0MDo0aNQkREhPR4eXk5UlNTUVxcLC1LTU3FokWLkJeXBycnJ3z88ceYPXu20mPT0AA0Nat/hKOpWXGciIiIXkyhd980R/Ks23/lCvDhh8CpUxUJiETyz3/79AHWrwc6dqznwImIiNRM0Xff8G94JejYEYiNrViXxN6+oszevmI/NpYJCRERkTwazeObhk4kAkaMAAYPBg4frljRVcFJPERERM0akxIl09MDRo1SdxRERESNj8JJScuWLatdj0QkEkFPTw9t27ZFUFAQ3nnnHaUESERERM2DwknJkiVLsGrVKgwZMgSvvvoqAODs2bM4evQoZsyYgfT0dLz//vt49uwZpk6dqvSAiYiIqGlSOCk5c+YMPvnkE0yfPl2m/JtvvsFvv/2Gn376CZ06dUJERASTEiIiIpKbwrNvjh07Bj8/vyrl/fv3l77/xt/fH7dv33756IiIiKjZUDgpMTMzw88//1yl/Oeff4aZmRkA4MmTJzAyMnr56IiIiKjZUPjxzeLFi/H+++8jNjZWOqbk3LlzOHLkCDZt2gQAiI6ORp8+fZQbKRERETVpdVrRNT4+Hhs2bEBqaioAwNXVFR9++CF69eql9ADVTdHV6IiIiKiCot+hXGa+FkxKiIiI6kbR79A6LZ4mkUhw69Yt5ObmQiKRyBx7/fXX63JJIiIiauYUTkr++OMPTJgwAXfv3sXznSwikQji6l6VS0RERFQLhZOS6dOno1u3bjh8+DBsbW2rXd2ViIiISFEKJyU3b95EZGQk2rZtq4p4iIiIqJlSeJ2SHj164NatW6qIhYiIiJoxhXtKPvzwQ8ydOxc5OTno2LEjtLW1ZY536tRJacERERFR86HwlGANjaqdKyKRCIIgNMmBrpwSTEREVDcqnxKcnp5ep8CIiIiIXkThpMTR0VEVcRARUSMkFotRXl6u7jBITbS1taGpqam068mVlBw6dAhDhgyBtrY2Dh069MK6w4YNU0pgRETUcAmCgJycHOTn56s7FFIzU1NT2NjYKGWJELnGlGhoaCAnJwdWVlbVjimRXoxjSoiImoXs7Gzk5+fDysoKBgYGXLOqGRIEAcXFxcjNzYWpqSlsbW2r1FHJmJJ/LyX//LLyRETUvIjFYmlCYm5uru5wSI309fUBALm5ubCysnrpRzkKr1NCRETNW+UYEgMDAzVHQg1B5e+BMsYWydVTEhERIfcFZ82aVedgiIio8eAjGwKU+3sgV1Ly1VdfyXUxkUjEpISIiIjqRK6khGuTEBGRKojFYsTFxSE7Oxu2trbw8fFR6hTT5/n6+uKVV17B2rVr4eTkhNDQUISGhqrsfqSYlxpTIggCFFwQts5WrVqFXr16wcDAAKampnKdIwgClixZAltbW+jr68PPzw83b95UbaBERCSXqKgoODk5oW/fvpgwYQL69u0LJycnREVF1cv9z507h2nTptXLvUg+dUpKvvvuO3h6ekJPTw96enrw9PTEli1blB2bjLKyMowZMwbvv/++3Od8/vnniIiIwKZNm5CYmIgWLVpg0KBBKCkpUWGkRERUm6ioKIwePRr37t2TKc/KysLo0aPrJTGxtLRsEIN1ufjcPxROSpYsWYKQkBAMHToU+/fvx/79+zF06FDMnj0bS5YsUUWMAIDly5dj9uzZ6Nixo1z1BUHA2rVr8Z///AfDhw9Hp06d8P333+Ovv/7CwYMHVRYnERG9mFgsRkhISLU97ZVloaGhKl/3ysnJCWvXrpXui0QibNmyBSNHjoSBgQHatWtXZcHQlJQUDBkyBIaGhrC2tsakSZPw4MED6fGjR4+id+/eMDU1hbm5Od58802kpaVJj9+5cwcikQh79+5Fnz59oKenh127dqm0nY2JwknJxo0b8e233yI8PBzDhg3DsGHDEB4ejs2bN+P//b//p4oY6yQ9PR05OTnw8/OTlpmYmKBHjx5ISEio8bzS0lIUFhbKbEREpDxxcXFVekj+TRAEZGZmIi4urh6jqrB8+XKMHTsWly9fhr+/PwIDA5GXlwcAyM/PR79+/dClSxecP38eR48exf379zF27Fjp+U+ePMGcOXNw/vx5xMTEQENDAyNHjqyyxldYWBhCQkJw7do1DBo0qF7b2JAp/O6b8vJydOvWrUp5165d8ezZM6UEpQw5OTkAAGtra5lya2tr6bHqhIeHY/ny5SqNjYioOcvOzlZqPWUKCgrC+PHjAQCffvopIiIicPbsWQwePBgbNmxAly5d8Omnn0rrb926FQ4ODrhx4wbat2+PUaNGyVxv69atsLS0xJ9//glPT09peWhoKAICAuqnUY2Iwj0lkyZNwsaNG6uUb968GYGBgQpdKywsDCKR6IXb9evXFQ3xpSxatAgFBQXSLTMzs17vT0TU1FW3HPnL1FOmTp06Sf/dokULGBsbIzc3FwCQnJyM2NhYGBoaSjc3NzcAkD6iuXnzJsaPHw8XFxcYGxvDyckJAJCRkSFzn+r+uKc69JQAFQNdf/vtN/Ts2RMAkJiYiIyMDLz99tuYM2eOtN6XX375wuvMnTsXQUFBL6zj4uJSlxBhY2MDALh//77ML/b9+/fxyiuv1Hierq4udHV163RPIiKqnY+PD+zt7ZGVlVXtuBKRSAR7e3v4+PjUe2za2tpVYql89FJUVIShQ4fis88+q3Je5ffM0KFD4ejoiG+//RZ2dnaQSCTw9PREWVmZTP0WLVqoqAWNm8JJSUpKCry8vAD8kxlaWFjAwsICKSkp0nryrPBmaWkJS0tLRUOQi7OzM2xsbBATEyNNQgoLC5GYmKjQDB4iIlIuTU1NrFu3DqNHj4ZIJJJJTCq/O9auXavS9UrqwsvLCz/99BOcnJygpVX16/Phw4dITU3Ft99+K02ozpw5U99hNmoKJyWxsbGqiKNWGRkZyMvLQ0ZGBsRiMZKSkgAAbdu2haGhIQDAzc0N4eHhGDlyJEQiEUJDQ/HJJ5+gXbt2cHZ2xuLFi2FnZ4cRI0aopQ1ERFQhICAAkZGRCAkJkRn0am9vj7Vr1zbI8RYzZszAt99+i/Hjx2PBggUwMzPDrVu3sGfPHmzZsgUtW7aEubk5Nm/eDFtbW2RkZCAsLEzdYTcqdXp8ow5LlizBjh07pPtdunQBUJEk+fr6AgBSU1NRUFAgrbNgwQI8efIE06ZNQ35+Pnr37o2jR49CT0+vXmMnIqKqAgICMHz48Hpd0fVl2NnZIT4+HgsXLsTAgQNRWloKR0dHDB48GBoaGhCJRNizZw9mzZoFT09PuLq6IiIiQvodRbUTCQouydq3b98XPpo5ceLESwfVkBQWFsLExAQFBQUwNjZWdzhERGpXUlKC9PR0ODs78488euHvg6LfoQr3lDw/SLS8vBxJSUlISUnB5MmTFb0cEREREYA6JCU1vTF42bJlKCoqeumAiIiIqHl6qRfy/dvEiROxdetWZV2OiIiImhmlJSUJCQl8tkhERER1pvDjm+enaQmCgOzsbJw/fx6LFy9WWmBERETUvCiclJiYmMjsa2howNXVFStWrMDAgQOVFhgRERE1LwonJdu2bVNFHERERNTM1XnxtAsXLuDatWsAgA4dOkgXMyMiIiKqC4WTktzcXIwbNw4nT56EqakpACA/Px99+/bFnj17VPYuGyIiImraFJ598+GHH+Lx48e4evUq8vLykJeXh5SUFBQWFmLWrFmqiJGIiJqajAzg4sWat4wMdUeodMuWLXvhW+pflq+vL0JDQ1V2/fqgcE/J0aNHcfz4cbi7u0vLPDw88PXXX3OgKxER1S4jA3B1BUpKaq6jpwekpgKtW9dfXI3EyZMn0bdvXzx69Ej6xAIAoqKioK2trb7AlEDhnhKJRFJto7W1tSGRSJQSFBERNWEPHrw4IQEqjj94UD/xNBBlZWUvdb6ZmRmMjIyUFI16KJyU9OvXDyEhIfjrr7+kZVlZWZg9ezb69++v1OCIiIiU7cmTJ3j77bdhaGgIW1tbrFmzRubRh0gkwsGDB2XOMTU1xfbt26X7CxcuRPv27WFgYAAXFxcsXrwY5eXlMuesXr0a1tbWMDIyQnBwMEqeS8SCgoIwYsQIrFq1CnZ2dnB1dQUA/PDDD+jWrRuMjIxgY2ODCRMmIDc3FwBw584d9O3bFwDQsmVLiEQiBAUFAaj6+Ka0tBQLFy6Eg4MDdHV10bZtW3z33Xcv+dNTLYUf32zYsAHDhg2Dk5MTHBwcAACZmZnw9PTEzp07lR4gERGRMs2fPx+nTp3C//73P1hZWeGjjz7CxYsXFRrvYWRkhO3bt8POzg5XrlzB1KlTYWRkhAULFgAA9u3bh2XLluHrr79G79698cMPPyAiIgIuLi4y14mJiYGxsTGio6OlZeXl5Vi5ciVcXV2Rm5uLOXPmICgoCEeOHIGDgwN++uknjBo1CqmpqTA2Noa+vn61Mb799ttISEhAREQEOnfujPT0dDxo4L1PCiclDg4OuHjxIo4fP47r168DANzd3eHn56f04IiIiJSpqKgI3333HXbu3Cnt3d+xYwfs7e0Vus5//vMf6b+dnJwwb9487NmzR5qUrF27FsHBwQgODgYAfPLJJzh+/HiV3pIWLVpgy5Yt0NHRkZZNmTJF+m8XFxdERESge/fuKCoqgqGhIczMzAAAVlZWMmNK/u3GjRvYt28foqOjpd/PzydEDVGd1ikRiUQYMGAABgwYoOx4iIiIVCYtLQ1lZWXo0aOHtMzMzEz66ERee/fuRUREBNLS0lBUVIRnz57B2NhYevzatWuYPn26zDne3t6IjY2VKevYsaNMQgJUrAO2bNkyJCcn49GjR9LxmhkZGfDw8JArvqSkJGhqaqJPnz4KtUvd5B5TcuLECXh4eKCwsLDKsYKCAnTo0AFxcXFKDY6IiKi+iUQiCIIgU/bv8SIJCQkIDAyEv78/fvnlF1y6dAkff/xxnQaqtmjRQmb/yZMnGDRoEIyNjbFr1y6cO3cOBw4cAKDYQNiaHuk0dHInJWvXrsXUqVNlMsFKJiYmeO+99/Dll18qNTgiIiJlatOmDbS1tZGYmCgte/ToEW7cuCHdt7S0RHZ2tnT/5s2bKC4ulu7//vvvcHR0xMcff4xu3bqhXbt2uHv3rsx93N3dZe4BAH/88Uet8V2/fh0PHz7E6tWr4ePjAzc3N+kg10qVPStisbjG63Ts2BESiQSnTp2q9Z4NidxJSXJyMgYPHlzj8YEDB+LChQtKCYqIiJowC4uKdUheRE+vop6SGRoaIjg4GPPnz8eJEyeQkpKCoKAgaGj883XYr18/bNiwAZcuXcL58+cxffp0maUw2rVrh4yMDOzZswdpaWmIiIiQ9mZUCgkJwdatW7Ft2zbcuHEDS5cuxdWrV2uNr3Xr1tDR0cH69etx+/ZtHDp0CCtXrpSp4+joCJFIhF9++QV///03ioqKqlzHyckJkydPxpQpU3Dw4EGkp6fj5MmT2Ldvn6I/snold1Jy//79Fy7KoqWlhb///lspQRERURPWunXFwmgXLtS8qXDhtP/+97/w8fHB0KFD4efnh969e6Nr167S42vWrIGDgwN8fHwwYcIEzJs3DwYGBtLjw4YNw+zZszFz5ky88sor+P3337F48WKZe7z11ltYvHgxFixYgK5du+Lu3bt4//33a43N0tIS27dvx/79++Hh4YHVq1fjiy++kKnTqlUrLF++HGFhYbC2tsbMmTOrvdbGjRsxevRofPDBB3Bzc8PUqVPx5MkTRX5U9U4kPP/grAZt2rTBmjVrMGLEiGqPR0VFYd68ebh9+7Yy41O7wsJCmJiYoKCgoNpHV0REzU1JSQnS09Ph7OwMvdp6PBoJX19fvPLKK1i7dq26Q2l0XvT7oOh3qNw9Jf7+/li8eHGV6UwA8PTpUyxduhRvvvmmvJcjIiIikiH3lOD//Oc/iIqKQvv27TFz5kzp9Knr16/j66+/hlgsxscff6yyQImIiKhpkzspsba2xu+//473338fixYtkk6XEolEGDRoEL7++mtYW1urLFAiIiJVOXnypLpDICi4eJqjoyOOHDmCR48e4datWxAEAe3atUPLli1VFR8RERE1E3Va0bVly5bo3r27smMhIiKiZkzhtwSry6pVq9CrVy8YGBjUuNb/86KiojBw4ECYm5tDJBIhKSlJpTESERFR3TWapKSsrAxjxoyRa553pSdPnqB379747LPPVBgZERERKUOdHt+ow/LlywEA27dvl/ucSZMmAQDu3LmjgoiIiIhImRpNUlJfSktLUVpaKt2v7gWEREREpHyN5vFNfQkPD4eJiYl0c3BwUHdIRERNWkkJEBlZ8V9Sve3bt8s9NrOSk5NTvax2q9akJCwsDCKR6IXb9evX6zWmRYsWoaCgQLplZmbW6/2JiJoLQQAOHADatwfGjAFcXSv25Xv5CcmjumTirbfeknkrckOi1sc3c+fORVBQ0AvruLi41E8w/0dXVxe6urr1ek8ioubm8mXgww+B06eByhf03rsHBAQAffoA69cDHTuqN8amSl9fH/r6+uoOo1pq7SmxtLSEm5vbCzcdHR11hkhERCowaRIQH1/xb4lE9r9nzgATJ6ru3hKJBOHh4XB2doa+vj46d+6MyMhICIIAPz8/DBo0SLpqeV5eHuzt7bFkyRIAFSu/ikQiHD58GJ06dYKenh569uyJlJQUmXv89NNP6NChA3R1deHk5IQ1a9bIHHdycsKnn36KKVOmwMjICK1bt8bmzZtl6mRmZmLs2LEwNTWFmZkZhg8fLjNxIygoCCNGjMAXX3wBW1tbmJubY8aMGSgvLwdQ8ZLBu3fvYvbs2dKnD0DVxzdpaWkYPnw4rK2tYWhoiO7du+P48eNK+VkrqtGMKcnIyEBSUhIyMjIgFouRlJSEpKQkFBUVSeu4ubnhwIED0v28vDwkJSXhzz//BACkpqYiKSkJOTk59R4/ERH9QyIBxOLqj4nF/yQoqhAeHo7vv/8emzZtwtWrVzF79mxMnDgRp0+fxo4dO3Du3DlEREQAAKZPn45WrVpJk5JK8+fPx5o1a3Du3DlYWlpi6NCh0mTgwoULGDt2LMaNG4crV65g2bJlWLx4cZXZo2vWrEG3bt1w6dIlfPDBB3j//feRmpoKACgvL8egQYNgZGSEuLg4xMfHw9DQEIMHD0ZZWZn0GrGxsUhLS0NsbCx27NiB7du3S+8TFRUFe3t7rFixAtnZ2cjOzq7251FUVAR/f3/ExMTg0qVLGDx4MIYOHYqMjAxl/LgVIzQSkydPFgBU2WJjY6V1AAjbtm2T7m/btq3ac5YuXSr3fQsKCgQAQkFBgfIaQ0TUiD19+lT4888/hadPn9b5Gp6eglAxeqT6zdNTiQH/S0lJiWBgYCD8/vvvMuXBwcHC+PHjBUEQhH379gl6enpCWFiY0KJFC+HGjRvSerGxsQIAYc+ePdKyhw8fCvr6+sLevXsFQRCECRMmCAMGDJC5/vz58wUPDw/pvqOjozBx4kTpvkQiEaysrISNGzcKgiAIP/zwg+Dq6ipIJBJpndLSUkFfX184duyYIAgV34uOjo7Cs2fPpHXGjBkjvPXWWzL3+eqrr2Ri2bZtm2BiYvLCn1OHDh2E9evXv/A6lV70+6Dod2ijmRL87+yvJsJzo6OCgoJqHbNCRETNx61bt1BcXIwBAwbIlJeVlaFLly4AgDFjxuDAgQNYvXo1Nm7ciHbt2lW5jre3t/TfZmZmcHV1xbVr1wAA165dw/Dhw2Xqv/baa1i7di3EYjE0NTUBAJ06dZIeF4lEsLGxQW5uLgAgOTkZt27dgpGRkcx1SkpKkJaWJt3v0KGD9HoAYGtriytXrsj/A0FFT8myZctw+PBhZGdn49mzZ3j69KlaekoaTVJCRERNh4YGoKlZ/SMcTc1/Br8qW+Uj/8OHD6NVq1YyxyonORQXF+PChQvQ1NTEzZs3VRMIAG1tbZl9kUgEyf89tyoqKkLXrl2xa9euKudZWlrKdQ15zZs3D9HR0fjiiy/Qtm1b6OvrY/To0TKPieoLkxIiIqp3O3dWzL45daoiAZFI/vlv794Vs29UwcPDA7q6usjIyECfPn2qrTN37lxoaGjg119/hb+/P9544w3069dPps4ff/yB1q1bAwAePXqEGzduwN3dHQDg7u6O+MpRvP8nPj4e7du3l+nVeBEvLy/s3bsXVlZWMDY2VrSZUjo6OhDXNHjnX7EFBQVh5MiRACoSInWthN5oBroSEVHT0bEjEBtbsS6JvX1Fmb19xX5srOqmAxsZGWHevHmYPXs2duzYgbS0NFy8eBHr16/Hjh07cPjwYWzduhW7du3CgAEDMH/+fEyePBmPHj2Suc6KFSsQExODlJQUBAUFwcLCAiNGjABQkdTExMRg5cqVuHHjBnbs2IENGzZg3rx5cscZGBgICwsLDB8+HHFxcUhPT8fJkycxa9Ys3Lt3T+7rODk54fTp08jKysKDBw+qrdOuXTtERUUhKSkJycnJmDBhgsK9LcrCpESJxGIxTp48iR9//BEnT56sNTslImrORCJgxAggNbViRdcbNyr2/2/mqsqsXLkSixcvRnh4ONzd3TF48GAcPnwYTk5OCA4OxrJly+Dl5QWg4r1r1tbWmD59usw1Vq9ejZCQEHTt2hU5OTn4+eefpUtYeHl5Yd++fdizZw88PT2xZMkSrFixQqExjgYGBjh9+jRat26NgIAAuLu7Izg4GCUlJQr1nKxYsQJ37txBmzZtZB77/NuXX36Jli1bolevXhg6dCgGDRokbX99EwnPjw4lGYWFhTAxMUFBQcELfxGioqIQEhIik8Ha29tj3bp1CAgIqI9QiYjqRUlJCdLT0+Hs7Aw9PT11h1OvTp48ib59++LRo0cKL9XeVL3o90He79BK7ClRgqioKIwePbpKl1pWVhZGjx6NqKgoNUVGRETUeDApeUlisRghISFVpiMD/0xRDg0N5aMcIiKiWjApeUlxcXEvHHQkCAIyMzMRFxdXj1EREZEq+Pr6QhAEPrpRESYlL6mmZXvrWo+IiKi5YlLykmxtbZVaj4ioseA8CQKU+3vApOQl+fj4wN7eXvr2xeeJRCI4ODjAx8enniMjIlKNylVEi4uL1RwJNQSVvwfPry5bF1zR9SVpampi3bp1GD16NEQikUzGWJmorF27Vu5V/IiIGjpNTU2YmppK39NiYGBQ4x9m1HQJgoDi4mLk5ubC1NRUKd9zTEqUICAgAJGRkdWuU7J27VquU0JETY6NjQ0ASBMTar5MTU2lvw8vi4un1UKRhV/EYjHi4uKQnZ0NW1tb+Pj4sIeEiJo0sViM8vJydYdBaqKtrf3C7zlFF09jT4kSaWpqwtfXV91hEBHVG01NTf7xRUrDga5ERETUIDApISIiogaBSQkRERE1CBxTUovKccCFhYVqjoSIiKhxqfzulHdODZOSWjx+/BgA4ODgoOZIiIiIGqfHjx/DxMSk1nqcElwLiUSCv/76C0ZGRg12caDCwkI4ODggMzNTrilXjRnb2jSxrU1Tc2lrc2knoHhbBUHA48ePYWdnBw2N2keMsKekFhoaGrC3t1d3GHIxNjZu8v+DqMS2Nk1sa9PUXNraXNoJKNZWeXpIKnGgKxERETUITEqIiIioQWBS0gTo6upi6dKl0NXVVXcoKse2Nk1sa9PUXNraXNoJqL6tHOhKREREDQJ7SoiIiKhBYFJCREREDQKTEiIiImoQmJQQERFRg8CkpBHZuHEjOnXqJF20xtvbG7/++qv0eElJCWbMmAFzc3MYGhpi1KhRuH//vhojVo7Vq1dDJBIhNDRUWtZU2rps2TKIRCKZzc3NTXq8qbSzUlZWFiZOnAhzc3Po6+ujY8eOOH/+vPS4IAhYsmQJbG1toa+vDz8/P9y8eVONEdeNk5NTlc9VJBJhxowZAJrW5yoWi7F48WI4OztDX18fbdq0wcqVK2XeddJUPtfHjx8jNDQUjo6O0NfXR69evXDu3Dnp8cbcztOnT2Po0KGws7ODSCTCwYMHZY7L07a8vDwEBgbC2NgYpqamCA4ORlFRkWKBCNRoHDp0SDh8+LBw48YNITU1Vfjoo48EbW1tISUlRRAEQZg+fbrg4OAgxMTECOfPnxd69uwp9OrVS81Rv5yzZ88KTk5OQqdOnYSQkBBpeVNp69KlS4UOHToI2dnZ0u3vv/+WHm8q7RQEQcjLyxMcHR2FoKAgITExUbh9+7Zw7Ngx4datW9I6q1evFkxMTISDBw8KycnJwrBhwwRnZ2fh6dOnaoxccbm5uTKfaXR0tABAiI2NFQShaX2uq1atEszNzYVffvlFSE9PF/bv3y8YGhoK69atk9ZpKp/r2LFjBQ8PD+HUqVPCzZs3haVLlwrGxsbCvXv3BEFo3O08cuSI8PHHHwtRUVECAOHAgQMyx+Vp2+DBg4XOnTsLf/zxhxAXFye0bdtWGD9+vEJxMClp5Fq2bCls2bJFyM/PF7S1tYX9+/dLj127dk0AICQkJKgxwrp7/Pix0K5dOyE6Olro06ePNClpSm1dunSp0Llz52qPNaV2CoIgLFy4UOjdu3eNxyUSiWBjYyP897//lZbl5+cLurq6wo8//lgfIapMSEiI0KZNG0EikTS5z/WNN94QpkyZIlMWEBAgBAYGCoLQdD7X4uJiQVNTU/jll19kyr28vISPP/64ybRTEIQqSYk8bfvzzz8FAMK5c+ekdX799VdBJBIJWVlZct+bj28aKbFYjD179uDJkyfw9vbGhQsXUF5eDj8/P2kdNzc3tG7dGgkJCWqMtO5mzJiBN954Q6ZNAJpcW2/evAk7Ozu4uLggMDAQGRkZAJpeOw8dOoRu3bphzJgxsLKyQpcuXfDtt99Kj6enpyMnJ0emvSYmJujRo0ejbG+lsrIy7Ny5E1OmTIFIJGpyn2uvXr0QExODGzduAACSk5Nx5swZDBkyBEDT+VyfPXsGsVgMPT09mXJ9fX2cOXOmybSzOvK0LSEhAaampujWrZu0jp+fHzQ0NJCYmCj3vfhCvkbmypUr8Pb2RklJCQwNDXHgwAF4eHggKSkJOjo6MDU1lalvbW2NnJwc9QT7Evbs2YOLFy/KPK+tlJOT02Ta2qNHD2zfvh2urq7Izs7G8uXL4ePjg5SUlCbVTgC4ffs2Nm7ciDlz5uCjjz7CuXPnMGvWLOjo6GDy5MnSNllbW8uc11jbW+ngwYPIz89HUFAQgKb1+wsAYWFhKCwshJubGzQ1NSEWi7Fq1SoEBgYCQJP5XI2MjODt7Y2VK1fC3d0d1tbW+PHHH5GQkIC2bds2mXZWR5625eTkwMrKSua4lpYWzMzMFGo/k5JGxtXVFUlJSSgoKEBkZCQmT56MU6dOqTsspcrMzERISAiio6Or/FXS1FT+NQkAnTp1Qo8ePeDo6Ih9+/ZBX19fjZEpn0QiQbdu3fDpp58CALp06YKUlBRs2rQJkydPVnN0qvPdd99hyJAhsLOzU3coKrFv3z7s2rULu3fvRocOHZCUlITQ0FDY2dk1uc/1hx9+wJQpU9CqVStoamrCy8sL48ePx4ULF9QdWpPBxzeNjI6ODtq2bYuuXbsiPDwcnTt3xrp162BjY4OysjLk5+fL1L9//z5sbGzUE2wdXbhwAbm5ufDy8oKWlha0tLRw6tQpREREQEtLC9bW1k2mrc8zNTVF+/btcevWrSb1mQKAra0tPDw8ZMrc3d2lj6sq2/T8LJTG2l4AuHv3Lo4fP453331XWtbUPtf58+cjLCwM48aNQ8eOHTFp0iTMnj0b4eHhAJrW59qmTRucOnUKRUVFyMzMxNmzZ1FeXg4XF5cm1c7nydM2Gxsb5Obmyhx/9uwZ8vLyFGo/k5JGTiKRoLS0FF27doW2tjZiYmKkx1JTU5GRkQFvb281Rqi4/v3748qVK0hKSpJu3bp1Q2BgoPTfTaWtzysqKkJaWhpsbW2b1GcKAK+99hpSU1Nlym7cuAFHR0cAgLOzM2xsbGTaW1hYiMTExEbZXgDYtm0brKys8MYbb0jLmtrnWlxcDA0N2a8STU1NSCQSAE3zc23RogVsbW3x6NEjHDt2DMOHD2+S7awkT9u8vb2Rn58v02t04sQJSCQS9OjRQ/6bvfw4XaovYWFhwqlTp4T09HTh8uXLQlhYmCASiYTffvtNEISKaYatW7cWTpw4IZw/f17w9vYWvL291Ry1cvx79o0gNJ22zp07Vzh58qSQnp4uxMfHC35+foKFhYWQm5srCELTaacgVEzv1tLSElatWiXcvHlT2LVrl2BgYCDs3LlTWmf16tWCqamp8L///U+4fPmyMHz48EYzpfJ5YrFYaN26tbBw4cIqx5rS5zp58mShVatW0inBUVFRgoWFhbBgwQJpnabyuR49elT49ddfhdu3bwu//fab0LlzZ6FHjx5CWVmZIAiNu52PHz8WLl26JFy6dEkAIHz55ZfCpUuXhLt37wqCIF/bBg8eLHTp0kVITEwUzpw5I7Rr145TgpuyKVOmCI6OjoKOjo5gaWkp9O/fX5qQCIIgPH36VPjggw+Eli1bCgYGBsLIkSOF7OxsNUasPM8nJU2lrW+99ZZga2sr6OjoCK1atRLeeustmXU7mko7K/3888+Cp6enoKurK7i5uQmbN2+WOS6RSITFixcL1tbWgq6urtC/f38hNTVVTdG+nGPHjgkAqo2/KX2uhYWFQkhIiNC6dWtBT09PcHFxET7++GOhtLRUWqepfK579+4VXFxcBB0dHcHGxkaYMWOGkJ+fLz3emNsZGxsrAKiyTZ48WRAE+dr28OFDYfz48YKhoaFgbGwsvPPOO8Ljx48VikMkCP9ado+IiIhITTimhIiIiBoEJiVERETUIDApISIiogaBSQkRERE1CExKiIiIqEFgUkJEREQNApMSIiIiahCYlBAREVGDwKSEiIiIGgQmJURE/+Lr64vQ0FCFz3v48CGsrKxw584dpcf0vHHjxmHNmjUqvw9RfWNSQtTIiUSiF27Lli1Td4hVBAUFYcSIEeoOo84JSHVWrVqF4cOHw8nJSSnXe5H//Oc/WLVqFQoKClR+L6L6pKXuAIjo5WRnZ0v/vXfvXixZsgSpqanSMkNDQ3WEBQAoKyuDjo6O2u5fX4qLi/Hdd9/h2LFj9XI/T09PtGnTBjt37sSMGTPq5Z5E9YE9JUSNnI2NjXQzMTGBSCSSKTM0NMTRo0fRu3dvmJqawtzcHG+++SbS0tKk1/D19cXMmTMxc+ZMmJiYwMLCAosXL8a/39cpkUgQHh4OZ2dn6Ovro3PnzoiMjJSJpfI6oaGhsLCwwKBBg+rUptru5evri1mzZmHBggUwMzODjY1NlR6hx48fIzAwEC1atICtrS2++uormZ6RoKAgnDp1CuvWrZP2KlU+epFIJC+89vOOHDkCXV1d9OzZU6b8zJkz0NbWRklJibTszp07EIlEuHv3rsz+Tz/9hNdffx36+vro3r07MjIyEBcXh549e8LAwAD9+/dHfn6+9DpDhw7Fnj17FPvBEjVwTEqImoEnT55gzpw5OH/+PGJiYqChoYGRI0dCIpFI6+zYsQNaWlo4e/Ys1q1bhy+//BJbtmyRHg8PD8f333+PTZs24erVq5g9ezYmTpyIU6dOydxrx44d0NHRQXx8PDZt2lSneOW5144dO9CiRQskJibi888/x4oVKxAdHS09PmfOHMTHx+PQoUOIjo5GXFwcLl68KD2+bt06eHt7Y+rUqcjOzkZ2djYcHBzkuvbz4uLi0LVr1yrlSUlJcHd3h56enrTs0qVLaNmyJRwdHQEAycnJAICNGzfi008/xe+//4779+9j4sSJWL16NTZs2IDY2FgkJydj27Zt0uu8+uqrOHv2LEpLSxX98RI1WHx8Q9QMjBo1SmZ/69atsLS0xJ9//glPT08AgIODA7766iuIRCK4urriypUr+OqrrzB16lSUlpbi008/xfHjx+Ht7Q0AcHFxwZkzZ/DNN9+gT58+0mu3a9cOn3/+eZ1jlfdenTp1wtKlS6X33LBhA2JiYjBgwAA8fvwYO3bswO7du9G/f38AwLZt22BnZye9j4mJCXR0dGBgYAAbGxuZGF507ercvXtX5tqVkpOT0aVLF5mypKQkdO7cWWbfzMwMe/fuhbm5OQCgT58+OHPmDK5evQoDAwMAQPfu3ZGTkyM9z87ODmVlZcjJyZEmOESNHXtKiJqBmzdvYvz48XBxcYGxsbF0MGZGRoa0Ts+ePSESiaT73t7euHnzJsRiMW7duoXi4mIMGDAAhoaG0u3777+XeQwEoNoeA0XIe69OnTrJnGdra4vc3FwAwO3bt1FeXo5XX31VetzExASurq5yxfCia1fn6dOnMr0hlZKSkvDKK6/IlF26dEmmLDk5GSNHjpQmJEDF5/LWW29JE5LKMmdnZ+m+vr4+gIrxLERNBXtKiJqBoUOHwtHREd9++y3s7OwgkUjg6emJsrIyuc4vKioCABw+fBitWrWSOaarqyuz36JFi5eKVd57aWtryxwTiUQyj6NehqLXtrCwwKNHj2TKxGIxUlJSqvSUXLx4UabnKikpCYsWLZKpk5ycjNmzZ0v3S0pKkJqaKtPDkpeXBwCwtLSUs1VEDR+TEqIm7uHDh0hNTcW3334LHx8fABUDMJ+XmJgos//HH3+gXbt20NTUhIeHB3R1dZGRkSHzqEYVlHEvFxcXaGtr49y5c2jdujUAoKCgADdu3MDrr78uraejowOxWPzSMXfp0gU7d+6UKUtNTUVJSYnMY52EhARkZWVJe0oKCwtx584dmcQlPT0dBQUFMmVXrlyBIAjo2LGjtCwlJQX29vawsLB46fiJGgomJURNXMuWLWFubo7NmzfD1tYWGRkZCAsLq1IvIyMDc+bMwXvvvYeLFy9i/fr10gW6jIyMMG/ePMyePRsSiQS9e/dGQUEB4uPjYWxsjMmTJyscV0FBAZKSkmTKzM3N4eDg8NL3MjIywuTJkzF//nyYmZnBysoKS5cuhYaGhswjKicnJyQmJuLOnTswNDSEmZmZwu0AgEGDBmHRokV49OgRWrZsCQDStq1fvx6zZs3CrVu3MGvWLACQ9lAlJydDU1NTOq6n8jwzMzOZcSJJSUlo06aNzPTuuLg4DBw4sE7xEjVUTEqImjgNDQ3s2bMHs2bNgqenJ1xdXREREQFfX1+Zem+//TaePn2KV199FZqamggJCcG0adOkx1euXAlLS0uEh4fj9u3bMDU1hZeXFz766KM6xXXy5MkqjzaCg4OxZcsWpdzryy+/xPTp0/Hmm2/C2NgYCxYsQGZmpszYj3nz5mHy5Mnw8PDA06dPkZ6eXqe2dOzYEV5eXti3bx/ee+89ABWJxKBBg3D79m107NgRHh4eWL58Od5//31ERETghx9+QHJyMlxdXWViqm5wbHJyssyjm5KSEhw8eBBHjx6tU7xEDZVI+PdCBETULPn6+uKVV17B2rVr1R2Kyjx58gStWrXCmjVrEBwcrPTrHz58GPPnz0dKSgo0NDQwaNAgdO/eHZ988onS77Vx40YcOHAAv/32m9KvTaRO7Ckhoibp0qVLuH79Ol599VUUFBRgxYoVAIDhw4er5H5vvPEGbt68iaysLDg4OCA5ORlTpkxRyb20tbWxfv16lVybSJ2YlBBRk/XFF18gNTUVOjo66Nq1K+Li4lQ6MLRytdicnBzcv39fZmCqMr377rsquS6RuvHxDRERETUIXDyNiIiIGgQmJURERNQgMCkhIiKiBoFJCRERETUITEqIiIioQWBSQkRERA0CkxIiIiJqEJiUEBERUYPApISIiIgaBCYlRERE1CAwKSEiIqIG4f8D0Lhpotu3vCcAAAAASUVORK5CYII=\n", "text/plain": [ "
[14:23:18] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-f5d5981f-4d19-4881-8ea9-a1154588d919v1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:23:18]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=158559;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=239808;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93mf5d5981f-4d19-4881-8ea9-a1154588d919\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:23:18] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-4e01bb58-5916-4c68-b332-14df193011efv1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:23:18]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=943125;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=817246;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93m4e01bb58-5916-4c68-b332-14df193011ef\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[14:23:18] loading SimulationData from webapi.py:512\n", " data/data_sweep/fdve-9752d3f1-11fa-4eb2-a219-ab72291b9deav1.hdf5 \n", "\n" ], "text/plain": [ "\u001b[2;36m[14:23:18]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from \u001b]8;id=76409;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=533809;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#512\u001b\\\u001b[2m512\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mdata/data_sweep/fdve-\u001b[93m9752d3f1-11fa-4eb2-a219-ab72291b9dea\u001b[0mv1.hdf5 \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAMWCAYAAAC6NwiHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7wdVXn//1kz+5yTALlwS0LkYkB/XERFQTTSSoC8DHhNRVot0gjUogQkxKpQK0irDWoVKgJavzbxa+WLl4oKKhgQQlVACKYFlaiVm0IianMCITnn7Fnr98fc1sysNbd9P/vzzmvn7D3rOmvWzKxnPc96llBKKRBCCCGEEEIIISmcXleAEEIIIYQQQkh/QoGREEIIIYQQQogRCoyEEEIIIYQQQoxQYCSEEEIIIYQQYoQCIyGEEEIIIYQQIxQYCSGEEEIIIYQYocBICCGEEEIIIcQIBUZCCCGEEEIIIUYoMBJCCCGEEEIIMUKBkRBCSFtZt24dhBB45JFHAABLlizBkiVLelonQgghhNSDAiMhhBBCCCGEECONXleAEELI9OZ73/ter6tACCGEkJpQw0gIIaSjjI6OYnR0tNfVsLJjx45eV4EQQgjpWygwEkII6SjpNYx33HEHhBD4yle+go985CPYf//9MWPGDJx00kn41a9+lUl/zz334OSTT8acOXOw22674fjjj8cPf/jDRJxHH30U5557Lg499FDMnDkTe++9N0477bRoHWVIuL5yw4YNOPfcczFv3jzsv//+nThtQgghZFpAk1RCCCE94fLLL4fjOPjbv/1bjI+P42Mf+xhOP/103HPPPVGc73//+zjllFNw9NFH49JLL4XjOFi7di1OPPFE/Od//ieOPfZYAMC9996LH/3oR3jLW96C/fffH4888giuvfZaLFmyBD/72c+w2267Jco+99xzse++++KSSy6hhpEQQgjJgQIjIYSQnrBr1y5s2rQpMlfdc889ccEFF+DBBx/EkUceCaUU3vnOd+KEE07Ad7/7XQghAADnnHMOXvCCF+Dv//7vo/WRr33ta/HmN785kf/rX/96LF68GP/xH/+BM844IxG211574bbbboPrul04U0IIIWRwoUkqIYSQnnDmmWcm1jb+6Z/+KQDg17/+NQBg06ZN+OUvf4m//Mu/xB/+8Af8/ve/x+9//3vs2LEDJ510Eu68805IKQEAM2fOjPKZmprCH/7wBzzvec/D3Llzcf/992fKfsc73kFhkRBCCCkBNYyEEEJ6woEHHpj4veeeewIA/vd//xcA8Mtf/hIAsGLFCmse4+Pj2HPPPbFz506sWbMGa9euxW9/+1sopRJx0ixatKjl+hNCCCHDAAVGQgghPcGm4QuFvVB7+PGPfxxHHXWUMe4ee+wBADj//POxdu1arFq1CosXL8acOXMghMBb3vKWKB8dXSNJCCGEEDsUGAkhhPQlhxxyCABg9uzZWLp0aW7cr33ta1ixYgU+8YlPRMd27dqFbdu2dbKKhBBCyLSHaxgJIYT0JUcffTQOOeQQ/PM//zOeeeaZTPhTTz0VfXddN2GGCgBXXXUVPM/reD0JIYSQ6Qw1jIQQQvoSx3Hwf/7P/8Epp5yCF7zgBTjzzDPxnOc8B7/97W9x++23Y/bs2bjxxhsBAK973evwxS9+EXPmzMERRxyBu+66C7feeiv23nvvHp8FIYQQMthQYCSEENK3LFmyBHfddRf+8R//EZ/+9KfxzDPPYMGCBXj5y1+Oc845J4r3L//yL3BdF1/60pewa9cuHHfccbj11luxbNmyHtaeEEIIGXyEStvwEEIIIYQQQggh4BpGQgghhBBCCCEWKDASQgghhBBCCDFCgZEQQgghhBBCiBEKjIQQQgghhBBCjFBgJIQQQgghhBBihAIjIYQQQgghhBAjQ7UPo5QSTzzxBGbNmgUhRK+rQwghhBBCyLRGKYWnn34aCxcuhONQVzWIDJXA+MQTT+CAAw7odTUIIYQQQggZKh5//HHsv//+va5GbX7wgx/g9a8/Bd/5zvewePHiXlenqwillOp1JbrF+Pg45s6dC98St1jDKISA47i1yopyjzSZjhaWKrtd2s6Sl1Kh7CWXHa/LdGM4z5oQQgghxIxSClJOYtu2bZgzZ06vq1MLpRResfgF+OMftmPfeXPxwx88MFTWikOlYYwvrEBZgbFOZ7AJix0TFPX82iaoSZRpowxh+UN0E4Uo1GoxQgghhJBpzyALWF/96lfxm8efwn0b/xUvOepsfOMb38Cf/dmf9bpaXYOGxIQQQgghhBBiYGJiAhdffCEuu+xMzJu3Jy699O14//vfjampqV5XrWtQYKyASH1s4f6PHO2iEAYNnFPwaQ/lzFFrmKIqNbRmqABNUQkhhBBCpiPXXPse7LbbGP5qxTIAwFlnvxaNhovPfPZve1yz7kGBkRBCCCGEEEJSbNu2DR/+xy9izeXnwHV9vyaNhot/WvM3+Md/+L/Yvn17j2vYHSgwFlCkUcx8j7SHvmZQBP+SYSFVNIjt1TTaqahdHHLNIkDtIiGEEELIdOQj//QuHPWS5+Hkk49NHH/d6xbjsMMPxOUfXdmjmnWXofKSun379sA7k4sy7kkcR8At8JIaNl5pU9RkCYV1yFIg0BVczmKT1BoC45DDFiCEEEIIMaOUgudNYHx8HLNnz+51dUrz6KOP4vDDD8WGOz+Fl770/8uE33vvQzjpxAvxi1/8Cs95znN6UMPuQQ0jIYQQQgghhGh86qr343WvW2wUFgHgZS87DMuWvQyfuup9Xa5Z9xmqbTWqktkGwxhH/2HRLmbMUFvBQd39EduqXeywZrHduXfKkTO1i4QQQggh049nd+yJgw92AGkfHx9yyEI8u2OvLtaqN1BgJIQQQgghhJA0UgLNZn74EECBsQy6htCmWdO0i2U0i0Wbl+YvLa2uZWybdrHNmsVuaegUOqdlJIQQQggh0xAF+usABUZCCCGEEEIIyaKoYQQoMBJCCCGEEEJIFqXyhcIh0T5SYMwjs28iDFtjhNgc3cSmqEVmqMli/Ljd2fWkO+aovb6laJZKCCGEEEJKwzWMACgwEkIIIYQQQkgGoRSEsguFoufqkO5AgTEXB0lnNaYOk69ZzGoVXUtZnvGoEKJlLWO+w5sSMyM1yx+GW0hgOM6TEEIIIWTokApomsfoUfgQmK9RYCSEEEIIIYSQNGXWMFJgJIQQQgghhJAhREnAK1jD6NiDpwsDc4pr1qzBy172MsyaNQvz5s3D8uXLsXnz5pq51Z0KcDIfEfyLHeQEx4UIzFHd1MdGUXgJKpuOtt8cVWmffqNTE0BDMLFECCGEEDJ8hCapto/sxxFv+xkYgXHDhg1YuXIl7r77bqxfvx5TU1N49atfjR07dvS6aoQQQgghhJDpRmiSavv0pYqk/QyMSerNN9+c+L1u3TrMmzcPGzduxKte9arK+QmIAmcwYawC/ZHRyY2bimLPI+vQxkXaAU4rjm+KzzEvcfm0w3G72NGv8LC3BSGEEELItEBKCG6rMTgCY5rx8XEAwF577dXjmhBCCCGEEEKmHypfgdKV/dJ7z0AKjFJKrFq1CscddxyOPPJIa7yJiQlMTExEv7dv396N6hFCCCGEEEIGHSmBXA3jcAiMA7OGUWflypV48MEHcf311+fGW7NmDebMmRN9DjjggES4KDQ5dWJnNrYPHAjhBk5uGgDcyOFN7PhGd5STJI6j06Lzm1IUqNCn0YyJQHcd04jUhxBCCCGEDCAKvlBo+0yj8XIeAycwnnfeebjppptw++23Y//998+Ne/HFF2N8fDz6PP74412qJSGEEEIIIWSgCTWMto/iGsa+QimF888/HzfccAPuuOMOLFq0qDDN2NgYxsbGCuPZtYwO8nREsWbQ1b4XyeB6eNzJWnFsA6D9MxxCTItZk37Q8AnQEQ4hhBBCyECSu4axe9XoJQMjMK5cuRLXXXcdvvnNb2LWrFnYsmULAGDOnDmYOXNmj2tHCCGEEEIImVZI6e+3mBc+BAyMSeq1116L8fFxLFmyBPvtt1/0+fKXv9zrqhFCCCGEEEKmG0UmqUPi9GZgNIwtmWtmKGeoaHZIE+JGcXS5W5SQwVVkiurA7nwmux9j16lgltpPZpf9YIaapp/ahxBCCCGElCB0emMNH47R3cAIjIQQQgghhBDSNaQEvBwFDgXGaY6uObRebBe6viqpbfQ1ibFGsYxeS0VpTFrGlhzfVHZSE9a7wPY6POcSeadboFu3UD9qFE1Qy0gIIYQQMkAolb9OkQIjIYQQQgghhAwpUtHpDSgw+li0aI5owLSEUaS22xCixLpFJbU0yqpltFcxrX0sTuPXVQQl2mZAzNt8GCqQPVYwq1JH85fOcVC0h2WhlpEQQgghZFBQBWsYu1eTXkKBkRBCCCGEEELSSMU1jKDASAghhBBCCCFZ6CUVwNAKjKFJacoEM2V2KYQTmEQajgt9K42s4aRuAqqUhBBOYJYa5pc2Sw3z1k1PK26tkeOgRq9jOfNUHYupqnXLkbCg6jdR10xQi+oOdOwhEBsmE0IIIYSQvkXKgjWMwzGaG1KBkRBCCCGEEEJyoNMbAEMvMOY7fBHChRAwaxMLHN2IQJuooCLtYr6W0ba9RqxlDLf1iMMs9U9rz1KaMpNGNIpq1HsVOfWpqYHsd+rUv4JWsleaxvIbwBBCCCGEDDNqaMxO8xhygZEQQgghhBBCDEgFNHO0iDRJJYQQQgghhJAhRal8s9Mh0T4OpcAogn9J88u0eacDRzTgOPp+i9p3g5mm7sBGBeGhaSqMZqlxXmXNUvV6ZPdl1MkxUTUR5JVnrppJApNpbFmmqc13C/tVduqRU8cwWE8zHI9CQgghhJAU1DACGFKBkRBCCCGEEEJyKdxWo2s16SlDLTDat5rwNWauMwIhQs2b5vgm5fAm1BgmtskQ0tcACgdQ0i8ro2X0Hd8k04Z5y5Qm0U3V3ktoPJP1Uaim9ZPVHbwoVUkbGSVrSSvZj5TQlBY4IYqi6VHqV6jtW5NwGxBCCCGEDCVKQXk0SR1qgZEQQgghhBBCjChVoGGkwEgIIYQQQgghwwnXMAIYVoFROL6ZoOZ8Jm1eqaAgnBG4Kfu+tBmoUsE+i6FpovKd3wg4FcxS/YSh2avNNDVZbtpEVa9j+C1no9EEcV6q7EyJ8OtWFQHRt7Mx5j0oi8gzrS25P6WhPfpxB8tuOsJJn39/9hhCCCGETGeUBFSOwKgoMBJCCCGEEELIkFJoktq9qvSS4RYYhUE7FDmwEWg4IxBCGrfQiKIL6WsM4QbaRCQ7j0XLmMknoe3Uw53Edh1RnEgFk6fly17eIg1iVpmZp6VMajmraSdDerC9htXpTOt6PftWLWlKbHvSDk1sVWdGJctup7axTA25zQchhBBCuk6RSWqfWs21m+EWGAkhhBBCCCHERp5QSIGREEIIIYQQQoYUqaCaOUJhDwzlesGQCowOkkZuunlgYEaoJFyMAaJpzUVBQShoTm8koBz4fl00U1Yhg/j+bxGan5pMYsO8EyaqaQc3Zc0ew9haXoX2f+meb+8iaRPU/Lxtpq125z2lTVyrkqlnm+72kntT+marJcxV65qTtoMKZrJlHdS062za7RCnbL2GYw6REEIIIREKXMOIoRUYCSGEEEIIIcSOKtAw0ktqH3LnnXfi4x//ODZu3Ignn3wSN9xwA5YvX96GnA3aHgE0nFGrgxoJ5fu3EV6kaYy2mgi0jH5kPc9Qc+Q7yBFA7GRHaFtbwN+qw4SueSyNqqLbKdZYAsHWIaWyDetb3NWqaSzzKLudSIhdywnUceaTf42KtxZxa27x0SkKHPSkr1udIooudk57VdU41u1WrTjeqVJmP115QgghZKhRyB/WDclLu5x00Cfs2LEDL37xi3H11Vf3uiqEEEIIIYSQ6YwEVFNZP8MiMA6UhvGUU07BKaec0utqEEIIIYQQQqY5SikoL8/pzXBIjAOlYWwXQjjWT4wDV8yAK0ajj4MGHDQgRAOucOFAQMCN9lYU8PNwHBeOcCHgwBGN+BOmhwNHBHGc7MdxGhDCNX4cZyT7CfKyfVxnJPFxnEbOJ5m3tR5iJPr4bWD7jASfRuHHEfbyij9C+zQqf3yzVPOnOL1IfZJ182+z1Ee42kdkPpm+2cN/xvonziVb/8qf4pu2dHpR8KlchilqQZ6ly2xT2qJzrluXvHIIIYSQaU9okmr7tCAvXn755RBCYNWqVdGxXbt2YeXKldh7772xxx574NRTT8XWrVvrF9ImprXAODExge3btyc+hBBCCCGEEFKIBFQz51PT0f69996Lz372s3jRi16UOH7hhRfixhtvxFe/+lVs2LABTzzxBN70pje14URaY6BMUquyZs0aXHbZZZXS6FrGBkahEG9LoQKnNQLSd3wjJFxIKCUgoaCEB8Dxe0+gnPC31/CdqihNPleGFbQJhzYlpvCjPES+05Z0mjLagdDRi8jLWxWXX+S8Je3EJ7uFiDleFlO68tM+uiLJdG0KUheE59XDQ6mtRTqq0inhpMevjCVG0mFT95Gd3YIkL+/wPqmTNg+trdt9Zrb8VEF4mXzKXP1W7paiPIfDMIgQQki3UKq+UGjjmWeewemnn47Pfe5z+PCHPxwdHx8fx+c//3lcd911OPHEEwEAa9euxeGHH467774br3jFK9pbkQpMaw3jxRdfjPHx8ejz+OOP97pKhBBCCCGEkEFAAsrL+dQQJleuXInXvva1WLp0aeL4xo0bMTU1lTh+2GGH4cADD8Rdd93V6pm0xLTWMI6NjWFsbMwQ4qLMPLorRiEDrWKo4VKQUJCQoglH+boZIQBHSQCNSNMogq0RIgVDoHUMKdJi1do+I0pbfp7dWg+9rra6lDyfMhq7UnWu0CZVNF1ltZz2NOn4+duDJNtDT5s9v0zaCte2HPkazkS51lsmrrfolCq0YBuSKFqLOia9/qXyCrfSMdLCfJxo83SmjSJNZhkNaZu1oa3kUaQ9baUcW28om09ebypl9VEQXuXcy+RBbS0hhAAo0jAqwPO8zLI3mwxy/fXX4/7778e9996bCduyZQtGR0cxd+7cxPH58+djy5YtdWrfNgZKw/jMM89g06ZN2LRpEwDg4YcfxqZNm/DYY4/1tmKEEEIIIYSQaYVSxWsY77vvPsyZMyfxWbNmTSavxx9/HBdccAG+9KUvYcaMGT04m/oMlIbxvvvuwwknnBD9Xr16NQBgxYoVWLduXY9qRQghhBBCCJl2qAIjJwDHHHMMbr311sQxk3Zx48aN+N3vfoeXvvSl0THP83DnnXfi05/+NG655RZMTk5i27ZtCS3j1q1bsWDBgpZOo1UGSmBcsmRJW03ykttoZBlRY/AgfWc3ApChOapqwkEDSsiEAxwAcCERmsilndjIkkY+Cl5bbLtKmdSVNPNsxYS26JopyMLzVapEnDKmrxUd2rRqKpt3DWxtlteWsYVgvfsge/555qiaqWnCRLmobK9qtQopZ2oq22oSm5tXog3KO50qTzbPojaw1Tc3XdtsSDtsQhs5f6pRYaWKt1MpUXZhybZ8yqY35dMGc99up7OhKuZZx4y4rtlvnXR1TJTbWY4tTVXT5bJvElEhLiHTCSUFVNN+Zysp4LouZs+eXZjXSSedhAceeCBx7Mwzz8Rhhx2G97///TjggAMwMjKC2267DaeeeioAYPPmzXjsscewePHi1k6kRQZKYCSEEEIIIYSQbqFUe6bQZs2ahSOPPDJxbPfdd8fee+8dHT/77LOxevVq7LXXXpg9ezbOP/98LF68uKceUoEhFRhFsDF6bhw4cNEA0AAUIOFBwIm0jUrJxHYbjjbDHm93Yc+/Fac2Rcgqs/0lnGsU1VUizyFKoDG1hhXMWZZop3Y4ELJqzXId1pQvx5YuP7/W2yYup6R2u4TWM6lIMeU7ooW2o5/Lgp0tujHvnerDHfPtYz+X1jRFJa+DXn4lhzft1bJm+msnPOHUSp9uxxJuADLlV8gjt2wT6by65DypBFUvg7A+k+2a3Mpa4Lra45pldSSNnq5sfD1ph+ISMl1QEpDN/PB2csUVV8BxHJx66qmYmJjAsmXLcM0117S3kBoMpcBICCGEEEIIIXkoKSA9+8Sekq1Npdxxxx2J3zNmzMDVV1+Nq6++uqV82w0FRkIIIYQQQghJoVDs9GYYGFqBURSYEgnhm6SqwNRKQEBBQarYNDU0/axldtdB244q5q6l6i5KmH22sA9jXn1lqf3oCsxEc9q6kiOi3PCcfGxmnjYz1VYdCBXQTtNZa31KmRLX3yszmU+ZPtKqa4eRzJH2mNumSi80X6xPKdNdASTNb9OmpuVMc1s1E05ma2oD2/O70yaY7diJqm4eQTpT21rNNHtrRFj2Hg/fr6mD1ahzqt30CNSNNF2/3GXvzf4xjR48HLD9ekunNYyDwtAKjIQQQgghhBCSR94caFUP0IPKUAqMedpF3RmOqxoARgJNghtoFV3/t7LPnha59i/SbnaKKhqRMjPDshWtG3xnQQCsd1qe857SzmcMeZdth1a0qkXhNo1ZvsOi6hrJPA2qTWtqvG6GMkznZ3eaU9yfuulQqA4dd67TZq1sJm2u5rqVtjJpvPRQmQpyKl6b/phdt11/UWGrjzp5ZNK0xUtJnhbZFKceAuXvm2EYcPU3de6zsmOZLo15qjjtytxX/dwDezNmzKVK+ymFQd6URSoBL0/DqNq5oVf/MpQCIyGEEEIIIYTkogo0jIMrC1eCAiMhhBBCCCGEpFBKQMp8DeMwMNQCY/5ejA4acIDoU7RHWtxhhIrzdQyK6jzltSl+pyjr8CVNOXPVEuaoRdsM5kTIN7UsMBUt5UinuJyy5cXxdHOZdDnV96q0nYfJrLWKgx2jqWmJY5nfuaaytrBqZrem61PkoKgMpU0/O7SfaqvOi7Jx698vZctrp2lwbfPfDu5v2w+0YpKcyKdT/daUb+VX2pBM1/chtns1XEbTCUdfZgblPu5DU9GukHd99DbR9idXEmju6FiNOomCb5aaFz4MDLXASAghhBBCCCEmfC+pOQIjvaROX4RwcrSL8fGGGgEwZdUShppCByJyWiAg4Ag9XtKhQTov0zrhsstnw7RK1V+vHU7kC9GaHXa1LRLKxSu95UXhVhNFB/Qy2+PEuqomIO8c8rWpJg1b9phZE1ccz6TFTKfT0xg1kak8bOeT1ViaNbJpbWxVDWwR+Y6H2ku7NIl1trUpq0kuqou5vepvpeOnLrqnq2mR26WZs9EtlwctnUcNrWI7Nd11tMbd02i1Tq+c2bVKK23cCU31oFzzqtc736Kt93TK6iDO38PExB87WkanUErAo0nqcAqMhBBCCCGEEJIHTVJ9KDASQgghhBBCSAqpBLxcgZEaxiHCrGp24cJBA0L45qdhLEeIwAw1ME0VgVkqEHyPTUTDcD9dmLNmoqr1szIGC06Fflllf7BO0sr+dVL55yz7YAonNFftVlmFcYxtYm6odFzTJUmbu6XjpOuUDtd/ZkxbM3ENJrLaIavZaiqjdCyZF2gptx8pumc6YaZc1pQZSJr75pkox3FSvSc0pzeYDbfk0KpH17cVk9Qypm21HAflOg0rNumta+ptM+lul3OluvnWoazZoc3csBUzVQdOx83jK+3NXNPpVStldiOfkNLX2hCvKG0Vc9RumzZXbce6pqtSNbF9x69rpe0H8sxOua0GIYQQQgghhAwpkmsYAVBgRJ7OaEQ4UMKBKxxfcxhoFh0BuIF20XXC40FuAoFG0qRtjEuLjmlhYfokyQM2DaPpcNkuXEVrWY/OFBBqH8PvQH1tpJ5PJS2uZRa+inLXFFVpx8uejj/LFedmM5PIaBst5eelScfQw9NR9dm3PK1lXjprGqMWMZ9WNN46Ng1+O3t7Xk1t51Gm/6fniKtcX79sPaYyHjfNQ+dppf00+ZrnZNoCxzgtXuYy93Bas2hL043tkgodBVVsx+y9qsIEqXgmjXI6bT5mi4PyF7DuFlE6edfIfq+HqvLsSMKWW5HlTyt9pWo72Nq4KBfjvV3Y/4rrVrn+FeOXsQSwtX/6uul5OYnjxeUWXeNuGYcVXZJcaw9LYr2d9DhNNYnHqlWvb1Aq/706JArGYRcY81T/Eg04EK4LFwJuIDC6DtAQvtDoiPB4IECKQCgMwgXC37FgEcfxSwkFS702+rNCiLgrJh5KqQdKWnAxPXBsZ1v0cKr77HIG9DbKExgzbWi5PmWFzqJ4usfWKt5bqwjNpriZclIzaMUCRxgvmU6PlidcZAWLbEMVmcyaSAvVeRTdF1XuR1v+Ng/H4fEyY+Z025jS5AnZ5sG9yMRNmBwbjifjity41rJVXqi5n1WbUIkpJxBmSd6z5uUF6XR5RbVjwq7qYMZ0rMjEvWiiqezEkK18Uzpb+rLpbFS5t9PxhSFeIlwY4hnLyx7sxORt8bug3H1mipl5lpS8fvkTYTmBBfmaKGPgabu+6fTp65yd6M8+DxLjOT1fw7U2vTfaJTwWtWveOrxWnrshk9LBD7ZVTNQnKAh4ihrGIRYYLWsOhBPZaI85LiAEXEeg4Qg0BPzvAmg4iITIhgAc4d9urgDc4HuoYXRELCy6+kMmuOXCB4cDZAQQ00PFvu5RGeMAxQKlXZg0PMAscf1y/fhSiei7Md+cPGzxda1bGfJevmUfzCLRpioTLwzPaI5LpvOPm9upXSsZ8l6q6Qed7aWREO5y0uRrEHPiaXmWEQ5Ncdq9zrXohZ6+1np/LyNAtnp9bVvAFAmQtrY2CXw2YS/8nswrzEdE9UvnbRMkfbSwVEgprWnN619mkG5+5iaf3/qkYDJe8h43C6Ht7bwmj37Zwb59EqiM8G+7XtbJo5wJIr8g+/W35dMqxver/kMkn+/p+I4w94d0X9DzyOsL7Xpn5jVRq33DD9fTdu6erhPXRuHkbMV73LceC34jHgOGv8N06b5Q9X3RiRWNZg1xiYnHgvd0Hju9Sfzbo5WS9A8qX+DuJ9XIP/zDP9RKt2TJErzqVa/KjTPEAiMhhBBCCCHtwBeihIg1kG64R7cTLFWCAoQDByoRD0Lb29sJhUzNaaIuoEWSaZxG13hG34TQosZ5yTA3oWfm6Nn6QrqI9xj3Z+3jfKsKjM82JyrF7yckBJo5Gsa8LTe6zcMPP1wr3VFHHVUYhwJjgO7FKtQy7tZw4Yy4GHWAMdc3RR1xFEYdBNpGhYaIP45ApG10hIIbfPyHRKB5FIArZHBzq2iNo4CfRp+FEkLFs0tC11TFs1oimgFNzWKlZq+Sv7PfTSY1efHLxDX9jgNSP510sDldJl7mHlb2MMc8syscJKbxonOKn6PxsfR3TT0sQjtkIJxajNTEcZ5Cm67U0mZd6WbjRceRRbdfDOPr9o56WB27L2uajPpKS2JRKWRVXsbj1hm9DqoYEk2dvibp6+WkrmVwM2euZVrl5DjZwszqzPKE6ncV/kBKPWiaLg4uijTECdJG11Ap8zWUKhs3nV/q+kbFyFR8reqZ+qfCVCk7agOZ54dhEJY+pqmXMvdxcN0T/SHsC0G8RH8o0xfSdUhU2HJeZe+VxDXWGsx2zRBcV9O9nI5r6gdV+oB+TGnXOChP/61U8m+kAZDBaUkB31BIQDZ9bYiSgJICSgnI6C8gpRP99pTwHVx4TvxdOWgqgaZ0IJVAUwGedNBUQBMupqSAB+HHUYBUDjwAngSawXEFAakUPAV4yn+7+XkrKAV4Qvh/JaCEfyyMI6Gggse2ClbtKfjP9rSvYgERrzsT4UMh/I5EPxOG79FfiMSx0EuD37UDoQZauIjDw7ThuAcCUfrQD0QY6CTKiesnhNBuIcfPQxOc4nr6eYYZJPIKS42C4/tXJMrRBKLw3BICWVCulplejs2rqe01nTmWTpcZU6XeUTn55WkjM9rxnEpkLdTsZZZlp9hZL2Ef4Du9sZ94P3lJXbt2bcfypsCYwwxXwHWBUVdgzFEYcxRGgr+jji8gjjoKI45EQ6jAHFXCdRTcQAB0HQVHyGAsEQqSMhLi4r8KjhP/BhD81oREEQtBAir+7gDh2zYSkhzNPMIkEOl9Pz1mMQlPerySi/yMg7EoXl6YdjBvQB8eCD3d6AOydF10QS3MVx+8pV+eaUHAcbRBIvxGjQaH4Sc8lgoLXnh+uPY9zF+I5O9ICHUSjaMSx4M6KImMZFzVhsVm26ijl5N2qy2lXydtACpkxsAlGT/6bhFqZE5lip7OJuE5jWPp5Ia2V45ItrkT/A2vs+sCTjD94wgox4nbKrz+YTlRv3KKbaS6SeI6yOQAP7ze0TFpvIYCMik8mNKpYFWrF4ZJiKhs5ecrg9F/WIbSfofpPBnXU/8utWNhHTwFeJ7fvz0JJYNjTQnlKaDp+X89QE1JYEpBTilgClBNQHoOlBTwJgWkdOF5gOc14HkupqQT/W0q/++UdNCEgykp0JQCnhCYkgISvhDiFyXQDKqhhIOm9If8vpDiz2grv0qRwwUpRNCUKhJAglaHUgpCBEKQfq9pg+AEiQFvchAcBviPplg4SAY72mMzjhvF1wfk0YsoO9iHFh4KGQi0JuGjEQi1NLowoB8P8o5fjkGdEQsyTtwKoU5G+NJGNNkXywjBOaRG1LoQE+IAGLU9YnIG3dGxnDiZdZQ56Wyv09z8c17BtnhpcrcFS4QVTDSn8zWUlX31q9xwUx3LxLdOclvqpb8484Qp2yR4Fd8SpuxbWQtpFmoNaU3lVjTE3DE5uBpGIN8Et1/3YdyxYwd23333tuU3pAJj8jYx75HjYEZDwHUFZjYUZroKMwJBcYYrMepIjAiFEVdiREiMuJ6vYXQkGo6E60o4joTjAK4rfaHQ8YVCpwEACqKh/JdSqLVyw5eY9tekwdJnsR3tJWoSdKAJQIaw8HdLWpHoTesYwgzxw++pAYoxnj7wtsXVyw2DQuFMPx4KfWEeaSEt+K30tMIBXP276y9gBaAcF3AbcR3cIJz0h02/5wUjbc//3vQgou9TgCchmk0IzwOmmhCe9MOmpoCmBJpNYCI4PtH0j01JYFICkx7UJCAnFOQuwJty4U05mJp04UkHU1MNTEkXngyECOXAky4mpUATTiCvCEwp15dvhC9cSAV4QbiHUIEnICEiZV6obQiFCl/BEgi3gRChAKigr/tzKSLSSiDISwjt1g3uoaQcrQsS/vfwVvDF6XDgnZy5TwsNTpCpgBvNt4T10B8DIqhHWFx0Jwl9MB+XFws6TmbwG9fBIgCYBv+O9hwEMkMAZxQZTMMEN/iMhekKxhJ1Bt1CGKNYvTXqVimmcm2D8VSTpaoW18cWL0/wyFtXnxGWCoSDjEASfdPbLEcQKDk4j/PKCUSOcGCpg1GYTOVhTFtCCCiTzjT4L73OX6TrmY1jimeoRm7Zft45b5aK19eYRYl4ef2obtyieIXheWE5E8h5+Rb28YrrrrdP7KoUv5+Qyn8/2+gnDaPO/Pnz8ed//uc466yz8Cd/8ict5zekAmMxQjiYNQI4rsJuDYU9GhIzXQ9jjsJMt4mxRhMNR2HU9TAy0kSjEQiJroI7quA0FIQLiAYgRnxhTzSE7/VmJBhguQ7gBoOU0ItOOOByA01GoL0warXclMBj0mwBftqGdqnTwlMo5OhCYzS6ErFmC2E6bdQIaOWktCbp39p3lX6thWHpfS1Me2cA+doMFWoc4Gs0mp7/Agqm6kWoqQgEBUgZCAsS8HwBQXjww6Y8X7CYklCTnq8SmJBQTUBNKHiTAJoOmhMCXtOF13Qx5bloei6agbDgRVqHQJgItQ6ebwLlwTdv8oWC0IQpUIxox2VwehL+INgLT1GFpkmBoBBoG8I1CH57a99VWhiIGhXpQbwTCgVICgahEOAEafwuF+YZzu77/7nhwD7sNo6fY5yvfzzUFujhEPHld7X+7JtwIxImQgFCIK5HnJcTCCIjQfKkYGAdsJcYrCeijfgfk2agEXxmWBxemAbvJg/JsXBlD9PzSOarEnHidAZhAtljkRBhrGuyHD+e+VxNDqHiSDLRftnwbB3Teabro9c9zhdGygxqizzgmgfo2WNGIaVgQF5k8l8kWGVM+isuMTCdR1Ea4zmVUSGZys9Lb6lfXj1K5ZmJWDIeYFcfhVmVySsnTm6dcwWF6mnitHkVKkhcuo1LNnJVa5qq8VOUrVZp6lqZ1KhI6f5duqyKddjZ7sbrHgqDqWH893//d6xbtw4nnnginvvc5+Kss87CX/3VX2HhwoW18qssMK5YsQJnn312oTedTnH11Vfj4x//OLZs2YIXv/jFuOqqq3Dssce2tYxwtn1704VyZmCXBHZ4AiMq8IzqCThT8aBYIR6chzKMh6CTKRdeeEypSBsgA9MkiMAsSSFw3Rsck/GqhHApiIS/tgEiiC8AqfxVDULEi5D9NRAq0gyE4fEJ+v8l1zCEf5PrFYKYcDRzoUjpGERwg4eeAwAiLssVwW0m9PAwnQwG8+Hv0BxXJMyW/PzDWgTlR4JIdCpAUOtQI+ubQsUCTFS+RpGgkFGgpn47MIQHGmNnND3YTg7iBWINhGlw76TrLLRBvKEeaSEjXVYYZhM8HCTzdbRwvf0SXuFSQoUI1vFmzzspQETx04JF6pyzx1UiXdxnVUoBbS4nkWcUWQ9LBRnyLPs9Opb+ndDgWTRG0XkXhKePpztkOq5jzjMxkEhKjcZyYCrTFtegsUxgiZsZpJhsAXOi+3FKSmR6cBX7sCrhuQP7gjpl2sJyMWz1MBrQVBsEGpch5NXbKpCUGFiVGdkWqm2Ls8ipQCuJ7Tg1K1VVqKhb/Tr1a1WC0peTtBMh4jX8tr2LBpUBPRdnx+CuYfTH5nkCY3+yfPlyLF++HE899RS++MUvYt26dfjgBz+IZcuW4ayzzsIb3vAGNBrlxcDKAuP4+DiWLl2Kgw46CGeeeSZWrFiB5zznOVWzqcWXv/xlrF69Gp/5zGfw8pe/HFdeeSWWLVuGzZs3Y968eW0tyxEN3Dv2S8xbOAcNMQoXo3DFCBy4cJQLBw04cOAq1xeoAl2MUAJuYEwVHAnCY0EmOdAPBB+hx/HDw3UcYVz/GKJ80kJOJr2IxCyDoKAJBaFgpYUnZ/lTx4RZmDILMHEeev5pIUkYjlnL1gQGu/CmNIEkG2Yam9q3yNDPISms6Fqa5NhXJcvTzzNdXsIdt0oISgnhSROcEvt6pjQ/wpqfVg8tXbiGNpPWCcPifCGy5QqRFFZ88+vwtzmO3nhCJI+nhRCRia93YiQjOUh03qTwIiwBqXJNcUyquVSeZtP2VLkV8tNHfrFpujAFG8Kc7DHjrIghnjFvS6Oa2jQR7sRrXI310Mu01MVUbt4x28C36kCrUChJlZM+z1wq1KVqPTJFFaVvkxBXtjwgabVSBdu67XagCy9py5ZOCTadxnRO4az2oJ7TMGFy7pW2wBoQ1NPP9roKtQnXkeeF9zP77rsvVq9ejdWrV+Oqq67Ce9/7XnznO9/BPvvsg3e+85246KKLsNtuuxXmU1lg/MY3vhFJq1/4whdw6aWXYunSpTj77LPxxje+ESMjI7VOqAyf/OQn8Y53vANnnnkmAOAzn/kMvv3tb+Pf/u3fcNFFF7W1LEc0MCZmYYaYhVHshlGMoSFH4CgHI4Gw6ASaNxfhgngRrIOJhaZIsAsEOn+g7ZcR6vLSQlwlAS4lkAFm4U0X3NJ5i/TxVDnh90R5FqHNz1fTQiXqldRwpbVbRYKZTbulC0zJNoiFJV2A8uPmaLUSY+yscKYLZum8ywpnCU+3DrQwLe/U74RGSD+uCWeZOLrQZRDIoviuRQhzUnloJyVC29WEsFbkFTJuLZHuYOmOlxYgErMGqTAB5K6zTR8vI2gkZhV0gScnT9NstkloyqtncrFdQTgM5RkEx1Q8ZYtjMSE3DtTTgqExP2SxDPZVxnlT6rzKCgtGbVgLAkY7hZNWx+Z1z6PuOVCYIMNAtwSvtMO4dpLnKK5V2tA8amRH65n0CAXkahhlp6wS2sTWrVvxhS98AevWrcOjjz6KN7/5zTj77LPxm9/8Bh/96Edx991343vf+15hPrXWMOrS6v3334+1a9fijDPOwB577IG3ve1tOPfcc/H85z+/TtZWJicnsXHjRlx88cXRMcdxsHTpUtx1113GNBMTE5iYiD0zbd++vbCc2D20izE1EyOYgVGMYVSOYQQNNODCEQINoQmMAnACwdARsVAYCoS6ckD3GpceQ0eCZUqoSwtkCI7nCX/xsNw8BkwLf/ZyVFagFGlBLyv4pU0a05q4PIFP18CZBL6kti0p/OVp32ymio6mOYvjavU1aeLCPBxdGIy/m4S9tBYuTF9J0NOEPP97StBKadqEIUxEFyop6PnlCUM+cSWEI+ILpQt20YxCeCE0gS6qg1YhXZrW/zqO1lnSQqEhbjq/lGdZq6Bl04K0ImzZ8ik63ooQph1XVqFWE7Ss7WE4D72qJkHFVh4hhAwSXXt+ddApXr873BsdXJcpKthixxrexbpU4etf/zrWrl2LW265BUcccQTOPfdcvO1tb8PcuXOjOK985Stx+OGHl8qvpanTJ598EuvXr8f69evhui5e85rX4IEHHsARRxyBK664opWsM/z+97+H53mYP39+4vj8+fOxZcsWY5o1a9Zgzpw50eeAAw5oa50IIYQQQggh0xMJBFsimT8qR5jsJWeeeSYWLlyIH/7wh9i0aRPOO++8hLAIAAsXLsQHPvCBUvlVFvmnpqbwrW99C2vXrsX3vvc9vOhFL8KqVavwl3/5l5g9ezYA4IYbbsBZZ52FCy+8sGr2beXiiy/G6tWro9/bt28vFBqVkhDCgVIeJsROTGHU1xM6gFQSU8rBiGqgqSwmqaLIJFXTJvWNSapIHk+UI6LvNEnFAJikqmScjpqkRicXN+IQmKSKvDx7aJIaxaBJquEYTVLrldefAyFC2gpNUvNpR/NMNtuQSW+QCmjmtEEHW74lnnzyycK1iTNnzsSll15aKr/KAuN+++0HKSXe+ta34sc//jGOOuqoTJwTTjghI8W2yj777APXdbF169bE8a1bt2LBggXGNGNjYxgbGzOGFSFVExPqaexSDppiAhMYhevkOL1RgYsbWd3pTXh8sJzeJAepScExuW9amEdSSE3mnRVUc8ou7fQmW0YYlhiSR+F0elPe6Y2eRhuPiqwQa4qjN54QyeOD6/TGMrg2mqEW56dLF+12ehPdoX3k9EaY6pyMUO4Ynd6kiipKX6IudHozmA5iTOdEpzeDwzRyeiMG2OkN0L9bZ5j4yle+guXLl0fC4m9+8xssXLgw2g7t2Wefxac//Wm8733vq5RvZYHxiiuuwGmnnYYZM2ZY48ydOxcPP/xw1axzGR0dxdFHH43bbrsNy5cvBwBIKXHbbbfhvPPOa2tZgC8wLvYOg/sHiZkuMOoKjAZbIroAXCEhICGEF2xvAUD4ts7Rptrw//pbZABSBJtwq3ARrb+5tlQCUip4QgTHFJQUkNq2GlKqaMNuJQCoYJsNBD8QHEccDgAQ4Ybd8bnpG3HHCp/4mKu98EWgQfKVTU4ijROu90QowAbhTipcaAKxSAqq8SYeUfGRc6C4DmFwUGfteFoeiAftBqEVSSxj6bgeGUEz+TsrpKbqomepC7fpfE31SddZJAXldD104TSdZ0JwzZxLUssbpk2vQY3jmLW8Uf7G805qdePzLqHtTRxXiXS6IJuUW8zlJPKMIifXriaCDHnmf8/OM6ZfMdxWI4UlblZLi9zfRhmlSFA3MHjbapSoh6lsax7m4+3eViP3jLmtRipdxfrUrT631RgMBvRcxABvqyGRv61Gv8ntb33rW/Hkk09Gu0ccccQR2LRpEw4++GAAwNNPP42LL7648wLjGWecUTVJ21i9ejVWrFiBY445BsceeyyuvPJK7NixI/Ka2i5UYDawGybhTDyD3RoKezQkZkoPY47CTLeJMbeJhqMw6noYGWmi0ZBwXQnHVXBHFZyGgnAB0QDEiP/CFQ3hb+Q4EghErgO4gQlfw//uC2fCD3PgL2SO1HNOKBUFkqumgnFENlzb6Bz6XisCSDgMCRdL6+pAJx59JmaDHSfON4rixH/TWg6LiZtKv9FDU0YpIaLF2wJCm02OBQUHgISQMkijAKV8EVEForovtUMoBeE1/XdoYLIhPAl4nh+n6QHSg/CUf6zp54umhJjy/PCmB9FUUJNNqCYgJj2oKQU1IeBNAWpKwJtw0Gw68DwHzWYDTa+BpnQwKR00pYumEmhKF55y0JQCUxBoSgdSCUxCwJMi2qNzKphwCPfqlAh/x3+F8Pfq9Pf4jPfqhBDRHpzhxIQj/PBw4ClT70+hCfbh3/CYE/QX4V8NzbdMcvLA73JhrDAPQNeEJ/fdDMY1Ip6giPbrdERC46x3y6jOen2T3SgpsKbCTBRNHPjHzUJauoxMHqnwhABnqYMwxLUJ+qYwPY9kvioRR9eOZ+qD7LG0JjtZ12Q5fjzzuVoF+NSEgS08Xcd0nun66HWP84WRUntpFthnZSYlAJg2lC8rz2YnKMwTFsbf6bwygna1djOdR1Ea4zkZTZUNh0xtaUtvqV9ePUrlmYlYMh5QKLiWGvvnyeW5ExE1yi3RBlZLCqC4bUq3cclGrirjtqiYbrusVlvTXj1dbaV8m05a7tzVlnx6QeG2Gt2rSilUap+P9O+6DJTbor/4i7/AU089hUsuuQRbtmzBUUcdhZtvvjnjCKcdKCXx9BTgKgEPQFM52OUJjDoKM1wHo80GRoTCiCsxsktixPXgCKDhSDScQHh0JBwHcF0J30xPwXF8YRJQEI2mL5eFspsb/HW0v5qqSYSj4egv4hnbcASdGMGHX4PjhrDwt0iPyjW1kgCQuz4sGjU6hjCzwBhtyaDVwRRPaWZqyhY3obYJjzvJGdO0kCw0odhxgIYAnFG/TD2tcDTB3PGF64YTxHMBtxHXwfXDGxiwG6vP0Qcokfm04RgQiqtB//I8fwJCSV/w9yQc6f8VsulPCjSnggmCJjDlQUjPX2sRTBRgsgnhecBk8GlKYMIDJhXUpII3oaAmAG/ShTflYGrKRdNz0GyOYNJz0ZRO/IGLKen4kwfRx4WnfMHfC2YxJfzJgGY0QeD4kwVCBZMAIvDa5r+oQksGBNYGoZ5TBu2R1MsGk/qp9grvi4SWXoSCu0jcNkI4iYkEIGmVEE8miESaaCJBu266hYMTlimSeSYsCYSIJh6SAm5MUsjV4hQI+oUTASaBJnuoVDpbeGZMV2LSolw7GCYFLHno8fOUvqZJi9y65aRPp8tMuhQIwk46L2SxCZ+mutnyiPPKCYR9UsE4mWApK52HeSLCUEaZMnMmX2zlA8UTGn552TimeIZq5Jbt550z8K14fY1ZlIiX14/qxi2KVxieF5Y7cdDCBEuFdgCA7RP9JlaVx7cItDdIvzq9aTcDN64977zz2mCCKqE/VkNHN+k4u5oKrlCQEGhKYNIRGHFUIDg6cAQw6iiMOBINoeAK31TVdRTcYO2Y6yg4QgbyWnBMyGAQpbS/vjAZ/gYQ/A61ar5Zaaw0DNeJxX8B7eHgJNeiZUzGDKOM6AFRYF5mNE9KxcnEyxtFZd/+5njp+oQHdLMWy6gjEpr1fJO2lua4oXAdCpuatjcSekNh3Ak1vAZNbyiwOtr3MH9deNXLTm0RoRLH/ToY1/NUnUkMb4e8ldt6OemF++HaLW3RvchMx6lk/Oi7dlxZ4mTqohLDicxrKDRDCr+bsK3Jcx1g5mii7ZWucReB5l848XUOrAAUHDiO/2wYFQ52A5ITGol+ldK+95rEdZDxb6Xi6x0dk8ZrKBCm8wKtvyFdeMwLw6TWV5SfrwwtBKRWh+C3p6VX0h8jep7/NyxTKV+wV4BQyp8gCKaIhRfmo+JP0/PXC3gKqqkgJCCnFNAUkE0AngMlBZqTAtILrAg8F9JzMeW5aCr/95RyggkBx/8eWBN48CcHwsmA8FhYvAwsDDyloIS/hMG3GAiWKASn5gWtHE0SKBUsUXB8C4vgMSgRmhCIYNFCtp/p77t4MkAk/kKbPHCi4yI4jmDpQCy8O/rEo9AcummCvxMmhvboQ1yuSNRD+w6RmIAI701Hu3ddN/ngSwrMyfMv84g0WuGaItoeMRkB2ZA0J06+pYK9rLx4NgE+81q1xEtTZ7KjqF7GvAxxiiYRTHUsEz93YsEaEqbNCbMJwRXyMmVvnuwoJ+wb27mkYG+aZMhjx+TgmqQOmoaxUwycwNhNdnkKjgN4SkG6wJQUGHF8wbEhANdRaAigIRw0gnVUjYRg6H9C+cwNBMRIYAwMM6PvuoMRBEJkWBkRz64lPGxGM8FhGBJxwmNFa7Bsyj5b/DJxTb/jgNTPtKlUdAuq/HiZJ56yhzlaWDoPk/wQ/tUUk5nvJg0wEAuWgRY4zjMljEZ5ijgdkPxeZrRjEpL0tRt6mM08IVdgtKVRxt8KKTMIPe90XrpwUqLIti4YyJuQyNO6G7T2odfYPG29/zdHW5+oTIXzUEF8vWlswngUHgpthjjhdVTatTFdQ6mycdP5pa5vVIxMxQ/Pw1T/VJgy9YEyruoyzw/DqNkRiMwERJxGBM/9BoCxaDJIZPtDOMkEZPtDmb4QxjVh6xNl7xXbpIztmiG4rqZ7OR3X1A+q9AH9mNKucThvoP1WKvk3XIWAYC5DSBHMMwhAisC3gOP/lQII/kr4kwFSCt/vgHJ8N/myEQvzygk+LqQSmFL+MangTwoEaZpKoAkEcYMlA8KfINCXEzSD8w8nBqTy33YegrkYoQAl/AkBBH+Dx7ZC8B2p7i5iywIlwkdBPDGuEu9wJ/grtGNa1wosCPRwR3uZhr4KXG3mWThOlE84AQDtuxPPdEdCfiJPITK3gCvcKM/YECLpQNDRwvQ80478hFanNE7mYLYuUT0MmCZk/HzL5ZERljNjqtQ7Kie/PIE2nW8ibsHjJ6/Msuyc6ldfosUo5K9hbJPFZ1u55ZZbMGfOHACxv5cHH3wQALBt27ZaeVJgDDBpGSelhPD8WdymEhgVCpORwKjgCIGGAzSEgBsIdK4A3ODN1xAAhC9UAsF4wi8tkCcsm9rrAiHitP6xlGBoWQ8UCqFRWOp8k2ZDyd6eNvvIM0VKxssetz7ACh46eaYnYTlKidKzjBmzmZwZzyJhOy1k60J6wnNoSjvsowKFo1mwTXbBfGG5CnkKwljSEJk0trwSv3UtqG3wj6TZRvJ7XA+TaUf6WN7DWfdzUAbrICDz0lYATNc+PhaNSTQrAP13+rtWa3MdCq63+foUX0P9WHjtTNctbPf4rxbFEqYSadNx0nFNfSA0r82WlaqeNbwKhWv+cibk0n0gdHpkei4k/1rKLjm5ZsSSNHvvmNu86N7Mu/bxd1Hp2ibi5NQZgHnT7DqDtMzAWH+2+6vF/WhTAPxJXjeIZ9v+KP5kn/t5zwkg+6zQj9l+V6XMc9z6DPcD46/Gaw/DMXsfMsWzPRviuYfg3eDPJSCxkbqKNfIq6IMy+B7m4QXfPen3U99JoS/oQwTxlUATQR5BHKkEPDjwtN++0O/H8Q0ZQguCwGJAAVIEYcpXOHjBFfbzCIR7FWzVIDTLAABeMCmAIJ5/mtJ3rohgIkAIQAQphAiOxRcrOUHgO1BMTxCEYZHQL8JvTkLgDicI4mOx9Y1boXNOeROl4/YbmQkaQ3i/sWLFisTvc845J/E7dy2yBQqMGvEejH7XaEp/GlAqgYbyZwtdJTAlVeSjxpEi0ioKiMAsNXb84SuY4oGCK+L3RTgI0ZRUSHhtRHamB6ljydtVGeMAWSGv7MxUlXUHfrl+fKlEvtCXk4ctflakySfPlKb0+gyDQG4StjWFQqV0/nFzO7U4TojIVxymB+PmRksqn+xpMsrDsvESg0eT0Jj6bYjTbk9lRaY+6WudnrCxpYvyb7F+NkvidNuUbeuEUBAcTygpkf0uDYP+sE+ZFJJ6ednrpYWlQspc27rXv4xlsPmZm3x+27bc8Y9pfcOYf3s7r0nAKhK0bUYA9mtmvl6266AfNz6TlP362/JplUKz09RazoyWRpj7Q7ov6Hnk9YV2vTPzmqjVvuGH62k7d0/XiWuj3Fpif2IwulZQaAAY1Sd5RDy2E43gOiMcAyL6HeZpm+Qv+75o1zhAx3R/Fb03gOL3dB47nUncXClF/yBV6GDQEt69qpRCdmhPziEWGJPrGEOUNr02IT0IR8H1AE8qTAkRmKGKwPpIwA1MUd1wdhH+8WipW/A7sW8ewodTLFhCq41+G5peOOnjfpp8gTCdvihuMu96VLVx7xdKLtH0EeYHe9nlaYUvMcQPo6Jlhjqtvowz5RQMIKyDxPRLSP+eM4AsIyDmCac2qpiOFN0XVe5HW/42j+9VNKWlXvQ54enodsFBi2M4XmYQmRmYpstWeaHmflb2kqbPu8wEq1m4M8couyYsP796VF1fYzpmzkNZw7NChvk7YJrUMFPHWj4vnY0q93Y6vjDEMy3pSMQzlpc92IllzcXvgnL3mSlm5llS8vrlVanKtaxhhW7Edn3T6dPXWRcM06nTPgHT31tZe1iHonbNEwBbee6GTEq3OFKfokCnN8BQC4yATWj0cdCEhPI8uMLxZ5SEgCNFZHoqIPzdL4RIzECGD5JoFkp7cGQ0UamHSvYhkjxgX9qSDSjbhfvJ90YV0nsrA4j831RFz6dKe9jNc6vkkUXXptYdENteAEUDP9OxbJsqa3jdgWTRYMSYpsaLrF0upm0mHUL7v1XyB1bKGKuUNi79u8L19cvWYyrjceMsdqGwmq287XKpgivd6mUuJ1AmI9nSZNdJtR9T2+lUbcfsvWqLZ7hmmbrlY6pDlfu06NzLkHeN7Pe6JiBkwqrlVaYeRVRtB1sbF+Vi1lAV9b/iulWuf8X4tvWGOrb2z64lNF97U+p02qJr3C4hsYiiS5J3PWzXUz9XPU5TTVarXB8xSE5vFi1aVMvcdNWqVXj3u9+dG2fIBUZCCCGEEEIIySKRb5LaT05v1q1bVyvdc5/73MI4FBhztIxTSkJBogkFoXQtoghcigPCEwg9g5m1irHHrTyzBVhrkeyJlbRf3ZqmKqAVjU6o8Wv3+rRadUFn1hPYyiqMU2BClhfXrJlTuXGKzUb1uPl5mTUK9vRxnFS+qfA6mox+pOieyZ35NbWtyewsfY1KxIniiril0+mMWkLLldHzKSozLx9bXVqiQlaRtqFG8aLEU6XovM1p7JWRwSYdddJnrlnqNSNt17rkOUTLQkq+vuq0TVnKXBsAyG7LVS29CQeOtS3bhen+s8a1ec8Jw4vqKkrGK1ufNrdN6WttiFeU1tY/WqlHWxDV27HS/anFkWhWKqefUBCZ5TXJ8P7h+OOP71jeFBgJIYQQQgghJIXv7dYe3m9ObzoFBUYAycsdz+548NBEE056QasKNIfBjENyA2ORsWdP7GdUYs1LGTt7Pa3NcUYZymzPVyqfCnMsZcspu56hSBtT5bRsnierUlXTkXcOndAmlY1nmoHO0yiZZivTeVi1Vqm0xjYUWe1IaU1ISTo9q69TZna3aGa/KB+rds90rYo0eIa6mNurZD7WdapF93SxhiwZv7NzwGWf2a3S0nmU6EfZ8trTP/141eveSe1hu+mqZqiNtNLGZa99pTwH5JpXvd5VtIy9oBPXMpl/tWd2P6EwOGsYOwkFRkIIIYQQQghJoTA4axg7yVAKjOFMinnGJ97EoCmm0BSx3XXe7K4+wyxUnK/jG4lb46bphje9kLqe5crMchdqCEpof/LX4LSwzqmC5qlMG5Vem5N3PsI++1ZVg2bS+Fi1TIZZxbKap6xGMPU7R4tk1+KVr6cf26Q5bX0ms7Qmp0Ozsu3U7Phx698vZcurosksLqvmG7jDs+S9pl2a0k5pE9qT75CMvvoQ270aatO6p/0blPu4v7WGnSPv+uhtoq11H+Bns1LDIxTmMZQCIyGEEEIIIYTkIQE089YwDokwOdQCo2nGI9Y6SjQh4UFGs2pKSEio+LdlJrTIO2mv1jpUmR0sp0XM1+QU7stUoOnLW0uWu2arVW9uJeO1Em7XmOXlmQpT+Xn5KfI0S+brZ7xuZTWRlrqU0RjVvabt1Gzl0a79G+0FtKZ1L0yb14Ytzf4WrTdM5i3gVLw2/TEzXWbfsU7k0Zl+p9/7tg2127PmqOP3DWkT/XGftYTe14ruy3S/7BOv8gNDlfZTaqCfA3R64zOs+nRCCCGEEEIIsaIAKAjrp/QeQAFr1qzBy172MsyaNQvz5s3D8uXLsXnz5kScXbt2YeXKldh7772xxx574NRTT8XWrVvbd1I1oMBICCGEEEIIISmkAprS/qlqkrphwwasXLkSd999N9avX4+pqSm8+tWvxo4dO6I4F154IW688UZ89atfxYYNG/DEE0/gTW96U5vPrBpDaZKqIK1mobpDHE800RRTURrfGNWDggrMU2UU1k9UcobRBfNMa1gpk8oy9atvald6645WzG9tZpoVHbz4YdXM/yrnX9G801qfNptXtm5OWbYsUTpud+779pVR3iQoz1yxnJlie82PTG1gm+vs/rO4HadaKQ9TZJs5WKmMO7ehdtl7XEB0fOsT0gnK3ps9GCNV7U592/3asdFXFyhov0G/v9tZ+5tvvjnxe926dZg3bx42btyIV73qVRgfH8fnP/95XHfddTjxxBMBAGvXrsXhhx+Ou+++G694xSvaWJvyUMNICCGEEEIIISn8bTWU9SNbnDUcHx8HAOy1114AgI0bN2JqagpLly6N4hx22GE48MADcdddd7VUVisMpYYRKKEdUIAXuL0BkNAsemhCKc0ZjuYYp1Te6KyL4Wobj7de11Y22S6cdWpx03KgXFuX1Yh00zFLYZ0qaZJLnp/VaY2trNY1nsUUXd9uzFx2Z9Phzp1LyeuQcRpRcN4dqm9xf+3VjHu63DpzrnXzyDnnqLnSeQ2AZgKWp4itb7WiTU2nLdt/66TrVho9XV84FhncDdr7k2nSnn3RN+uhVL7ZqQLgeR62b9+eOD42NoaxsbHcvKWUWLVqFY477jgceeSRAIAtW7ZgdHQUc+fOTcSdP38+tmzZUucU2gI1jIQQQgghhBCSQsL3kmr7KAXcd999mDNnTuKzZs2awrxXrlyJBx98ENdff33nT6RFhlbDSAghhBBCCCFWVL6CVAF42THH4NZbb00cL9Iunnfeebjppptw5513Yv/994+OL1iwAJOTk9i2bVtCy7h161YsWLCgzhm0haEUGH2zL6ntuWiIA9/01EMz2i9QBqanUjUjM1QFCaWkZgaqmaamzPja5WClLKXMEEuaNbZi9tlpRy2V8qloolXKRDDXFDVnH8TK5p/JnOvQjv3vituk/SY05Uw1u2h+1wPzmqL7WVhce9d2NlDpHDvc9mFd6uyVVnQeVfdrS6D19dqmkqn7Rc+ncj/rX/M1hWrO501nLoDcNslrrby0ddLZ0kTnWCFNnXJsZRX1mPQ1aL87MEKyDHLfkQCaeQKjAlzXxezZs0vlp5TC+eefjxtuuAF33HEHFi1alAg/+uijMTIygttuuw2nnnoqAGDz5s147LHHsHjx4rqn0TJDKTASQgghhBBCSB4yMD21hlfMb+XKlbjuuuvwzW9+E7NmzYrWJc6ZMwczZ87EnDlzcPbZZ2P16tXYa6+9MHv2bJx//vlYvHhxzzykAkMuMBZpcqbEBKSYTMQNtYoycHzjaxZlFO5vvuEFcbUeliqrHY5a7GkrbFfQBe1euTLapw31y2zPlg310tTVqLbPOU952rFNQhc0e6WdErXWPrqWrnxetvNvZYl4jT5Zp5hWtW9l8mgnNcuyaqsq5FlHo1QmfSKPnHyqao7KprPl0Ymr2mqeraSvm7ZbuzPUSdetNK2kI2Q6kPt4r3hzXHvttQCAJUuWJI6vXbsWb3/72wEAV1xxBRzHwamnnoqJiQksW7YM11xzTbWC2szACIwf+chH8O1vfxubNm3C6Ogotm3b1usqEUIIIYQQQqYpMtg+wxpeMb8yE/8zZszA1Vdfjauvvrpi7p1jYLykTk5O4rTTTsO73vWuXleFEEIIIYQQMgRIZf8Mi/Z9YDSMl112GQBg3bp1bcjNQ5nl956ahEIzsd9i+DdtjhqaoiooQN+jUTNdVImF6dk5iaqmkXX2uCubpl0mokVmfWXPuZ6JbjccwwCt7ROYbxLanT0Ga+zRZ4vSk0dn+0xiK9e+6NrWcdJSmG9nCEssYx5ZlEceRS1S58zDPKukbVcLtyOf6ZQHIYRMJ4rWMA7wFpOVGBiBsQ4TExOYmJiIfqc31SSEEEIIIYQQEwq+0JgXPgxMa4FxzZo1kWayLLomq4lJAJOZsLKaxVA7lNY26hosmzarkmapsmayvQ5h2rkNRB2tqU9rWqbWNHmtaglL1L2HU1jF/aWL21nYaEf71N4WIdu7qzpUqZK3iVa3Kygb3g6nKP3oTIUQQggxoRRy1zB2xxKs9/R0DeNFF10EIUTu56GHHqqd/8UXX4zx8fHo8/jjj7ex9oQQQgghhJDpioIvNFo/va5gl+iphvE973lP5ELWxsEHH1w7/7GxMYyNjdVOTwghhBBCCBlOVIGX1CFRMPZWYNx3332x7777dr1c34SyyIhLwlO7ADSN6SVCc9OkOWpoipowTYXBFDXsYQZzzjwTwPbvGZgtvVyssnlW2DuxbXddub0Fy1K9Xq2bmPbGeYyNgvPppDlojTLq7lfXzjKsJqptyLtdaerQT72SEEII6TQS+SapckjejAOzhvGxxx7DH//4Rzz22GPwPA+bNm0CADzvec/DHnvs0dvKEUIIIYQQQqYVhU5vhkNeHByB8ZJLLsEXvvCF6PdLXvISAMDtt9+OJUuWtJi7QYOiJJpyEnCyGsYoSqBZ9L8ntYu6g5tY25jUKupapLQWMF8rWNXVfRUNY6c0gtW1ft1bSNwmpy0l6zsQTmRs1HAAE5KrZWvhWldNWVf710pvHJL3CSGEEDKtKDRJ7WJdeklPnd5UYd26db4wlvq0LiwSQgghhBBCSBIFBKof82dYBMaB0TASQgghhBBCSLdQ4LYawNAKjDlObzRTUA8TEEpC5ChiE+anFnNUmymqbnaaNEFNdr58k9KKezBW7tjlTUnr3TQ9ML/s4M1dfq6pS3svFjmTaUPZZWPWMlVtobxe5UcIIYSQ6YFSCpImqcMqMBJCCCGEEEKIHQnAyxEL6SV1GMhxLKOg0JRTcAWga9lESmMTatVs22iYtIuxRtKsVUxqFM11LKfN67SjmZrawT5V37ffEr1k+3SyPTqUdztzNeWV1jr2Z48hhBBCyHQmsB3sdTV6znALjIQQQgghhBBiQEHBy1Ew5ZmrTieGU2BU2TWMJu2SklPwHP94tI5RAUIk1zQm1iJW1i4WaxbNWj+79rAjG81nC6meBv22IX076EzbtdJKNVctFtLNKzfdegkhhBBCBg8JBS9vzN3PW6G1keEUGAkhhBBCCCEkl3yT1GGZ4KbASAghhBBCCCEpJBSaORrGYVnfONQCo908UgJw4MkpOJGTGy92eKNg3GpDmcxIK5uj2kxRs5013/S0ooq8holpa+alw6HCB1C6bdv1yEnn06qJ6nA8CgkhhBBCkigoKJHjJFMMxyhpqAVGQgghhBBCCDEhIXM1jFzDOI0xa8bSF1xCqiYgYyc3SgEi0NcUzihomkU/rWkrjbA+1bSLZs1iToettAl7nZmS4bhZSlFLU9tZ6mgch2O+jBBCCCEkD5UrFE4/Z45mhlJgJIQQQgghhJA8pFBoiqY9fEiUJhQYCSGEEEIIISSFr1+khnHIBcb8WQGlPCiVNSMVwoHQOogwGPnpHchsjhqYqlYwR82aolrqX2AWWb1z15w96efNTEUJw8wO179XrdPHV4UQQgghpG+Q8OBhyhrONYyEEEIIIYQQMqQoSHg5Jql5HlSnE0MqMEoYXX+kNEpKWXZXUSqhLQyd4uSRr13U4+VvpVFQiD2olF6p81txFGaZ+t3qlhD2gnqnZ6OGjxBCCCGk//FNUvO8pA7HqG5IBUZCCCGEEEIIsaMg4Sm7Sao07H4wHaHASAghhBBCCCEpVMG2GsNiN0aBEbCaJ0rVhFCxUaQIHKX4Hcc3QxVwoJSHqrvbJTtf8exEaYc3mRKLOnLJmZEe7S9YJo+Oma12gOF4rBBCCCGEDD6qwOlNnrnqdIICIyGEEEIIIYSkoIbRZ3gFxlIas6TmMJnE9f+IWNsI+BrHwqIt2sWsFrECldO2X7PYL9tE9KvGcTgeKYQQQggh0wOl8tcwclsNQgghhBBCCBlSFCQUvaRSYCSEEEIIIYSQNAoKnsrZh3FIvKQW20/2AY888gjOPvtsLFq0CDNnzsQhhxyCSy+9FJOTkzVzLDcboJTK+TQBeFCqGTi9kQBkMBOR/4nJ62R9sIh2AMxRTSjt0y/0U10IIYQQQkgxSnmQasr6oUlqH/HQQw9BSonPfvazeN7znocHH3wQ73jHO7Bjxw788z//c6+rRwghhBBCCJl2qFwtIk1S+4iTTz4ZJ598cvT74IMPxubNm3Httde2RWC0X2yJPBcqvgLOgRBe8N0F4EXbb8Toilxzp2vJ4Q0ACFFr6wsr7cyrhyj03gnO9GhJQgghhJDhQikJmef0RvWBRWAXGAiB0cT4+Dj22muv3DgTExOYmJiIfm/fvr3T1SKEEEIIIYRMA1SBhnFY1AIDsYYxza9+9StcddVVOOecc3LjrVmzBnPmzIk+BxxwQJdqSAghhBBCCBlk/G01mtZPyxaCA0JPBcaLLroIQojcz0MPPZRI89vf/hYnn3wyTjvtNLzjHe/Izf/iiy/G+Ph49Hn88ccT4Sr4Z0f6ppl5H0go5aUc4SQd5IQOcUzmqHEcnW6otwsufcasdnDptgMchf50vEMIIYQQQsrjaxg9+4dObzrPe97zHrz97W/PjXPwwQdH35944gmccMIJeOUrX4l//dd/Lcx/bGwMY2NjrVaTEEIIIYQQMmT4axi5rUZPBcZ9990X++67b6m4v/3tb3HCCSfg6KOPxtq1a+E4rSlHy3k1KtJAAiIMFn6HUcoB0NQc37gV1dVZ7WIr6m4BUd+DUwVHOuHZDqtGbVjPmxBCCCFk+sI1jMCAOL357W9/iyVLluCggw7CP//zP+Opp56KwhYsWNDDmhFCCCGEEEKmI9Qw+gyEwLh+/Xr86le/wq9+9Svsv//+ibB62re6my0Y1iAGawHNmkZAiLTG0LXk3YZ1i5W31nBg2+ajbp56q/bbnEunttjot/MkhBBCCCGtoyADHyW28OEYBQ6El9S3v/3tGUcyZmcxhBBCCCGEENIGlG+SavtMl33LixgIDSMhhBBCCCGEdBOFApNUekklheaaWpwi01QAgSOcaqan7dCi5ju+KWmW6lemYrlJpuMczHQ8J0IIIYQQAvgjvbyxOwVGQgghhBBCCBlKfNPTPKc3w6E6oMCYh1L+R9/E3tYxRKxpFBBaunDmwUl0KiHy3a90twOW0DICNZzqpJIbjnXzLDvh8IYQQgghhExXFMBtNSgwEkIIIYQQQkgWCUWTVAqMhBBCCCGEEGJkSMxO86DAWIYyHUUzQc06wEmapvrRW+l81Wcz8h3fAJXMUoG23Tw2M9F235o0RyWEEEIIIWU5+OCD4Y/rBewLq2QQb3oj1LCs1gSwfft2zJkzB4CLMiKE6zhwnApbVUbrEgOBMSwjsV6xHVtf5gh2OZezeHPRCoJoh7vNoAiMQ3PzEEIIIYTUQCkFz5vA+Pg4Zs+e3evqlObZZ5/F7rvvDn/sbhq/SwASzz77LGbOnNndynWZdkgv05ZiAcsXGKJYkRAVOsBR8fFEmER9m+f6ttKiUGyqKBwXOO5pBdHmTyfrSQghhBBCphe77bYbPv/5z8Mfe6dlAl+7+H//7/+d9sIiQA1jLo4j4DpubpzI6jQ8YNMyJsKQiFONAoGx4HK2VctYorxhgC1ACCGEEGJmUDWMAOB5HhqNBrJaRl/543leNWvEAWX6nyEhhBBCCCGEVMR1XXz3u99FUsvoaxfXr18/FMIiQA1jLo4j4GgaxnSKdMMlwitpGuN4dkpq/lrWMFYoq0K5053hPntCCCGEEDODrGEE/PrH8oALBNtsqNz9GacXwyEWE0IIIYQQQkhFhBC4//6NCDWLgMJ///d/9bhW3WWoNIzj4+OYO3cufDm5WMMoRFLDWJZS6xkT4W2kxOXsmJaxZPnTleE9c0IIIYQQM0opSDmJbdu2BZZ+g4kQDvzRnhgq7SIwZPswPv3008G3chdZKcDzmp2rECGEEEIIIUPA008/PdAC46OPPoKDDnoufvObx3tdla4zVBpGKSU2b96MI444Ao8//vhA2lGT3rB9+3YccMAB7DekMuw7pA7sN6Qu7DukLp3qO0opPP3001i4cOHQOImZbgyVhtFxHDznOc8BAMyePZsPUlIZ9htSF/YdUgf2G1IX9h1Sl070nUHWLBI6vSGEEEIIIYQQYoECIyGEEEIIIYQQI0MnMI6NjeHSSy/F2NhYr6tCBgj2G1IX9h1SB/YbUhf2HVIX9h1iY6ic3hBCCCGEEEIIKc/QaRgJIYQQQgghhJSDAiMhhBBCCCGEECMUGAkhhBBCCCGEGKHASAghhBBCCCHEyFAJjFdffTWe+9znYsaMGXj5y1+OH//4x72uEukj1qxZg5e97GWYNWsW5s2bh+XLl2Pz5s2JOLt27cLKlSux9957Y4899sCpp56KrVu39qjGpF+5/PLLIYTAqlWromPsO8TGb3/7W7ztbW/D3nvvjZkzZ+KFL3wh7rvvvihcKYVLLrkE++23H2bOnImlS5fil7/8ZQ9rTHqN53n44Ac/iEWLFmHmzJk45JBD8I//+I/Q/Riy3xAAuPPOO/H6178eCxcuhBAC3/jGNxLhZfrJH//4R5x++umYPXs25s6di7PPPhvPPPNMF8+C9JqhERi//OUvY/Xq1bj00ktx//3348UvfjGWLVuG3/3ud72uGukTNmzYgJUrV+Luu+/G+vXrMTU1hVe/+tXYsWNHFOfCCy/EjTfeiK9+9avYsGEDnnjiCbzpTW/qYa1Jv3Hvvffis5/9LF70ohcljrPvEBP/+7//i+OOOw4jIyP47ne/i5/97Gf4xCc+gT333DOK87GPfQyf+tSn8JnPfAb33HMPdt99dyxbtgy7du3qYc1JL/noRz+Ka6+9Fp/+9Kfx85//HB/96EfxsY99DFdddVUUh/2GAMCOHTvw4he/GFdffbUxvEw/Of300/HTn/4U69evx0033YQ777wTf/M3f9OtUyD9gBoSjj32WLVy5crot+d5auHChWrNmjU9rBXpZ373u98pAGrDhg1KKaW2bdumRkZG1Fe/+tUozs9//nMFQN111129qibpI55++mn1/Oc/X61fv14df/zx6oILLlBKse8QO+9///vVn/zJn1jDpZRqwYIF6uMf/3h0bNu2bWpsbEz9v//3/7pRRdKHvPa1r1VnnXVW4tib3vQmdfrppyul2G+IGQDqhhtuiH6X6Sc/+9nPFAB17733RnG++93vKiGE+u1vf9u1upPeMhQaxsnJSWzcuBFLly6NjjmOg6VLl+Kuu+7qYc1IPzM+Pg4A2GuvvQAAGzduxNTUVKIfHXbYYTjwwAPZjwgAYOXKlXjta1+b6CMA+w6x861vfQvHHHMMTjvtNMybNw8veclL8LnPfS4Kf/jhh7Fly5ZE35kzZw5e/vKXs+8MMa985Stx22234Re/+AUA4L/+67/wgx/8AKeccgoA9htSjjL95K677sLcuXNxzDHHRHGWLl0Kx3Fwzz33dL3OpDc0el2BbvD73/8enudh/vz5iePz58/HQw891KNakX5GSolVq1bhuOOOw5FHHgkA2LJlC0ZHRzF37txE3Pnz52PLli09qCXpJ66//nrcf//9uPfeezNh7DvExq9//Wtce+21WL16Nf7u7/4O9957L9797ndjdHQUK1asiPqH6f3FvjO8XHTRRdi+fTsOO+wwuK4Lz/PwkY98BKeffjoAsN+QUpTpJ1u2bMG8efMS4Y1GA3vttRf70hAxFAIjIVVZuXIlHnzwQfzgBz/odVXIAPD444/jggsuwPr16zFjxoxeV4cMEFJKHHPMMfinf/onAMBLXvISPPjgg/jMZz6DFStW9Lh2pF/5yle+gi996Uu47rrr8IIXvACbNm3CqlWrsHDhQvYbQkjbGQqT1H322Qeu62Y8Em7duhULFizoUa1Iv3Leeefhpptuwu233479998/Or5gwQJMTk5i27ZtifjsR2Tjxo343e9+h5e+9KVoNBpoNBrYsGEDPvWpT6HRaGD+/PnsO8TIfvvthyOOOCJx7PDDD8djjz0GAFH/4PuL6Lz3ve/FRRddhLe85S144QtfiDPOOAMXXngh1qxZA4D9hpSjTD9ZsGBBxkFks9nEH//4R/alIWIoBMbR0VEcffTRuO2226JjUkrcdtttWLx4cQ9rRvoJpRTOO+883HDDDfj+97+PRYsWJcKPPvpojIyMJPrR5s2b8dhjj7EfDTknnXQSHnjgAWzatCn6HHPMMTj99NOj7+w7xMRxxx2X2b7nF7/4BQ466CAAwKJFi7BgwYJE39m+fTvuuece9p0h5tlnn4XjJIdwrutCSgmA/YaUo0w/Wbx4MbZt24aNGzdGcb7//e9DSomXv/zlXa8z6RG99rrTLa6//no1Njam1q1bp372s5+pv/mbv1Fz585VW7Zs6XXVSJ/wrne9S82ZM0fdcccd6sknn4w+zz77bBTnne98pzrwwAPV97//fXXfffepxYsXq8WLF/ew1qRf0b2kKsW+Q8z8+Mc/Vo1GQ33kIx9Rv/zlL9WXvvQltdtuu6l///d/j+Jcfvnlau7cueqb3/ym+u///m/1xje+US1atEjt3LmzhzUnvWTFihXqOc95jrrpppvUww8/rL7+9a+rffbZR73vfe+L4rDfEKV8790/+clP1E9+8hMFQH3yk59UP/nJT9Sjjz6qlCrXT04++WT1kpe8RN1zzz3qBz/4gXr+85+v3vrWt/bqlEgPGBqBUSmlrrrqKnXggQeq0dFRdeyxx6q7776711UifQQA42ft2rVRnJ07d6pzzz1X7bnnnmq33XZTf/Znf6aefPLJ3lWa9C1pgZF9h9i48cYb1ZFHHqnGxsbUYYcdpv71X/81ES6lVB/84AfV/Pnz1djYmDrppJPU5s2be1Rb0g9s375dXXDBBerAAw9UM2bMUAcffLD6wAc+oCYmJqI47DdEKaVuv/1249hmxYoVSqly/eQPf/iDeutb36r22GMPNXv2bHXmmWeqp59+ugdnQ3qFUEqp3ug2CSGEEEIIIYT0M0OxhpEQQgghhBBCSHUoMBJCCCGEEEIIMUKBkRBCCCGEEEKIEQqMhBBCCCGEEEKMUGAkhBBCCCGEEGKEAiMhhBBCCCGEECMUGAkhhBBCCCGEGKHASAghhBBCCCHECAVGQgghhBBCCCFGKDASQgghhBBCCDFCgZEQQgghhBBCiBEKjIQQQvqSp556CgsWLMA//dM/Rcd+9KMfYXR0FLfddlsPa0YIIYQMD0IppXpdCUIIIcTEd77zHSxfvhw/+tGPcOihh+Koo47CG9/4Rnzyk5/sddUIIYSQoYACIyGEkL5m5cqVuPXWW3HMMcfggQcewL333ouxsbFeV4sQQggZCigwEkII6Wt27tyJI488Eo8//jg2btyIF77whb2uEiGEEDI0cA0jIYSQvuZ//ud/8MQTT0BKiUceeaTX1SGEEEKGCmoYCSGE9C2Tk5M49thjcdRRR+HQQw/FlVdeiQceeADz5s3rddUIIYSQoYACIyGEkL7lve99L772ta/hv/7rv7DHHnvg+OOPx5w5c3DTTTf1umqEEELIUECTVEIIIX3JHXfcgSuvvBJf/OIXMXv2bDiOgy9+8Yv4z//8T1x77bW9rh4hhBAyFFDDSAghhBBCCCHECDWMhBBCCCGEEEKMUGAkhBBCCCGEEGKEAiMhhBBCCCGEECMUGAkhhBBCCCGEGKHASAghhBBCCCHECAVGQgghhBBCCCFGKDASQgghhBBCCDFCgZEQQgghhBBCiBEKjIQQQgghhBBCjFBgJIQQQgghhBBihAIjIYQQQgghhBAjFBgJIYQQQgghhBihwEgIIYQQQgghxAgFRkIIIYQQQgghRigwEkIIIYQQQggxQoGREEIIIYQQQogRCoyEEEIIIYQQQoxQYCSEENLXrFu3DkIIPPLII10p74477oAQAnfccUdXyiOEEEL6GQqMhBBChpJrrrkG69at63U1CCGEkL6m0esKEEIIIb3gmmuuwT777IO3v/3tieOvetWrsHPnToyOjvamYoQQQkgfQQ0jIYSQgUcphZ07d7YlL8dxMGPGDDgOX5GEEEII34aEEEIy/OAHP8DLXvYyzJgxA4cccgg++9nP4kMf+hCEEACARx55BEIIo0mnEAIf+tCHot+PPvoozj33XBx66KGYOXMm9t57b5x22mnGNYk//elPceKJJ2LmzJnYf//98eEPfxhSyky85z73uXjd616HW265BccccwxmzpyJz372swCAtWvX4sQTT8S8efMwNjaGI444Atdee20m/U9/+lNs2LABQggIIbBkyRIA9jWM99xzD17zmtdgzz33xO67744XvehF+Jd/+ZfyjUoIIYQMIDRJJYQQkuCBBx7Aq1/9auy777740Ic+hGaziUsvvRTz58+vld+9996LH/3oR3jLW96C/fffH4888giuvfZaLFmyBD/72c+w2267AQC2bNmCE044Ac1mExdddBF23313/Ou//itmzpxpzHfz5s1461vfinPOOQfveMc7cOihhwIArr32WrzgBS/AG97wBjQaDdx4440499xzIaXEypUrAQBXXnklzj//fOyxxx74wAc+AAC557d+/Xq87nWvw3777YcLLrgACxYswM9//nPcdNNNuOCCC2q1CyGEEDIIUGAkhBCS4JJLLoFSCv/5n/+JAw88EABw6qmn4oUvfGGt/F772tfizW9+c+LY61//eixevBj/8R//gTPOOAMA8NGPfhRPPfUU7rnnHhx77LEAgBUrVuD5z3++Md9f/epXuPnmm7Fs2bLE8Q0bNiSEzPPOOw8nn3wyPvnJT0YC4/Lly/H3f//32GefffC2t70tt/6e5+Gcc87Bfvvth02bNmHu3LlRmFKqXCMQQgghAwpNUgkhhER4nodbbrkFy5cvj4RFADj88MMzgllZdOFtamoKf/jDH/C85z0Pc+fOxf333x+Ffec738ErXvGKSFgEgH333Renn366Md9FixYZ66SXNz4+jt///vc4/vjj8etf/xrj4+OV6/+Tn/wEDz/8MFatWpUQFgFEJrqEEELIdIUCIyGEkIinnnoKO3fuNGr1QpPPquzcuROXXHIJDjjgAIyNjWGfffbBvvvui23btiUEuEcffbRSuYsWLTIe/+EPf4ilS5di9913x9y5c7Hvvvvi7/7u7wCglsD4P//zPwCAI488snJaQgghZNChSSohhJDK2DRrnudljp1//vlYu3YtVq1ahcWLF2POnDkQQuAtb3mL0aFNWUxrG//nf/4HJ510Eg477DB88pOfxAEHHIDR0VF85zvfwRVXXNFSeYQQQsgwQoGREEJIxL777ouZM2fil7/8ZSZs8+bN0fc999wTALBt27ZEnEcffTST7mtf+xpWrFiBT3ziE9GxXbt2ZdIedNBBheUWceONN2JiYgLf+ta3Eia1t99+eyZuWXPSQw45BADw4IMPYunSpaXrQgghhEwHaJJKCCEkwnVdLFu2DN/4xjfw2GOPRcd//vOf45Zbbol+z549G/vssw/uvPPORPprrrnGmGfaOcxVV12V0Ua+5jWvwd13340f//jH0bGnnnoKX/rSlyrVH0g6oxkfH8fatWszcXffffeM0GripS99KRYtWoQrr7wyE59ObwghhEx3qGEkhBCS4LLLLsPNN9+MP/3TP8W5556LZrOJq666Ci94wQvw3//931G8v/7rv8bll1+Ov/7rv8YxxxyDO++8E7/4xS8y+b3uda/DF7/4RcyZMwdHHHEE7rrrLtx6663Ye++9E/He97734Ytf/CJOPvlkXHDBBdG2GgcddFCi3Dxe/epXY3R0FK9//etxzjnn4JlnnsHnPvc5zJs3D08++WQi7tFHH41rr70WH/7wh/G85z0P8+bNw4knnpjJ03EcXHvttXj961+Po446CmeeeSb2228/PPTQQ/jpT3+aEKQJIYSQ6QYFRkIIIQle9KIX4ZZbbsHq1atxySWXYP/998dll12GJ598MiG4XXLJJXjqqafwta99DV/5yldwyimn4Lvf/S7mzZuXyO9f/uVf4LouvvSlL2HXrl047rjjcOutt2Y8nO633364/fbbcf755+Pyyy/H3nvvjXe+851YuHAhzj777FJ1P/TQQ/G1r30Nf//3f4+//du/xYIFC/Cud70L++67L84666xE3EsuuQSPPvooPvaxj+Hpp5/G8ccfbxQYAWDZsmW4/fbbcdlll+ETn/gEpJQ45JBD8I53vKNUvQghhJBBRSja0xBCCCnBhz70IVx22WU0wySEEEKGCK5hJIQQQgghhBBihAIjIYQQQgghhBAjFBgJIYQQQgghhBjhGkZCCCGEEEIIIUaoYSSEEEIIIYQQYoQCIyGEEEIIIYQQI0O1D6OUEk888QRmzZoFIUSvq0MIIYQQQsi0RimFp59+GgsXLoTjDK6uampqCnfccQdOOOEENBpDJUINl8D4xBNP4IADDuh1NQghhBBCCBkqHn/8cey///69rkZtPvPZv8W7z/8UrrnmQrzrXZ/sdXW6ylA5vRkfH8fcuXPhW+K2W8Mo4Lpum/PMKy19IH0kO4Mjis65k1rXFrqZQt20snaZfsFDc2uQPoS9jxBCyHRAKQUpJ7Ft2zbMmTOn19Wpxfbt2/G85x2EN7zhONx004/wy18+ilmzZvW6Wl1jqDSMsRmqQLsFRiFEV81ciwXGbF16KjD2hOl2PoQQQgghg8kgLwdbc/m5OPyIg/CZz74Hxx//KD728fPwj//whV5Xq2sMlYZx+/btwcyGi04IjNQw5kANIyGVYO8jhBAyHVBKwfMmMD4+jtmzZ/e6OpX5zW9+g0MPfT5u+/4VeNnLDsNdd/0UJy/7W/zyl7/Gfvvt1+vqdQUKjG2iGwKjscYJIa+CkNiLWZ6aXa2ewEhhkQwu7H2EEEKmC4MuML797adg165JfOm6D0bH/uLPP4Q999wDn/vcTT2sWfegwNgmKDCWgAIjIaVg7yOEEDJdGGSB8b/+67/wilcciwceXIdFi2Jt4q9+9Vsc9eKzcN999+MFL3hBD2vYHQbXt+0QkVlxKUT8AeBfRkeLH/8zpumVDXnXym5RWCSkh1BYJIQQQvqD9773r/HOd70xISwCwPOe9xz89V+/Fu9731/3qGbdhQIjIYQQQgghhGh873vfw733PoS/+7u3GcP//oMr8IMfPIDbb7+9yzXrPhQYCSGEEEIIIUTj61+/Gn/1V8uw115mM9p99pmDM854Nf7jP67qcs26z1Btq9Fp6hhb2szPqq5XzKxVzDX9bOc8wTQ1/wzbr5/WMg6wO2or/dS+PYStQAghhPQXQizEzJnjgLSPdWfOHMWuXft2sVa9gQIjIYQQQgghhKSREmg288OHAAqMbaJwj0NruqIIrWoVO211rOdf8qYRorRmqf4ejG1iOmr1+omq7TuNNJLT50wIIYSQaYpSgOflhw8BFBgJIYQQQgghJI1S+VpECoykEmW2jCjTqQq0hJmtMizxzFlX15ZV26bTwbRd00j6g3QfHrAH9WDVlhBCCBlyaJIKgAIjIYQQQgghhGShhhEABUZCCCGEEEIIySCkhPDsGkahqGEk7aa0SWiOc5scJzh+cHudtOj5lTNP7Qez1H6oQ7vp1papA9Zupv7eh7N9/VcjQgghhBSiAMict7hCvX31BgwKjIQQQgghhBCSpswaRrd71ekVFBjbhoN2aYHKahTt2sS6PTfHbTCqaBvbp+ETEDW31rBdi3bUq1vavl7QrnProaYy7Kc91jRSq0gIIYQMOgrIMzvtQ6umTjAwI981a9bgZS97GWbNmoV58+Zh+fLl2Lx5c6+rRQghhBBCCJmOSAU0Pfsnz1x1GjEwAuOGDRuwcuVK3H333Vi/fj2mpqbw6le/Gjt27Oh11QghhBBCCCHTjdAk1fah05v+4uabb078XrduHebNm4eNGzfiVa96VcXc2r86VQT/TNhMKo3xK5mgtttoOp2f3URVCFFxj8ZMBqXV+PXNUk0MzBzJgFOmnTv8kNXvly6ajAzHXGNnsD2Z2aaEEEJ6glIQ3FZjcATGNOPj4wCAvfbayxpnYmICExMT0e/t27d3vF6EEEIIIYSQaYCSgJfj42NITFIHUmCUUmLVqlU47rjjcOSRR1rjrVmzBpdddpkxTNfutUV7JYRVo1GsSQzJ0yi6OWGtYdcUhmWab5R8LWMJxzcVtYw67dM41sOmTZ4udKd9O+mYKEUXHOEMxyujdercOaY0bG9CCCEdRynfLDUvfAgYSPu8lStX4sEHH8T111+fG+/iiy/G+Ph49Hn88ce7VENCCCGEEELIQFPk9IZrGPuT8847DzfddBPuvPNO7L///rlxx8bGMDY21qWaEUIIIYQQQqYN1DACGCCBUSmF888/HzfccAPuuOMOLFq0qG15t8c8Vd+HUVpMTgGbUtdmfmo2PW1FMZzt9MX7K7oo2qPRTEmzVL/gSjlPd5PQXlOnfTvvmKgNs3gdMk0djtdFNTp9h4b5s+0JIYR0DKW4hhEDJDCuXLkS1113Hb75zW9i1qxZ2LJlCwBgzpw5mDlzZo9rRwghhBBCCJlWKJUvFFLD2F9ce+21AIAlS5Ykjq9duxZvf/vb21ZOXecqQjiapq7sdhd5jmyyWhZRU7OoEpqZdB5JrY3dkY1ZyxjWuSXnN35G2WPdvAnb6ERoIGlDW5fRSramhczvu5Voo6ZxOF4V5RnyO4kQQsh0ItyH0Ro+HKOAgREYW9rzjxBCCCGEEEKqIAtMUun0hhBCCCGEEEKGlEKT1O5VpZcMqcBo3zMxG7OsgZWLMsZYWSc2qb0XM2Z3dQ289H0gHe1oeiYkazJqNzO178tYvCejTsnZmL41E+2n3WjaNLNVp61raP3z7qfq5qptMFEt+RzIzQJD874w0uu7lM5vCCGEdIxwWw1rODWMhBBCCCGEEDKccFsNABQYfdLalRoX3xGNIBuJIg1UnhZRiNa0VyqypdbPKattNDvCaY8DHL8eeW3YTxq6QacTbdlmDXDJ+8mmfSyveWxR49iCI5xh0zL2WqtogppGQgghbUfJgjWMw/HWocBICCGEEEIIIWkUuIYRFBgJIYQQQgghJAvXMAIYWoHRQe6UQA0TVSGcwCRKN4szG26lzU5NZqh1zPOUkpm8fBPVrHlqWdPUYgc4QJF5ahFVtkypki8xU9zeVc1cCx6WRdesoD71TVVN51FjT9DSJrVaklIpBodBuuuGzTyYEEJIB6GXVABDKzASQgghhBBCSA7UMAIYaoHRpkUxXPgSWi0h3Ey0UprDik5uotSpjUIVVKK80PlNeCzrDKeepjHOX59ScVEO8w1XXmtYthwS05r2N41ZO1mlD9e4vywavnqaxwr3fVSQoZxCrWi6ToPDIGkTbVDLSAghpC0oBXj0kjrEAiMhhBBCCCGEWKBJKgAKjAbqrXtyRAOOULkaw7RmJ7u9hhllKF/paZVMaFt0bWNVTWOyPPs2BXW0VErZNYRcm9h+fG1gO7SysZay6nXKaiTL9PlUf6+ogbRpHoE87WNFzaOtTlZtqJ1evmum811HLSMhhJCWKTRJHY43DQVGQgghhBBCCElTqGGkwEgIIYQQQgghw4lUUM0cS0NqGKcvIvhnwmyyVmxG5zijcJxsh7KZnZoc4iTqoTm1EXCyZqki/m0zT61mmuqnsNXZL7/qdgupKvfI/q2s6W+3MZkatxO/vVsvI8+UOB+v5vYqFc1Wy5Shwr5dHDf5DCiqS2vms36dBpBu3MxtmLWlWSohhJCWGRItYh5DKTASQgghhBBCSC5SAdQwUmBMU89hRuj0RuZqs4q0LbqDkEgTGGgwBJyE1jGuk4zyVUpzumPRNNrLlsjTdQi46P5c/UDqXkojSjukaaXdk9e9jlYz7rbV0lbVTAqRs6g8k3fFrTzKasSUKqWFBMLnQYfqUYUqM5+D5Fwqr64Vzjnp3osQQgipANcwAqDASAghhBBCCCEZlETuGkZFDSMhhBBCCCGEDCk0SQUwrAKjcEo4pzA5sLE7ymk4oxCOF8Sr7mTFNy3Vfofl66Z3Wf80qfT6XoxxOmE4l/R+kVlnOP1NkYltv9LJ9i2Tt90MtswDr5p5a/YWK6pf/DjK7t9oy7uMGatbKk8/4/BLmbYUFU1R3Fyz9tqIdvSpfrifKpyH6fld1GfCaOVL6SpljYX7tf6EEDItKTJJHRKGU2AkhBBCCCGEkDwUoLwcgXFIhEkKjDaKNFiJbS8EXDEKiGYyC4M2Rxk0Igoq1kpq21+EWsdcbaMKf6a23tC1DsLNaFei2eyUVkqIulsodJFB0C5atH2ttm+ehqqM1rWuhtOULt9pT7ntaWxaSrMBgClu9hFm0ySa87RpKJPnZtVOlq5nGN2iR2pp0bz9OqT7S1mHPp0iX8Na0YFQmpJaxxxDja7RylVIpx2OoQohhPSIQqc33atKL6HASAghhBBCCCEpfKc3dqlwQFZytQwFRkIIIYQQQghJw201APSHp4PS3HnnnXj961+PhQsXQgiBb3zjGzVzcmp+NIST+DScMTTEaOLjCjfzicLQgIsGBFw4aMBBAwLCN1kM8hQIPiL8iPiTCXPgiEZ0PM4z+C3cxCfKx3H74uM4I+U/qXPpy48z0pm2Ei18IGqdixAOHKdR+uP3x+L6BMbcJT7hvdDI/YT3abn2CO+lhvXjm3r6n7x4iftSiBLnbXi2CLfkR1T66M8HETr76uGn1X/lnuH6c9pQDz3Y8Gknpvw7WQYhhJA2E2gYbZ9WTFIvv/xyCCGwatWq6NiuXbuwcuVK7L333thjjz1w6qmnYuvWra2fR4sMlMC4Y8cOvPjFL8bVV1/d66oQQgghhBBCpjMK/rJ526emwHjvvffis5/9LF70ohcljl944YW48cYb8dWvfhUbNmzAE088gTe96U0tnEB7GCiT1FNOOQWnnHJKy/mE2jqdcs5AbPK1REPMhMrZqiOdvwyc0riB8wY/vAEJBYHAOY5wY4c4SiJ0hOOfg59GpLYM0B2fKMjCLT7asc1Dv21xUWVbk6KtITpJrbY3+fUoew4Ghztl0iachJQwvYgc+xSdXxCvylYTeW0W3wtl2iNsizwnQmGMovzCvMpdB//erfOG8ZDn4KZd1KtbSSo6CcomL97KROXe/9Lm/ShIrLqjqSva1imPnPM35dpJY6lW22o4DLkIIYOMUqrtXlKfeeYZnH766fjc5z6HD3/4w9Hx8fFxfP7zn8d1112HE088EQCwdu1aHH744bj77rvxile8onJZ7aK/RvqEEEIIIYQQ0g9IQDVzPjXm/leuXInXvva1WLp0aeL4xo0bMTU1lTh+2GGH4cADD8Rdd93V6pm0xEBpGKsyMTGBiYmJ6Pf27dt7WBtCCCGEEELIwBCapOaEe56XkTHGxsYwNjaWiX799dfj/vvvx7333psJ27JlC0ZHRzF37tzE8fnz52PLli01Kt8+prXAuGbNGlx22WWl4tY1q/TN3xw0MAZp6FGROZtImrYJzRRVQgblSzjRVEWOeWoqDwBQwtSbY/M1q5leG/Zd7DeT1Gp0w8SvfW3firlgHfPbTN3zrPnS+eecX/JeKKpDfM65+1iGdc0tt1z7qcQ+q+b8stfVVq5hL0Dbdoy518iWf3vNqiNT3I56ftP3v8y5XqY6ZNoutZesHiGTvsAMuiDv9lP22anvq1vCEFS/Z2xRCrLohmlur/aU7LbpLiFkcFGBhtEeAbjvvvswZ86cxOFLL70UH/rQhxLHHn/8cVxwwQVYv349ZsyY0f7KdpBBHukXcvHFF2N8fDz6PP74472uEiGEEEIIIWQQUP4cXN7nmGOOScgb4+PjuPjiizNZbdy4Eb/73e/w0pe+FI1GA41GAxs2bMCnPvUpNBoNzJ8/H5OTk9i2bVsi3datW7FgwYIunbCZaa1htKmD/Vnm9syfhpO9rmhAiNHouK4pCDUR4bHQGY0KNIsCMtJUSk1TGDvEiesq9XlQEWgfYdeC6HHT6LPsojuuHhIU1rnHqIQWpAUK2r4lajotqqptrOqgp4p2qrAuCYVRTtzSTmrKxyt1HhXapsx1r97W7dCCldeCFudUxekQkKfFK6fttN+ntvYWeXVMlNUvz6iKDqIEUKQd7attOEKnbaagmllWPb9Oah3rtDU1noT0CUUaRgm4rovZs2cXZnXSSSfhgQceSBw788wzcdhhh+H9738/DjjgAIyMjOC2227DqaeeCgDYvHkzHnvsMSxevLiVs2iZgRIYn3nmGfzqV7+Kfj/88MPYtGkT9tprLxx44IE9rBkhhBBCCCFkOqGQPy9cZfXGrFmzcOSRRyaO7b777th7772j42effTZWr16NvfbaC7Nnz8b555+PxYsX99RDKjBgAuN9992HE044Ifq9evVqAMCKFSuwbt26HtWKEEIIIYQQMu2QAsrLc+DQXnuNK664Ao7j4NRTT8XExASWLVuGa665pq1l1GGgBMYlS5Z02BFDeUJHL2F1Gsp3eqObDEWOaASCMH3PRd90KzJPDeIKgylraM8iIQ0GUiMIQ1uj+8tZnT5YQmtyVBQzkhNWvoR2UsUJjQlZw9DJd7pUNU2FciqZdJY0Ny2ZZ9HzxOxMql5ZQHH9y59fzedgC+ardcyoy7RNcRxlNI+N2yr9VNQcFiXMmUuatZrK6tl7J8ehj42orhZnTW02dsyrUztMaAVQbQo/kbiuXXU9E9nC0orqk+OsqEoLtDJ8baV3lCm3Hb2v0FFaG8ogJESp9mkYTdxxxx2J3zNmzMDVV1+Nq6++urWM28xACYyEEEIIIYQQ0g2UAmSOhrFP9FgdZygFRiFE27aCcITfhCMYRRNTALRZVQXIyClNrEUMHduYNI46ae1Gr9wviD7QBPYbdbaoaEu+JaeO21G/Os5U8jW25hRVpsPL1kmKkttnlHBsVEpLUlajWaRhLMgn0nR1sB9UdrpTxnlQKw6GLPUxXRdb3ZWSFuVOmMdI6mhKs5dI26F7v9aow9B/U+eZzrebzm78skq0l1LI1Yh220NPVF627tWrUuH9Wabcon5SV6sa5F20DUvp3JPq/fhwQf6JLMrmnyqnjgOjuq3WKc1v2Xyr1rsT9Z3u8pKSIl9glH3lQqxjDKXASAghhBBCCCG5qAKhcLpLzAEUGA1U1agJ4aChGlCpDcMlFBy4miZRQcILjhnWOibSVp/FrrsmUKjOaRC7tV1HWtsQltvu9TplKbP2rS51+kYRRg1QBzR/pcu2IWpsCdImDRiQc55aW5W7Pq1pGuNc2qdJjeNWvGeKtKI552rXCJrrYMrLlIcxnjGtoZwKGs2ielShWr82a0ZN+dVXOLV7/XVO+wlz/1Q5Gi8zYZ3rvNNM5+uEFameXSuavrxyRX5frPvONWtytfXA1pQl2tqauEz+JcuwZiLtQZXLrKH5rdkPEqn0vFvqVyU11RXL6ESe/YRSAjJHYKRJKiGEEEIIIYQMKapQwzi4wnAVKDASQgghhBBCSIpCDSO6v8y6FwytwNiqI5ek0xwHDhpoqJGEiZiD0CzIjR3eGBb2lzFlKqqvU6K71jU9ne5ObzIOLuC07jSmBRMF3Zw1vGadNHENCfuuA1Fr+w0b7XIQVMe8WJY0xazi/r/MtSgySy3nBKY9jnQ6Fa9M3LxzsLdRsdmpqX+azG4z17Ws+WoqXp45ZR2T2yp5VInjl9lek+JSWZQ1jTa1v7X8rIlkZ5yN5V2/ak6m0oiaZnj2cj3z4XZg7TdFbV53fCBLpm1l/FG2jLKk8kqYilbIpsL2Kta8W9wypm31LdsGA2y3qYACk9RuLb7qLUMrMBJCCCGEEEKIDa5h9BlKgbFIY1Ztyw0/rqtcKLjGnJWQkcZJn4nNm5MwaQNNWkRbHkUax3bNh/TTvErYtuk69crxTW1M1e3gKfSbwyCgvDOXMtTTTJbUmFTU/BbVpajcWttkVKhjlXYv1C7mbIdg0vwat8ko6RAssyVRWkOYDq/626AFM2tI62kb89q9rMOiWvdrJ7ZQycnTpP2seu3K1sNWXn6CnLqXaN/C96FpbFGzzFadLGXySXpZaUvenaFozFHeYVZrtCu/dJ/olEY3TZX655VZwWFcc0eFMvsI5QuN1mCuYSSEEEIIIYSQ4UQpAc+zC80UGAkhhBBCCCFkSJEK8GiSSoERqGqCquNE6RtwIOCaTVKMWynF8XTz0WiRvEjH0dOm8kotSLaZo5ZZI91PJqYke82i9eq8TJVo5wO9rqlumTrUNcXNNb2rF1SaMgZJtjYz1dvs0Ebl/jalS8fJhGvmrnlxMyaTKTNZc33TZpVZ89yyZrmZODUdYOkmtA6cyvu5VnXuU8aUVP+dZ5qarWsV5zlhiiJzb8tekCXvktwlJgZnd22pQxucKpVx8NQZZ0NJ8pYKVXUeVGUf13L52fZmba1d6jgUzBuv2vIru39tlfKrplfKw8TEH2uV2XOUoEkqKDASQgghhBBCSAapBDyZY5I6JIqWoRUYy2sVy8UbQQMCLhwtX5NWMJwpcyAQKxNFEBZrB/XuF8ZzUr/1tOm4iTMw9uXyHdycfnpiW37erxuLtHJtwr4YzsbWdQEf5ddS6hrlWbSvpvB+MRnpRDUqO/boAbJGFY0uZYz5qNw46ebRtTXpMGk5rhJxUppKpcezh5nTmrQ5BahkXatS9CzLy7euplhZvuvx9OOJtBZNcJ7G2PTbls7Pt7rjmXyNYrKVy2x7pVO2jra6ldFeZzXldm0v0D4nO1U0ZI6ht+ZtD2a/5tUcJ+U6bipwkFUWkzYwfSzdVqY0pjbKI90W3dAeA4CUTWzf8euulNVuFIqei8PB0AqMhBBCCCGEEGJDFWgYJU1Spy/F2sVqMzZKSTSECyEcuMJJaA5j7aA/Hxn+dlNxYk2RiL7rtQiPhVogkwbSVvOkRjKfdmvS8rRAvVyHF5bdrvqUSRpew1ADUk47mB+pqobRsrq1Qol1yiy5Bih1TVrtH+nkynBsetAZa4FutVVe77BpJtMbwQBmLbJuKpTRPFq+J+Mp4/FE2hyNZnpWOi9dnXn+svdKO5/rpnrmaWR17aPpekpjmMocC7MJNWW2ds6rix/XoL1rQUWQfP9q/ggscapS9XzKatSlCttR1/7q+drzqUOkkdWyiaym9HiaFVZ8LJFRMr8S9Uz2lepa/kT/KpFeL8O4HZrQ+0nWV4VIhUWWZ4Zzr9q3qlhEtJMmJvFo57LvKAoF6xSHRMU4lAIjIYQQQgghhOThaxjpJZUCY4aqc7H+3NOIcOA4LlwRaxKd8K8ItYb+37AER/gzTen4YbcMfyN9XNNGInUs40E1fXaWPl9GC9RurVxheR3Is6yGRSCeNCqTJK8dinpUXv5C2K9LXr559cm71nXOo6gP5AU7LU7N1VnDWVvbknMt6lLbP3OLN4cpvc2/Xt06hP0s7RBA739VnQXkr4XM5mXWXuXnGWkTUjPKRXnJVPk2bWJGc1PQrfLaz4bN6qSKtYm9PoZjJdaChudhaotYexgeF+bjqd9xuFmTbNMip+OZY5hItppjaE8B/X3s51m33Yvauui8zZrzpPY23Zb69zwNeVkyY5DweGpsY7Ky0ts0Sl+hAcv0hULNth6qkn8Bu2WAzaLFdP5Asg0czZIsPK73pexYsFy/Mp13ntVDK4R9M6z3pFTY8L/ty7+b+GsYcwTGaWq7lIYCY0R9ox2lJEYcB44j0BAiISQ68G9qJzwe/HZF+kEpgodC8QMieohqA1izaUfxGabjlDUftKWvil4naTlelVYEGL/sek/NvBeZ9XxKCoRVXpLlhAFzuaa0ep+oKlCmBV5bcsfSDrnCdE5YWWHGGNZCWnNd8uPXEe6rThaE+ZjqEg9YwudNMk6irPQzxZhfTttaQ8pT1Pom0yHjGhPboDiImx4ERIPoVF4mQUjP15aPtV4VCa9BUigJrnf4O3WN9etmSmfDNjDKnLuhDdNCSLrd0mmUir/rg9tYeBTRMT++MJqm5pkltyK+pd/RcVur4B0el5we4Nva2TQpm6xB9lzMwqG9bfR2idsjaOdU3jrWiRUDee+u5JIbBVcobcI8bruwViYBHCh+ThcJ1ul2K9Nmel7ptovyT9Uj+awO779s39HPPR43KggouE7YHkpbzqQy937Z+zfvnjOdQ/Y8kpQxp9/pTQKPlIjYhxRpGOs4desU//AP/1Ar3ZIlS/CqV70qNw4FRgBlxZP02kfdk9aYI+C5vsAIAK4jIsHQRahpNAmSyZeLqwmE0YMheLjo3lJNM5YmQUd/WBvPMm9wWIJOelCtm3f+OdTTmKQfxEZvtLa0pkF1otx8YckuZFWrnx6njOCQKKtNedvSmNrILmRrcfKEk4pCqC1++r6yDVRyBaWKaYTIb5vMRI/eF9JCenpQYcpbAOHjLXFdnORfGMLgmCcFjEvFc27OViefrLPjhtGM7gQxkywYGGQdJYrMsfB3RiiMpSJDPYXxexnia5nKWCTbW0BBOMnrJhxE10ogdX3C62y9OZArqSfaXm/bqH3CsHTbxr/TbalknFAF+6Cp1G+9bKXMbZuOpx8z1h+m+8sglAulfYL3dOK3/z28NpGAkHNP5aOdm0z9RapdVfL8be2mMvHSbZptuzxNi46jjVn09tPbzXEQ/FVwHJloK7//Bukacb8F9GdPTgUK+mFRH7T1v+R3AEpACTcKE3AhlQsJQEr/JvSUgKf8703PhYT/uwkHTeWiCYGmFJhQLpoK2Ckd/7cHNJXApASaCvAg0JT+Gskp6fs39eB7PpUC8OBBCQHleFAC/hpFoSAgoMK2FCL6hB5WHeH6v4UTePBv/8BuSuxqe57dQgLw8vZh7CMN48MPP1wr3VFHHVUYhwJjCYqc5ChIjLoCniPgOiISEl3HFxDdQHB0hD+b5mhCpCviWaNI4xg8pRrR0zGecQrRTVvDWhTNwiUH/eZBnolCDUluaP10ndISWbU2mYF2ubRlhamqQlp4jcyCPnLyTL5c08f9PC0aBsPAKBuWL5Akw7JlVynLljY8OdutaRJ6EuHGdPlp0oKRVo3cupguYHTOpn5qGryn8hDCcCwzlW8I82enkuUGDxchtEIdoX1HPIBwUn911YpW6Uz8VLixUzttkCbTXmBsUqQMRoY2Dy6GKWMVjRDTeVnKkTn5GOukfTf2Gcs18AOjmcREPFcgGJXH1104qetruKZ6vmWwef6Rqb/p40rqKh4tXCbbVapk+6fConAoTYUps+UaqmpUD2htm7kvwoPhfdFw49+OY273sG+H7e6I7PUzfTdVOq9t0+0a/vaCbTZkHC9qz7C9vEBCCvutAoRSEMp/mgpPAUpAeAjCAOUhkFgEZPBXKAfelAMlHSjpwvMceJ4LTzqQ0sWE56IpXUzIBppNBzuli0npYpd0MKUEpiCwqynQVA4mlYJUwJRygr+AF3yUCgQmBSghIANXM0r4ApWAiK3KhQrui9ACzA3GW04wDvOvj3AcuEJEJqGOcIJlRoGQ5YSCFuAE19RB0B6In7PR7RuMsDNOa/TLjVQa+F1jFP5HaMeiNJrJqp6fSbMbHdO6nJ4uyh/JsHazc2onbuhQ3p1GKZFrDdJPaxjXrl3bsbwpMLYBpWSkYRzRhMQRxxcQG8GN2hAqEBz9AXsjECKd6FhsgmAyU/Afd1lzBiAplNjMTPMEm7JCVCJNCwKdn94eXqjptJTtFAkalqQ2YcoPM8fTw/IFIrNwlpc+TyuU+K3XzaBhyNQpfLul4gNIaB/M4YZrLgrC08JPkZBjSpsROsJwy3E9zJB/LKwZyjYNmtP1ydh628uyCkhlBKvE299JhaXe/EA5QSASHJzU4DcY1IafMO9w0Cu0QW96EAwBFZXlz6Kr8JzTnSiqo6FzpgfRAcr2NKi7mEmvjklitAh6kfoh4241pe6J8tHCw/NVgX5GanHDdgyPJa619l1vz/Cvfi0dAQXHvxbBdYDr+jOXrps9n0FBqrhtvVgNJALBRwRCjis9QIW/AUDBkb7Q6EhfyhFTfnohJYRUgOdBSOm3/VSQ3vOAKQnhSYhJD5ASYlJCNSUw4UFNKmAKkBOAnBJo7mzAazrYNTGCSa+BqWYDE7KBCeVil+diUjmYaDqYgoPJwLRtSvmaIw/C1xxJYEqJSGaWQkAqBRn00FimFlDRhGDohV0knieRl1ER/IY/kQ34AlEoDPljkSB+aPkkNCEIKYEielzEPjptjzeTp/dgNhzQHz16sAgm2gHMRDJ9Ol6iPnl1RfaYsY7R9/S4ylyPcFyWzksP19Mhla8fVx9zJEnGy5aTTm9SDKQnjhOTxOl6WsprJ89MDq6GUSFfw1hW695tduzYgd13371t+Q25wFhsgJm7yaxwIrPU3RqhwKgiwXDU8f82AqGx4ahYWAyESTfQHoZ2/K6QwYNPRdrHUAj0BUmVfMCFZi/BofhBlX2YCIMwCS1NGfO4bFjyu80hjhAqYQZUqEFKpbfVJ0/7lDlsMLnLhFnMhEqb35k0QXrEHE2RSdiyClR6mPHNlRY49LbXCjPNcusaJT2OSZjSRhbGNOm6pLVINuEHSA6KM3XMEbRM8Wx5moQ/o6Sdqn9iUA/DsXQ9DGEpoSskLXwlZ3rCYyJ7LoHAkMhXj+O4WWFxyEk/CRLu7tNCvX4s1Bg49vjm9EHqVJ5CzyNMJz1gyoPwpiAmpwJBZgqO1/SPT04BE5PAxCTEVBPYNQVMNIGd/l85oaB2Sng7AW+ng+aki8mJEUx5LjzpYlezgSnPxYRqoKkEJjwn0Or45nJTEvDgoKmAJnxhxlOOr9GBr9mJlVGOJtgoX3AV0TAZAgi0PSLWqDhhWwSyRNgOIhZkBHxtT6ygExCiEXzXbg2DEGEa9KcFD5PQkUhjGEjbBvAQ8EdUjeRxF8Bu6Xqa3s8wCyZRWI5Qkpk4zjmf9GSzE6wM9fPzMgJGWeHCKgzp72uY46Tjpd8FTol4cX3tk62O4Vh8XQ11NqTV887klTM2KVqaEh0zWhfYJ7GNcXLi505gFw+Ja7N9YqJzmXeYIg1jaavyLjN//nz8+Z//Oc466yz8yZ/8Scv5DZzAePXVV+PjH/84tmzZghe/+MW46qqrcOyxx/asPkI0IEQTs0YFmkJhxAk0i1CY4YaCogyExlBQ9H87QqHhSIjguAiOuZF9v32NhBPZo8eaJt32H0jf/CmNk0HwKTKps2oU88aeljxtGqdMuCVOLc0UYB4JJI5nwzIaqTJClh4vZd6npzVqmPS4oYYnnWdUJyeb1lRuuv6mdHpYov01IUlov/V0aQ2UXl+TJkrP2yQU6X+DOiX7hIBwHCgRDwOF3okdB8LVvuvZu652vk6QNnkdhBNqZESm32cFAGhxswIEohoG96xuegetqT3P15ooGWmnHMhA6yED1UMTaEoIFQgUSkJM+VoQTErf9MxrAk0F4TUD1YXnx/Ek1JQHMSWhJj2oSQl4vlABD5C7AG9KwJv0NSbNpgNPupDSwa6mCyUdf42N9NfdeFJEa29koD2RyteYSDhoyliQaGpChqdENCPrQbekc5KWhkHryFQ7Jeb2RSyMxLe2fo+IhKbFCYUW/ZYM7sMiE678gX2YV/ZYlCZ96yJOo2OqR/jFwQiAkUzeevzkIF5ljjmBlkc0kvFm6HlUEEDCeOlHXELYMQgfflqlta2KJkgTcbVj0MrIHtPvKbPQkHzkZcsJcQyDb9vclJ6X7Xf6mElgAbRHX56FiSUsUZ/E8zRbh2R4TnrLe9g4FigjfBiFoXLx/Lg573RTOtPkpiFedrLWVE5qXGCqo32W23w8jXUMVka5kTcmKj6flimoovdse4vrJkVrGPtVw/jv//7vWLduHU488UQ897nPxVlnnYW/+qu/wsKFC2vlV1lgXLFiBc4+++xCbzqd4Mtf/jJWr16Nz3zmM3j5y1+OK6+8EsuWLcPmzZsxb968rtZF1zy6zgzsxBhG58wHhG9PrwQgXYVmMF5uBi9UJRQ8AXiBFrIZvDingoXJDRG8TJF8gbnaCxZIvqj9vwBkcDxYrhD9zdQ9/q5bV6U3wtVnVNJexpQ2kI49ienDYrPXMSVEuDzCH+ipOP94ttofwIXpwhvV0+oaLd/QBp4i+G1c5hKdSGzio7RzSXrmg/bdX0MhRJAmWOwenbMQhjRxq8nE77hOKswwUcewVcJ4Wk4izBGJDKPjKkzvvzikUtH1jDa6Tj3TJOK+kNQMh3VIzkQmB6LpYS+yAwbDC8n1pTo9UiZfofXE5LgnK4ylN0VODmhl8Fsm8hJoGuuY0VYkykvnn02XHkwD+oy2yITpitc0TjosSujCEW5waCRTPz2qacxomnuwhZsEGiEAuPnCzghMbRkPSm0CTmx+nz2e1qLobZ5MoxLtGpuOKTiRcJJ+hob55AgraUElfV76+VmEE6HFQ5gPAAiVaeO89cK29efCMcWP08UHDQJCCaEhIeQ4cT6JctJqPH2+S4+TDosEJZFJHxXgpOOGv9Md1DCYN02c6fmn8sm1ltDJSvXJ37ma/NSzyzGUaXqY+JHNxxN1stQtLXzk2SOaBBWboFHWaiFPUKkjxNiEKaNAZ4sr/MFAq+fQbiEspITAWJmqdS3yDFVU3DM7q5XXV8RjxEFi+fLlWL58OZ566il88YtfxLp16/DBD34Qy5Ytw1lnnYU3vOENaDTKi4GVBcbx8XEsXboUBx10EM4880ysWLECz3nOc6pmU4tPfvKTeMc73oEzzzwTAPCZz3wG3/72t/Fv//ZvuOiii7pSBx1/wbQD1x3Dbd5/Y+FucyFEA05w3IELAReOaPiz2wgGespfGO6o+A0YhkWLo5WjlSOiWOljifpYZkAc45PTno85j9ZuFl14KVtmXj5FlKlv3myl0L5n87bkZ0lgKichjMAsPCQFpPw6ZIYrJkEoFdEqbCXGD3bBKF1uWjjSw21jtHRaU11t613CYzbBKE8gSo81U2Pa0lofkyCkx4vLlfYyU+tdTIJRXt3DuHqcZLqspsdYfm57hXFytD9BQPRU0wQrBGWHAl3aTCwtUPlplRaeFJYiywsgoZVJ5J36LUQs0CQ0LWE8XdhJKbmFox0LOp3IXBCtwUzCjU2wSd94cQNq0cMwi5rHYBkBCIMjJMPNlDhuEESsD5C0lYJ2XK9f2vw7fS5Rx3fs8W0m3XpdEljO2xQ/83DVz6mCwBSQsaIog0itnDcJjy3UySpwGNcSl4zXIqqT9o8h3Ta919Yqd51+2tvBgNy+o9dVqI1UQDN3W43+Fib33XdfrF69GqtXr8ZVV12F9773vfjOd76DffbZB+985ztx0UUXYbfddivMp7LA+I1vfCOSVr/whS/g0ksvxdKlS3H22WfjjW98I0ZGRoozqcHk5CQ2btyIiy++ODrmOA6WLl2Ku+66q+3lFXlGjeogGhhxZ2A3MRcznDkQwoWLBhzlooFROBBwpIvAWTGEEtH34Ej03S83q10RWlhUbo4wYRQmKwo/yfzq0Ypr5lKtXzF7mxBplBsteduEwrwJbT+dIU1i/Gi4Zjl1ydNMZeJYxh42ASydvylekRBnipMQqGoIZKb6pYUefVyeJ5DlmdqltfdhuJMqJ1E/vZxM+SUFroy8kK/J0s8tUa5IzoXahDD93KJ0BrM5PT+TyZwuoGXzS6YLhTVdQxXFCa2AQ82TnjY8ltZEhQJXRqDzpUy/HE2V1dCepbpg4iAaVEdCVmhfmjbhdoIT0T1fBofsJuQiKyiFeeUJSlG8tFoNyApMtpsq9bQwCVzQ6qGVEQk/6fehY8jDkD6xljbxUHFigSGdh0kQjBegZ8Py6kcI6RMG+57ME8f7W1QHtm7dii984QtYt24dHn30Ubz5zW/G2Wefjd/85jf46Ec/irvvvhvf+973CvOptYZRl1bvv/9+rF27FmeccQb22GMPvO1tb8O5556L5z//+XWytvL73/8enudh/vz5iePz58/HQw89ZEwzMTGBCW2h7fbt29taJwAQwoUjRjCiZqIhxuAoFw4aaMBFQ43AUQ5cuL7giHiPm2isg9BNcziQCY/5+WcHxiJxPK5I/NWmOSo6ls2yOFIrc4R15cmiZEVjBZsga0tWpN0rUw9jGsvYL10Xq0avIL4tz7Twla6DSIXZhLtEHSwCXhiU7sd+nFgQMWu3lEGgMwl/6frHdYjjZbVsGYFSJNsobT4o9PJLrqnKM1U0atUApDVrifpb/obFFq6B0oS4dDzTuqW0Ji6Rp0kjZxD09DSRZi4UxMLAhFAYH480cPrFdEQs8EVpoyvnC3xpYS9sUF3YSwt6rlbZSMDUBZ6U8GfSpKUFN11oy6i94/TKJjSZhLrMAyklVAFax08+eYxCmh7PponLeLtNheflQQghA4y/Nt/+XOtXgfHrX/861q5di1tuuQVHHHEEzj33XLztbW/D3LlzozivfOUrcfjhh5fKryWbgCeffBLr16/H+vXr4bouXvOa1+CBBx7AEUccgSuuuKKVrNvCmjVrMGfOnOhzwAEH9LpKhBBCCCGEkAEgdHpj+/SrSeqZZ56JhQsX4oc//CE2bdqE8847LyEsAsDChQvxgQ98oFR+lTWMU1NT+Na3voW1a9fie9/7Hl70ohdh1apV+Mu//EvMnj0bAHDDDTfgrLPOwoUXXlg1eyv77LMPXNfF1q1bE8e3bt2KBQsWGNNcfPHFWL16dfR7+/btbRcalfIg1RSmxE401WhgkupBKhdSKDhCBFpHzSRVpUxSFU1S03TWJNXsGKLomF+kOYAmqWGY1n9TcbJaS5H6XayxzN4bYdk0SR1ck9Tgb8dMUnWNofYs7SOTVJGOq//V07Rokir0PGiSSgghhcSevC3h3atKJZ588snCtYkzZ87EpZdeWiq/ygLjfvvtBykl3vrWt+LHP/4xjjrqqEycE044ISPFtsro6CiOPvpo3HbbbVi+fDkAQEqJ2267Deedd54xzdjYGMbGxmqVF+6vWLSWUaomprxdeFZtwy4JGJ3eOAanN4GBqk/8PdfpjeGYX1lE+Zqg0xtLXjkCbV5qW2vWdXrjx8nPr8gsNp18+ji9ETnCaSwzhKF6ef3l9CZrfpsn0PrhdHoThycF2mpOb8JnOaaB05tsHlGaDji9EXp90glbdHoj6PTGXg6d3rQHOr3pHwbY6Y1C/rYaaQeyveYrX/kKli9fHgmLv/nNb7Bw4UI4wXPg2Wefxac//Wm8733vq5RvZYHxiiuuwGmnnYYZM2ZY48ydOxcPP/xw1awLWb16NVasWIFjjjkGxx57LK688krs2LEj8prabRQklJLwmpM4bur/w86Hn0bD8bcOaAhgzJVwhMSomIK/5yLgwneh7gh/j8ZwWY2/RsrfaiN2L6/N7COc8E5rXFIDOct4wEbiGZN66ShlfqCHW1HE7eAnTavlTdtqyKhMfxQYP1aD7Ta0vKOtM5S/pjPeDCHOO47jD6rCbTWEQFSWgr59R7hlhYiOq6iOQmuPcPsPlRhi+5tXA6HDrGT6ZP2VUtEWHrHArG8J4l+nuG5xWQoi2FYj2Ybp15CCPyjXt/pIE+aqb6Ph95ywz4jEFh7hsXR+aaEozkxkD6XyCvHX8MZ1CP/a4sQCmr7ZBuA6oYDoJMoIY7ipG0FfJ+yIuKJCGNYL+xGSGn6RLjeuV7jvX6iQElF9tLy1+sUbuodp4t/Q6uJoBxJKqWAgLxD/5wT3U6INdM2SVg+j7JGKpx8zxjOE6b/LCNY2odokUCfkqlrbaoQCaywsJtbsBs/W/t9WQ2aPhX8dU/y4/Phg8l2hhyeOpS4Qt9VIpU2nN5ErsCTDhm1bDWPsIsHXWK7lIlQRfB3BbTWKaHFbDWeAt9XQt14zh/cXb33rW/Hkk09G2w0eccQR2LRpEw4++GAAwNNPP42LL7648wLjGWecUTVJ2/iLv/gLPPXUU7jkkkuwZcsWHHXUUbj55pszjnC6gdJmkDy5C3vOEJglgBEHGHEkXCjMcH2hsOFINITyP46CK/zfvhDpDwAajj9j7ggFN5g9d4Jj8cw5ot+OkxpQiGDAAJXZ9zyocfK3kx10WCf8DJZGmcQ2bBOb6VGjLdwSJzNzbijTGMc20tXrkwqLBzymkXY8ksxoEhOmbemRtJ82V3PgAHYTtzBuepZfmMtN19+UTg9LtL8T/xWAcXZe1wKk6xvFF9nZd8eByVwt8Vd3XJLIN62Dg3buDjIaCz1/U7uny2w34UyBksmZmvBF7HlBWBwuEHz3PP+vbAKeH0fIIO5U0//rSaDZBJpe/N2TwJTnx2lKqKkmMCWhJj2oSQ+YUlATEmoKkJMCckqgOeFCShfNpkCz6UIpFxOeC89zMCldNKWDJhx40sGEAppwIJWDKelP2DRVsN4Djj/pIgBPCn+iBX4cL5gtkQrwoO1lGhzz50qcYM9SBBMrChBOtC+qgJ/GCbck0G6NhIl/1CWcyJrUf5b6IpyDuAuG+4D68cNbyIl++ylENCEROSFztDTRxEQYJ7xtgiUIwW8RPHQdLU5YX18+8g/GwrfjC73hbZ2YqBCJ8hBMwkTOmvQJGYMskqflNh9P5xWbH+vCenw9UoK4JiRrp5IvtGsHI8E9cUyf2suaR+v1TddPTwM9bwAmM249bz0v2+/0sbSzqui7kwwvI/DnCvupAhKadUt+iXDLe9g4FrA8ShOUlT+t44Kcd7opnXVyoKAOxrFDalxgFEgt742ywpV1DFacPncJUInzaZkCmVY9u6u95XURf1sNe3i/aRjTCoD077rU8pLaS8477zyrCWp1wh5g7+lKSdjMUn2h0dcybn1WwnN9gdERDlwBjDi+xrAhXDgCaAj/t69VDDWMocYxfgnqs+RpbaP/3fBC1DSN6edA+qWvp0vHSeMYXny2PDLhBfMuppdqVG5+1pmXU5TO8lIuSpowkctZ41hqBj8VNzSJS+eVlz53wKD/tgwSRHqCIBHHMGgAokkEkYirhxuuuSgIz2gD0vXJe8lZ4qRHq5a6GOPodTF14LQ5nKk+eRMDtsIsAxnjhEEYnhjgpEZrxlF/JOEk8xxr+J9wgsIR/jNNP9dQsA8/Yd7hhEV6QsA2EZAQ1JHtRFEdDZ3TEcY2zEwK6PHLYjHXyurRg7im+OEkYSJMxcfTZmjhTyXj843y0OKG7Rges63N09szPZmiT6CE10Y4gOv63l9dN84y0feE9owJjgfCJtLHbfE1ATU8Ht9iIu53UVxE79TscZHMK2yzSBnrT6AIISCU8idOgrZzwjCo+K8nIZSC8DxAKYhm8DeYbPF/SwhP+iNCGX8XTQlMev51mZRQUxJi0oOcVMAU4E0IqCmgubMBz3Owa9cIpmQDk00Xu7wRTEp/omVSOdgl/QmVCSXQlEBTAVNBkVMqKCLodp5UwUSK8ueOoIJJFBVZyADFg1T90aNfj3gCAglrDv+SiyhNfCzIR7tG6Udo5lVhOi6y4YnHl8hGNcmt6cebXpdMXZE9Zqxj9D09rjLXI71OvGiZQbruflx9zJEXL1tOOr1JLrattzfW01JeO3lm0i2O1Mfkaxg71Wr9xcAJjP2IEA4mpIIHhaYScIWCC2DK8WeZXYFIUIz+Bg9qV/g3viviB154Yzeiu1plFF+hgBmjz9jmP0j842azJhN5QmNR2lbSFY0H8wTSPGG2rHBsnszMps0TxPU0pnZMC/zJMPNLJ0iQk2fyRZE+7udp7iOm2epsWL5wmwzLll2lLFvaaDBrm4nWjXutgnMalR/uGM6hME/kz6qb+qlBUWucES8Svh1DmEA445SM5wQDR300po0GM4JtQtjMnliuIGw4H/+YuQGFnq6IcBQdxreNqkPhzDRrbPFwoJQy5yct5VgET+tsr14XY5+xXAM/MLpOiXiuiIX+yGY6ObEQCvtKv6Z6vmVIn1P4W6b+po9rwmCsWkagZU/GT7R/KiwKD8PCstLlGqpqnBxImKcieV+EB8P7YmbQvnPgr8t0BFxXYKbjYGZqckU4AsINhXlfnBHBPSngrzkVwg36fDgmcODr5v0DIlxzEfyJLKSVCr4HcQBfWBYC8IKJ5CBO3Ebhs1JAeEFcBd8yQYV5Kyjlh0OJoL3h+0zwEHyEf0tJAUgHXlNAeQ6kdOB5DjzPhScdeNLFpOeiKRvYJRtoKoGdoVDtuWhCYEo52OUBTeVgSio0FQKLBhUI2wqeVPCU8ouWKhCqZbQExAsmZsJlFyr1fo2WAUQCcvzc0h+tpm3P4uNBl4jixveoLpQn89f6VKYOWv0MAlzydheJMNNj1bQ8IFfITpXXbnZO9ZkargJS+ZM81vDuVaWnUGAsQZEDHAEHk54vMDb8yUe4joCjEAmP0XtDCE2biEBzKKJ3uS9A+resqz1c0iY/5tk4gzBjERjjxMk0hZq9nPzbTd28888hR6tZQcjMUUBl05qEpUS5+ZpQW7Vss422+llNrlJpWhGKi/K2pTG1kfU66n06VwOe365l4+dpnMukr5OmSGC2aapN8fO01QkHMYH2WRgE5/jRZxCqDebtyTQaOTdnWdnEhlXjYnib68rATLJggXLWb4XIHIuUi6lepbQBebaewvi9DLZJG4hke4cWBvp18x33xJNJySUKYf62gpG7UCfR9nrbRu0ThqXbNv6dbksl44RKieCT/K2X7cuTets6Udx0HdPtXrQ8y2j2GS0X8RAq4ZNLSAInTcG1iayCcu6pfLRzSym1E20WZBmft73dVCZeuk2zbSdLihSONmZJe1WOl9YAI0JhzFGY48hEWwkHEI0gXSOcdPUzEYGAHVq1+EKdEwvZQvh9Lfwe+EEI7duFEkDgrV6FGlMVCPAAoByET35ftnP8cAVAufGaNuVba0j45UnlOzz0lAOpBJTyV057yoHnqwkwpVzfdF868OCgqfzPlBKYlA6aENjlCUxKYFI5gRZaYFIqNCHQDHwjTEpfDPagIJWCBwkPEgoKnvCgoCCD3/7pZR+EoXPFWGh1ou/tZrI5uCapgMh/VvehLHzLLbdgzpw5AGIHoQ8++CAAYNu2bbXypMAIwH/DFYtKKjuCiAg1jF7wwHIUUoKhCCYlVTTxG2kUg9mmaAIY4WSw9pANb2htRiirPUze6umXnukMMy/Gij2/1UGeXqeCCfbSFNWpqMomwbsMJawrDZXJEWBL5l2mHtnyLcJRoWCXU67hWFlNdpHQXDWsU9rporTmuuTHr6UNr5hfFS13+prZzMrs+eW0rTWkPEWtb3qxG/fJSimk0ukzQmCk0EodDwfrqYrJVHg6H2u9KpJ2eAZo1zv8nbrGSdP9bDobNtOrzLkb2jCjAEy1WzqNyQGagq6QFNExP37SwDh2JhbXIatMrNL+qfsi9Y7WTQH9d3jSaV2Yxv9tmyhK1j1bg+y5ROevxctrG71ddCdvQHxtTErX9LE8rUreuyup+Qp9NoQT4XHbhbUSMLdb0XM6MUFQot3KtJkfLhP5pPtQul3SlmCAue/o5+4AmCmA3YMlSm400aNiRQJU5t53NZWhI3xv/JHlgQKUCAVC/38lIok7qJ6vUTV5sM0bF5WZRHgWE/h/hbH6k0HUMK5YsSLx+5xzzkn8rrPtHQXGiOL1jDaEcDAlpT/TEwp9Ivbs52sV/bkq3ZTUCWa/0vGjlwu0F71+PLrO8QU3rQkw/bYNpOMHsb0TmV5mrQqMeXQi63KCl0hMqJdJUlWQSpbW/nzrCCF1y2tFQK8rnEfpa3SS2pMRBYJfHerWpVXNfrlJBaCuRh6I+1layND7X9W1H/me4w2CYol01oFw2utzQV7pQZMeLamhSVK0Fi2v/WxkJxOzx+t2IVPpVmHZMGg3tYXuxTr3eHqwXyAUJq5Bqs7Z61jm/k62mmntl0nAqdvuRW1ddN5JITIZamtL/XvWK3d1MmOQ8HhqbKOPazKmk3r6Cg1Ypi8k+4HKHDPdx3n3s57OVFXT+QPJNkh41YZJgRDGi/Mt0yym806eXzgl07oIFPbNsN6T0ms5z14hkb+tRjsm/tqJlJ0RYSkwEkIIIYQQQoiB9k8XDx4UGDOUM0+N8eNOKQlPepDCCWzlfT2VP1GkAstwpZkO+H/DOKbZNZNZR3Kxc3b2ssjstGgepBVTUBNp7VO3tJNFtFtbWiZpeA3Dmb2y2s4yeZZF7z31SqxTZt6jNs4sfU1a7R/p5LYZ32GiyrXrVlvl9Q6bNq+MlsuPZ9bApPMo0jikj9u0h+nfeRoam1aumPicyt4r7Xyu2/wEJX4nwmJ9l9HUMfxbpOmJNCIqU6bJFNVUFz9uthKteJ1Pvn+155klTlWqnk82vjKGyagddY2/Hm7Ppw6mtXFmL6giCMu+G4ryA8z1NJ13HGaIn/qd6F8l0utlOIZ66uaA+nlkvbEm20J3uhPnlck+l6SGOr/vtJOmmupc5h1mkExSFy1aVMvcdNWqVXj3u9+dG2coBca8rTJ8qq2mE8JBU3loQsIDoqdNwhQoihs/ANI3v2/Lnh3SZ7xxJQTAlLmSydTM2HfKd6hOOrbpN9JXu76hcrvIf4K3cm3Cvhi+8Oo8ZBL5tZS6Rnk5kxHp8H7ZJ6kT1WjXHkudJN+U1JKmdD4qN07ZAbReZt4gPW+AXjQAqzNYtVF3kFL0LMvL1yY0FA2aleW7Hk8/nkirOeuwxfHDkjU3OfkwpTOlTYaZzzl69xqCRaqVTUJDHmXraKtbMBLJjRu1TziRCb2dDWXl+HCoQt7YK9tu2bihoxYT1mtuOB6do+HS5J1r2X5WRPpcTcfSbWVK4+S0hwmZrr/+u4Mvcamancu8wygUjCH66BW8bt26Wume+9znFsYZSoGREEIIIYQQQvJQSuSvYexiXYo4/vjjO5b30AqM+gxSeW1jmjjdFJrw4PkbC+cWHJSZMEPQzQvyTRX840nSmiHbbGYZBVKnXCqTeti0aL005x1E2qmEq2uaVaYOJs1CubxrpquVKkmZl2VdzZQtvSm/rMbJrMmKwi2aq3TcIo1CGW2Qub5e5mFepm/V1WjomgUHTkbTUFhunhbO8N4za8Ts2o1MmJZntq4lNGAF2t1s3cxOOcre73nvToFym5ZXrkNJrV+Va2fWend+SGzSnkVhFV94tudh3fOwaRxbbZe8c7amqaChDWmnxjgsv2p6pQbX6Y1CkeXFcDC0AiMhhBBCCCGE2FAAvBypkAIjIYQQQgghhAwpCvnr8AfAjUBboMCIrGo930RVx/eoqpREExJNmzmJxfQp14TFsJDZ6G0Lwji9UbTIvl2mp/1kwhq2bbpOrXp3m+6k2ydsv162W13TTBN1zqNs+VXNA4vqUmw2V92MqEodq7R7UV3yzjVyyqE7JjKZdhrqbjKlzDNnNIZX/a3np+z1yDNcyjPhymt3m5liNl6Ne6aqWVmJ/pfrMKSEuWPRtStbD1t5+QmqO7/RKXwfmsYWNctslxMacz79/M4sGnO01xzVTrvys7naKxu/LlXqX3fZVky7+msvkIoaRoACIyGEEEIIIYRkKDJJreMFfBAZSoFRQeYuNi4zExJrIX0toyc8SOFZXX2HM+WlXXqL9M/8WaUybrvz3FHnpuvhphLdIN3+Ak5XFvnb0LUq4TWr6+iiCmHfdCDarOFr00x4LU1h+7UzZa5FkUORVjU1VfPqRLwycfO1arawrDYvnY/5OVq8lYBJm1PGIUSepqqqM5iqeVSJ45fZPq1a6SzKauRN7W8tv1vOV6ppRKtQd6sie7mdcxxiL7NTGq+y17KV8UeH35t1+0dRvyiTb13Pd3XqnFdWyfwGYfsnG0oVmKRWzG/NmjX4+te/joceeggzZ87EK1/5Snz0ox/FoYceGsXZtWsX3vOe9+D666/HxMQEli1bhmuuuQbz58+vdxJtYHpLAoQQQgghhBBSAwnAC7bWMH1UzpYbJjZs2ICVK1fi7rvvxvr16zE1NYVXv/rV2LFjRxTnwgsvxI033oivfvWr2LBhA5544gm86U1vavOZVWMoNYyEEEIIIYQQkke7NYw333xz4ve6deswb948bNy4Ea961aswPj6Oz3/+87juuutw4oknAgDWrl2Lww8/HHfffTde8YpXVCyxPQytwJhn2lLGBDO5jyMg0URTTCXihGZTkVkqVGQip5vwlHXsUIRTVG/LJEhdU9UydMspTr85bmmbCamh+er0jSJaNfVqZUF71bI7Eb+8uZ8sfDuUuz71TTmTuZQ0B6pgylb5nimoax2TzSr7qNXdA9BajnXPtQKHRC2adlZLX2K/xpafE+19zuSbpFkcxlU2YwvrXOedlnO+Nc34WrbCs94H9ozrvnPNeZbpA90wGe2FWaqpzBp9xGTOWbVf6HmH+XWobyXKiOK2nufgGqQWr2Fs9T4fHx8HAOy1114AgI0bN2JqagpLly6N4hx22GE48MADcdddd1FgJIQQQgghhJB+ItdjMRQ8z8P27dsTx8fGxjA2Npabr5QSq1atwnHHHYcjjzwSALBlyxaMjo5i7ty5ibjz58/Hli1b6p1AG6DAaKDKzKwIt9UQTXgG7aGuUYwd34Qax+CvSv6uU49OMt2d3tSh8NrUnHFqn4OYNjiyqKExqa79rKgt7IHmrZTGrU3OTYrOr6rGpdY2HJ3YaqGUkx/LuVXQ+Nk1luUdq/hH8+rbmedyPacQJfpvz51NlGivXM1Enfq36xq1kE9U7e5qO1VdZygFeYch2dwtfVCvR4k+aIoR52Aow6i5q6/hKn1eFfPV61TlyljzTZ1j1atd6m5S4RZl7cuz98+h+pTZVuO+++7DnDlzEscvvfRSfOhDH8rNe+XKlXjwwQfxgx/8oPWKdhgKjIQQQgghhBCSQqFgDaMCjjnmGNx6662J40XaxfPOOw833XQT7rzzTuy///7R8QULFmBychLbtm1LaBm3bt2KBQsW1DmFtjCUAqM/09HaDGS4rYZUTQDAFCYh0bSuTZSQRo2iSmsbtXplXcl3cta7+1rEwjWXXaAT6wHTJbSTVtdJ1dkuo8r6tzhNhXIqnFOltYal4hXM1rdx+4sy+XVs64QoYStrTWv0nRLlFcepqgWsti7SJ7+P9252vMb1KuzT7T2XvDVz1cpq8xpCoCNbD+TVxFya1rda2E6hdAso1ZLngKJySp+/df1l63UROflXLaOVNP1QRifrPbg6wfaiCjSMEoDrupg9e3bJ/BTOP/983HDDDbjjjjuwaNGiRPjRRx+NkZER3HbbbTj11FMBAJs3b8Zjjz2GxYsX1z2NlhlKgZEQQgghhBBC8pAK8No4n7Vy5Upcd911+OY3v4lZs2ZF6xLnzJmDmTNnYs6cOTj77LOxevVq7LXXXpg9ezbOP/98LF68uGcObwAKjIQQQgghhBCSocgmsaom9tprrwUALFmyJHF87dq1ePvb3w4AuOKKK+A4Dk499VRMTExg2bJluOaaayqW1F4GRmD8yEc+gm9/+9vYtGkTRkdHsW3btp7WJzaj8s1NmmICUttWw2RaajM/VZBRnKSJZNKE1T+S7Jp1zAXjtPpi7O5sf6Ej4Ha9zCq00rbFebfJ2KOmiWHlrSmqOkKpMOVWpS6lTBzLmnW24oglEamKSWoJ5w+V27odZs/tMz6q7min1etgv0/t6Tpg/tgF2mbi2Uba0lodcMdfZLZYhsq7H+TVBahUn1Zq3qse3K1y+/cOJdORdm+rUWZcMWPGDFx99dW4+uqrq2XeQXq/iKwkk5OTOO200/Cud72r11UhhBBCCCGETHOUUvmfXlewSwyMhvGyyy4DAKxbt64NuXmo7ozYTDi776kmJCaz4bqm0fBdKalpFaVRm6gM23X4B8x559WzE4QOgKozVRxlGtDOtm/F+Uant1iopCmspFUsec6ltI8lt9toi7OWuNSy1NsOpZ+2eShLSZf1pepQXVtY/hXfaS1d2WdnxXrU3MZAp/s2J+3VHFV1TkPnIYQQE4Uaxq7VpLcMjMBICCGEEEIIId1CqeJtNYaBaS0wTkxMYGJiIvq9ffv2HtaGEEIIIYQQMij4Gsa8ddbDITH2VGC86KKL8NH/v717j5OjqvPG/znVk5kEkkwI5EKAYCIuARFQwiWyKyB5DMiLNSu6rqJPgPzYCxMkBNkl+kjEVYPoI1GMCPtowsvdiOIKKgoYYgiycgnBaKISiYCJQAKImQmBzExXfX9/1KXrcurW9576vHkN6e6qOnW6qrq7vvU9dc7nP584z+9+9zvMmjWrqvKXL1/uNWVNU1uzQQtlDEI0TVLjyvc3Q/VPj22GGuo4J1ymrulWvceQi1N9k9TGUDluza2uCWB91Kupai3vIX/nN/UfXzHPl219m4raa0+fI2t5DWhmG9C4Tpj8mj/mYH2bWyYfTynratZ798bjq/84i5HZ868h83K1Nlsd6Z2zEFHnY4bR1tKA8aqrrvK6kI0zc+bMqstfunQplixZ4j0fGBjAEUccUXV5RERERERUDBYkMcPYurRDc7U0YJw0aRImTZrUsPJ7enrQ09MTed3OQFRzbTT+sCjL68jTiUs4owikZxV1GcVw9iOcXYnLjtQ1s1aHqyt5soKdohHZy5qyP1UPwZEzo5E1s1jnTmPybe86DakBIG/mr7YMXof/NNU8zEGNneBkqEM9LxbH/so06JJ0sy90F+TCOhEVmEh9h9XoVB1zD+OOHTvwyiuvYMeOHTBNE5s3bwYAHHXUURg7dmxrK0dERERERCOKIPlCL+9hbDPXXnstbrvtNu/5W9/6VgDA+vXrceaZZ7aoVkRERERENBJZEJSTAsZixIudEzCuXr26TmMwAnaTpRpv1w81pytbg4BRDrymUIoupmm+Frg6oRlb0W2657/CoW2mGjPmY3jZpPfRKrrtEqvNOtnRatB2rfVKVrUd7eRfrjXNSIG8TT7rOR6gq/EdmWQuNrQfVEtG16uo35XYjNu4ic1P85Rfz71QkHMVIqLWkOSfkqJ8B3dMwEhERERERNQsqcNqFCRiZMAYJ0dGRSAwZQhK7GyF24FLnqxZXOc1uqxiYDqsyLTwcrr3Enelv15DPTSUmG03lEdWjdy+tZWd/xsvf6c+jRh2IsdnrBFZwtxDHDTilyXPd1Wcdvg81fjZyLgv2uG3XVeHrFnHdqg/EVFRCIIdVEanF+NbmQEjERERERFRiCUCM+GCfFIwOZIwYCQiIiIiIgqxM4zJ04ugmAFjleMwJqWdy9YQDFhOc1R9MzmlktepazKna4bqfz04Pa7zHE254fEaMzVnbPbHIn57dUTT2bqp33avbWzIfMvmH2+wxc1L7YKzz5p7vzTomM2zLWK/gzrs81TFTSPt/qPe7vUjIioi+7az+N/I2sZW7hzFDBiJiIiIiIgSWBCUEy6qsklqQVV786olZW3nMsrfmYSv6LROWyIZwHCnNjkzi9kyikk39XZYBsJHtUWHHlHN2aa1r6P6q2c5hkrJvZ6c76thmcPG1aMh6rX+lNYSdVGnuhbjp5yIiBpBICnna8X4lWHASEREREREFCLMMAJgwEhERERERBRh5xcT7mFsYl1aqZABYyM6q7CsIQACRJqaVprlBTq9kexNJXWp8KRxFvM1RU3uaCeotuaNSU0O0zoEqmm9Hdycthb1uxE7X9PS2uvQLs1NG1sXb5HcS9RP1Z+6VjetzagzaklERO3KggVTxZ8HiSrGOWYhA0YiIiIiIqIk6RnGYlyaZMAYUd2VArvTGwDizygGM4gigPJd0xeYmoxkRglZRXtd+TKL+ixcvbsRTrhCk6m4UhXrLLrqs4M6tWctq/h85VxndV/ejc0ktuvPia5eTejOpinadZsTEVHnECUwVTl2elIwOZIwYCQiIiIiIgphhtFW4ICxvoN5i5iR2eIGlw9kHsXUDrGhYq7zJx2YuvXVK7OYnFmqLYuVPWtVbui9jkVR/0Fma7y6VmV9mpJJBDruvsRajYSsYydvfyIiah8WLJiIzzAyYCQiIiIiIioogQkTw4nTi4ABIxERERERUYhAYCX0hCqKGcYRzEJiI6tqmqCJO3SnBaQNlyHxHdS4zVOrPfz0zWCzDp2Rpylq8hWV+jd7bGy55FfnG7hr3GfVN/eo8n1U3UR25Aq/t3ZuojqS9wMRETWXwErMMLLTGyIiIiIiooISCCxJ6uW/GJcpGTACdRmE2pIylLjX3eMPLKVUKLsXykZG6lLttXz9e8ozfEbe7GL2D02nX42pciiUhmjhtqzzl2TtN463pvMdoHhZLf/7bZdsY9H2ARERNZ7AhMV7GBkwEhERERERhXFYDRsDRiIiIiIiohARC5YkZRg7vdVcNgUNGCVz+6XsVw5MZGmcFWz1VoK/eWewuapubMbqmkImH8z16egmuTlqczsfqUqu8R1H4JdDk7Z1fa/E1WE/1OF9F+PaYrxWd4hT9O1PRESNk5ZhLMqvUEEDRiIiIiIioniClAyjdnSCkYcBY0i1GRARCyJuBjDp4PFnCcveI6WUL9lRyTwqX+YrKfuYXfKBXf+ObjJ+kFrdy1Sr1z8CNL4dfx2/lOu4vxWKcn0xG3dbtEtnOERERNWyxISZEDBaBen0pp26e4z17LPPYuHChZgxYwbGjBmDN77xjVi2bBmGhoZaXTUiIiIiIhqR7EapcX9F0REZxieffBKWZeGWW27BUUcdha1bt+LSSy/Fvn378MUvfrHV1SMiIiIiohEmtUlqQTKMHREwnnPOOTjnnHO85zNnzsS2bdtw88031yVgrE9TutBVhrSmnaFOVuzZ3YRv2Zkl3Ey1UobK1UlLsvRmpdV+GDJceamyaWCruzFWI7zBXWu3bwOv2DWo6TGbpUbFbY96fXK4vYmIqOFEEu9TzD4GeWfriIBRp7+/HxMnTkycZ3BwEIODg97zgYGBRleLiIiIiIhGAAsWTCnHTi9Ks9SODBi3b9+Om266KTW7uHz5clx33XXaaXXPoIjEZi+06xLRZKnMQOax0okOAJSDHeAIEMw6NkJyZrHmoTRyXJVpdUYxrN3q05ma+CXbhCuA7qeTR0aypO0Tl33kNiUiopZIyTAW5QeqpZ3eXHPNNVBKJf49+eSTgWWee+45nHPOOXj/+9+PSy+9NLH8pUuXor+/3/vbuXNnI98OERERERGNEO49jHF/vIexCa666ipcdNFFifPMnDnTe/z888/jrLPOwtvf/nbceuutqeX39PSgp6en1moSEREREVHBCO9hBNDigHHSpEmYNGlSpnmfe+45nHXWWTjppJOwatUqGEYtyVFBvUcJE+e/vMtEX/Q3VU1qogooFXdVo9qmqtmvktT8AWlZc9R6NIPsiNFoWqwN2vS36EucTVOrx21GRETtxM4w8h7GjriH8bnnnsOZZ56JI488El/84hfx0ksvedOmTp3awpoREREREdFIJGLBshICRmYY28fatWuxfft2bN++HYcffnhgWvvsqPpdYRB/BitHxhGA0zFOY9pTZ9/W9dwW1e7fRl7xacXVpGZlNUfAlbI2+U7wt2FojxoRERFRPoLkc6Ni/MJ3RNu6iy66yGlDHP0jIiIiIiKqNxG7SWrcX2IPqiNIR2QYiYiIiIiImitlWI2CZBgZMDZTloyoUginvv1NVJW/CBU+gI3ErKt/HMes8mdx2+FKSzvUod5G4nuqgw5pZcCOcIiIiDqPiAWR4cTpRcCAkYiIiIiIKIL3MAIMGOtHpD7ZjnAZgYyjEegERoVXF8k42stUim70QV2MqyzUQh2SUYzDjnCIiIg6iQWRpM4ki3Huy4CRiIiIiIgoghlGgAFj3VQ7/EPcUl4mwp9RCWQQQ9lGqNC8bgnJWcfaVXFlJUeWSEHVMLRGHbRTRquKe1DbXjtt3yZjtpGIiKjdsdMboEOG1SAiIiIiImqWd7/73bADwrig0J523nnnNa9SLaKkQIMZDgwMoLe3F0AJwev7tVNKoatUyr1caoYxuBLfk2Csr8JLJGajOifDCFSTva1je/J2+ngwwzhicSsQEdFIJSIwzUH09/dj/Pjxra5OZiICwzBgn5XrzvHtexsty6xqJIJOwiapdVTPk77A6Bnei86rkaE3Upqnesu4inGDbk3aMZBpxzpRXbB5KhERUXtRSuGxxx7DKaecAvvXOfxrLXjiiSdGfLAIMMNYN0oplKrIMGYqO7qy0Asp2UbtMi3UCRnG4nwsqM3wyCMiopGkUzOMLqXc82z/eb6dXSzKOIy8h7EDRFpPu0N4eEGNBX+QJL7/tMu0Khhq2rp5WFPnaqNLO0RERIX39NN/QPBs3H78xz8+27I6NRvPrImIiIiIiDRmzJgB+3KuhcowGwrTp09vab2aiQEjERERERFRjD//+WVUgkXBX/7ySotr1FyF6vSmcrtm/ZtF2q0tG9vcMr0jHNM3h+EsE+oMJ7ycXyPvc6xh21Q3DmO4Y6BqVsy7yah1ePQREdFI4J4fd3K3KRMnToR9bm0BMDBhwoTWVqjJChUw7t2713nUmBtUTbPckHKJiIiIiDrZ3r17nc4nO9P+/a/h7rvvxvnnn9/qqjRdoXpJtSwL27Ztw7HHHoudO3d2ZE9N1DwDAwM44ogjeKxQIh4nlAWPE8qCxwll1UnHiohg7969mDZtmjOuIXWaQmUYDcPAYYcdBgAYP35823/AqD3wWKEseJxQFjxOKAseJ5RVpxwrnZxZJHZ6Q0RERERERDEYMBIREREREZFW4QLGnp4eLFu2DD09Pa2uCrU5HiuUBY8TyoLHCWXB44Sy4rFCzVSoTm+IiIiIiIgou8JlGImIiIiIiCgbBoxERERERESkxYCRiIiIiIiItBgwEhERERERkVbhAsaVK1fiDW94A0aPHo1TTz0Vjz32WKurRC304IMP4vzzz8e0adOglMJdd90VmC4iuPbaa3HooYdizJgxmDt3Lp566qnWVJZaZvny5Tj55JMxbtw4TJ48GfPnz8e2bdsC8+zfvx99fX04+OCDMXbsWFxwwQXYvXt3i2pMrXDzzTfj+OOP9wbSnjNnDu655x5vOo8R0rn++uuhlMLixYu913isEAB86lOfglIq8Ddr1ixvOo8TapZCBYzf+c53sGTJEixbtgxPPPEETjjhBMybNw8vvvhiq6tGLbJv3z6ccMIJWLlypXb6DTfcgK985Sv4+te/jkcffRQHHngg5s2bh/379ze5ptRKGzZsQF9fHx555BGsXbsWw8PDeNe73oV9+/Z581x55ZX40Y9+hDvuuAMbNmzA888/j/e+970trDU12+GHH47rr78emzZtwuOPP453vvOdeM973oPf/OY3AHiMUNTGjRtxyy234Pjjjw+8zmOFXG9+85vxwgsveH8PPfSQN43HCTWNFMgpp5wifX193nPTNGXatGmyfPnyFtaK2gUAufPOO73nlmXJ1KlT5Qtf+IL32p49e6Snp0e+/e1vt6CG1C5efPFFASAbNmwQEfu4GDVqlNxxxx3ePL/73e8EgDz88MOtqia1gYMOOkj+3//7fzxGKGLv3r3ypje9SdauXStnnHGGXHHFFSLC7xOqWLZsmZxwwgnaaTxOqJkKk2EcGhrCpk2bMHfuXO81wzAwd+5cPPzwwy2sGbWrZ555Brt27QocM729vTj11FN5zBRcf38/AGDixIkAgE2bNmF4eDhwrMyaNQvTp0/nsVJQpmni9ttvx759+zBnzhweIxTR19eH8847L3BMAPw+oaCnnnoK06ZNw8yZM3HhhRdix44dAHicUHN1tboCzfLyyy/DNE1MmTIl8PqUKVPw5JNPtqhW1M527doFANpjxp1GxWNZFhYvXozTTz8dxx13HAD7WOnu7saECRMC8/JYKZ4tW7Zgzpw52L9/P8aOHYs777wTxx57LDZv3sxjhDy33347nnjiCWzcuDEyjd8n5Dr11FOxevVqHH300XjhhRdw3XXX4W/+5m+wdetWHifUVIUJGImI6qGvrw9bt24N3EdC5Dr66KOxefNm9Pf343vf+x4WLFiADRs2tLpa1EZ27tyJK664AmvXrsXo0aNbXR1qY+eee673+Pjjj8epp56KI488Et/97ncxZsyYFtaMiqYwTVIPOeQQlEqlSO9Ru3fvxtSpU1tUK2pn7nHBY4ZcixYtwt13343169fj8MMP916fOnUqhoaGsGfPnsD8PFaKp7u7G0cddRROOukkLF++HCeccAK+/OUv8xghz6ZNm/Diiy/ibW97G7q6utDV1YUNGzbgK1/5Crq6ujBlyhQeK6Q1YcIE/NVf/RW2b9/O7xRqqsIEjN3d3TjppJOwbt067zXLsrBu3TrMmTOnhTWjdjVjxgxMnTo1cMwMDAzg0Ucf5TFTMCKCRYsW4c4778TPfvYzzJgxIzD9pJNOwqhRowLHyrZt27Bjxw4eKwVnWRYGBwd5jJDn7LPPxpYtW7B582bvb/bs2bjwwgu9xzxWSOfVV1/FH/7wBxx66KH8TqGmKlST1CVLlmDBggWYPXs2TjnlFKxYsQL79u3DxRdf3OqqUYu8+uqr2L59u/f8mWeewebNmzFx4kRMnz4dixcvxmc+8xm86U1vwowZM/DJT34S06ZNw/z581tXaWq6vr4+rFmzBj/4wQ8wbtw47/6Q3t5ejBkzBr29vVi4cCGWLFmCiRMnYvz48bj88ssxZ84cnHbaaS2uPTXL0qVLce6552L69OnYu3cv1qxZgwceeAD33XcfjxHyjBs3zrv/2XXggQfi4IMP9l7nsUIA8LGPfQznn38+jjzySDz//PNYtmwZSqUSPvjBD/I7hZqr1d20NttNN90k06dPl+7ubjnllFPkkUceaXWVqIXWr18vACJ/CxYsEBF7aI1PfvKTMmXKFOnp6ZGzzz5btm3b1tpKU9PpjhEAsmrVKm+e119/XS677DI56KCD5IADDpC/+7u/kxdeeKF1laamu+SSS+TII4+U7u5umTRpkpx99tny05/+1JvOY4Ti+IfVEOGxQrYPfOADcuihh0p3d7ccdthh8oEPfEC2b9/uTedxQs2iRERaFKsSERERERFRGyvMPYxERERERESUDwNGIiIiIiIi0mLASERERERERFoMGImIiIiIiEiLASMRERERERFpMWAkIiIiIiIiLQaMREREREREpMWAkYiIiIiIiLQYMBIREREREZEWA0YiIiIiIiLSYsBIRERt6aWXXsLUqVPxuc99znvtF7/4Bbq7u7Fu3boW1oyIiKg4lIhIqytBRESk85Of/ATz58/HL37xCxx99NE48cQT8Z73vAdf+tKXWl01IiKiQmDASEREba2vrw/3338/Zs+ejS1btmDjxo3o6elpdbWIiIgKgQEjERG1tddffx3HHXccdu7ciU2bNuEtb3lLq6tERERUGLyHkYiI2tof/vAHPP/887AsC88++2yrq0NERFQozDASEVHbGhoawimnnIITTzwRRx99NFasWIEtW7Zg8uTJra4aERFRITBgJCKitnX11Vfje9/7Hn71q19h7NixOOOMM9Db24u777671VUjIiIqBDZJJSKitvTAAw9gxYoV+Na3voXx48fDMAx861vfws9//nPcfPPNra4eERFRITDDSERERERERFrMMBIREREREZEWA0YiIiIiIiLSYsBIREREREREWgwYiYiIiIiISIsBIxEREREREWkxYCQiIiIiIiItBoxERERERESkxYCRiIiIiIiItBgwEhERERERkRYDRiIiIiIiItJiwEhERERERERaDBiJiIiIiIhIiwEjERERERERaTFgJCIiIiIiIi0GjERERERERKTFgJGIiIiIiIi0GDASERERERGRFgNGIiKiBM8++yyUUli9enXuZVevXg2lFJ599tm614uIiKgZGDASEREBWLNmDVasWNHqahAREbWVrlZXgIiIqB2sWbMGW7duxeLFiwOvH3nkkXj99dcxatSo1lSMiIiohRgwEhERJVBKYfTo0a2uBhERUUuwSSoRUcE899xzuOSSSzBlyhT09PTgzW9+M775zW8CAF5//XXMmjULs2bNwuuvv+4t88orr+DQQw/F29/+dpimCQC46KKLMHbsWDz99NOYN28eDjzwQEybNg2f/vSnISKBde7btw9XXXUVjjjiCPT09ODoo4/GF7/4xch8SiksWrQId911F4477jivfvfee2+u9+F64IEHoJTCd7/7XXz2s5/F4YcfjtGjR+Pss8/G9u3bvfnOPPNM/PjHP8Yf//hHKKWglMIb3vAGAPp7GH/961/joosuwsyZMzF69GhMnToVl1xyCf785z/n3yFERERtjBlGIqIC2b17N0477TQvMJs0aRLuueceLFy4EAMDA1i8eDFuu+02nH766fjEJz6BL33pSwCAvr4+9Pf3Y/Xq1SiVSl55pmninHPOwWmnnYYbbrgB9957L5YtW4ZyuYxPf/rTAAARwd/+7d9i/fr1WLhwIU488UTcd999uPrqq/Hcc8/hxhtvDNTxoYcewve//31cdtllGDduHL7yla/gggsuwI4dO3DwwQdnfh9+119/PQzDwMc+9jH09/fjhhtuwIUXXohHH30UAPCJT3wC/f39+NOf/uTVZ+zYsbHbce3atXj66adx8cUXY+rUqfjNb36DW2+9Fb/5zW/wyCOPQClV244iIiJqF0JERIWxcOFCOfTQQ+Xll18OvP4P//AP0tvbK6+99pqIiCxdulQMw5AHH3xQ7rjjDgEgK1asCCyzYMECASCXX36595plWXLeeedJd3e3vPTSSyIictdddwkA+cxnPhNY/n3ve58opWT79u3eawCku7s78NqvfvUrASA33XRT7vexfv16ASDHHHOMDA4OevN9+ctfFgCyZcsW77XzzjtPjjzyyMg2e+aZZwSArFq1ynvNLd/v29/+tgCQBx980Htt1apVAkCeeeaZyPxERESdgE1SiYgKQkTw3//93zj//PMhInj55Ze9v3nz5qG/vx9PPPEEAOBTn/oU3vzmN2PBggW47LLLcMYZZ+CjH/2ottxFixZ5j92M39DQEO6//34AwE9+8hOUSqXI8ldddRVEBPfcc0/g9blz5+KNb3yj9/z444/H+PHj8fTTT+d+H66LL74Y3d3d3vO/+Zu/AQCvzLzGjBnjPd6/fz9efvllnHbaaQAQWTcREVEnY5NUIqKCeOmll7Bnzx7ceuutuPXWW7XzvPjiiwCA7u5ufPOb38TJJ5+M0aNHY9WqVdpmloZhYObMmYHX/uqv/goAvLEH//jHP2LatGkYN25cYL5jjjnGm+43ffr0yHoOOugg/OUvf8n9PuLKPOiggwDAKzOvV155Bddddx1uv/32yLr6+/urKpOIiKgdMWAkIioIy7IAAB/+8IexYMEC7TzHH3+89/i+++4DYGfQnnrqKcyYMaPxlQQC90j6idNBTt73kaXMvP7+7/8ev/jFL3D11VfjxBNPxNixY2FZFs455xyvfkRERCMBA0YiooKYNGkSxo0bB9M0MXfu3MR5f/3rX+PTn/40Lr74YmzevBn/3//3/2HLli3o7e0NzGdZFp5++mkvqwgAv//97wHA62X0yCOPxP3334+9e/cGsoxPPvmkN71R7yOPrB3V/OUvf8G6detw3XXX4dprr/Vef+qpp+pWFyIionbBexiJiAqiVCrhggsuwH//939j69atkekvvfQSAGB4eBgXXXQRpk2bhi9/+ctYvXo1du/ejSuvvFJb7le/+lXvsYjgq1/9KkaNGoWzzz4bAPDud78bpmkG5gOAG2+8EUopnHvuuQ15H3kdeOCBmZqTutnKcHZyxYoVVa2XiIionTHDSERUINdffz3Wr1+PU089FZdeeimOPfZYvPLKK3jiiSdw//3345VXXsFnPvMZbN68GevWrcO4ceNw/PHH49prr8X/+T//B+973/vw7ne/2ytv9OjRuPfee7FgwQKceuqpuOeee/DjH/8YH//4xzFp0iQAwPnnn4+zzjoLn/jEJ/Dss8/ihBNOwE9/+lP84Ac/wOLFiwMd3NTzfeR10kkn4Tvf+Q6WLFmCk08+GWPHjsX5558fmW/8+PF4xzvegRtuuAHDw8M47LDD8NOf/hTPPPNM7nUSERG1O2YYiYgKZMqUKXjsscdw8cUX4/vf/z4WLVqEL3/5y3jllVfw+c9/Hk888QQ+97nPYdGiRTjrrLO85a655hqcfPLJuPTSS7Fnzx7v9VKphHvvvRe7du3C1VdfjY0bN2LZsmX493//d28ewzDwwx/+EIsXL8bdd9+NxYsX47e//S2+8IUveOM81vt9VOOyyy7Dhz70IaxatQof+tCHcPnll8fOu2bNGsybNw8rV67E0qVLMWrUqEhvr0RERCOBkmrv+CciokK76KKL8L3vfQ+vvvpqq6tCREREDcIMIxEREREREWkxYCQiIiIiIiItBoxERERERESkxXsYiYiIiIiISIsZRiIiIiIiItJiwEhERERERERaDBiJiIiIiIhIq6vVFWgmy7Lw/PPPY9y4cVBKtbo6REREREQjmohg7969mDZtGgyjc3NVL7zwAq699lJ85jPfwJQpU1pdnaYqVMD4/PPP44gjjmh1NYiIiIiICmXnzp04/PDDW12Nql177aVYteoedHX9I26++Qetrk5TFaqX1P7+fkyYMAF2S9z0DKNSCoZRyrWOQKleFtNwpoXWWc8sZ8puFKTtZqsu68mqMAcdERERUYGJCCxrCHv27EFvb2+rq1OV3/zmN5g9+234znc/hQ/8/afwy1/+CrNmzWp1tZqmUAHjwMCAc6CWkCVgNAwGjHnXk1VhDjoiIiKiAhMRmOYg+vv7MX78+FZXpyrnnTcHb3zjNNy44nIs6rsRL7zwCu666+etrlbTdG5D4hZQoT/ddPuBSg4WA9Phmy/urzbtFiwSEREREXWC9evX46GHtuAT/+d/AwA+ee0CrFu3CT//OQNGIiIiIiKiwrIsCx/72D/h3675EA45xG5OO2XKRHzs6n/Ax67+JxSloSYDRiIiIiIiopDbb78dL73Uj49+9ILA61de+X7s3PEi7rjjjhbVrLkYMKbI0gQ1MD3QFNWAcv7zpgWaomZtdlqfpqlERERERJRu//79+PjHl+DTn74EY8b0BKYdeOAYXHfdxVi69EoMDQ21qIbNwyiEiIiIiIjI52s3fwwTJozFhy6cq52+4KJzcMABPbjl1qubXLPmK9Q4jHlFejXVzuN/EtPRTSSrWC0DmTuoyYwd3hARERER+T31exPzzjkVpZJ+xIRSqYR555yC32+r97l5+2HASEREREREFKLEAsrlhOnFSKgwYCQiIiIiIgqzBDDN+OkMGAmAZrxERA+OUJPTLE1Rla5cr/j6HXzJYzC2LoXuf/fF+KgRERERUWcRwEo4X2bASEREREREVFBWcpPUxGByBGHAmCQuC6h9Pa6jG+f1hIxitHh7Xn2msREd37RWeMsU41oNEREREbU1YYYRYMBIREREREQUoSwLykzq9GZkJXHiMGAkIiIiIiIKY4YRAAPGFAaCndXoDpi8TVF1Y7noe19SStW1A5yaKNW0D4Wu8W6bbAUiIiIiKgpLgHJCL6mW1DbEeodgwEhERERERBTGDCOAwgaM2TugCYpeQkjPLOoyimHuPAlXMKqQPKRGFcLZ0iZ+SNgxDhERERE1lVhAwj2MsKxsp/odrmOSqMuXL8fJJ5+McePGYfLkyZg/fz62bdvW6moREREREdFI5DZJjfsrSIaxYwLGDRs2oK+vD4888gjWrl2L4eFhvOtd78K+fftaXTUiIiIiIhpp3CapcX8FCRg7pknqvffeG3i+evVqTJ48GZs2bcI73vGO3OUpqAxNNlWlyWnsLJWmqLpmqGnjLwY7tSkh3Cy1sR3f1DimY5axJRtU95HaRLXaxtJZjJRtRERERNQUYkGZSZ3ecFiNttbf3w8AmDhxYuw8g4ODGBwc9J4PDAw0vF5ERERERDQCpHZ607yqtFLHNEn1sywLixcvxumnn47jjjsudr7ly5ejt7fX+zviiCMC01VqBtGws2hJfzCgVMnJJJYA2I/dP6+cmE2dbdiN6qRmRwEk1a0+lUjZft52rHE1mr92pqtvo+vcSduHiIiIqOXS7mEsSIaxIwPGvr4+bN26FbfffnvifEuXLkV/f7/3t3PnzibVkIiIiIiIOlraPYwFSTF2XJPURYsW4e6778aDDz6Iww8/PHHenp4e9PT0pJYZn4kzkJSL8d+zqELDasSX52cFyqncqxi9l7Fa2e7V1NUtToOupCRlGau8DzKuxEZ/tDsle+evZzG+7oiIiIhyEAES72EsxhlUxwSMIoLLL78cd955Jx544AHMmDGj1VUiIiIiIqKRKvUeRgaMbaWvrw9r1qzBD37wA4wbNw67du0CAPT29mLMmDEtrh0REREREY0olmXfqxg7nQFjW7n55psBAGeeeWbg9VWrVuGiiy7KWVq2RoPBjmv8wsNmGE6p6c06JdCkM9uwFtGhNTTLKRV7lcPf5DZb89Qktd72WkWT1rjmqnVuqlpk7jYpxtceERERUQZupzex04vR6U3HBIyNG4uQiIiIiIgoRASQpKCwGPFJxwSMdefPWsUGoyX481HBbGM4q5glbyXe/JVMYyVbGMwkpnV8E5NlBBIzb9mG2ojXnAxlxqs1acNx8CJDbuwIh4iIiMjBJqkAihwwEhERERERxREkB4UFSU4wYCQiIiIiIgoTZhgBBoy2mKachuqKtHoMN0FVKlsnMCKWs4x45eiapcZXMdzxTcJyDWyqWWuTViBLs9Y6NVtN2w5hzbhKlLdO1ajT+2DzVCIiIio03sMIgAEjERERERFRlAWgnBAwMsM4khmw8ycxncZ4Tw03jxh4zf+vPTWaNfJn0UQsKGWkZBnd8uM7vnE73YkOsRGWkn1rRpYLyDTMR+LiiVdtsg7vkaO742Ztl0ZrQIZZV2IxviKJiIiosESSh87gPYxEREREREQFZQkzjGDASEREREREFCUWYCZ0esMMYxH4mzVGrx4oVYJSMc1PUzq7Uc4NsgLxmqMGm6XaUyvNUpPGYwR0TVP90pupNkNyE99UoQ9dng524puvNmJb5Gjm2o7i9kvOL724vVPvr856NxQuxlc7ERER1YzDagAofMBIRERERESkYXFYDaCgAaNy/gtmpaKZKEN1wTD8Hd74HsdkrtxObMSZrsSKyTL666PPMgLQZBr9krOOzVKpYy3ZPKu6TmfE7UCotvefPtSHX6syuNXKmBFN2v45rqC1e9dB7MCHiIiIMknNMDatJi1VyICRiIiIiIgoETu9AcCAkYiIiIiIKEoEwnsYix0w+psx6pokloxRUKoyZqK3XKjDm3ATU3smy26qqQyvAxxoO78Jj8kY7IgnualpV6izm9aoVDGhjXcKkWqaeVbZjDW4YgC1N2ltlWxNabNs2zqN3dkGx2M1wu+uM98FERER1ZUIYHIcxkIHjERERERERFq8hxFAUQNGZdgZE19mMJxhEgiUMQqlUOohnPETcTq0cTM0Ynd8o2AEsowQy15HQnYy3JFOlmOw/n3d1DJkRPRwypoBrS5LWcq1Dv2K3QdtOFRGhvdVbWY0mpnMk+FN2FYt7HwpVY0d91R7lNW6RQryW0RERNR+eA8jgKIGjERERERERAnEEkhCwJh4f+MIwoCRiIiIiIgoLLVJKgPGkU9pmuE5TUQVFLqMUVDKih1zEQBEWXZHNig5zU8RbEOmfOMyOs1S3XEZI2VFxmcMj73YjIMyX+czktKUU99CMWmZ/M1a9evI2wGPbpzLGpu71irwvurUZLaGTn4qzVirHYeyxc1+szSXTdjfrWpsyw55iIiIWoSd3gAoesBIRERERESkI4EuT7TTi6CgAaOBynX70FHgZv7EQgk9gCpXJqEE8WWuBAIl8HV6YwFiVIoW9x9neAxlZyGVUz4AKFXyMjeZhutosfQsaOySvsfJGapw1jI9MaTbTumHdpbsYfY+XKofUiSb6HauKvupgGozfQqq6itp9jFebWayUXTD4aTs8Jo6WKpP2XGlJC1dr+xovX8X/fUqyG8uERF1ktROb5pXlVYqaMBIREREREQUT1IyjAVpkcqAUZ/1sABloMvo1tznWIKIBQt2plCU6WUaveyNOwi9cz+jgm/YDeX+W/IyRHFX/9txMHnR3feZtkzeTKnked/5M1fuvqhtBIjwe6rPRylP1jC5/kkZzxru14ysM9u+TT2Wm/yNmz/j6X5uG/iZzFp2zLZqxrdFNcONZK1XNZnTVpRJREQFYglQTvjVKEgvqe3WRizRgw8+iPPPPx/Tpk2DUgp33XVXq6tEREREREQjkThDa8T8FUVHBYz79u3DCSecgJUrV7a6KkRERERENJIJ7EZbcX+8h7H9nHvuuTj33HNrLkcpw+6ERsNuPmnH0SU1GlBDoWmApSyUYDlNU0sATIgyoGBAwQoOteE0R3WH5gg0z1Qpw1KorB3K1CZtaAy/2CZeScMRhN9HWhNV3/ySs/FYluav/o56qu9YyP+e6nOFye4cqZYS/O8l20fbv9+q6+An+RjN3MS2rs2Ds6zOt8JMdbTfZ97jsb6a0Cw2jWZbNbo2jSg/qcwsezhrnYpz7ZmIaGQSSyANapJ6/fXXY+nSpbjiiiuwYsUKAMD+/ftx1VVX4fbbb8fg4CDmzZuHr33ta5gyZUrV66mHjsow5jU4OIiBgYHAHxERERERUSqn05vYvyrjxY0bN+KWW27B8ccfH3j9yiuvxI9+9CPccccd2LBhA55//nm8973vrcMbqU1HZRjzWr58Oa677rpcy/iHtuhCNwS+DJyTEVRudtHLNCpYEIibafQNtaEUIP5OXHyd3bSSm/XMk12MlBHKlmZZpz1veubU65gmUz38WbKUssMZxYxZ3FoyS1mzmGlDlKSXkz/r6Sar8h0HJWTP6tX7WNd15pMvEx/5/MUeZNH3WLeOqKr6Dmh1ltNqbXbTpdt21darwRnTRm6tWjOhrf8VIiJqf2IBUk6aIX+Zr776Ki688EL8x3/8Bz7zmc94r/f39+Mb3/gG1qxZg3e+850AgFWrVuGYY47BI488gtNOOy3/yupkRGcYly5div7+fu9v586dra4SERERERF1AgHcoda1f1UEjH19fTjvvPMwd+7cwOubNm3C8PBw4PVZs2Zh+vTpePjhh6t9B3UxojOMPT096OnpaXU1iIiIiIio01iAlTBSmViAaZqR297iYpDbb78dTzzxBDZu3BiZtmvXLnR3d2PChAmB16dMmYJdu3ZVVf16GdEBY7wSsjQWKqluiNMM1W0OKLAgsGCpMkowYEoZSgGGWAC67Kapyj6y7E5vJNhaSqzmDJhWg2qbqebpQCZPs9zU+oS2Z2I9wvNW8V5ra8ZbZUMwsRrSfNbdVmnNYf3z2pLmr6YjnazbNa2eGTo9cpvhZtoXSeNZpotdR+7vgMr7SmwW29Dm7tV3RlVXdW0z2uTu7dL2T9IHJrRsrZuhGc1lq12H/53mLSNpC6eVxWa6RBThZhgTpj/++OPo7e0NvLxs2TJ86lOfCry2c+dOXHHFFVi7di1Gjx5d96o2UkcFjK+++iq2b9/uPX/mmWewefNmTJw4EdOnT29hzYiIiIiIaCQRSckwCjB79mzcf//9gdd12cVNmzbhxRdfxNve9jbvNdM08eCDD+KrX/0q7rvvPgwNDWHPnj2BLOPu3bsxderUmt9LLToqYHz88cdx1llnec+XLFkCAFiwYAFWr15ddbn+jm78RkkPTGeYDCjAcrOLUoaBLggslFSXnXlxptvX4BOGbWjz7CIAWFVeZ3Uzq5nmzbuOPNnLHBnAaobVyJslDNQnT8YtY6dCWd9v3sxopveZa7/Uf4iUWpZTKrk+9vbKktWNX1+uDGs9Mp6RbHu9cyZuRrqJX2RNyppGVtuIfFMtm00BbT3gl7/zMd30tA9D2vJJZeVZNqnYGpZtpfCRWm0mtZpOkqpZV7WdMYWXY0aYmkIUYCWdhCmUSiWMHz8+taizzz4bW7ZsCbx28cUXY9asWfi3f/s3HHHEERg1ahTWrVuHCy64AACwbds27NixA3PmzKnpbdSqowLGM888sy16GCUiIiIiopHNzjDGB4x5wpJx48bhuOOOC7x24IEH4uCDD/ZeX7hwIZYsWYKJEydi/PjxuPzyyzFnzpyW9pAKdFjASERERERE1AxiAVbCsBpVNoaKdeONN8IwDFxwwQUYHBzEvHnz8LWvfa2+K6lCIQNGpVRsM1RvHhgooQtAFyCABdMet9BpnhroBMfpOMHQNBcSZY936D1H8Hk7qNtYjDlYudaZr6OgPHWyUpolBsqtogOUXM3a6tzstuZOiDTbvO7rzdN8uN5NahPqmWW/5T320+YPtrKLW/8oZ2rWZrfuo9p+0RrfsiPhs1XndoJZ30v21dawbWM7RVIx0/KNOZq46no36GtlLzyZxlJN+91t4+a+SUTi376uGXDS/PVcJm/dnOM9z2HQqU2IqbOIqOB46prptXjggQcCz0ePHo2VK1di5cqVNZVbb4UMGImIiIiIiJKkNUktys20hQ4YkzJ9StkZRuUMlaGgIBBY4ss0IpopE69TCCPwOA/Dmd+C5T2ulb+sfNm9KDdLKlVm/pQy8mdn8mSilBXY/nUvv0Gd6liZu/jPmOXLsG/ydHCUJcPaiIxq5k59UspLyiwlrSO13Dp2OpSY/aoxIxpcT75jOFvnPbX8ao7KNXctrSLi30t9MkzZs7Fm8mc0tY+Y2s5S4ovv0EybVp7fT6PBHSzFqynbmze5UU0ypNoEStumC5OOcf8x02mfhU6uextLzTA2sS4tVOiAkYiIiIiISCe905um9hveMgwYiYiIiIiIQtLuYSyKQgaMCkZsM1F/ZzglsTu9Uc54bKLskRYFltf6ym1KknR9QbcuI8f1CCWVJrBK7LLyPJfMTR3zc5s0GlDZmzdqZqup450qm/NYOTqxybOOwPZO2c1ZmwenbZ88430GmhRnlLr+vB3S1LHznPRtmL+5adyxnNYsN/E4qaJpa1z90poj1q0Zb5b9VOemTw3vYCdzU+gqx6NNbRpd7fYK1SfcZ0jN+2HkNGGr+hiq+pwwf4do4dVyyLBa5Tl+szZVbq8OCvNpt7p37vEtApgJGUbLUnXsjqx9FTJgJCIiIiIiSiJghhFgwJgwvIaBUWJ3euNmjJKuAPozjEqMSAYxnIHMmmH0lguvOs/zOl7Y8WdU/Vfgw8/rzYJ42yxPRy1heepY7TrzZHSz1idf5zT5OgjKK+/2z5vR9LZJwkckS3Y4btvGvee4TGVcvWOzf0kZzRzryJNxjM+yVp/JTdrP1QwxE1y+Qd8VVWbvcmfwY+errmOlrOvIc/wkrytra5CRk3VM0qhscq5lMp+PtnOmxv8mWtWBUKOO2WZ+FtotOxgnvE3i6m3V0LKi9UQA04rfJ5Yww0hERERERFRIYqnkTm+sYmQfGTASERERERGFCOwsYtEVNmCMb4paUUIJCiVAoslm5fwH2M1LlfI9V+487rrim6PqxgTL20GvUpVxYNzyRIJlh5+PJEnvtZZ+BKpvppR93jydBomIdyxV20GCu5RyH1e5fSxUGp/Uq6GJ+MY7zbxMwnZIblIZ16mN/nVdWbnm1TSD1S0fXlbbLFVTVnwnPXFNGH3z+z47cU19k/ZJrZ1q1ToubF61NA1tZHPjtPVHt1P1Y4emftfU0OQ47lhp147nM33f1NBcODBPDWPF1rLeesg7nnRiWZqTkVo6/WnU2MjVlF+LLJ0xtlq1TUtFTAwOvlLn2jSHiEptkloEhQ0YiYiIiIiI4qQPq8GAccSKXq3RXzkYhS5Yyt5Eyrn2o2BfHbOzik6mUQEl54BRyi5NeVnGyutAJfsYPsCMmOOt3teVDAVYElynJfHrj6OUClwR9D/XXT3MXC6CSS//c7dU3fPwrfZJ8+rWU6t6ZP+A4L6w6lnBgkkdaCN22yZkLHXDwWiHiNFkGEMvheunLye8TCj7mGHdcYeiNgsamjnp8AvUP8dxWm3WvprsVN51xX1u47O32V6PZo3TM8tANHPrX06f8Y4O5xPfwVO+jHRcPWqRdZ/WM7Pll5wtTn6Pukx8PTrZqkuW0ldGeNvpys+yfXUZrqTljDrss4YNOZVxuazz1INuW/pfi8swNuqz4ZenNURcPUUsWFLGwL6n61q3ZhEAZkLAWJRztUIGjERERERERElEVGKzU2GGkUYpA5ayh8gwlHKyhwqGAkpOdrFkAIBCl+94KRmVa6fhjKM9dzBzGE7IRZ4n1DE9M5j9QE4qS5/NCy+gMq1Rl+XMSjl3urmP7Top73Gr2ANwiPcYCNbPfa57rHveaPXYdmmJ5Hq8G/+xUousRSQ1O4nbP+H66dYVyRZGZpKEadHl/ckwXWIsksHU1Em3rO5aclLCvJGfurTjp5Z7stMaAcRvL012MKWsyJ2Hgfkldlp4VW4GK2+2Oi1THbecf531pssuhvdn0tBTtXy3pL0jffZdV07yfF457j+aQqL7Jtt6Kuur7/4Jtw4KD+sVOG9JWM6et76/Z4n3pGdoHRH9Toz7HORraZBXZMi1mG1ueM8BSHC+aBnR9eRplZF8jOlf126PhE1UxhB2ZK5Re7EEMBN6Qq3zx7BtFTxgTErnW+hSBsQw7K5vlB0IGgroUva/bhBZUkAJ9ofWfQ4nsLQfOUGi91wiAaRXIxV9LenEKPwONLeSx5bj77REtyWS1hsOMnQd72RZT1wnPZX1ONPhf2+R02dnPeKsR3mPiyxPk+PEhi1Kvy0jDbsz/j4lzdfqW/uTGiDlDVzD8webcar4aRnWZYU+6UkBpa583Xy6gDjLD2HWRlsG4r9rwqIXzaLfN/VYV5a664MFFTtPUgDnL8qeTyXPI9HX4vaZFVNG+sWK6Fxpx1/c5CwXC+OW0P72pS4fPTayynoByJ43/nncBYDY/ZFwUcB/7GS9yBNeLo+432Ogsu2N0DQV2k+622z0+6k6cdshz0W3arZ/0vrzBgix53uh6f5ta2jOI/3/+s8ndesJrytNlvcZ932TxZCl8PO/5FumfaTcw1iQ082CB4xERERERERRIin3MLZRk9RPf/rTVS135pln4h3veEfiPAwYE4xSBpRhN0ftMhRGeRlGoMuoZBK7FFBS4nSC4zRXVeLrJCfcEU4lw6hvrhp/uSJ85S5yBT2UDdJlgTJlnNLW49VRAZDEZqZp2QE3G6Bbj1JuMyzlPa6UG89w5rVEeY/j+LOY4eepzeJilstbTpKsmcKkK+1pGZvg+pKuWFam6a5OB6ZnLCe8X+PKDxXQfAmHkb4pZzgLGJ+VAqJdc+fJYumWCcwf82OXVqe4+aoRd8wlHmPOsRH8jow/BnXlJdUn6/tKbQaatK+cbR+3b9zXtdnESBn+dahIXZLKtdWW2a6G/zsr3AWLf3r4dxEIfjdUMivZfgfiXk96i9FsrL5di/+zbXmv+cuJ3/bu/LptnadVQmR6ToF9oSTwWuT3X7nT7N969zOoVHRfhfdTuNa1Zr3Cr+v2UdL+0WfJ4j8X9fpMGKFj262NbnsqJc65pHjZRv/nQ0FgqOBzf9lx34G67+CkliXKUM5tK26hBhSUfS5iAFaONkGvlcv4xh8zz95WLCiUpTOG1XjmmWeqWu7EE09MnafAAWP8eDduz0+jSgZgGOhSwKiSQrcCSgbs4FGJcy+joOQEkUrZX5IG3C9Y+1PXpRD4Qg78gCr9F4hXn1Dz1biAyp7XLVO8QMkNaPzNGSQwbyUQCd/XluVErlKPhHkjdY7Oq7uXLus6dMvGBSHhOmmbreWI9Nxt7a9vXJCqlHg/ZEmBcFx1tNMiFwii20zX3FclBXNKvLq6j3XzKhUux/cDFnrd/yb8HakFAsfQjoh2uBY/b4CR7Rc+LtjXBf6JJcbc2xDtnE+lTA++FglCMrRX858oRQJWzTLReer7wxd3bMcfUxKc7h5Phu+kykDgX1vCsZHxeEhlpe0/pZ3mPnb3p24/utu98m/a68HpSfPGvQZomjZHLlpkFwkMfPvY/V4Kfz+43yH+7xn31g7/sRBdzlezmO+WPLQdaWq3XzToz7qP0vdxZX3ufhFNMBSuk7dMzGc37rcICO4z+yJ3eL8E949/34SnQ/k+m77Patzn1J2exL9flALEvXtPKUB8fUWEG9CK8uZxFrTvARRlv2uBdzCKEwh4PXz6lrWUcj739hpEKWeIhZL3LgUGLKksa8KA2GdQsETBgmH/iQFRQNkyIDBgih1wlaFQtux/TQsoi4FhgfO6QlmAsgCmBQw781gAypbAcoI3EwITAksEouz7C00IoOy7Ey1lQZQ9rdJrr/1rJ4avh3flhYfB8cJ9wVJler4P25CxP9f87UQQfzG13axataphZRc4YIxyvzDcoLHbUFAlhVEG0G0A3YZClyEYZQi6neCwywBKEHS5waKqBItuEOZmHO0rRRK5iqe7cmTXQx94ha+2BwLEhMDNzXp6QVJo3mBGKHoV1x9E6AIT/7L+QCUcHEWCiZhydOUGp4XL9V0ZSwiQ3Ofh4C3wZgFtwOj9pliaAMcXwPqf+5d1fwB1wVHctHDo4s6rOzEOB0GBef2BWuBMwV9GaJrueUzKQJWc1+0DPxiJG6pSTuAKiAo9B1R4uu5x3I2yummBSTHT8va+5E+nhy5Bu0OsRDpPyHqjW3gdmuexnV3EpZvc5SP1ldhfwrQfyNjNrJsQ2XfuseK+5Dt2vC9G5TXBCEz3p6EMw1dmeD3+OoU+LHn3tytyc1QgwtfP525Iy5k3nPKw3O+xUKRhReeJzGuFlwk+9/ah5StTV99InZFd4PtBs/19P3iB7wB3X7qfecMIvObtd90+j3yH+Ouj2de65hlWKIgNXEa0X3GDE+UOGWXZ78vw/dgo52xSOYGIgvMd4JYivtIs50dFxC7TDWbEft0+l3d+yyzfMuIu4xxyTrAk4q5fASacM1sFsRRgAWI5j53X7D8neLEUylYJYilYYsC0DJhWCSYMO2gxDZhiPx4UA2UpYchUGBY7kBmGgglgyDRgiX2PmiXiZGPs3+Wy2NWygxk7ELYsJ6gRu7qWE3Y5bwtw/rXgdiVXORjDHa3oOtbxhjILBT7ud0j4p8keGq1STmX+UHnBr6xQsK0C08IzBIKvpHOc0DHqL68EBDpXjP3Y+QrU/uQGV6/PfIa+ToPvNfpaFq8Pv47bcy7TLkQUzA7JMPrt27cPBx54YN3KY8CYoMdQKJWA7pJCjyHocYJFO4C07KapCigpC12GoOQEZCUl6DIsL+ArqUpgZ//++RL5Cs7rlSt+Jd+4TcErre5r/iuvEpoXvufhTFHw/YWXD1+pDWd/goFKcBoMsa/EGdEGDso9ypxINRKsGDHTgPggJzwtZ68u9vzeL7nNDRCT29eG5oWvPW04iHFWqjlZibwX9wX3JCKQ+q2cnHgnU972Cp04BdYfOiB8Vxwiy/mfd4U2eqD3JiN4Qu/O6x58hqrMEzjJN3wnkIbvRB/BE0D3xDG8kQzf696CziYLT4ucMFYeSlykXktAoQkevU9H3Jhp/tcjwWPMMlbldcMSiKGgIu2lwkGipqxI0CPBYyyLSMDu31cJ+8k/3d3mhu9xqVSZ5gSPYpQghuE7rnzHh/94q5PACVclwvEdov4TMudk0oguo1s2MF2kErT4M3CW5QQfYj9WytmP9oUIJb7XLFQei1TKEfECDFiWF/AAgDKdMQSlUgclViWIKTvrch4rp2xYYi8rsF8rW/bxZ1oQS6CG7X9RtgBTAFMgQ+KkQwBrCLCGFayygjlkwDINlE0DZrkLw+UShqwSTMvAoNWFYcvAsFVCWRSGxbCDFLGbhZUtwIT93BTY/1r2z48l9smb6QYnYgcZlcf2+/YCFql8Xv3xedp4ptELs9GAIBxYRIIKb75QgBIKVHTXwnTBgj8g0tUz7nQ3/TaX4GPDgB29+CYbAEZDt12iZerqp7vOkPheNWXpvgISg6HAxXRNebF1Fu3rcacKuuUidYqZxy4ny3Lx6w23WNMtEzzG9O/Pni9+Wpp9Q4M5l2gfguSmyXmurzXTlClT8Pd///e45JJL8Nd//dc1l8eA0aEbcPSAUQqlLoVuQ3BAl2C0Iej2/ix0G+IEixa6DQuGcoJGQ1AyLDvLaLh/VuWc2nscbcphGOI7d5VKMAZ3OqJBlP8LwfdFnic7ZC+bEEQYCHzz2OtVlZPNkuELduBlWLwrxEnl+spJDGTCu8g9ufQHWV4FQ/P692/kmz3p5Ddm3kr6NFoH95ulVAqmDeMCUd36/YFMYB8awcfhaSpUrj/4CryvyoEihgJKvq+Ckm8dpZLv4LRP3r1ySl3BE/iSUdknTZJ2ch+Zx3+1ObJrc5YVWF5plw+eaASPZ31Z+nLC6wvWz//+AiuMvIf4srPUxVe0aTkBi/NnlmGYpn18m2WosmkHF+WyE1yYwLD9OsplYKgMDFvOY9MOMobKUMMWrP0mZFggQ4C1H7DKBqwhYHioC2WzBLNsYLjcZQcUloEynGwIDDvAsEooW0DZeV627KZfbhBhegFFJcCwnGyJl/WwfNNhf7ztRJL9+bW85/b2qDTySj91CHd3nxQQxAUD4aDEK8u3zyuBSSlQlq6cwDqRPF9sEjfhhDn1ZDr0PDB/+DcOQLcCujX1DWZ1ghdaI3UKvaa/vSO6bLCprfuafz6J1MueLjHbxBfo5zyJjzuBjwQnmrP7yD7QzhM9nuP6BIju03AdwlG3b1rm+fzvNzhf+GJ5cN36afnrrNsekZf02zLh1pN6T0s6/UlaVpdUiM5UXXg0MNi5AaOVkmGs960c9fKf//mfWL16Nd75znfiDW94Ay655BL87//9vzFt2rSqyssdMC5YsAALFy5M7U2nUVauXIkvfOEL2LVrF0444QTcdNNNOOWUU+q+HqW6MG4UACdYHNtlYUzJRI8h6C6ZGF0y0WXYweKokomuLhOlkhMcliyUusTJygmMLrF/sxXsYKrk/YbbAZyBYHM+95zbMCqBmS+rEwjsuuwgQYkEsjDKDb58ZVWu5DsnkKVKMKF82SIF5V3dd5+rUihQMRSUG4wYRjAQLZXsaW6GzAkqlIhTX/fNu+/N8J6iq1R5rJRdFhQA8b03u05SqpSjVAle5k0Bqsud5gYIwforLyADYJT859ZQ/mBKhRq9GCV7Geeub1UyKlkcw3AyA5UgUSk463Hfl1SmwQpkH5UASiwvC2bAzjDAMLxmT5WKWb7mTU4WwN1bZtlp7mQvo0w3Q2A5GQfT3k5m2T1jtucrm4BpT1Omc5Jvlu06DLuBgUCGxZ5v2AKGARm2IMOAZSrIkII57DR3GjZglg2YZgmWKJTNEoYt+7FpuSfzBkxUnrs3l5ct5WQF7BN5U5STBbBfK0vlZN57C7Dv8xA4rbPck3+xDx93XiAYBADBQMDbxL7dniX5lvWEOfvJf+h1FXxdd7IePunXzZO1mVG1V/O95/4nqgR/WkJ3dT+8jkgZmumxJ9K+5GVPKTx/8IQ+WEZ4WnTd/lsJwu8hXKbu5D4ceKQHcu580TLD08IzaE/EI/vJLTdmn6QEH1k6I8sceFR5Qh53u0LS43BdA/dWp9zjratv0nyRaQkHdqSO2pRSfLCUuFxoXRHx58TadWQtO7Yu2kAmW50itxfkeV9JbyZHXbMUV1m+yqAiU+HOrAl1zFyWCn7DaKWtR+e1ahZqD52aYZw/fz7mz5+Pl156Cd/61rewevVqfPKTn8S8efNwySWX4G//9m/R1ZU9DMwdMPb392Pu3Lk48sgjcfHFF2PBggU47LDD8hZTle985ztYsmQJvv71r+PUU0/FihUrMG/ePGzbtg2TJ0+u23rc4ELGTMCEKdMwuqQwuiToKTljMBp285dhJTCVwhDsZqiAfaVBGU43LO5Jbhl2kxxRTjxj/2tf7bbXacFpVQTlxQHu/O4JMVTlWqT/CjhgtwByr4D7r37bjYsETgsl+x4A8d9GI15zHMA9iRbflXPx5gMqV9D9t03DWzb4sanHQLdxg/9GB7s1Q8uZvmkqMn/cPQXh+xXsef3To3WIv8Idsw7vhFP55o1O9xeX9R6FLM2ODO/EvRQJQkJvIXMGIjxv1myGf948gYmhgvdzeO8jdKU+LoBy7yn2lxk5kQ/VW0E0r4XfQ3D9cQFEWvCgQuu1p4WW8d3v7J9g+OYNvh4NjHSBQeXaVHR9LkNz0pyWuE++dznbST0QPSlKug86y8m97sRehQ+Y8Hze9Jgyw8uHW4WEyw5Edpp5fa+r2A+S73Gk1ULM48g6NF9U/nnT2sNleV1Th+j0bN/78cso/fp169WuK/T7Eneyn9SqJa7suLP62HXoX05esbtsjpP0Wpt1Z108a52yBDd565w1+FKq0mqoGnm2e6O1SVWMV19vdRWqZt/DGH8stHuHOJMmTcKSJUuwZMkS3HTTTbj66qvxk5/8BIcccgj++Z//Gddccw0OOOCA1HJyB4x33XWXF63edtttWLZsGebOnYuFCxfiPe95D0aNGlXVG8riS1/6Ei699FJcfPHFAICvf/3r+PGPf4xvfvObuOaaa3KUlP4JMlQX7h98ApPLvegyu1FCN0pqFAyUYEgJBrpgwIABBSV2Zsl5BiX2Y6ASFHj3KYT+9U8DKj+IcecB4WWzBkLh5cLTgyfCyvm91Qc0lRPQbAFR3mAoNggJvp1QEITARgv/jiedY+nWlxRAxZ5fhcsOn7PFvReVnHEJB2jKf49rqPxgXZOyJb6Tf806g2UG65bUVCqtiVQkOIwJigLzxGRR4rIn4cCo0hxTEoOhShn++Xzzav71lvdO5kMBq5029m0HzTy+4MKbZsBbLjaI8bdADs/ja4kcfJ4SbIQj3Ug5+oBCxX7IM5y0R+7/03wI48pLDQASTvx1H/LAa4Z+3tgrRJr5A9s4JhKMC9JUXNn+1cfUUVeG7nlSvZLK1S0bXXnCtBzryL1epJ/ox60vKUWTUKak1T8t9ZP7/dcQ3FXblWyzVBukNYvha1XUyZoc5cje15q6vnqyM4wJn/8833UtsHv3btx2221YvXo1/vjHP+J973sfFi5ciD/96U/4/Oc/j0ceeQQ//elPU8up6h5Gf7T6xBNPYNWqVfjIRz6CsWPH4sMf/jAuu+wyvOlNb6qm6FhDQ0PYtGkTli5d6r1mGAbmzp2Lhx9+WLvM4OAgBn3tpgcGBrTz6e5fNFQXxmMyxqnx6MEYdFs9GOUEiV3KQAkKJafJ6N0rpQAANPNJREFUoWEolFA5GbNbmfrvG4ITUPqf+9cVPJELByhpWaO48xf/PO6kTBenfesO1DFUL//81QROkSAPoU58NPWKTNecl7m9wfrrmhQglQJ1jw5jkico0mWI3HJ1wZBumj8YMpx7XCv1Cd7vErifRkXrmpQV8gdF/vcQHSrDV4YRnjf4XJdxicwXitIDQZJTN+/96Q5MI1hn+OcLTzN8ny3/AeV+sPwBkb/Zd+DD6jtg3ebDbmBjhKbDnceZz9e0u1IHX3QX92Ho8jXbBqC9FzVQN18bTLdsty5pQUj4Kom3k+Ne1ywTdxLqW5/2pDqps6Es8+syAbpgwm014s2jL1PiArDY4NHQzxMbKCa8XyKiEUpGv9rqKlQtLcPYrpcPvv/972PVqlW47777cOyxx+Kyyy7Dhz/8YUyYMMGb5+1vfzuOOeaYTOXVdKnphRdewNq1a7F27VqUSiW8+93vxpYtW3DsscfixhtvrKXoiJdffhmmaWLKlCmB16dMmYJdu3Zpl1m+fDl6e3u9vyOOOKKudSIiIiIiopHJApzO0vR/7drpzcUXX4xp06bhf/7nf7B582YsWrQoECwCwLRp0/CJT3wiU3m5M4zDw8P44Q9/iFWrVuGnP/0pjj/+eCxevBgf+tCHMH78eADAnXfeiUsuuQRXXnll3uLraunSpViyZIn3fGBgIFfQOKyGMIz9dm7QACyxYDjjEZVgoCSG14SyBPs+OTezqHwZRn9CxZ7HR7lNO8NN2fyzVJ7oWn4lZfOSMpfh8vziOtzwT9OV50sCBdara4EVzmR6TVjD0wPL+bZFKBMYzsT56xbOpoYzg8F1+OuW1HQzmsmsTAsnlqKZS9363br715+cJc5+f5u2Cac3LXp/m/ue/M1JM2UwdZ15+JZNymAqhBI1uiaezjp096EFspKhZYLNPCWY6Qw179RmLMPNOnUZy8B83obxngQyl/5/w9lLfxYxkLmsvLFA9jJywPkyjGlNKMMHfVzmUZepDGc2w3w7U3sfWFLzVW2mMDyPpszIcglZy9B7VeF5ggej9zCSLY3NQGoysEnvM2FImNhMaHidcWXFzRfeXonNMuMnacuqReyAsxkxe0uUXVKvLnmEh4VyP7/1Kr8F/P18xE1vRy+88ELqvYljxozBsmXLMpWXO2A89NBDYVkWPvjBD+Kxxx7DiSeeGJnnrLPOikSxtTrkkENQKpWwe/fuwOu7d+/G1KlTtcv09PSgp6cntWwRK9Is1ZIyXpc92C+CshrEILpRMlLuYXT+VVYH38MYmK4PVL2WajHrao97GIOBcvI9jNH30d73MOqbtvIeRkS3ZdvcwxhtRsx7GKNlJo4rqitPF0s04R7G4LeL+7pm/sA2jgkaq7iH0ZvCexhjVp1SHu9hbF+8h7E5mnwPo+rkexgFyZ3eNLEuWXz3u9/F/PnzvWDxT3/6E6ZNmwbD+d587bXX8NWvfhX/+q//mqvc3AHjjTfeiPe///0YPXp07DwTJkzAM888k7foRN3d3TjppJOwbt06zJ8/HwBgWRbWrVuHRYsW5SzNGfU8aQ4p48yuEzDe7EGP20uqYffM2FUSdKFygm4YyjvZFFGV3zJxBg12brExnV5PAUCUeAMMw5nHEgWBOD2b2r2o2r2bKqcXVLePUvF6SXVPRS2vbMu7kGNPc8p0yrb/U94Mbi+pw269xK4bnA+HBXssRcvXS6pSlRDC/0FpbS+p4eX800ZaL6lGZHrWjHFcfZMC5EhdootH5tWVlxSUBuaLqXf4Nf1FjFCQFapzpS7sJdVfT20dWtJLqkSnBYthL6lpQX9kwdC0yPbzT0sO9junl9SY9adeYPAWDj6LC9DcVgHRReLLZi+pGcvLUGDeOmcNRnX3RufBXlIjVCf3koqUYTXaLGL84Ac/iBdeeMEbPeLYY4/F5s2bMXPmTADA3r17sXTp0sYHjB/5yEfyLlI3S5YswYIFCzB79myccsopWLFiBfbt2+f1mlov4qTURw3txeu7X4DqEnR3WUDJRMkQjEobhxH1GofRadYaaqKmG4fR+3LzTdM2bfN/kfnHVlQIDrruXzYyrzMt1LGG92NuGLDHDpTKfCWnjqUSnDQLAh2HuPV11qMsZ53ucxGoQP0AeOPH2OtQJVX5VJdKwe96ZQTq540T6WxDFT7bU77l4IsmvDEjBYDzPt3LAM5yyv32cMZz9LYDfNOUYY996P9REoEB8Zqb2fOK82alsiwAWP7nFpTpm2aaleBAxB5A3R140HLGbBR7PvuxOGMtmlDOmIwwLXusxbJlPy474z6aFmTYgirb/6IMe1zGYXv4GHMYkGEDlqlglksolw1Ylv182HIGXhd7rEXTG2/RgGkplJ37AcqwB8k1xR2LESiL8oacGQacgdcNb8gZ++KJgmkBUAqWO5SMsi+42I/dCzC+153Dx92UbojkvyjibMZU0Yx+RTiL7p8eF+zHNQvP0yRcN0+W5XXzxb2fuNfiLqTY0+Iz6rFlaKYnZdt1r+cddD3p4g3HYdRP14df0Q9Q48dhlMg0jsMI/Q5yVZdgTS2b4zCi+oA8R9Ba/3EYY1QRhFqv7c+/UJuwOqzTm3DyJvy8WlX1ktoqH/jAB/DSSy/h2muvxa5du3DiiSfi3nvvjXSEUw8iZewdBkpd9iDhZTGw31ToNgTdRgndhoVuQ1BSdtDYbVgwlKCk7KCxZFgw4ASQhsAwLDdO8j12rqb7Yy9DfB96y35s+E5yDESvQPt/bHwxVaDJmvs8NtWEYCAabt9oIPCF5wWyXqBqVB4b9pe5iASDVq/cUB185USapMWl+oBKgOutN+HMM6npVuRqvEqf111n+LkRDFq99vxuj5jutKQr+W6Q7d6/E9gPRvBxeFo4lanrXRPwglnAaU5V6rIvVJRU8MJBqQT/hQExSpVySl3BCwclI7hsDAVglPPXKQL3AvtSRMHN7ZvHy1QHP0f6cqInP15QGVjW0M4fPOmNmUdV5o6vg66elfkDNbQs709ZFmCWocqmfRHDLAPDZRhiAcNlwLSgnNdQtqDKZWCoDFW2gHIZGDKBsgkMmZAhCzJoQoYFMgRYg4A1pGAOGzCHSxgeNmCZXRgqGyhLF4ZNhbJlYFhKsGBg2FIYlhLKFpwLEAbKsC88lKXyw286FxoECiYqzy0RQBkwLfeignsyoJxrLm6LC3uD+fKikZ0Rlw0L3xqgSwxGgtOcFxkC01R0mj4w1dRHM1+W1gjhaZGvUSQ/Tzu3TmsxYb+uyaL7ywi9prv4oN9m+S46+KfHbRNdxj+4fMyFkZRbAHTr0s0fXne4XsGy9Cef0X0aroOEZ6hMyzxftJWE9zzw2Yt//3HbMludq7ugoatTI6clnf4kLWvXO/4Ci/1idcHHwGC7hVXZpWUY265NaoN0VMAIAIsWLaqiCWo63X2Mrw0LShCUS/YJxZChMMoQjDKAbkPZzVMVnKDRCRYBlJSgyw0KISg5/xpORx2GsgI/5oav4w8Fuzxvsqp8aL0fHf89VKGrmOEvTaUEIgrhoQ10y4ebSAWuODvZ0kofBMFpMASwFGBER6RR7lHmtAQOZv7s17TTgGhwHDct9QwjVCfdmYCbzIsL7LTzonJ5Ke7szZJIOZH3Ehd4ukGzl5lUoe0VcybnPtedgYQCcxWer0uTTXbeu/IPBaFUZV7vaoiCFxz7U1r+wNfJQLtlBgLdcJDrfy+BZj6VaRKelrHjEO+5rmONhONJwo/9x0r4VyXcAYDu9fAsccv47ptRlkAMZWeEY2sXXKbyWriOEjzGski8yJKwn9zpPQYwugtAt3PRyL3o4DW9cPa5e5HC8B1XleNjlKEwShkYU2tzugbTBum+VgLed634X4O3T5SY9vxKBZcRsQNQt/WAG3iIs6xbnmVVAh7nmFDeNIESy42YvVYHCrADeXe66UyzULlgULbsY9EUu9WBaQFlgReBDwlgAigLrGHAHFIQ04A5ZEAsA+WygXK5C8NmFwZNA5aUMGgZGDZLGDINmMq5CGDZLQ6G3FYIouxiLcCEAdNZjds4wmt9AMAUgfvuvYYWzq0Z/gsAouB8r1daHihnf1W+fu1y3N8P+zdeQXsfvPs8tN8jgTxUYLlKcBmaPzCtIu6ign/+cDl+iS0DwgVq5o9bn3+a/hsh+BMRnp74XjVlVXv7Quy6YuscE7wnbJfwcpE6heoRLCffcpHTpMA0fdY7y8UJe774aWn2DXVwk1RJvofRyr01OlPHBYzNNGgJlAmURVA2gGFDocuAHTCqEgwl6DLsHlK7nMDPOcexs4vKFzA690wZqnIflL9pk/I9NnwBYrhzEvd1lzu/JcoLSP1U6GqRL9bQ/BAkN93xB59G6EssGqj6k3D2vJXANWE94fqHyg1OC5cbjKt08/qfu10hR66iKed/blDon+TsBF2M4W5rN2RWgUhAvNjEX46/3LhplSBABcqJzOcE6/65A/PGBd+hX8lIVjr8PObyfqBZtQpO85pXh1euCWpjg+DErCzipwUmxUzLG3AkBInuSWikGUigSTHip4XXoXleuac4vExCme4FCF3AqJEWP8ZuZt2EuH3nxX6+YyfUjF75L3AELkQgenEhNv2V/YJAoqQLAhIzn7sh3eDdqrzuXnCw4zsJze9/HPxX/PNAM597fLjVsELzh+sbqTOyiztrDkcLhoJymxaMUZV96ezj0c6+P8C9KObud90+j3yH+Ouj2deai3axKQPdPg1tV/s13/50A2wRKBjO/nFfc4I/J4hXyg7oxQ32LV8AJOIFrW4HBUoAsZQT4MNrU6+g7O92caplOnVRBqRs7wAxFZTY84nYtwaIGBBLwbIMmJYduFtioCz27QNllGBaCsNWCWVLwYQdxJfFzeDbtxTY/wLDln0bwbBzd4MJZd/BAIWyJRClMGzZAboF+7urErC7wbvYP7mqcsuA23+C+M6P3A1VGfPacJ67rxsAfD3WQ/kCcuUVEQwGgxdQIwF86Hn4QkCgPvC/WHlolxksp7JssC5+4Z/42Gx54OtVReZJunCQGFSrwNNAWXm/QV8f7vAMY8r0dnPfffeht7cXQKW/l61btwIA9uzZU1WZDBh93Cyjew/jkGVfKTUtwCwpmJagZABdhsKQEhhK2S34lB0wKjdoRCVoBOwspNcxBKLnwMEPcHgYhfjhGAD91aBAAIlg3BN+Hkhk+QKe8HrdulTqnRLoaQLdpHnddfplXYdu2aRmHP46abs/ctejCRgj5Tjb2l9fd9tHitUEqW6wmySpCtGrltFtprt3P+0enWBmWj+v/2JAZTld+YLAvT6G/5j1vx6qR2zgrJvmYyRvz8q6g8G1uwb/4/B8WpZ+D0UThSplevhcNWH+uHNd31XQ8NhQ9rluOLitnMjolqmV/thOOqYk8K93guhr8eAlGAPHQMKxkfF4SGWl7T+lneY+dvenbj+6273yb9rrwemAip037jUgemU8cswgu/CRE2y66e7X4DT3O8T+s3yvBY8FXesa3Yqr7QBUm9TXbj//Z0U/LW4fpe/jyvoq1wEq30bhX/ro9aDwN5dzzhHzW1QpqfKafz8pZV/s7lKC0d4+cj6L/ueaW2v8n9W4z6k7PUnNnzFvdc5y4l5ssD8vCnYg7cbnwbCvZG9jURBlB58WDEAA+yzPvq8eYr/uPjadskUZEO+54c1jWobXAWJZSk5zeeUk5u0m9EOW3aqtbCkMw/7XFGBYnGb1cLoZQKUDRBMCS8QOtkVgKqeTQxX8cwNx9zdZDIE7DJx4ny831FbO40pQbTidbBgq1PdDiqFy597DKEi+h7HdOr0BgAULFgSe/9M//VPgeZ595ypwwKjvKVV830LDpgWlLFjKuTJmKBgCdFmCYcPtX0Y5zVKdL08oJ6MI5+PmPvZfman8APpft6dFT/r90puPhAOI6PK6i6251xM6nU5uxZkc+CW16kwKrJLeQlrwpisnKXhIWla3XN5ykiS0bA3VJf59JgX00fUlBJMpFwLiLiqkZb619YitIWrboNVKOIy055uRk29dAOcrI8f8cVc7/csE+0iKCWpT6hQ3XzXijrksF6bCrSq86RnKS6pP1vcVDbRC05P2lRsQxOwb93V/79aVaeEy/OtQkboklWsL1jP8PhoxVFr8bfMSmB7+XQRCF5688rL9DsS9nvQWw9P8nxvdtgeiSV573vht786v29aRRgWBykXfUS05m2BGSQKv6e5usKdJ4OKyUtF9Fd5PkQsJOeoYt6/8r+v2UdL+8X8OK9s7/nOR7TMhCbW1aTN5mu3ZBWCUc7G/5LVMC34+FARGKfjcX3bcd6DuO9jbVoELJJXHoXZSgelxvys6r5tD+G7muduLkzuKn968qmRiNWjYlwIHjOmGxYJYghIA0xKUDQVDAV1KOS2nlHcVroTKlVE3kPSn890Pvfc8FCS6DGfZ4JW/+DpGTtoT3k9cK764QUaS1qsLAuOagyatx503rgfrPEGXG2hbUIlBd1FkDTSBtOAsW0CXtZVf0nxVJgjqJulrNu/JdJ6Tv7wn7pHMUGh6WoCjm08XPGW5cpr1pynQHD5F2gWOtKAw67qy1F23DfIE88FtrJ8vdh5dEBmzz+JalEaDIGhIhnniy3SlfkdHZlCRaUo7NW755ItfSeIuFujee+TzFTu/aF+P3X8Jn9PYYEkXaMbMmyZLk8dwEBJukljZJ9F9GSi7yjrGbYfoftJv+3AZWbd/0vrzZpRiz/dC0/3b1j0XjLtv03+hRbee8LrSZHmfcd83WQxZnRtuCJKD43q3zGlXnbsH6yIur2W/VhYLlmXBhLKDQxEYsDNWdkc2yhn1wc4yukpGpYlkOLtozx1qQx/+kOf40KefpGc/kJOzV7ZK4BY/c5aThrhsZBp/ViDaJDXpVKOx/M1idfVzn+se6543WlJz3sxlpFS3Hu9Gd8tdNbIWkXQikPUEU/vDm7JM0smObvmkkx5AlwHTy3TClLhNGkclPAOyZxJ10k744reXROZID+5Dz2MCjPC06MmaaF9Pux02cuzFvDt9YNyYPRy+VwvQXWis/jcmSdo70m2frNsmeOFAQtM080fWnW09SWXWIjq+cfB5fEcw0T2StP+qkTSuc2QYAe3yoWViPwf61+sxrjQQ3S5x2zyu0yR9GdH16D5jcZKPMf3rebdHWYZyzd9OJCXD2E7piRkzZlTV3HTx4sX46Ec/mjhPwQNGIiIiIiKiKEHndHqzevXqqpZ7wxvekDoPA8YEw2LBErcLcuXc5mxf6TFg3ySsTPvfkps5CmUUIz1saZpvBF8Pqr2JXvBQ1mX3sjRZDAv3Aul/Xs3VDa8cBGvsf17JckrkuX+NEpgWXla/nlrZHSYp73FoaobH9nP/vmjE/URR7fRVVz9pTbTit2389tBm/qrIPADpWSFdTaIZi/R157k6nOUqfWX56lSbscpztbzadeXNLMRmKMJZw/A+0Syn3R8quJX9y2nn1+yVcBlJy8eVEZ2nPt8ZkX0aU6xqUEP1pPea9h4tmJmX8fZB6O1auv2VZfv7f180Hwt/GeFtpys/y/YNDzmWtpxRh32m2z464u9mVjc9Zpii2G2tMsxTZ7pt6X9Nt/3jlqu3uO8QILpt4+opYsFCua71aiYLndPpzRlnnNGwshkwEhERERERhUnrbs1oJ4UMGN3hMyp0V1AMDKMMSzRXRcS+Olppa17peth+btO1PXfnhzctWnzeq+m6DmfCncjEdSozEiS911qu/FR7JT3POt0r/QZU6j0B7vh+7uOq6ub8W2uG1d+hSL2uwVYGV8les6TtkHjPS86skT6jk2NezVXaLJmmrFmjvBkjbd2VPnMSO39CffLImkmol7SsQVxGIm3Z+G2dL5MUt/7odspQRpX3H0nMcZBF3LFSTZa4GTJ93yQcE5VycmYHtdPzfyu3MgtWdVmak5Fa7sfMsw3S9kGt5dcibhvHZe5aoZrtZy9X/XdKq9lDoCRPL4JCBoxERERERERpipJFTFLYgNG9SpJ05caEiTJM7wp60pVI/9VTJUawFyvR9TaW7Wpru12Vrdw/GMwE5c0M5WVBvG1WS29leepY7TrzZFyy1sdbf5aL4XmutlaRHcq7/cUb6CTrPSnp5XuZsKR7V9LuKYqUme9el9z3xiSVlTELJWJpj4H4LF31WY/kDG1tV4sb9l1R7dXvGrKOwfmStlnt68hz/CSvK+P2r3J7dprqW5NUka2qeZu286lruDeB5mtcNrCZn4X2ySgmC2+TuHpbdTjuW8cSwEyofjvdw9hIhQ0YiYiIiIiI4qQ2SWXASEREREREVFxJMWFB4kUGjPHdAlsYVmWYquw1cRBlwYIEmjz4m2hWCgmuQ3cjc55BbZUYXjM6JYZXl6zPa+2UIkmeTluS1NKMpNrmRHEdfNS6jjzbO1fX4UnTczT3yNtENNP68zaJq0MHEa70bRia7tuVeZtjpjXFTDxO0jq8iGuCqps3pQ1M5ua/VdSp2nVlVe/ByKMrqF/TaO1yqR2bVD8oSfLUWvdD5zYZC2v4MRRRe4ceza/zSDNyjt+RqJOPb0uQPKxGm9061iid0lCaiIiIiIioaQR20Bj3lzcWXr58OU4++WSMGzcOkydPxvz587Ft27bAPPv370dfXx8OPvhgjB07FhdccAF2795dvzdVhUJmGN0rsbrMn78zHFOVYamyl1W0/29CIF4WKZzd8JedtJ4k7qC3Fiz7sf/iRfhCRsbnXlmaOudVTYYKCG7bvFfZ82bD6p1ByzVvhgyWTvb9Us/sXI7MaYar6LmyMpkzPXXKllXZIUk9snBZ50u8Cps43EPeQeob0Q19864gN6Zji/qUmf1Keo0dBzXsin2BMzUtyoI0ssM40kk6xtOGXGtn7Vv3Ts4wigBmHcdh3LBhA/r6+nDyySejXC7j4x//ON71rnfht7/9LQ488EAAwJVXXokf//jHuOOOO9Db24tFixbhve99L/7nf/6n+jdSo0IGjEREREREREncDGPs9JwR47333ht4vnr1akyePBmbNm3CO97xDvT39+Mb3/gG1qxZg3e+850AgFWrVuGYY47BI488gtNOOy3nO6gPNkklIiIiIiIKsTOMEvtnQWCaJgYGBgJ/g4ODmcrv7+8HAEycOBEAsGnTJgwPD2Pu3LnePLNmzcL06dPx8MMP1/8NZlToDGNisyaBMwpjGQACTVFNlL1mWvahUnmsW4e/SWr4eTuoqcOZajpwkLzNYqtr+pqt5Po2yYwuU/8mmna59WuWas+brZ51X2+Dmg3b9Uh5TzU28czdrDrX/PXu4KTGZugNb05Ue6chWdX/vdSwbePqolTDm0cWoxmkf9+k/e62VxO+zJKOE6XpjCPtuKrXMmnLhZdpmyaLzfsuqr82rnvb7N/8BOnNTh9//HH09vYGXlu2bBk+9alPJS5nWRYWL16M008/HccddxwAYNeuXeju7saECRMC806ZMgW7du3KV/k6KnTASEREREREpCMCmAnXkywBTp49G/fff3/g9Z6entSy+/r6sHXrVjz00EO1VrPhChkw2leYK3u/MpSGbx5YXobR38GNwIIlZS+zKLC8zEEla+YbdqPqLtRbp9rhMfJk4HJf3W5U1qqK/ZM3Q1FtBjdr3erZ6Upw/RneZ6790riOWapbrl5ZvGZ2lpLvCnJbZdOqVcSOSGLfcxv/nlSbhcq6fFJZDfjsdJLwu/e2Tsx2idtaqs7LxC1XzXq85TLOS+2lk/eVBaCccg9jqVTC+PHjc5W7aNEi3H333XjwwQdx+OGHe69PnToVQ0ND2LNnTyDLuHv3bkydOjVn7eunvdpGEhERERERtQGRlL/c5QkWLVqEO++8Ez/72c8wY8aMwPSTTjoJo0aNwrp167zXtm3bhh07dmDOnDl1eEfVKWSGkYiIiIiIKIkgZViNnBFjX18f1qxZgx/84AcYN26cd19ib28vxowZg97eXixcuBBLlizBxIkTMX78eFx++eWYM2dOy3pIBTooYPzsZz+LH//4x9i8eTO6u7uxZ8+eupUd14RtWA1CVDnQ7NRthmo5neGYUgYCzVIl0DQz0qypA5qoNroJpT1vns5mGte5SDXvtbZOgqpsmNGgpp/tNB5ffcbWq/cx2C5j5WV8X01qvjlyOkxp8vdxLc02O6jTCLemgXeT6zu/QrtFcjaBTCwr47KdpNr3Uc1yzVqmluWIahG8iU0/PY+bb74ZAHDmmWcGXl+1ahUuuugiAMCNN94IwzBwwQUXYHBwEPPmzcPXvva1nGuqr44JGIeGhvD+978fc+bMwTe+8Y1WV4eIiIiIiEYwEYGZMBBj3suOWS4kjx49GitXrsTKlStzlt44HRMwXnfddQDsAS5rZyL9WiNgyhAEQ4HMh7+jG7uTG/exnVkUiJcN8obbCGVmGt9FfTp3eI9mDqnRqCEUcm3PajtSqeHaZr06PqrnsAzRuRszTEP9j/XaO67IXqcGZp9q2C6ty+61SesI3bZL61AlT1mtVGUWLk7SVmnGO6/HOupZzzbb20TUAbIMq1EEHRMwEhERERERNYslQDllWI0iGNEB4+DgIAYHB73nAwMDqcv4szhlDAEYikyLzSwCgASH2hCRYIYynG1sg6v29ahDo7J8jR6KoT7Zv/p8W9S+Hxo/RIgtx/ApTcng1LjdcmV1WvnL0PrvirbLyLnqWK9aM3d5y2qkVq+fiGgkSP7tL8Y3bUuH1bjmmmuglEr8e/LJJ6suf/ny5ejt7fX+jjjiiDrWnoiIiIiIRipLANOK/2OGsQmuuuoqr0egODNnzqy6/KVLl2LJkiXe84GBAQaNRERERESUSkRgJvXMzICx8SZNmoRJkyY1rPyenh709PREXrebISY1KrKbfpmyH3CGzwgvbzkpaH9HN25TVLcZXng4Dv+/djkpR1kbDsFRTZO8xjYTraI+TR6+IY/6NeHM3zlMdeuu03Zo8jdu/uO4jT6LbfbrlFabKrujyVx+NeuudQu21x4gIqJGqfewGp2qY+5h3LFjB1555RXs2LEDpmli8+bNAICjjjoKY8eObW3liIiIiIhoRLGA5GE12uwibqN0TMB47bXX4rbbbvOev/WtbwUArF+/PjL4ZT4x1w3EQtkaAoxKhlGhBPFlbsJDaLjZRf9wGu4wHN4y7oHly6LFZTvqNRxDPVVfpzwdizRmiIfIeur6Ia99uIe8qq9/DcdVletsz4Heq9gOtRwzaUM/1Hg81jJgeT3WUc0y/no14ghpx6OOiIg6hzhn8kXX0k5v8li9erUdjIX+agsWiYiIiIiIokQA07mPUffXfqmdxuiYDCMREREREVEzJTYAKkjysaABY0KnN74mlyYGocSCchKxoml2qBtz0d/RTaV5qr/5auXo8jfxTG/u2X5HZXXXVvJ2gtPYsQLrv+5GaH3nMrU3K+2A63CN3N91KrvezUJbqV3rRUREBNj3KJYTzs+L0ly1oAEjERERERFRPEHyBfP27KOh/oodMCZcMRAIytYwSgrwZ6tUqOMK/xAa9nNfVhFWpJMb98CqZCX9dQgedK1pGV3fdebP0DVrOIiwNsx+NTDbVdsXXBtuqywa2KlMklYOK0FERETVsyAoJwaMxVDsgJGIiIiIiEhDIDCTmqS2za1LjcWAkYiIiIiIKESQfJ8im6SOZBLt9Ea3w8UahmnYr7sd30AApYKjkQQ6rklpjhptiiqRZSvSm/61T6csQC0dzVT3PurQNLKttl9+9fuian2nOu2knu9iZGwRIiKi4hFYMBPObxkwEhERERERFRQzjLZCB4xpO9m0hmF4ndyYlQ5vxJdxjJTpG0YDAMRK6OhGl10MZnqSM2/1GTqiVi3tdKZuQxWM5A88M7FpRva7IyIiompYsGCqcvx0VYwziEIHjERERERERDrOCOuJcxQBA0YiIiIiIqIQ+x7GhAxjpw41llMhA0Z988PoDrekDFiVTm5EAOV0liNpKehM4y669Yk2R40280xuftoend/U+KGp4T00t0npCP1yqFvz3vqqdRzDsHb4pBAREVH7EwVYKnnc9iIoZMBIRERERESUxIKFMjOMRQ8Yk3eyiAmRYFbQzTYq3xUFpcmB+K845O3sJpgtjGYW07OJbXLw1pixqs9VmzbZFu2kTTOJrV4PERERkZ89qMZw7PTokHgjU8EDRiIiIiIiIh1JCQqLcVmbASMREREREVGIBQtlFZ9hTLq/cSQpaMBoQduVRqipnoimI10JdmKjlJHp2kJyc1T/fPHNUfVNUas4UFvcQU7bNjVtxnZR9e7CRaMB76MY18+IiIiI/JIzjOz0hoiIiIiIqKAsWDAl4R5GzegHIxEDRiA2I2NJGUoqGSGllO8qgxFaNkvmKC67mH6w5couNjBT1pwrKXX68LXFUCMh7VinGJ1TUyIiIqJGsCAJQ9ux0xsiIiIiIqKCsmDBTBhWgwHjSJcp02PCnzmsLFKCd3+hsuBmG5WbdUxabeTAyj6cRtxymgomrL/VeaM6frA6KFvXKbhFiYiIiBwiEEnKMBbjzKm4ASMREREREVEMjsNoY8BIREREREQUIhCYktAktSCd3qS3oWwDzz77LBYuXIgZM2ZgzJgxeOMb34hly5ZhaGioyhKzpY9FJOavDJEyANN5bMK+KbYMgZX4F5TtIIt2eJOvOar4/qudVeNfFUT0f1WSBv91ok6uOxEREVEjiFgQMeP/mGFsH08++SQsy8Itt9yCo446Clu3bsWll16Kffv24Ytf/GKrq0dERERERCOOBSspw1iQy+0dETCec845OOecc7znM2fOxLZt23DzzTfXJWCM39kWkobLsJNcBpQyncd2ZzgqMji7m8jVX4WIZhDTOrzJLvuB3OIrJCNosPks680yCEujFeMrjoiIiKg6dvu8pPNyZhjbWn9/PyZOnNjqahARERER0QgkYsGyeA9jRwaM27dvx0033ZSaXRwcHMTg4KD3fGBgoNFVIyIiIiKiEUAgsBKyiEVpktrSTm+uueYaKKUS/5588snAMs899xzOOeccvP/978ell16aWP7y5cvR29vr/R1xxBGB6ekdwVjxHa54Ha+4N8MK7KakZqCDHK+ctm2OWkNnNJkqkbL9auzAxluN5q+dtaLDnE7aPkREREStZmcYh2P/mGFsgquuugoXXXRR4jwzZ870Hj///PM466yz8Pa3vx233npravlLly7FkiVLvOcDAwORoJGIiIiIiChKUnpCLcYl+JYGjJMmTcKkSZMyzfvcc8/hrLPOwkknnYRVq1bBMNKToz09Pejp6dFOy5Z9Sx+KQrmTleV1ggOUvY5vREoZ1uOKZhejGch6qvGqSEPrlrLqlq25sUbq+yIiIiLqNLyH0dYR9zA+99xzOPPMM3HkkUfii1/8Il566SVv2tSpU1tYMyIiIiIiGolEUobVYMDYPtauXYvt27dj+/btOPzwwwPTGpuBIyIiIiKiIhJIYlBYlCikpZ3eZHXRRRcFOpKJdiqTV7XLWZE/r+McXyc4dkc4bv3M0J9O0rTqqXqP9lfnjmpyrRrssIWIiIiImkgsiJRj/8AMIxERERERUTFJSqc3RRlWgwFjoixXDex5xEnW+jvBAQAR53XlZvuyZxLbqrltE+vSRu+aiIiIiArLgshwwvT6txBsRwwYiYiIiIiIQuxbzBIyjAXJcjBgJCIiIiIiirCAhF5Sax6irkMwYEwSd9kg/LpS8DdNVVD2PP7XxQgtEt8hTXJT1JF3YBbk4gwRERERdZS0MdmLcRbLgJGIiIiIiChCAEm6T5EBIwHZGie78zgZxWgHOJVMozuSSbM6tFFQCVdGDLQqY1mMjxcRERERdaIxY8YgS4bRnm9k64hxGImIiIiIiJrlsssuQ/II4Pa0f/mXf2lepVqEASMREREREZHPUUcdBcDfSjDMAqAwY8aM5lWqRRgwJsgyGGdgDq+ZqdsBjlReD0yzUF1T0EY0H814CCR00kNERERENNK89NKLsM/2w+fgFgDBn//8cvMr1QIMGImIiIiIiEIOOeQQVPr8cJM/bgBpYOLEia2qWlMxYEwhiG+9LKF57CfBTKL4b5YNZBor86RnDqvNSBIRERERUbVee+1V55EE/t2//7WW1KcVGDASERERERFpjBkzBrfddhsqWUYLa9asQU9PT4tr1jxKmjW+QxsYGBhAb28vgBLsm1iTGYaCYZRyrSNQqnffnzPMRnid9bwvMGU3pt+PmTGDWafDpTAHHREREVGBiQhMcxD9/f0YP358q6tTFcuyUCpVYgLTNGEYxcm7FWocxkpsnC1csVuQ1iO0aUJ4VHPAmLGODBiJiIiIKCP3XLqTc1SGYWDt2rX4X//rf2H9+vWFChaBggWMe/fudR5ly6aJAKZZblyFiIiIiIgKYO/evU5Lv840d+7cjg56a1GoJqmWZWHbtm049thjsXPnzo5Ni1PzDQwM4IgjjuBxQ7nx2KFq8LihavHYoWo16tgREezduxfTpk0rXGZupChUhtEwDBx22GEAgPHjx/OLlHLjcUPV4rFD1eBxQ9XisUPVasSx08mZRWIvqURERERERBSDASMRERERERFpFS5g7OnpwbJlywo1dgrVjscNVYvHDlWDxw1Vi8cOVYvHDsUpVKc3RERERERElF3hMoxERERERESUDQNGIiIiIiIi0mLASERERERERFqFChhXrlyJN7zhDRg9ejROPfVUPPbYY62uErWR5cuX4+STT8a4ceMwefJkzJ8/H9u2bQvMs3//fvT19eHggw/G2LFjccEFF2D37t0tqjG1q+uvvx5KKSxevNh7jccOxXnuuefw4Q9/GAcffDDGjBmDt7zlLXj88ce96SKCa6+9FoceeijGjBmDuXPn4qmnnmphjanVTNPEJz/5ScyYMQNjxozBG9/4Rvz7v/87/N1S8LghAHjwwQdx/vnnY9q0aVBK4a677gpMz3KcvPLKK7jwwgsxfvx4TJgwAQsXLsSrr77axHdBrVaYgPE73/kOlixZgmXLluGJJ57ACSecgHnz5uHFF19sddWoTWzYsAF9fX145JFHsHbtWgwPD+Nd73oX9u3b581z5ZVX4kc/+hHuuOMObNiwAc8//zze+973trDW1G42btyIW265Bccff3zgdR47pPOXv/wFp59+OkaNGoV77rkHv/3tb/F//+//xUEHHeTNc8MNN+ArX/kKvv71r+PRRx/FgQceiHnz5mH//v0trDm10uc//3ncfPPN+OpXv4rf/e53+PznP48bbrgBN910kzcPjxsCgH379uGEE07AypUrtdOzHCcXXnghfvOb32Dt2rW4++678eCDD+If//Efm/UWqB1IQZxyyinS19fnPTdNU6ZNmybLly9vYa2onb344osCQDZs2CAiInv27JFRo0bJHXfc4c3zu9/9TgDIww8/3KpqUhvZu3evvOlNb5K1a9fKGWecIVdccYWI8NiheP/2b/8mf/3Xfx073bIsmTp1qnzhC1/wXtuzZ4/09PTIt7/97WZUkdrQeeedJ5dcckngtfe+971y4YUXigiPG9IDIHfeeaf3PMtx8tvf/lYAyMaNG7157rnnHlFKyXPPPde0ulNrFSLDODQ0hE2bNmHu3Lnea4ZhYO7cuXj44YdbWDNqZ/39/QCAiRMnAgA2bdqE4eHhwHE0a9YsTJ8+nccRAQD6+vpw3nnnBY4RgMcOxfvhD3+I2bNn4/3vfz8mT56Mt771rfiP//gPb/ozzzyDXbt2BY6d3t5enHrqqTx2Cuztb3871q1bh9///vcAgF/96ld46KGHcO655wLgcUPZZDlOHn74YUyYMAGzZ8/25pk7dy4Mw8Cjjz7a9DpTa3S1ugLN8PLLL8M0TUyZMiXw+pQpU/Dkk0+2qFbUzizLwuLFi3H66afjuOOOAwDs2rUL3d3dmDBhQmDeKVOmYNeuXS2oJbWT22+/HU888QQ2btwYmcZjh+I8/fTTuPnmm7FkyRJ8/OMfx8aNG/HRj34U3d3dWLBggXd86H6/eOwU1zXXXIOBgQHMmjULpVIJpmnis5/9LC688EIA4HFDmWQ5Tnbt2oXJkycHpnd1dWHixIk8lgqkEAEjUV59fX3YunUrHnrooVZXhTrAzp07ccUVV2Dt2rUYPXp0q6tDHcSyLMyePRuf+9znAABvfetbsXXrVnz961/HggULWlw7alff/e538V//9V9Ys2YN3vzmN2Pz5s1YvHgxpk2bxuOGiOquEE1SDznkEJRKpUiPhLt378bUqVNbVCtqV4sWLcLdd9+N9evX4/DDD/denzp1KoaGhrBnz57A/DyOaNOmTXjxxRfxtre9DV1dXejq6sKGDRvwla98BV1dXZgyZQqPHdI69NBDceyxxwZeO+aYY7Bjxw4A8I4P/n6R39VXX41rrrkG//AP/4C3vOUt+MhHPoIrr7wSy5cvB8DjhrLJcpxMnTo10kFkuVzGK6+8wmOpQAoRMHZ3d+Okk07CunXrvNcsy8K6deswZ86cFtaM2omIYNGiRbjzzjvxs5/9DDNmzAhMP+mkkzBq1KjAcbRt2zbs2LGDx1HBnX322diyZQs2b97s/c2ePRsXXnih95jHDumcfvrpkeF7fv/73+PII48EAMyYMQNTp04NHDsDAwN49NFHeewU2GuvvQbDCJ7ClUolWJYFgMcNZZPlOJkzZw727NmDTZs2efP87Gc/g2VZOPXUU5teZ2qRVve60yy333679PT0yOrVq+W3v/2t/OM//qNMmDBBdu3a1eqqUZv4l3/5F+nt7ZUHHnhAXnjhBe/vtdde8+b553/+Z5k+fbr87Gc/k8cff1zmzJkjc+bMaWGtqV35e0kV4bFDeo899ph0dXXJZz/7WXnqqafkv/7rv+SAAw6Q//zP//Tmuf7662XChAnygx/8QH7961/Le97zHpkxY4a8/vrrLaw5tdKCBQvksMMOk7vvvlueeeYZ+f73vy+HHHKI/Ou//qs3D48bErF77/7lL38pv/zlLwWAfOlLX5Jf/vKX8sc//lFEsh0n55xzjrz1rW+VRx99VB566CF505veJB/84Adb9ZaoBQoTMIqI3HTTTTJ9+nTp7u6WU045RR555JFWV4naCADt36pVq7x5Xn/9dbnsssvkoIMOkgMOOED+7u/+Tl544YXWVZraVjhg5LFDcX70ox/JcccdJz09PTJr1iy59dZbA9Mty5JPfvKTMmXKFOnp6ZGzzz5btm3b1qLaUjsYGBiQK664QqZPny6jR4+WmTNnyic+8QkZHBz05uFxQyIi69ev157bLFiwQESyHSd//vOf5YMf/KCMHTtWxo8fLxdffLHs3bu3Be+GWkWJiLQmt0lERERERETtrBD3MBIREREREVF+DBiJiIiIiIhIiwEjERERERERaTFgJCIiIiIiIi0GjERERERERKTFgJGIiIiIiIi0GDASERERERGRFgNGIiIiIiIi0mLASERERERERFoMGImIiIiIiEiLASMRERERERFpMWAkIqK29NJLL2Hq1Kn43Oc+5732i1/8At3d3Vi3bl0La0ZERFQcSkSk1ZUgIiLS+clPfoL58+fjF7/4BY4++miceOKJeM973oMvfelLra4aERFRITBgJCKittbX14f7778fs2fPxpYtW7Bx40b09PS0ulpERESFwICRiIja2uuvv47jjjsOO3fuxKZNm/CWt7yl1VUiIiIqDN7DSEREbe0Pf/gDnn/+eViWhWeffbbV1SEiIioUZhiJiKhtDQ0N4ZRTTsGJJ56Io48+GitWrMCWLVswefLkVleNiIioEBgwEhFR27r66qvxve99D7/61a8wduxYnHHGGejt7cXdd9/d6qoREREVApukEhFRW3rggQewYsUKfOtb38L48eNhGAa+9a1v4ec//zluvvnmVlePiIioEJhhJCIiIiIiIi1mGImIiIiIiEiLASMRERERERFpMWAkIiIiIiIiLQaMREREREREpMWAkYiIiIiIiLQYMBIREREREZEWA0YiIiIiIiLSYsBIREREREREWgwYiYiIiIiISIsBIxEREREREWkxYCQiIiIiIiItBoxERERERESk9f8DamnSu3MKYFoAAAAASUVORK5CYII=\n", "text/plain": [ "
sim_50_linear: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsim_50_quadratic: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsim_50_exponential: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsim_100_linear: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsim_100_quadratic: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nsim_100_exponential: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "sim_50_linear: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsim_50_quadratic: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsim_50_exponential: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsim_100_linear: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsim_100_quadratic: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsim_100_exponential: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "07df39b17cc246878897f3473dd7f29f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f1ae54f235fd42958aa225c74f4ab1de", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 4.4/4.4 MB \u2022 35.2 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m4.4/4.4 MB\u001b[0m \u2022 \u001b[31m35.2 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "0f4754189e20469eb79d45d0949d8aeb": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d471d0c69b1045f68c8ee8d189f8068e", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 10.3/10.3 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m10.3/10.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "22f26ff09a42442189f5f8d389dec130": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_da56950343d747d0b0a951be02d9d13f", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 8.7/8.7 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m8.7/8.7 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "296c3913cbba4f1ebf68a0f40489c3db": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "32b906c79a8c4dd39407164ffdc641e9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_65b9e9d9c54d408a95727f5655ba343d", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 8.3/8.3 MB \u2022 33.5 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m8.3/8.3 MB\u001b[0m \u2022 \u001b[31m33.5 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "36860f056df24a878c5ccf9800fe74bc": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d47b10ae0f104f72892a933b44d2599a", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 2.5/2.5 MB \u2022 27.5 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m2.5/2.5 MB\u001b[0m \u2022 \u001b[31m27.5 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "4007a6ca87314c96b4817ba19bfdf11a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_4712110243da422893c16740a03688ac", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 4.4/4.4 MB \u2022 30.8 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m4.4/4.4 MB\u001b[0m \u2022 \u001b[31m30.8 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "4712110243da422893c16740a03688ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4bda1c90cc8d4ed69eadcb5f74e1e2df": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4e4de29e304d44759ba9cbcb2f85c7ef": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_296c3913cbba4f1ebf68a0f40489c3db", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 8.6/8.6 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m8.6/8.6 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "525bac0aa0054a0fa2200ac1bf25b082": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "59ba52e7460546008b804a01a61fdbb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "65b9e9d9c54d408a95727f5655ba343d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ba9a362e5db4348834afb908c0775c4": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_59ba52e7460546008b804a01a61fdbb4", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 8.3/8.3 MB \u2022 35.7 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m8.3/8.3 MB\u001b[0m \u2022 \u001b[31m35.7 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "6e7342758eaa4409b9dd48bde720d82a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f8b77ccf54742f1a7c665c8c3a0a916": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_83e6d9fc8ce4401196a3000d0f347b48", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 8.3/8.3 MB \u2022 37.4 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m8.3/8.3 MB\u001b[0m \u2022 \u001b[31m37.4 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "74f53585dddf4b6eaa41fd14610d38c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7746306e4a7b4ae89c213ad41794e989": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f498c42be37e454cbe84d5e1d7b7487a", "msg_id": "", "outputs": [ { "data": { "text/html": "
linear: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nquadratic: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\nexponential: status = success \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100% 0:00:00\n\n", "text/plain": "linear: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nquadratic: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nexponential: status = success \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "7e43f11a54384f9cb9ed6cabc4f06ab8": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_74f53585dddf4b6eaa41fd14610d38c5", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 8.7/8.7 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m8.7/8.7 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "83e6d9fc8ce4401196a3000d0f347b48": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "901673e663214a0f8a5904351f92dfc9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a886e5294df34306846817f7f2d39a01", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 2.5/2.5 MB \u2022 23.3 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m2.5/2.5 MB\u001b[0m \u2022 \u001b[31m23.3 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "924e6bf171b4484f8bac72593d6dc93d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "98919aa42050473398ed859c805e3b70": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a886e5294df34306846817f7f2d39a01": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ab074efc0fe846efb22dda349c44962c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_98919aa42050473398ed859c805e3b70", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.3/9.3 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.3/9.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "b36685e13b5d4763b19ffa35fb42cb2e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_525bac0aa0054a0fa2200ac1bf25b082", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.8/9.8 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.8/9.8 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "b3be7343f3444ba8a9fc856939acd85a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cf585c1a7a4c4a2bb7107319d201f7b5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6e7342758eaa4409b9dd48bde720d82a", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.3/9.3 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.3/9.3 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "d024206e284643b0a7614e03c359c446": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_00fbcfa8974749ef80548123d4686e08", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 8.6/8.6 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m8.6/8.6 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "d471d0c69b1045f68c8ee8d189f8068e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d47b10ae0f104f72892a933b44d2599a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "da56950343d747d0b0a951be02d9d13f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e89d651e0b4645c09241811aedc97537": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_924e6bf171b4484f8bac72593d6dc93d", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 2.5/2.5 MB \u2022 17.0 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m2.5/2.5 MB\u001b[0m \u2022 \u001b[31m17.0 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f07d14c86f1541a38bb2620302cf0661": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f1ae54f235fd42958aa225c74f4ab1de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f3fe13eec8344ebe8acbe06f05311174": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b3be7343f3444ba8a9fc856939acd85a", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2191 simulation.json \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 9.7/9.7 kB \u2022 ? \u2022 0:00:00\n\n", "text/plain": "\u001b[1;31m\u2191\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m9.7/9.7 kB\u001b[0m \u2022 \u001b[31m?\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f498c42be37e454cbe84d5e1d7b7487a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f51508af145d4fb1a429e6260422e75c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f07d14c86f1541a38bb2620302cf0661", "msg_id": "", "outputs": [ { "data": { "text/html": "
\u2193 monitor_data.hdf5 \u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501 100.0% \u2022 4.4/4.4 MB \u2022 32.0 MB/s \u2022 0:00:00\n\n", "text/plain": "\u001b[1;32m\u2193\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[35m100.0%\u001b[0m \u2022 \u001b[32m4.4/4.4 MB\u001b[0m \u2022 \u001b[31m32.0 MB/s\u001b[0m \u2022 \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }