{
"cells": [
{
"cell_type": "markdown",
"id": "36ff66e5",
"metadata": {},
"source": [
"# Broadband directional coupler "
]
},
{
"cell_type": "markdown",
"id": "05954108",
"metadata": {},
"source": [
"In the rapidly evolving field of silicon integrated photonics, the directional coupler (DC) stands out as a crucial building block for a multitude of applications, such as optical signal processing, sensing, and communication systems. As a passive device, a DC allows for the precise manipulation and distribution of light between two parallel waveguides within close proximity, enabling highly efficient and compact coupling with minimal loss. This elegant, yet simple structure capitalizes on the waveguiding properties of silicon, leveraging the evanescent coupling between the propagating modes to achieve precise control over the flow of optical power, thereby playing a pivotal role in shaping the future of photonic integrated circuits.\n",
"\n",
"Conventional compact DCs often face limitations in terms of narrow bandwidth, while broadband designs tend to require a significantly larger footprint. This document explores a design for compact, broadband DCs, as proposed in `Zeqin Lu, Han Yun, Yun Wang, Zhitian Chen, Fan Zhang, Nicolas A. F. Jaeger, and Lukas Chrostowski, \"Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,\" Opt. Express 23, 3795-3808 (2015)`[DOI: 10.1364/OE.23.003795](https://doi.org/10.1364/OE.23.003795). The key innovation in this design, as compared to traditional DCs, lies in its incorporation of an asymmetric-waveguide-based phase control section. To demonstrate a concrete example, we will design a 2x2 DC for the TE mode, with a 50%/50% (-3 dB) splitting ratio, operating within the 1500 nm to 1600 nm range. Different polarizations and splitting ratios can be achieved in a similar design process.\n",
"\n",
"Initially, we employ the transfer matrix method (TMM) to model the DC in a semi-analytical manner. TMM necessitates the calculation of effective indices for various waveguide configurations, for which we utilize Tidy3D's [waveguide plugin](../notebooks/WaveguidePluginDemonstration.html), as it offers a convenient means of performing mode analysis. TMM provides a computationally efficient and accurate preliminary estimation of the ideal design parameters, which are then further optimized using rigorous 3D FDTD simulations. \n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2dccd831",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import gdstk\n",
"\n",
"import tidy3d as td\n",
"import tidy3d.web as web\n",
"from tidy3d.plugins import waveguide"
]
},
{
"cell_type": "markdown",
"id": "e767be29",
"metadata": {},
"source": [
"## Transfer Matrix Method (TMM) Analysis "
]
},
{
"cell_type": "markdown",
"id": "41c9cdc2",
"metadata": {},
"source": [
"The broadband DC primarily consists of a symmetric coupler, an asymmetric phase control section, and another symmetric coupler. The three sections are connected via linear tapers. The inputs and outputs are from 90 degree circular bends. \n",
"\n",
"We can use TMM to analyze this system. Assuming the input and output fields on the waveguide are $E_1$, $E_2$, $E_3$, and $E_4$, each section of the DC can be represented by a matrix. That is, we can write down the following equation that connects the input and output fields:\n",
"\n",
"$\\begin{bmatrix}E_3\\\\E_4\\end{bmatrix} = C \\cdot P_t \\cdot P \\cdot P_t \\cdot C \\cdot \\begin{bmatrix} E_1\\\\E_2 \\end{bmatrix}$.\n",
"\n",
"$C =\\begin{bmatrix}t & -jk\\\\-jk & t\\end{bmatrix} e^{-j\\frac{\\pi}{\\lambda}(n_++n_-)L_1}$ represents the symmetric coupler. $t$ and $k$ are the transmission and coupling coefficients given by $t = cos(\\frac{\\pi\\Delta n_{eff}}{\\lambda}L_1) $ and $k = sin(\\frac{\\pi\\Delta n_{eff}}{\\lambda}L_1) $, where $\\Delta n_{eff}=n_+-n_-$. $n_+$ and $n_-$ are the effective indices of the symmetric and anti-symmetric modes, which we will determine from mode analysis using the [waveguide plugin](../_autosummary/tidy3d.plugins.waveguide.RectangularDielectric.html). \n",
"\n",
"$P = \\begin{bmatrix}e^{-j\\frac{2\\pi n_1}{\\lambda}L_2} & 0\\\\0 & e^{-j\\frac{2\\pi n_2}{\\lambda}L_2}\\end{bmatrix}$ represents the asymmetric phase control section. Here $n_1$ and $n_2$ are the effective indices of the lowest order modes, which correspond to modes confined in the top waveguide and bottom waveguide, respectively. We will determine $n_1$ and $n_2$ from mode analysis too.\n",
"\n",
"Lastly, $P_t = \\begin{bmatrix}e^{-j\\theta_{t1}} & 0\\\\0 & e^{-j\\theta_{t2}}\\end{bmatrix}$ approximately represents the linear tapers. $\\theta_{t1}$ and $\\theta_{t2}$ are the phase shifts in the top and bottom tapers, which we will determine numerically from quick FDTD simulations. \n",
"\n",
"In the [reference](https://opg.optica.org/oe/fulltext.cfm?uri=oe-23-3-3795), a small propagation loss of 2.7 dB/cm is also considered. Since this is a small factor, we choose to ignore it in the analysis without a significant loss of accuracy. \n",
"\n",
"After we perform the TMM calculation, we can determine the power splitting ratio by $\\eta_{cross} = \\frac{|E_4|^2}{|E_3|^2+|E_4|^2}$ and $\\eta_{through} = \\frac{|E_3|^2}{|E_3|^2+|E_4|^2}$, assuming the input field is $\\begin{bmatrix}E_1\\\\0\\end{bmatrix}$.\n",
"\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"id": "bc4c6b5f",
"metadata": {},
"source": [
"We are interested in the wavelength range of 1500 nm to 1600 nm. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "41aad3b8",
"metadata": {},
"outputs": [],
"source": [
"lda0 = 1.55 # central wavelength\n",
"ldas = np.linspace(1.5, 1.6, 101) # wavelength range of interest\n",
"freq0 = td.C_0 / lda0 # central frequency\n",
"freqs = td.C_0 / ldas # frequency range of interest\n",
"fwidth = 0.4 * (np.max(freqs) - np.min(freqs)) # frequency width of the source"
]
},
{
"cell_type": "markdown",
"id": "a027789e",
"metadata": {},
"source": [
"The silicon layer is 220 nm. The waveguide width and gap size in the symmetric coupler are 500 nm and 200 nm, respectively. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8cc7ec56",
"metadata": {},
"outputs": [],
"source": [
"w_sc = 0.5 # width of waveguides in the symmetric coupler section\n",
"h_si = 0.22 # thickness of the silicon layer\n",
"gap_sc = 0.2 # gap size between the waveguides in the symmetric coupler section"
]
},
{
"cell_type": "markdown",
"id": "60f8be20",
"metadata": {},
"source": [
"To define the media, we directly use the dispersive medium model of silicon and oxide from Tidy3D's [material library](../material_library.html) for convenience. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "de4b86dc",
"metadata": {},
"outputs": [],
"source": [
"# define silicon and silicon dioxide media from material library\n",
"si = td.material_library[\"cSi\"][\"Li1993_293K\"]\n",
"sio2 = td.material_library[\"SiO2\"][\"Horiba\"]"
]
},
{
"cell_type": "markdown",
"id": "7fdf1ec5",
"metadata": {},
"source": [
"Now we use the [waveguide plugin](../_autosummary/tidy3d.plugins.waveguide.RectangularDielectric.html) to perform the mode analysis on the symmetric coupler. Alternatively, one can use the [ModeSolver](../_autosummary/tidy3d.plugins.mode.ModeSolver.html) plugin to do the same analysis. The [waveguide plugin](../_autosummary/tidy3d.plugins.waveguide.RectangularDielectric.html) just provides a fast and convenient way of setting up the mode analysis for dielectric waveguides. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "64f4ad0c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHWCAYAAACGxthTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAu4klEQVR4nO3deXhUVZ7G8bcCppIACTBklQABHYKAkGYziLJFguKSURlxmQAitBht6eACyoDgMGlbthaBiApxY6SxBWyw0RAIKEYRJE8LCoqCQCRhEaogQqLJmT98qLYkGyFJccL38zz3kTp1zr2/e/WhXs89t8phjDECAACwjJ+vCwAAAKgOQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDIALXnZ2thwOh7Kzs31dCoALCCEGwAVj/vz5ysjI8HUZ1bJkyRLNmTPH12V4efnll9WhQwcFBATo8ssv19y5c6s8tqioSI8//riioqIUGBioXr16KTMzs8y+H330kfr06aOgoCBFREToD3/4g06ePFlTpwGUy8FvJwG4UHTq1EktWrQ4a8altLRUxcXF8vf3l5/fhfn/XjfeeKO2b9+uvXv3+roUSdILL7yg+++/X7fddpsSExP1wQcf6LXXXtOf/vQnPf7445WOv/POO/XWW29p3Lhxuvzyy5WRkaFPP/1U69evV58+fTz9cnNzFR8frw4dOmjMmDE6cOCAZsyYof79++sf//hHbZ4iQIgBLjSFhYVq1KiRr8vwifJCjA0upBBz6tQpRUdH66qrrtKqVas87ffcc49WrFih/fv3q1mzZuWO37x5s3r16qVnn31WjzzyiCTp9OnT6tSpk8LCwvTRRx95+t5www3Kzc3Vzp07FRwcLEl66aWXNHr0aL333nsaNGhQLZ0lwO0koFbl5eVp1KhRioqKktPpVExMjMaOHavi4mJJUkZGhhwOhzZs2KAHHnhAYWFhatmypWf8/Pnz1bFjRzmdTkVFRSklJUXHjx/3OsbXX3+t2267TREREQoICFDLli01bNgwuVwuT5/MzEz16dNHTZs2VePGjdW+fXs98cQTldZflXFFRUWaMmWKLrvsMjmdTkVHR+uxxx5TUVHRWft7/fXX1bNnTwUFBalZs2a69tpr9f7770uS2rRpox07dmjDhg1yOBxyOBzq16+fpPLXxCxbtkzdunVTYGCgWrRooXvuuUd5eXlefUaMGKHGjRsrLy9PSUlJaty4sUJDQ/XII4+opKSk0muwcuVKDRkyxPPvsF27dnr66ae9xvbr10+rV6/Wd99956m9TZs25e5z8eLFcjgcWrRokVf7//7v/8rhcOjdd9+ttK6KrF+/XkePHtUDDzzg1Z6SkqLCwkKtXr26wvFvvfWWGjRooDFjxnjaAgICNGrUKOXk5Gj//v2SJLfbrczMTN1zzz2eACNJycnJaty4sf7617+e13kAlWno6wKA+ur7779Xz549dfz4cY0ZM0axsbHKy8vTW2+9pR9//FH+/v6evg888IBCQ0M1efJkFRYWSpKeeuopTZ06VQkJCRo7dqx27dqlBQsW6NNPP9WmTZt0ySWXqLi4WImJiSoqKtJDDz2kiIgI5eXladWqVTp+/LhCQkK0Y8cO3Xjjjbryyis1bdo0OZ1O7d69W5s2baqw/qqMKy0t1c0336wPP/xQY8aMUYcOHfT5559r9uzZ+uqrr7RixQpP36lTp+qpp55S7969NW3aNPn7++uTTz7RunXrNGjQIM2ZM0cPPfSQGjdurCeffFKSFB4eXm59GRkZGjlypHr06KG0tDQVFBToL3/5izZt2qRt27apadOmnr4lJSVKTExUr169NGPGDK1du1YzZ85Uu3btNHbs2AqvQ0ZGhho3bqzU1FQ1btxY69at0+TJk+V2u/Xss89Kkp588km5XC4dOHBAs2fPliQ1bty43H2OHDlSb7/9tlJTU3XdddcpOjpan3/+uaZOnapRo0bphhtu8PQ9duxYlcJWUFCQgoKCJEnbtm2TJHXv3t2rT7du3eTn56dt27bpnnvuKXdf27Zt07//+797BRNJ6tmzp6RfbiGdqfnnn38+6zj+/v7q2rWrpw6g1hgAtSI5Odn4+fmZTz/99Kz3SktLjTHGLF682Egyffr0MT///LPn/UOHDhl/f38zaNAgU1JS4ml//vnnjSSzaNEiY4wx27ZtM5LMsmXLyq1j9uzZRpI5fPjwOdVflXGvvfaa8fPzMx988IFXe3p6upFkNm3aZIwx5uuvvzZ+fn7mP/7jP7zOx5h/XQtjjOnYsaPp27fvWcdZv369kWTWr19vjDGmuLjYhIWFmU6dOplTp055+q1atcpIMpMnT/a0DR8+3Egy06ZN89pnXFyc6datW8UXwRjz448/ntX2+9//3gQFBZnTp0972oYMGWJat25d6f7OOHjwoGnevLm57rrrTFFRkYmLizOtWrUyLpfLq1/r1q2NpEq3KVOmeMakpKSYBg0alHnc0NBQM2zYsApr69ixoxkwYMBZ7Tt27DCSTHp6ujHGmGXLlhlJZuPGjWf1HTp0qImIiKjsMgDnhdtJQC0oLS3VihUrdNNNN531f6mS5HA4vF6PHj1aDRo08Lxeu3atiouLNW7cOK+FrKNHj1ZwcLDndkBISIgk6b333tOPP/5YZi1nZiRWrlyp0tLSKp9DVcYtW7ZMHTp0UGxsrI4cOeLZBgwYIOmX2xqStGLFCpWWlmry5MlnLcz97bWoii1btujQoUN64IEHFBAQ4GkfMmSIYmNjy7xdcv/993u9vuaaa/Ttt99WeqzAwEDPn0+cOKEjR47ommuu0Y8//qidO3eec+1nREREaN68ecrMzNQ111yj3NxcLVq06KzZjzfeeEOZmZmVbsnJyZ4xp06d8prp+7WAgACdOnWqwtpOnTolp9NZ5tgz7//6n+X1rew4wPnidhJQCw4fPiy3261OnTpVqX9MTIzX6++++06S1L59e692f39/tW3b1vN+TEyMUlNTNWvWLL3xxhu65pprdPPNN+uee+7xBJw77rhDL730ku677z5NmDBBAwcO1K233qrbb7+9wid9qjLu66+/1pdffqnQ0NAy93Ho0CFJ0jfffCM/Pz9dccUVVboelSnv+khSbGysPvzwQ6+2gICAs2ps1qyZjh07VumxduzYoUmTJmndunVyu91e7/163VF1DBs2TK+//rpWr16tMWPGaODAgWf1ufrqq895v4GBgZ51V791+vRpr2BW3viy1jSdPn3a8/6v/1le38qOA5wvQgxwATifv+xnzpypESNGaOXKlXr//ff1hz/8QWlpafr444/VsmVLBQYGauPGjVq/fr1Wr16tNWvWaOnSpRowYIDef/99rxmg39ZU2bjS0lJ17txZs2bNKnMf0dHR1T6vmlTeOVbm+PHj6tu3r4KDgzVt2jS1a9dOAQEB+uyzz/T444+f08xWWY4ePaotW7ZIkr744guVlpaeFSwPHz5cpTUxjRs39qzDiYyMVElJiQ4dOqSwsDBPn+LiYh09elRRUVEV7isyMvKsBdKSdPDgQUnyjI+MjPRq/23fyo4DnC9uJwG1IDQ0VMHBwdq+fXu1xrdu3VqStGvXLq/24uJi7dmzx/P+GZ07d9akSZO0ceNGffDBB8rLy1N6errnfT8/Pw0cOFCzZs3SF198oenTp2vdunWe2z3lqWxcu3bt9MMPP2jgwIFKSEg4azszU9KuXTuVlpbqiy++qPB4Vb21VN71OdP22+tTXdnZ2Tp69KgyMjL08MMP68Ybb1RCQkKZjydX57ZYSkqKTpw4obS0NH344Ydlfllejx49FBkZWek2Y8YMz5iuXbtKkicgnbFlyxaVlpZ63i9P165d9dVXX5018/TJJ5947b9Tp05q2LDhWccpLi5Wbm5upccBzhchBqgFfn5+SkpK0t///vez/oKXJFPJ1zMlJCTI399fzz33nFffl19+WS6XS0OGDJH0yyOuP//8s9fYzp07y8/PzzPF/8MPP5y1/zMfLmXdBjijKuP+8z//U3l5eXrxxRfP6nvq1CnPk1ZJSUny8/PTtGnTzpq9+PX5NWrU6KxHyMvSvXt3hYWFKT093esc/vGPf+jLL7/0XJ/zdWYG59c1FhcXa/78+Wf1bdSo0TndXnrrrbe0dOlS/elPf9KECRM0bNgwTZo0SV999ZVXv+qsiRkwYICaN2+uBQsWeO1rwYIFCgoK8ro+R44c0c6dO73WVN1+++0qKSnRwoULPW1FRUVavHixevXq5ZlhCwkJUUJCgl5//XWdOHHC0/e1117TyZMnNXTo0CpfD6BafLuuGKi/Dhw4YCIiIkxQUJAZN26ceeGFF8xTTz1lOnbsaI4dO2aM+dfTSWU9wTRlyhQjyQwaNMg8//zz5qGHHjINGjQwPXr0MMXFxcYYY5YvX24uvfRSM27cODN//nzz3HPPmR49ephLLrnE5OTkGGOMefjhh01cXJyZNGmSefHFF8306dPNpZdealq2bGmOHz9ebv1VGVdSUmJuuOEG43A4zLBhw8zcuXPNnDlzzP3332+aN2/udV7//d//bSSZ3r17mxkzZpi5c+ea5ORkM2HCBE+fBx54wDgcDvP000+b//u//zNZWVnGmLOfTvr1tevVq5eZM2eOmThxogkKCjJt2rTxXF9jfnk6qVGjRuVe34ocOXLENGvWzLRu3drMnDnTzJo1y8TFxZkuXbqcVc+f//xnI8n88Y9/NEuWLDHvvPNOufstKCgwLVq0MP379/c8nXXkyBETHh5u4uPjz3qCqzrmzZtnJJnbb7/dvPjiiyY5OdlIMtOnT/fqd+Y6/PpcjPnl6aKGDRuaRx991Lzwwgumd+/epmHDhmbDhg1e/bZu3WqcTqeJi4szCxYsME8++aQJCAgwgwYNOu9zACpDiAFq0XfffWeSk5NNaGiocTqdpm3btiYlJcUUFRUZYyoOMcb88kh1bGysueSSS0x4eLgZO3as1wf0t99+a+69917Trl07ExAQYJo3b2769+9v1q5d6+mTlZVlbrnlFhMVFWX8/f1NVFSUufPOO81XX31VYe1VHVdcXGyeeeYZ07FjR+N0Ok2zZs1Mt27dzNSpU896XHjRokUmLi7O069v374mMzPT835+fr4ZMmSIadKkiZHkedy6rBBjjDFLly717K958+bm7rvvNgcOHPDqcz4hxhhjNm3aZK666ioTGBhooqKizGOPPWbee++9s+o5efKkueuuu0zTpk2NpAoft7711ltNkyZNzN69e73aV65caSSZZ555ptK6qmLhwoWmffv2xt/f37Rr187Mnj3b65F2Y8oPMadOnTKPPPKIiYiIME6n0/To0cOsWbOmzON88MEHpnfv3iYgIMCEhoaalJQU43a7a+QcgIrwswMAAMBKrIkBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASv51UidLSUn3//fdq0qRJtb5WHAAAVJ0xRidOnFBUVFSFP1IrEWIq9f33318wP2IHAMDFYv/+/WrZsmWFfQgxlWjSpImkXy5mcHCwj6sBAKB+c7vdio6O9nz+VoQQU4kzt5CCg4MJMQAA1JGqLOFgYS8AALASIQYAAFiJEAMAAKxEiAEAAFayJsSkpaWpR48eatKkicLCwpSUlKRdu3ZVOm7ZsmWKjY1VQECAOnfurHfffbcOqgUAALXNmhCzYcMGpaSk6OOPP1ZmZqZ++uknDRo0SIWFheWO+eijj3TnnXdq1KhR2rZtm5KSkpSUlKTt27fXYeUAAKA2OIwxxtdFVMfhw4cVFhamDRs26Nprry2zzx133KHCwkKtWrXK03bVVVepa9euSk9Pr9Jx3G63QkJC5HK5eMQaAIBadi6fu9bMxPyWy+WSJDVv3rzcPjk5OUpISPBqS0xMVE5OTrljioqK5Ha7vTYAAHDhsTLElJaWaty4cbr66qvVqVOncvvl5+crPDzcqy08PFz5+fnljklLS1NISIhn4ycHAAC4MFkZYlJSUrR9+3a9+eabNb7viRMnyuVyebb9+/fX+DEAAMD5s+5nBx588EGtWrVKGzdurPSHoSIiIlRQUODVVlBQoIiIiHLHOJ1OOZ3OGqkVAADUHmtmYowxevDBB7V8+XKtW7dOMTExlY6Jj49XVlaWV1tmZqbi4+Nrq0wAAFBHrJmJSUlJ0ZIlS7Ry5Uo1adLEs64lJCREgYGBkqTk5GRdeumlSktLkyQ9/PDD6tu3r2bOnKkhQ4bozTff1JYtW7Rw4UKfnQcAAKgZ1szELFiwQC6XS/369VNkZKRnW7p0qafPvn37dPDgQc/r3r17a8mSJVq4cKG6dOmit956SytWrKhwMTAAALCDtd8TU1f4nhgAAOrORfE9MQAA4OJGiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASlaFmI0bN+qmm25SVFSUHA6HVqxYUWH/7OxsORyOs7b8/Py6KRgAANQaq0JMYWGhunTponnz5p3TuF27dungwYOeLSwsrJYqBAAAdaWhrws4F9dff72uv/76cx4XFhampk2b1nxBAADAZ6yaiamurl27KjIyUtddd502bdpUYd+ioiK53W6vDQAAXHjqdYiJjIxUenq6/va3v+lvf/uboqOj1a9fP3322WfljklLS1NISIhni46OrsOKAQBAVTmMMcbXRVSHw+HQ8uXLlZSUdE7j+vbtq1atWum1114r8/2ioiIVFRV5XrvdbkVHR8vlcik4OPh8SgYAAJVwu90KCQmp0ueuVWtiakLPnj314Ycflvu+0+mU0+msw4oAAEB11OvbSWXJzc1VZGSkr8sAAADnyaqZmJMnT2r37t2e13v27FFubq6aN2+uVq1aaeLEicrLy9Orr74qSZozZ45iYmLUsWNHnT59Wi+99JLWrVun999/31enAAAAaohVIWbLli3q37+/53Vqaqokafjw4crIyNDBgwe1b98+z/vFxcUaP3688vLyFBQUpCuvvFJr16712gcAALCTtQt768q5LDACAADn51w+dy+6NTEAAKB+IMQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCWrQszGjRt10003KSoqSg6HQytWrKh0THZ2tn73u9/J6XTqsssuU0ZGRq3XCQAAap9VIaawsFBdunTRvHnzqtR/z549GjJkiPr376/c3FyNGzdO9913n957771arhQAANS2hr4u4Fxcf/31uv7666vcPz09XTExMZo5c6YkqUOHDvrwww81e/ZsJSYm1laZAACgDlg1E3OucnJylJCQ4NWWmJionJyccscUFRXJ7XZ7bQAA4MJTr0NMfn6+wsPDvdrCw8Pldrt16tSpMsekpaUpJCTEs0VHR9dFqQAA4BzV6xBTHRMnTpTL5fJs+/fv93VJAACgDFatiTlXERERKigo8GorKChQcHCwAgMDyxzjdDrldDrrojwAAHAe6vVMTHx8vLKysrzaMjMzFR8f76OKAABATbEqxJw8eVK5ubnKzc2V9Msj1Lm5udq3b5+kX24FJScne/rff//9+vbbb/XYY49p586dmj9/vv7617/qj3/8oy/KBwAANciqELNlyxbFxcUpLi5OkpSamqq4uDhNnjxZknTw4EFPoJGkmJgYrV69WpmZmerSpYtmzpypl156icerAQCoBxzGGOPrIi5kbrdbISEhcrlcCg4O9nU5AADUa+fyuWvVTAwAAMAZhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArGRdiJk3b57atGmjgIAA9erVS5s3by63b0ZGhhwOh9cWEBBQh9UCAIDaYlWIWbp0qVJTUzVlyhR99tln6tKlixITE3Xo0KFyxwQHB+vgwYOe7bvvvqvDigEAQG2xKsTMmjVLo0eP1siRI3XFFVcoPT1dQUFBWrRoUbljHA6HIiIiPFt4eHgdVgwAAGqLNSGmuLhYW7duVUJCgqfNz89PCQkJysnJKXfcyZMn1bp1a0VHR+uWW27Rjh07KjxOUVGR3G631wYAAC481oSYI0eOqKSk5KyZlPDwcOXn55c5pn379lq0aJFWrlyp119/XaWlperdu7cOHDhQ7nHS0tIUEhLi2aKjo2v0PAAAQM2wJsRUR3x8vJKTk9W1a1f17dtXb7/9tkJDQ/XCCy+UO2bixIlyuVyebf/+/XVYMQAAqKqGvi6gqlq0aKEGDRqooKDAq72goEARERFV2scll1yiuLg47d69u9w+TqdTTqfzvGoFAAC1z5qZGH9/f3Xr1k1ZWVmettLSUmVlZSk+Pr5K+ygpKdHnn3+uyMjI2ioTAADUEWtmYiQpNTVVw4cPV/fu3dWzZ0/NmTNHhYWFGjlypCQpOTlZl156qdLS0iRJ06ZN01VXXaXLLrtMx48f17PPPqvvvvtO9913ny9PAwAA1ACrQswdd9yhw4cPa/LkycrPz1fXrl21Zs0az2Lfffv2yc/vX5NLx44d0+jRo5Wfn69mzZqpW7du+uijj3TFFVf46hQAAEANcRhjjK+LuJC53W6FhITI5XIpODjY1+UAAFCvncvnrjVrYgAAAH6NEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArNfR1AQB8Y+yiLF+XUG0L7h1Yo/uz+VpINX89AFswEwMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsFK1QsyAAQM0derUs9qPHTumAQMGnHdRAAAAlanWl91lZ2fr888/17Zt2/TGG2+oUaNGkqTi4mJt2LChRgsEAAAoS7VvJ61du1b5+fm66qqrtHfv3hosCQAAoHLVDjGRkZHasGGDOnfurB49eig7O7sGywIAAKhYtUKMw+GQJDmdTi1ZskQPP/ywBg8erPnz59docQAAAOWp1poYY4zX60mTJqlDhw4aPnx4jRQFAABQmWqFmD179ig0NNSr7bbbblNsbKy2bNlSI4UBAABUpFohpnXr1mW2d+zYUR07djyvggAAAKqCL7sDAABWsi7EzJs3T23atFFAQIB69eqlzZs3V9h/2bJlio2NVUBAgDp37qx33323jioFAAC1yaoQs3TpUqWmpmrKlCn67LPP1KVLFyUmJurQoUNl9v/oo4905513atSoUdq2bZuSkpKUlJSk7du313HlAACgplkVYmbNmqXRo0dr5MiRuuKKK5Senq6goCAtWrSozP5/+ctfNHjwYD366KPq0KGDnn76af3ud7/T888/X8eVAwCAmmZNiCkuLtbWrVuVkJDgafPz81NCQoJycnLKHJOTk+PVX5ISExPL7S9JRUVFcrvdXhsAALjwVOvpJF84cuSISkpKFB4e7tUeHh6unTt3ljkmPz+/zP75+fnlHictLa3MH7cE6psF9w70dQkXDK4FYCdrZmLqysSJE+VyuTzb/v37fV0SAAAogzUzMS1atFCDBg1UUFDg1V5QUKCIiIgyx0RERJxTf+mXn1JwOp3nXzAAAKhV1szE+Pv7q1u3bsrKyvK0lZaWKisrS/Hx8WWOiY+P9+ovSZmZmeX2BwAA9rBmJkaSUlNTNXz4cHXv3l09e/bUnDlzVFhYqJEjR0qSkpOTdemllyotLU2S9PDDD6tv376aOXOmhgwZojfffFNbtmzRwoULfXkaAACgBlgVYu644w4dPnxYkydPVn5+vrp27ao1a9Z4Fu/u27dPfn7/mlzq3bu3lixZokmTJumJJ57Q5ZdfrhUrVqhTp06+OgUAAFBDHOa3P0kNL263WyEhIXK5XAoODvZ1OQAA1Gvn8rlrzZoYAACAXyPEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAla0LMDz/8oLvvvlvBwcFq2rSpRo0apZMnT1Y4pl+/fnI4HF7b/fffX0cVAwCA2tTQ1wVU1d13362DBw8qMzNTP/30k0aOHKkxY8ZoyZIlFY4bPXq0pk2b5nkdFBRU26UCAIA6YEWI+fLLL7VmzRp9+umn6t69uyRp7ty5uuGGGzRjxgxFRUWVOzYoKEgRERF1VSoAAKgjVtxOysnJUdOmTT0BRpISEhLk5+enTz75pMKxb7zxhlq0aKFOnTpp4sSJ+vHHHyvsX1RUJLfb7bUBAIALjxUzMfn5+QoLC/Nqa9iwoZo3b678/Pxyx911111q3bq1oqKi9M9//lOPP/64du3apbfffrvcMWlpaZo6dWqN1Q4AAGqHT0PMhAkT9Mwzz1TY58svv6z2/seMGeP5c+fOnRUZGamBAwfqm2++Ubt27cocM3HiRKWmpnpeu91uRUdHV7sGAABQO3waYsaPH68RI0ZU2Kdt27aKiIjQoUOHvNp//vln/fDDD+e03qVXr16SpN27d5cbYpxOp5xOZ5X3CQAAfMOnISY0NFShoaGV9ouPj9fx48e1detWdevWTZK0bt06lZaWeoJJVeTm5kqSIiMjq1UvAAC4cFixsLdDhw4aPHiwRo8erc2bN2vTpk168MEHNWzYMM+TSXl5eYqNjdXmzZslSd98842efvppbd26VXv37tU777yj5ORkXXvttbryyit9eToAAKAGWBFipF+eMoqNjdXAgQN1ww03qE+fPlq4cKHn/Z9++km7du3yPH3k7++vtWvXatCgQYqNjdX48eN122236e9//7uvTgEAANQghzHG+LqIC5nb7VZISIhcLpeCg4N9XQ4AAPXauXzuWjMTAwAA8GuEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYyZoQM336dPXu3VtBQUFq2rRplcYYYzR58mRFRkYqMDBQCQkJ+vrrr2u3UAAAUCesCTHFxcUaOnSoxo4dW+Uxf/7zn/Xcc88pPT1dn3zyiRo1aqTExESdPn26FisFAAB1wWGMMb4u4lxkZGRo3LhxOn78eIX9jDGKiorS+PHj9cgjj0iSXC6XwsPDlZGRoWHDhlXpeG63WyEhIXK5XAoODj7f8gEAQAXO5XPXmpmYc7Vnzx7l5+crISHB0xYSEqJevXopJyfHh5UBAICa0NDXBdSW/Px8SVJ4eLhXe3h4uOe9shQVFamoqMjz2u12106BAADgvPh0JmbChAlyOBwVbjt37qzTmtLS0hQSEuLZoqOj6/T4AACganw6EzN+/HiNGDGiwj5t27at1r4jIiIkSQUFBYqMjPS0FxQUqGvXruWOmzhxolJTUz2v3W43QQYAgAuQT0NMaGioQkNDa2XfMTExioiIUFZWlie0uN1uffLJJxU+4eR0OuV0OmulJgAAUHOsWdi7b98+5ebmat++fSopKVFubq5yc3N18uRJT5/Y2FgtX75ckuRwODRu3Dj9z//8j9555x19/vnnSk5OVlRUlJKSknx0FgAAoKZYs7B38uTJeuWVVzyv4+LiJEnr169Xv379JEm7du2Sy+Xy9HnsscdUWFioMWPG6Pjx4+rTp4/WrFmjgICAOq0dAADUPOu+J6au8T0xAADUHb4nBgAA1HuEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsZE2ImT59unr37q2goCA1bdq0SmNGjBghh8PhtQ0ePLh2CwUAAHWioa8LqKri4mINHTpU8fHxevnll6s8bvDgwVq8eLHntdPprI3yAABAHbMmxEydOlWSlJGRcU7jnE6nIiIiaqEiAADgS9bcTqqu7OxshYWFqX379ho7dqyOHj3q65IAAEANsGYmpjoGDx6sW2+9VTExMfrmm2/0xBNP6Prrr1dOTo4aNGhQ5piioiIVFRV5Xrvd7roqFwAAnAOfzsRMmDDhrIW3v9127txZ7f0PGzZMN998szp37qykpCStWrVKn376qbKzs8sdk5aWppCQEM8WHR1d7eMDAIDa49OZmPHjx2vEiBEV9mnbtm2NHa9t27Zq0aKFdu/erYEDB5bZZ+LEiUpNTfW8drvdBBkAAC5APg0xoaGhCg0NrbPjHThwQEePHlVkZGS5fZxOJ08wAQBgAWsW9u7bt0+5ubnat2+fSkpKlJubq9zcXJ08edLTJzY2VsuXL5cknTx5Uo8++qg+/vhj7d27V1lZWbrlllt02WWXKTEx0VenAQAAaog1C3snT56sV155xfM6Li5OkrR+/Xr169dPkrRr1y65XC5JUoMGDfTPf/5Tr7zyio4fP66oqCgNGjRITz/9NDMtAADUAw5jjPF1ERcyt9utkJAQuVwuBQcH+7ocAADqtXP53LXmdhIAAMCvEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKzU0NcFXOiMMZIkt9vt40oAAKj/znzenvn8rQghphInTpyQJEVHR/u4EgAALh4nTpxQSEhIhX0cpipR5yJWWlqq77//Xk2aNJHD4fB1OefE7XYrOjpa+/fvV3BwsK/Luehw/X2L6+9bXH/fsvn6G2N04sQJRUVFyc+v4lUvzMRUws/PTy1btvR1GeclODjYuv+I6xOuv29x/X2L6+9btl7/ymZgzmBhLwAAsBIhBgAAWIkQU485nU5NmTJFTqfT16VclLj+vsX19y2uv29dLNefhb0AAMBKzMQAAAArEWIAAICVCDEAAMBKhJiLxN69ezVq1CjFxMQoMDBQ7dq105QpU1RcXOzr0i4K06dPV+/evRUUFKSmTZv6upyLwrx589SmTRsFBASoV69e2rx5s69Luihs3LhRN910k6KiouRwOLRixQpfl3TRSEtLU48ePdSkSROFhYUpKSlJu3bt8nVZtYoQc5HYuXOnSktL9cILL2jHjh2aPXu20tPT9cQTT/i6tItCcXGxhg4dqrFjx/q6lIvC0qVLlZqaqilTpuizzz5Tly5dlJiYqEOHDvm6tHqvsLBQXbp00bx583xdykVnw4YNSklJ0ccff6zMzEz99NNPGjRokAoLC31dWq3h6aSL2LPPPqsFCxbo22+/9XUpF42MjAyNGzdOx48f93Up9VqvXr3Uo0cPPf/885J++fmQ6OhoPfTQQ5owYYKPq7t4OBwOLV++XElJSb4u5aJ0+PBhhYWFacOGDbr22mt9XU6tYCbmIuZyudS8eXNflwHUqOLiYm3dulUJCQmeNj8/PyUkJCgnJ8eHlQF1y+VySVK9/nueEHOR2r17t+bOnavf//73vi4FqFFHjhxRSUmJwsPDvdrDw8OVn5/vo6qAulVaWqpx48bp6quvVqdOnXxdTq0hxFhuwoQJcjgcFW47d+70GpOXl6fBgwdr6NChGj16tI8qt191rj0A1IWUlBRt375db775pq9LqVX8irXlxo8frxEjRlTYp23btp4/f//99+rfv7969+6thQsX1nJ19du5XnvUjRYtWqhBgwYqKCjwai8oKFBERISPqgLqzoMPPqhVq1Zp48aNatmypa/LqVWEGMuFhoYqNDS0Sn3z8vLUv39/devWTYsXL5afHxNx5+Ncrj3qjr+/v7p166asrCzPgtLS0lJlZWXpwQcf9G1xQC0yxuihhx7S8uXLlZ2drZiYGF+XVOsIMReJvLw89evXT61bt9aMGTN0+PBhz3v832nt27dvn3744Qft27dPJSUlys3NlSRddtllaty4sW+Lq4dSU1M1fPhwde/eXT179tScOXNUWFiokSNH+rq0eu/kyZPavXu35/WePXuUm5ur5s2bq1WrVj6srP5LSUnRkiVLtHLlSjVp0sSzBiwkJESBgYE+rq6WGFwUFi9ebCSVuaH2DR8+vMxrv379el+XVm/NnTvXtGrVyvj7+5uePXuajz/+2NclXRTWr19f5n/rw4cP93Vp9V55f8cvXrzY16XVGr4nBgAAWIlFEQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGQL3x6quv6t/+7d9UVFTk1Z6UlKT/+q//8lFVAGoLIQZAvTF06FCVlJTonXfe8bQdOnRIq1ev1r333uvDygDUBkIMgHojMDBQd911lxYvXuxpe/3119WqVSv169fPd4UBqBWEGAD1yujRo/X+++8rLy9PkpSRkaERI0bI4XD4uDIANc1hjDG+LgIAalK3bt10++23a9CgQerZs6f27t2r6OhoX5cFoIY19HUBAFDT7rvvPs2ZM0d5eXlKSEggwAD1FDMxAOodl8ulqKgo/fzzz3r11Vd1xx13+LokALWANTEA6p2QkBDddtttaty4sZKSknxdDoBaQogBUC/l5eXp7rvvltPp9HUpAGoJt5MA1CvHjh1Tdna2br/9dn3xxRdq3769r0sCUEtY2AugXomLi9OxY8f0zDPPEGCAeo6ZGAAAYCXWxAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAK/0/wxJeSJrXO3cAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# define the symmetric coupler section\n",
"symmetric_coupler = waveguide.RectangularDielectric(\n",
" wavelength=lda0,\n",
" core_width=(w_sc, w_sc),\n",
" core_thickness=h_si,\n",
" core_medium=si,\n",
" clad_medium=sio2,\n",
" gap=gap_sc,\n",
" grid_resolution=40,\n",
" mode_spec=td.ModeSpec(num_modes=5, precision=\"double\"),\n",
")\n",
"\n",
"# plot the cross section\n",
"symmetric_coupler.plot_structures(x=0)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "25d4c6bd",
"metadata": {},
"source": [
"The effective indices of different modes can be directly calculated. The corresponding mode profiles can be visualized. Here we focus on the two lowest order modes, which are the symmetric and anti-symmetric modes."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f6ac9551",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Effective indices: 2.4591626285321264, 2.438215232515221\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeqklEQVR4nOzdeZgU1bk/8O+ppbfZR4EBQUGIOwgiUVxwI4IaE65eEq8xiCL+VDQKGhU1qKghMSqaREVvFNTo1ZhEzVVjRMQd18iNG0SMBkUHlGX27uqqOr8/aul11u6enp75fp6nnpnurqo+3QP99lvnPecIKaUEEREREREREeWdUuwGEBEREREREfVXTLqJiIiIiIiICoRJNxEREREREVGBMOkmIiIiIiIiKhAm3UREREREREQFwqSbiIiIiIiIqECYdBMREREREREVCJNuIiIiIiIiogJh0k1EREX1zTff4M033yx2M4iIiKgTr7/+OrZs2VLsZpQcIaWUxW4EERENXErtGMjt/8IHH7yPffbZp9jNISIioiw++OAD7LffWIiq3WDv+LTYzSkpTLqJiKho3n//fYwdNx6iYhdACNg7Pit2k4iIiCgLpWoEoOiQjZ/jtVdewuTJk4vdpJLB8nIiIiqacYedAGWnPaCOmAzZtAlvv/12sZtEREREaVavXg3ZvAXq8IOhDNoPh35nBth323VMuomIqCjeeOMNyKYvoQwZB6FHoOy8F7599PeL3SwiIiJKYts2jj5hJpQhYyG0EJTB+0HGmvDYY48Vu2klg0k3EREVxeSp/wFl530g9AgAQBk8FrLla7zwwgvFbRgRERH5Hn74YcCMQhnkzLsiVB1K3XicfOoZiMfjRW5daWDSTUREvW7VqlWQbVuhDN7Pv8+7en70CT9gyRoREVEfEI1G8aPZ/w/q0AMgFM2/X9lpDwACoVFTite4EsKkm4iIepWUEt/53ilQBo+F0IIpjymD9oU0mvDUU08VqXVERETkKRt9OKAFIGpGp9wvhAJ12IGwN69FY2NjkVpXOph0ExFRr/rLX/4CabRA2XnvjMeEqkMZMg4nzpwF27aL0DoiIiICgG3btsHe/A+owyZBCJHxuKgcARGsQs0ehxehdaWFSTcREfUay7Iw45TZzuRpqp51H2WnPQHLwCOPPNLLrSMiIiLPoL2mQEQGQakYlvVxIQSUXSbB/vpDfPHFF73cutLCpJuIiHrN//zP/wCW6STW7RCKBrVuPE6d/f84QQsREVER/Otf/4L9zTqoww7scD8lMgiicgR23f+oXmpZaWLSTUREvcIwDPx4zrlQ68ZDKGqH+4raMYAQCO9+ZO80joiIiHxjJk6FqNkdIlzb6b7q0ImQ2z/FP/7xj15oWWli0k1ERL0iPPpIQKgQtaM73VcIBWrdAbA2r0VbW1vhG0dEREQAgLfeeguy8XOodRO6tL8IVkDZeS+MP+z4AresdDHpJiKigmttbYVdv9ZZckR0LfSI6pGAFkL5mCMK2zgiIiIC4KwwctBRJ0IZtA9EoKzLxylD9ods/RorV64sYOtKF5NuIiIquIoxR0DoEYiq3bp8jBAC6tCJsDf/g8uREBER9YL//d//hYw1QBk8tlvHCS0IZcg4HPu9U2BZVoFaV7qYdBMRUUE1NDTA3vIPKEMnZl1ypCOiYheIUDVq9mBvNxERUSGZponv/2AWlCHjIdRAt49Xdt4bsAwEOR9LBibdRERUULV7HgERqoVoZ8mRjgghoAw9APbXH+Cbb74pQOuIiIgIAIKjpgCQUHZuf4WRjghFgzr0AFhf/Z3zsaRh0k1ERAWzZcsW2F9/AGXYAd3u5fYo5XUQZYMxZJ8j89s4IiIiAgDE43F37pWJXZ57JRtRszuEFkb5mCPz17h+gEk3EREVzF133QVRNgRK2ZCczqMOPQD2N+vQ2tqap5YRERGRJxaLAWYbRPnQnM4jhIAor8P5/3lwnlrWP2jFbgAREfVfDQ0NEMHK3E8UrAKkhVgshkgkkvv5iIiIKINQVAhFzfUk+WlMP8Kkm4iICksouQdwaeenLURERNSufCTdPR1O1p8x6SYiooISQjDpJiIiogGLSTcRERERERFBKHmoTmNPdwYm3UREVFjs6SYiIioJ+Skv55judEy6iYiosPIyptvKT1uIiIioXUJVIVT2dOcbL0MQERERERERFQh7uomIqKCEELlfNUeuxxMREVFnFMHZywuBSTcRERWUEAJKjgFcSibdREREhcZ1uguDSTcRERVWXsZ0M+kmIiIqtHzMXs6e7ky8DEFERERERERUIOzpJiKighL5WDLMZk83ERFRoTk93Tn2y7KnOwOTbiIiKjCRewDP9XgiIiLqXF7W6WbSnY5JNxERFVY+erpzPZ6IiIg6xYnUCoPvCBEREREREVGBsKebiIgKKi9julleTkREVHD56OlmeXkmJt1ERFRY+VgyjOXlREREBScUFUJleXm+MekmIiIiIiIirtNdILwMQUREBSWEgFDVnLfuuPPOOzFu3DhUVlaisrISkydPxl//+lf/8Wg0innz5mGnnXZCeXk5Tj75ZGzevDnfL52IiIiISTcRERWYO6Y71607hg8fjl/84hd455138Pbbb+Poo4/G97//fXzwwQcAgPnz5+N///d/8eijj+LFF1/El19+iZNOOqkQr56IiKhk5CVes6c7A8vLiYiooEQRxnSfeOKJKbdvuOEG3HnnnXj99dcxfPhw3HPPPXjooYdw9NFHAwCWL1+OvffeG6+//joOPvjg3NpKRERUohRFhZJzeTn7ddPxHSHqBS+88AKEEHjhhReK3RSiAceyLDz88MNoaWnB5MmT8c477yAej2Pq1Kn+PnvttRd23XVXrFmzpogtJaJiY7ymgS4/lWns6U7HpJsoj+644w6sWLGi2M3okYceegi33nprsZuR4p577sHee++NUCiEb33rW/jNb37T5WNjsRguu+wyDBs2DOFwGAcddBBWrlyZdd/XXnsNhx12GCKRCOrq6vCTn/wEzc3N+XoZJIR/5bynm9dTHovF0NjYmLLFYrGsT/vee++hvLwcwWAQ55xzDh577DHss88+qK+vRyAQQHV1dcr+Q4YMQX19faHfDSLqAxiv84vxuv/IR9LNidQyMekmyqP2gviUKVPQ1taGKVOm9H6juqivBfG77roLZ511Fvbdd1/85je/weTJk/GTn/wEv/zlL7t0/OzZs3HLLbfgRz/6EW677Taoqorjjz8er7zySsp+a9euxTHHHIPW1lbccsstOOuss3D33Xdj5syZhXhZA5LI45jupUuXoqqqKmVbsmRJ1ufdc889sXbtWrzxxhs499xzcfrpp+PDDz/szZdORH0U43X+MF4TdY5juinvWlpaUFZWVuxm9CmKoiAUChW7GSWjra0NV155JU444QT88Y9/BADMnTsXtm3juuuuw9lnn42ampp2j3/zzTfx8MMP41e/+hUuueQSAMCsWbOw33774dJLL8Vrr73m73vFFVegpqYGL7zwAiorKwEAI0eOxNy5c/Hss8/i2GOPLeArHSDcpDu3UzjXiOfPn48rr7wy5bFgMJj1mEAggDFjxgAAJk6ciLfeegu33XYbfvjDH8IwDOzYsSOlt3vz5s2oq6vLqZ1EpYTxOhPjdfcwXvc/+VgyjOt0Z+I7Qh3atGkT5syZg2HDhiEYDGLUqFE499xzYRgGAGDFihUQQuDFF1/Eeeedh8GDB2P48OH+8XfccQf23XdfBINBDBs2DPPmzcOOHTtSnuPjjz/GySefjLq6OoRCIQwfPhynnHIKGhoa/H1WrlyJww47DNXV1SgvL8eee+6JK664otP2d+W4WCyGq6++GmPGjEEwGMSIESNw6aWXZi1Z/f3vf49vf/vbiEQiqKmpwZQpU/Dss88CcD74P/jgA7z44otOz54QOPLIIwG0P0bs0UcfxcSJExEOh7HzzjvjtNNOw6ZNm1L2mT17NsrLy7Fp0ybMmDED5eXlGDRoEC655BJYltXpe/DEE0/ghBNO8P+Go0ePxnXXXZdy7JFHHomnnnoK//73v/22jxw5st1zLl++HEII3HvvvSn3//znP4cQAk8//XSn7erI6tWrsXXrVpx33nkp98+bNw8tLS146qmnOjz+j3/8I1RVxdlnn+3fFwqFMGfOHKxZswaff/45AKCxsRErV67Eaaed5gdwwAn45eXl+MMf/pDT66D8CwaD/jJg3tZe0p3Otm3EYjFMnDgRuq5j1apV/mPr16/Hxo0bMXny5EI1naigGK9TMV47GK+pu1heXhjs6aZ2ffnll/j2t7+NHTt24Oyzz8Zee+2FTZs24Y9//CNaW1sRCAT8fc877zwMGjQIixYtQktLCwDgmmuuwbXXXoupU6fi3HPPxfr163HnnXfirbfewquvvgpd12EYBqZNm4ZYLIYLLrgAdXV12LRpE5588kns2LEDVVVV+OCDD/Dd734X48aNw+LFixEMBrFhwwa8+uqrHba/K8fZto3vfe97eOWVV3D22Wdj7733xnvvvYelS5fin//8Jx5//HF/32uvvRbXXHMNDjnkECxevBiBQABvvPEGnn/+eRx77LG49dZbccEFF6C8vNzviRsyZEi77VuxYgXOOOMMTJo0CUuWLMHmzZtx22234dVXX8W7776b0gNnWRamTZuGgw46CDfddBOee+453HzzzRg9ejTOPffcDt+HFStWoLy8HAsWLEB5eTmef/55LFq0CI2NjfjVr34FALjyyivR0NCAL774AkuXLgUAlJeXt3vOM844A3/+85+xYMECfOc738GIESPw3nvv4dprr8WcOXNw/PHH+/tu3769S182IpEIIpEIAODdd98FABx44IEp+0ycOBGKouDdd9/Faaed1u653n33Xeyxxx4pgRkAvv3tbwNwStS8NpummfE8gUAA48eP99tBucnH7OXdPX7hwoU47rjjsOuuu6KpqQkPPfQQXnjhBfztb39DVVUV5syZgwULFqC2thaVlZW44IILMHnyZM5cTiWJ8Zrxuj2M19RdQnR/mc4sJ8lPY/oTSdSOWbNmSUVR5FtvvZXxmG3bUkoply9fLgHIww47TJqm6T++ZcsWGQgE5LHHHisty/Lv/+1vfysByHvvvVdKKeW7774rAchHH3203XYsXbpUApBff/11t9rfleMeeOABqSiKfPnll1PuX7ZsmQQgX331VSmllB9//LFUFEX+x3/8R8rrkTLxXkgp5b777iuPOOKIjOdZvXq1BCBXr14tpZTSMAw5ePBgud9++8m2tjZ/vyeffFICkIsWLfLvO/300yUAuXjx4pRzTpgwQU6cOLHjN0FK2dramnHf//t//09GIhEZjUb9+0444QS52267dXo+z1dffSVra2vld77zHRmLxeSECRPkrrvuKhsaGlL222233SSATrerr77aP2bevHlSVdWszzto0CB5yimndNi2fffdVx599NEZ93/wwQcSgFy2bJmUUspHH31UApAvvfRSxr4zZ86UdXV1nb0N1ImLL75Ylu1xjNzl1N/ltA2d6Xx2bNu2rUvPe+aZZ8rddttNBgIBOWjQIHnMMcfIZ5991n+8ra1NnnfeebKmpkZGIhH5H//xH/Krr74q1NtAVFCM14zXHWG8pq5oamqSAOSwmb+Vw09bntNWvvc0+ZOf/KTYL6lPYXk5ZWXbNh5//HGceOKJGVcVAWSUjcydOxeqmrgq9txzz8EwDFx00UVQFCVlv8rKSr/cqKqqCgDwt7/9Da2trVnb4l1BfuKJJ2DbdpdfQ1eOe/TRR7H33ntjr732wjfffONv3tq9q1evBgA8/vjjsG0bixYtSnk9QOZ70RVvv/02tmzZgvPOOy9l7NgJJ5yAvfbaK2s51jnnnJNy+/DDD8e//vWvTp8rHA77vzc1NeGbb77B4YcfjtbWVqxbt67bbffU1dXh9ttvx8qVK3H44Ydj7dq1uPfeezOuVj/44INYuXJlp9usWbP8Y9ra2lJ6ZpKFQiG0tbV12La2trasJcfee+0d7/1sb9/Onof6rnvuuQefffYZYrEYtmzZgueeew7f+c53/MdDoRBuv/12bNu2DS0tLfjzn//M8dxUkhivGa87w3hN3SFUNfeNY7ozsLycsvr666/R2NiI/fbbr0v7jxo1KuX2v//9bwDO7MHJAoEAdt99d//xUaNGYcGCBbjlllvw4IMP4vDDD8f3vvc9nHbaaX6A/+EPf4jf/e53OOuss3D55ZfjmGOOwUknnYT//M//zAioybpy3Mcff4yPPvoIgwYNynqOLVu2AAA++eQTKIqCffbZp0vvR2fae38AZ73g9Bk7Q6FQRhtramqwffv2Tp/rgw8+wFVXXYXnn38ejY2NKY8lj8PriVNOOQW///3v8dRTT+Hss8/GMccck7HPoYce2u3zhsNhfxxiumg0mvLFpL3js43xi0aj/uPJP9vbt7Pnoa7xZi/P6Ry5lroR9VOM1w7G644xXlNXJa8Y0vOTsLw8HZNuyotcPuxuvvlmzJ49G0888QSeffZZ/OQnP8GSJUvw+uuvY/jw4QiHw3jppZewevVqPPXUU3jmmWfwyCOP4Oijj8azzz6bcsU+vU2dHWfbNsaOHYtbbrkl6zlGjBjR49eVT+29xs7s2LEDRxxxBCorK7F48WKMHj0aoVAIf//733HZZZd1qycim61bt+Ltt98GAHz44YewbTvji9XXX3/dpTFi5eXl/ri0oUOHwrIsbNmyBYMHD/b3MQwDW7duxbBhwzo819ChQzMmuAGAr776CgD844cOHZpyf/q+nT0PdZGiQPTw37BH2Ey6ifKB8bqwGK8djNclLA+zl3MitUzs+6esBg0ahMrKSrz//vs9On633XYD4MwInMwwDHz66af+456xY8fiqquuwksvvYSXX34ZmzZtwrJly/zHFUXBMcccg1tuuQUffvghbrjhBjz//PN+OVl7Ojtu9OjR2LZtG4455hhMnTo1Y/OubI8ePRq2bXe6xm9XP2Tae3+8+9Lfn5564YUXsHXrVqxYsQIXXnghvvvd72Lq1KlZl+/oyQfkvHnz0NTUhCVLluCVV17Jum7opEmTMHTo0E63m266yT9m/PjxAOB/QfC8/fbbsG3bf7w948ePxz//+c+MnoI33ngj5fz77bcfNE3LeB7DMLB27dpOn4e6Kn/rdBNRKsZrxuuuYLwmKi4m3ZSVoiiYMWMG/vd//zfjAw4ApJQdHj916lQEAgH8+te/Ttn3nnvuQUNDA0444QQAzhIQpmmmHDt27FgoiuKXEG3bti3j/N6Ha7YyI09XjvvBD36ATZs24b//+78z9m1ra/Nndp0xYwYURcHixYszrjYnv76ysrKMJVayOfDAAzF48GAsW7Ys5TX89a9/xUcffeS/P7nyrrgnt9EwDNxxxx0Z+5aVlXWrfO2Pf/wjHnnkEfziF7/A5ZdfjlNOOQVXXXUV/vnPf6bs15MxYkcffTRqa2tx5513ppzrzjvvRCQSSXl/vvnmG6xbty5ljOF//ud/wrIs3H333f59sVgMy5cvx0EHHeT3iFRVVWHq1Kn4/e9/j6amJn/fBx54AM3NzZg5c2aX3w8iomJgvGa87gzjNXVHXi6Sc0x3BpaXU7t+/vOf49lnn8URRxzhL8/x1Vdf4dFHH8Urr7ySskRGukGDBmHhwoW49tprMX36dHzve9/D+vXrcccdd2DSpEn+8hHPP/88zj//fMycORN77LEHTNPEAw88AFVVcfLJJwMAFi9ejJdeegknnHACdtttN2zZsgV33HEHhg8fjsMOO6zdNnTluB//+Mf4wx/+gHPOOQerV6/GoYceCsuysG7dOvzhD3/A3/72Nxx44IEYM2YMrrzySlx33XU4/PDDcdJJJyEYDOKtt97CsGHDsGTJEgDOEhl33nknrr/+eowZMwaDBw/2J3lJpus6fvnLX+KMM87AEUccgf/6r//ylyAZOXIk5s+f39M/W4pDDjkENTU1OP300/GTn/wEQgg88MADWb+ETZw4EY888ggWLFiASZMmoby8HCeeeGLW827ZsgXnnnsujjrqKJx//vkAgN/+9rdYvXo1Zs+ejVdeecUvW+vpGLHrrrsO8+bNw8yZMzFt2jS8/PLL+P3vf48bbrgBtbW1/r6//e1vce2112L16tX+OqsHHXQQZs6ciYULF2LLli0YM2YM7rvvPnz22We45557Up7rhhtuwCGHHOL/O//iiy9w880349hjj8X06dO73XbKxDHdRIXFeM14zXjNeJ0viiKgKLmVh7O6PItiTZtOpeHf//63nDVrlhw0aJAMBoNy9913l/PmzZOxWExKmViCJNsyJVI6S47stddeUtd1OWTIEHnuuefK7du3+4//61//kmeeeaYcPXq0DIVCsra2Vh511FHyueee8/dZtWqV/P73vy+HDRsmA4GAHDZsmPyv//ov+c9//rPDtnf1OMMw5C9/+Uu57777ymAwKGtqauTEiRPltddem7Gcxr333isnTJjg73fEEUfIlStX+o/X19fLE044QVZUVEgA/nIk6UuQeB555BH/fLW1tfJHP/qR/OKLL1L2Of3002VZWVnG67v66qtlV/4Lv/rqq/Lggw+W4XBYDhs2TF566aXyb3/7W0Z7mpub5amnniqrq6slgA6XIznppJNkRUWF/Oyzz1Luf+KJJyQA+ctf/rLTdnXF3XffLffcc08ZCATk6NGj5dKlS1OWfJEy8T6kv7dtbW3ykksukXV1dTIYDMpJkybJZ555JuvzvPzyy/KQQw6RoVBIDho0SM6bN082Njbm5TUMdBdffLGs2Pc4OXLuozltu86+v1tLhhENNIzXjNfZMF5TV3lLho088z45+tw/5bRV7f89LhmWRkjZSd0RERFRD11yySX47799hJ0PPTOn89jxNnx274+xbdu2rGMciYiIqOeam5tRUVGBkWfeBzVYntO5vnntPpx+xEjcdttteWpd6WN5OREREREREUFA5Dz7OKvLMzHpJiKighICELmOD8vxeCIiIupcfsZ0M2anY9JNREQFloer5gzgREREBScUkfuFbobsDJzPnYiIiIiIiKhA2NNNREQFJQRyLlXj+iNERESFl4+eblanZWJPNxERFZYQfhDPZSMiIqLCUoTIeetuefmSJUswadIkVFRUYPDgwZgxYwbWr1+fsk80GsW8efOw0047oby8HCeffDI2b96cx1deWOzp7oRt2/jyyy9RUVHBqzZE1O9JKdHU1IRhw4ZBUfJzXZYTqVFvYLwmooGmIDE7Hz3d3dz/xRdfxLx58zBp0iSYpokrrrgCxx57LD788EOUlZUBAObPn4+nnnoKjz76KKqqqnD++efjpJNOwquvvppTW3sLk+5OfPnllxgxYkSxm0FE1Ks+//xzDB8+vNjNIOoyxmsiGqjyGbPzM5Fa945/5plnUm6vWLECgwcPxjvvvIMpU6agoaEB99xzDx566CEcffTRAIDly5dj7733xuuvv46DDz44t/b2AibdnaioqAAAfLxhg/87EVF/1dTUhG+NGZPXzzsBt9wsp5Ow55I6xnhNxSSkLHYTaABqamrCmG99q09+5lmWhcbGxpT7gsEggsFgp8c2NDQAAGprawEA77zzDuLxOKZOnervs9dee2HXXXfFmjVrmHT3B16JWkVFBSorK4vcGiKi3pHX8tw8lJeD5eXUCcZrKiYm3VRM+YzZQsl98lMhgLfeegtVVVUp91999dW45pprOjzWtm1cdNFFOPTQQ7HffvsBAOrr6xEIBFBdXZ2y75AhQ1BfX59TW3sLk24iIioojukmIiIqDU7Mzv0ckyZNwsqVK1Pu70ov97x58/D+++/jlVdeya0RfQyTbiIiIiIiIoIQIveecyGgqmq3q47OP/98PPnkk3jppZdSxqjX1dXBMAzs2LEjpbd78+bNqKury62tvYRLhhERUWEJAUXJfSMiIqL+R0qJ888/H4899hief/55jBo1KuXxiRMnQtd1rFq1yr9v/fr12LhxIyZPntzbze0R9nQTEVFB5aVUjZeIiYiICi4fF7q721E+b948PPTQQ3jiiSdQUVHhj9OuqqpCOBxGVVUV5syZgwULFqC2thaVlZW44IILMHny5JKYRA1g0k1ERERERETI1zrd3Tv+zjvvBAAceeSRKfcvX74cs2fPBgAsXboUiqLg5JNPRiwWw7Rp03DHHXfk1M7exKSbiIgKLtfxYXmdTZ2IiIiyys863d3bXXZh9v9QKITbb78dt99+ew8bVVxMuomIqKCEyL1UTXJMNxEREZUoJt1ERFRQXDKMiIioNChCQGF1Wt4x6SYiIiIiIqKilJcPBEy6iYiosEQeJmXhVXMiIqKCy8tEaozZGZh0ExFRQQkg51I1yQBOREREJYpJNxERFRbHdBMREZWEYqzTPRAw6SYiIiIiIiIICJaHFwCTbiIiKiiRjzHd7OkmIiIqOKE4W07nYMjOwKSbiIgKSghwnW4iIiIasJh0ExEREREREURexnTzQnm6HIsHetdLL72EE088EcOGDYMQAo8//niH+7/wwgtOWWPaVl9f3zsNJiIiAJmfwz3ZqHQwXhMRlSZvybBcNq7TnamkerpbWlqw//7748wzz8RJJ53U5ePWr1+PyspK//bgwYML0TwiIspG5GF8WEldIibGayKi0pSfC93MutOVVNJ93HHH4bjjjuv2cYMHD0Z1dXX+G0RERJ3imO6Bh/GaiIgoYUD0HYwfPx5Dhw7Fd77zHbz66qsd7huLxdDY2JiyERERUeExXhMRFZe3TncuG0eEZerXSffQoUOxbNky/OlPf8Kf/vQnjBgxAkceeST+/ve/t3vMkiVLUFVV5W8jRozoxRYTEfU/3pJhuW3FfhVUSIzXRER9Qz7GdHMelkwlVV7eXXvuuSf23HNP//YhhxyCTz75BEuXLsUDDzyQ9ZiFCxdiwYIF/u3GxkYGciKiHOUcgBnA+zXGayKivkFVADXn2cvz1Jh+pF8n3dl8+9vfxiuvvNLu48FgEMFgsBdbRETUv+VjTHeux1PpYbwmIup9qhA5J90Ks+4MA65gb+3atRg6dGixm0FERAW0ZMkSTJo0CRUVFRg8eDBmzJiB9evXp+wTjUYxb9487LTTTigvL8fJJ5+MzZs3F6nFlI7xmoiI+ouS6ulubm7Ghg0b/Nuffvop1q5di9raWuy6665YuHAhNm3ahPvvvx8AcOutt2LUqFHYd999EY1G8bvf/Q7PP/88nn322WK9BCKigccd053TKbp5/Isvvoh58+Zh0qRJME0TV1xxBY499lh8+OGHKCsrAwDMnz8fTz31FB599FFUVVXh/PPPx0knndTpBF7UOcZrIqLSpCi593SzoztTSSXdb7/9No466ij/tjeW6/TTT8eKFSvw1VdfYePGjf7jhmHg4osvxqZNmxCJRDBu3Dg899xzKecgIqLCUkTu48NkNyP4M888k3J7xYoVGDx4MN555x1MmTIFDQ0NuOeee/DQQw/h6KOPBgAsX74ce++9N15//XUcfPDBObV3oGO8JiIqTSqT7oIoqaT7yCOPhJSy3cdXrFiRcvvSSy/FpZdeWuBWERFRX9fQ0AAAqK2tBQC88847iMfjmDp1qr/PXnvthV133RVr1qxh0p0jxmsiotKUj6RbAbPudCWVdBMRUekReZiURbrHe2szJ+tsQi3btnHRRRfh0EMPxX777QcAqK+vRyAQQHV1dcq+Q4YMQX19fU5tJSIiIko24CZSIyKi3iVE4sp5LhsALF26NGVt5qqqKixZsqTD5583bx7ef/99PPzww73xcomIiEqWpoicN5aXZ2JPNxERFZSSx57u+fPn48orr0x5rKNe7vPPPx9PPvkkXnrpJQwfPty/v66uDoZhYMeOHSm93Zs3b0ZdXV1ObSUiIipVeSkvZ9adgT3dRERUMoLBICorK1O2bEm3lBLnn38+HnvsMTz//PMYNWpUyuMTJ06ErutYtWqVf9/69euxceNGTJ48ueCvg4iIqC9SulGB1t7GnDsTe7qJiKigBPIwe3k3j583bx4eeughPPHEE6ioqPDHaVdVVSEcDqOqqgpz5szBggULUFtbi8rKSlxwwQWYPHkyJ1EjIiKivGLSTUREBaUIZ4xYLrqbdN95550AnFm0ky1fvhyzZ88G4IwPVxQFJ598MmKxGKZNm4Y77rgjp3YSERGVMlVRoCq5FUMLdnVnYNJNREQFlY/Zy+1uHt/RclWeUCiE22+/HbfffntPm0VERNSvqHmI2RzTnYlJNxEREREREeVlIjXm3JmYdBMRUUF5S4blors93URERER9BZNuIiIqKGfJsNzGh9k5Hk9ERESd45JhhcGkm4iIiIiIiJwL5TkmzUy5MzHpJiKigirGRGpERETUfRzTXRhMuomIqKA4ppuIiIgGMibdRERUUAJ5SLp52ZyIiKjgVCX3mM0x3ZmYdBMRERERERE0RUBjeXneMekmIqKCysekLBYjOBERUcFx9vLCYNJNREQFlY8x3bkeT0RERJ1T8jD5KXPuTEy6iYiooPIxezmTbiIiIipVTLqJiIiIiIgoT0uG8UJ5OibdRERUUIpAzpOycMkwIiKiwsvPmO48NaYfYdJNREQFJZCP8vI8NYaIiIjaxZ7uwuDXGCIiIiIiIqICYU83EREVlMLZy4mIiEpCXsrL89SW/oRJNxERFRRnLyciIioNCsvLC6KkLkS89NJLOPHEEzFs2DAIIfD44493eswLL7yAAw44AMFgEGPGjMGKFSsK3k4iIkrw1unOZVOYdJcUxmsiotKUa7xWFcF1urMoqaS7paUF+++/P26//fYu7f/pp5/ihBNOwFFHHYW1a9fioosuwllnnYW//e1vBW4pERHRwMV4TURElFBS5eXHHXccjjvuuC7vv2zZMowaNQo333wzAGDvvffGK6+8gqVLl2LatGmFaiYRESXhmO6Bh/GaiKg0qXkYEsaQnamkerq7a82aNZg6dWrKfdOmTcOaNWuK1CIiooHHG9Od60b9F+M1EVHfkJ/ycsbsdCXV091d9fX1GDJkSMp9Q4YMQWNjI9ra2hAOhzOOicViiMVi/u3GxsaCt5OIqD8T+ejpZgDv1xiviYj6BlWInGMuI3amft3T3RNLlixBVVWVv40YMaLYTSIiIqI0jNdERP1DZ5NvSimxaNEiDB06FOFwGFOnTsXHH39cnMb2UL9Ouuvq6rB58+aU+zZv3ozKysqsV80BYOHChWhoaPC3zz//vDeaSkTUbylgeTl1jPGaiKhvEEJAyXHrbnl5Z5Nv3njjjfj1r3+NZcuW4Y033kBZWRmmTZuGaDSaj5fcK/p1efnkyZPx9NNPp9y3cuVKTJ48ud1jgsEggsFgoZtGRDRg5KW8nEl3v8Z4TUTUN6jC2XLR3V7djibflFLi1ltvxVVXXYXvf//7AID7778fQ4YMweOPP45TTjklt8b2kpLq6W5ubsbatWuxdu1aAM4SI2vXrsXGjRsBOFe9Z82a5e9/zjnn4F//+hcuvfRSrFu3DnfccQf+8Ic/YP78+cVoPhER0YDAeE1EVJoUReS8QQCWZaGxsTFlS56Ho6s+/fRT1NfXp0y2WVVVhYMOOqikJtssqaT77bffxoQJEzBhwgQAwIIFCzBhwgQsWrQIAPDVV1/5AR0ARo0ahaeeegorV67E/vvvj5tvvhm/+93vuPwIEVEv4uzlAw/jNRHRwPbWW2+lzLtRVVWFJUuWdPs89fX1AJB1sk3vsVJQUuXlRx55JKSU7T6+YsWKrMe8++67BWwVERF1RIjcZx9XOHt5SWG8JiIqTWqeYvakSZOwcuXKlPsH8pCgkkq6iYio9AjknjQz6SYiIio8bzK0XAgAqqqisrIy5/bU1dUBcCbXHDp0qH//5s2bMX78+JzP31tKqryciIiIiIiICsObSC2XLZ/XyUeNGoW6ujqsWrXKv6+xsRFvvPFGh5Nt9jXs6SYiooJSkPtMqLkeT0RERH1Tc3MzNmzY4N/2Jt+sra3FrrvuiosuugjXX389vvWtb2HUqFH42c9+hmHDhmHGjBnFa3Q3MekmIqLCEu5spjnI9XgiIiLqnFByj9ndXaf77bffxlFHHeXfXrBgAQDg9NNPx4oVK3DppZeipaUFZ599Nnbs2IHDDjsMzzzzDEKhUE7t7E1MuomIqKCUPEzKkuvxRERE1Ll8jenujs4m3xRCYPHixVi8eHFO7SomJt1ERERERETkj8vOBS+TZ2LSTUREBSWQ+1Vzzl5ORERUeEoeYjZDdiYm3UREVFAiD1fNOZEaERERlSom3URERERERARVEVBznfyUXd0ZmHQTEVFBCeQ++zhnLyciIiq8fEykRpmYdBMRUUGJPARwfgEgIiIqPCUPQ8J4nTwTk24iIiooAQZwIiIiGriUYjeAqK+QkltnG1Epeemll3DiiSdi2LBhEELg8ccfT3lcSolFixZh6NChCIfDmDp1Kj7++OPiNJaIUgyoGCft3t+I2uGVl+eyCS4aloFJNxERFZQQ+Qni3dXS0oL9998ft99+e9bHb7zxRvz617/GsmXL8MYbb6CsrAzTpk1DNBrN9SUTERGVJG8itVw2jgjLxPJyIiIqKCGQ80yoag8i+HHHHYfjjjsu62NSStx666246qqr8P3vfx8AcP/992PIkCF4/PHHccopp+TUXiIiolKkiNyHdDHpzsSebhoQ+nRZWQnh+0j9xaeffor6+npMnTrVv6+qqgoHHXQQ1qxZU8SWEQ0MfTGW9Eo7+kqpN8vPiXoVe7qJiKigBPI3e3ksFkNjY2PKY8FgEMFgsFvnq6+vBwAMGTIk5f4hQ4b4jxEREQ00qhA9qi5LxjHdmZh0U7+Sr6vSNrtsfd1Nltp761hqNHCJPCw/4h2/dOlS3HjjjSmPXX311bjmmmtyewIiKpiehtTejMXtxbrkJvQ4jnWh51j0Yu+yFF0odM3Wnq4cRyUvH+t08ytfJibdRERUUAK5r7PtHT9//nxceeWVKY91t5cbAOrq6gAAmzdvxtChQ/37N2/ejPHjx/e8oURERCVMUQA1x+srXOYzEy9ZERFRyQgGg6isrEzZepJ0jxo1CnV1dVi1apV/X2NjI9544w1Mnjw5n00mIiKiAY493VSSertUbSAVm6dfnOzqe9ZZTybLzgcuIUTus5f34BJxc3MzNmzY4N/+9NNPsXbtWtTW1mLXXXfFRRddhOuvvx7f+ta3MGrUKPzsZz/DsGHDMGPGjJzaSkRdj9NdjTGFjsPttSM5tnm7dDluZSnRbreMvNDl5Uml4R2VsndYep58HEvN+618lJfzy10mJt1ERFRQTnl5bufoyfFvv/02jjrqKP/2ggULAACnn346VqxYgUsvvRQtLS04++yzsWPHDhx22GF45plnEAqFcmssERFRicrHRGq8JJOJSTcRERWUInq2znbqObp//JFHHgnZQS+aEAKLFy/G4sWLc2kaERFRv6HkYcURwZ7uDEy6qWTks1StK6eyB1JNeTu60rvo7dLR+97Rh3deZoYlIqKi6M6orY7iREen6Uo87ugCm6ejRCBbvBNIbbMXy6TsJF6llW9nlHNnK+/uqP1dKT3vrNxbWh032j0+W+l51pLz9trEsnOirJh0ExFRgeVvnW4iIiIqHDUPs5czZGcquctRt99+O0aOHIlQKISDDjoIb775Zrv7rlixAkKIlI1j9YiIepciEkE8l41KD2M2EVFp8SZSy2Vjzp2ppHq6H3nkESxYsADLli3DQQcdhFtvvRXTpk3D+vXrMXjw4KzHVFZWYv369f5tjjEoPR1VXHVWSt7eo9lK1bpSmtaTkvPeXquwp2Xx2dpppZ2rvf8/7ZXlJdqU2ahsPZfdnhmWiPosxuz+rbOQ2d1S8q7E5Y7iW5dCn5TtJgMy6YHkf3defEsuNVeEaL/EPKns2i/VTi7FTn5N2fbt4HwdaqesO6U0XHa0b5bn6W7JOZBoL8vMS5YQ/B5WCCX1P+KWW27B3LlzccYZZ2CfffbBsmXLEIlEcO+997Z7jBACdXV1/jZkyJBebDERETmzl+d+5ZxKC2M2EVHpEXAnU8thY8TOVDI93YZh4J133sHChQv9+xRFwdSpU7FmzZp2j2tubsZuu+0G27ZxwAEH4Oc//zn23Xff3mgy5aC7V9DzddW8q+fpDq+3uNA93vlqJ9BBz3XKhDKpx6b3SLX3etMnXuuoxxvg1db+QORh9vJcj6fexZjdP/W0dzv93uR41VFc7s5xQNa+2hTZepq82JV8NuHHp9T45sU1W8rsvd1uL29GD7fX1vYeT9k3y6uwO3llStorS16TO+12+uN+j7XMsl/6O9rOWt+dTrTGXm+i0unp/uabb2BZVsZV7yFDhqC+vj7rMXvuuSfuvfdePPHEE/j9738P27ZxyCGH4Isvvmj3eWKxGBobG1M2IiLqOYHce7nZ011aeiNmM14TEeWfV16e60apSibp7onJkydj1qxZGD9+PI444gj8+c9/xqBBg3DXXXe1e8ySJUtQVVXlbyNGjOjFFhMREQ1M3Y3ZjNdERPmniNw35tyZSqa8fOedd4aqqti8eXPK/Zs3b0ZdXV2XzqHrOiZMmIANGza0u8/ChQuxYMEC/3ZjYyMDeS9pr2wtW7laPkrV2jsmuZiqO+uPdkSIzEnJCqEr7bU7KSMHMq9QKimPOQ9aMvV4kVZ6nq3kPNtzZlsDNRlLzUufELnPPs7Zy0tLb8Rsxuu+oSsl5RlDuaTMGpuzxeVsMdnbLyPed6G9mfFMJiZLE4l9hBB+nBNSpsQ1RbRfYi6knVpWnlxSnvKY7ZeNpxyT/EK9/TqTXL6d0hjn/pTyb68U3ZskLeXY9LLzDsrNu1NqTiUlLz3V/L6WoWT+ZwQCAUycOBGrVq3y77NtG6tWrcLkyZO7dA7LsvDee+9h6NCh7e4TDAZRWVmZshERUc8JwYnUBpreiNmM10REVCpKpqcbABYsWIDTTz8dBx54IL797W/j1ltvRUtLC8444wwAwKxZs7DLLrtgyZIlAIDFixfj4IMPxpgxY7Bjxw786le/wr///W+cddZZxXwZREQDTq45M3Pu0sOYTURUerwZyHPB+cszlVTS/cMf/hBff/01Fi1ahPr6eowfPx7PPPOMP1HLxo0boSTN4Lh9+3bMnTsX9fX1qKmpwcSJE/Haa69hn332KdZLoDTdKd/urFQt/f70crX0UrX2ytTSH3f26XpD03vkOkoWelpq0lGxWXpTe9r25DK7xH2JUrzkknkl5fGkpUCzzHZup30QJ5ebdzSjOcBSc6JSwpjdP/R06FfWUnGZ2K8rsTnbY97zJp8j5bgOVuxOTiScChxnX29ZQy+uqEmxThWppeYqJGyklpg7DbCTSshl2m3bLydP3wdA5n5ILdnucPZyJa2EPNvP5N8t98Wnl54rSmrJeNJxiZLx5G8EHZeap64PzpnMS0k+ysv5FS1TSSXdAHD++efj/PPPz/rYCy+8kHJ76dKlWLp0aS+0ioiI2iPycNU81+OpOBiziYhKizcZWk4YsjOUXNJNRESlRYCTshAREdHAxaSb+qTksrVshWLZysm9fbOVrLVXrpa4X6aUo6eXqaWWmqc+Z/rVQCGSSqrTStnaO6Yn0tsBZC+vyyw3zzwu0R6ZVFaeKLXzZ3ZFopROiNSyckU4TyZE4jm9cnOnDM87r0x5LKX9fhs7ntGciIj6hi6tCuL+aiXF59SS8czYnF5GLqUT21Ljefp9zi9WO9XY3ioIXim5F6OdFRakH/dUIf19LPc4P7Ypwhk6pYjssTy5tNw2E2XltunESNt0G2sm7WcDtpU5w7ltOadsp7xceMMzFDUxC7lQnNJu77aqQgCJ+9L284+zReJYIKXcXCia/7dI6LzUnEqTQO7XufvbN7df/OIXOOecc1BdXd3jc/B/BhERFZTIw5qf+bhQRURERB3Lx2oj/SlkNzU14aqrrsJHH32U03nY001F0ZP1r7P27KY91tWr5+m92t6V8vaunKdfNW+vJzb5Kjrg9HonX0lPHNONF55FV3q527vynz75TXvt99qe3NvtTS7jJVECicey9XyLpLakT7Kmwvu7JJ6/O+8LJ1UrLZy9nKh0dGfytPYkx6nkHm7vdqL3W3YYmy070R5LSj8m21K2c9vdNy1Qqkqi8goAdEWBqjjxThUCuiqgKs78E6riTaDm/LThxDdVEbBtCVUIKNKZUE1AurERfi+18Hq4LTO1h9vr3bbMRM+27fwuzTikbUFaFuD+7rwZ7sRk3m0AQlETL0xRnNuK6vyuB5zf4faEq3qih1u4XfZKUi93cs+3okEIbx1xBVJ10wS3d97r8QY6X4+73bW7OalanzeQ1+k2DANPP/00Nm3aBMuyEIvF8NRTT2GXXXbB3Llzceqpp6K8vByqqmLo0KE4/vjjEQqFunRuJt3UZ3QWzLOVqqWXkicHci8B9wJveokaAD+YJ5JuJ3jHbTsl2Y4nlXZ1VF6uulf4kpNX7z4gMynviq5+yUlOqr0vIgAQt7z3JntJfvJrSG+rrij+63FeS+KDWFWSS/Okn4Q7VzhlaqItMpNsP2FPLljL8r6w1Lz0CeQ+ERonUiPqW9IvegOpcTo51CTHaMCJy5Yfx53f27sAbtmJpDpu2ykJdsy03bjv7Be3pX9OOy3YKX7S7cQyXVVSfg+qih/3gprixztdEZCQEHCSb1UIQJFQpIAKCeldZHdnJPdLxL2E27b8hNtPtm0TMh5zkuy44STZZhzSNADbdu6zLaes3Lb8MvPEi1H9n0JR3IRbhVBViEDIT8SlokIEQ4kkXEtPwNOScGlDeom1kP6nrp98JyfMyb8nF87yo5pK2KxZs/DHP/4RdXV10HUduq5jjz32wOrVq7F48WLcf//9iMVisCwLmzdvxtixY/H222936dxMuomIiIiIiMi9UJ77OUrRs88+i7/+9a/4zne+k/HYihUrUm5/8skn2GOPPbBt2zbU1tZ2em4m3dQntTcxS/rj6VfPbZno0ZUSfqlZRyXktpSImnZKiZp/2z1v3LJTely9+1W/9NrrHRbQFZH1tqoAsLL31nanZK896eV1li391+D1AnjPZSU9nZrUnOQr/4oQ0FU7pfc+qKp+r7eUqaXmXnmdEBKqAKTb4+1IKmH3Ss6zvg/Oz+TqgVL94KYkeShV478DotKSHLvttPuspFht2YlYnbgve++2F5vjthPTYpaNuCX92Jf8e3p5OeDEZC+m6apwSswFoKkKIroKXXHiniVVv/xcSgWqBDRvRlAFgO1WfgFQk5/AKxd3e7mFFXd6uG0TsCwIywAst1e7rcUvKYcZh93WApgGpG1Dxtr8ydWk1+OdRiSVlQtdd35qutvTrbpl5gqEaSTKz939vH293m5pu+dKnsRN0RJx2nv+rmRi3vEsHS9ZQoisk9126xwlGrVramowfvz4Lu07evRo7LnnnmhtbWXSTf1LSgD3xy+n3k4OtF65WvbEO7WMPGomAnfcTgR22y2Bi9u2/3s6VSTK1lThJNmaqiQlronf1bTZTlPGvCXd8MaetfelIRsvyfa+jMS920lfQtp7Dd7rSEm6FeGW2wn3i4gCy4afdIc0J6Amz/DqJeDSHRPuJ/QKgLSx7d4k7yKtDdT/OMMOcjsHJ1Ij6vuyXSQHUsdkez8Tw7cSSXLcSgyPSvzuXPi2JBAzLcTtRFxrjVswLBuG6WxthuUm7BJmWmM090MkoDlxLRxQEdAUBDQFuqIgZtoIagp0RcCWgK7Y0FWBiO4Mi3Luc0rNoTjfMRQhEq/Zm4k8qawclpEoKbcMJ8mOtTlJdmsTZNyANKLO/S2NsM04bMOEFTVgWxbsuAlp2RlJt1AUCNXdFAVaOAihKFACGpRQBEIPOEm1FoCIxxNJueEm24oKmTT+2xv7LRUNwqskd57IeT73p0wqKW93zDaVvIG8Tvcnn3zSrf0//PDDLu/LpJt6TU87c73e7GzjwzICeVJS6QV1L/B6Y5uTxzzHrUSSHbdsxG0J07LRGrf8ZNuyJdoMK3H+tEAecJNPVRFOAFedoK0owh0bJhMJrXt13Glfag90Z7zecC959373X5ObZHtj3OK27b4+58uI1/Zsr0FVhN9+73ddURByv4BoqgJdsWHpqjPZTPLka35PeGKJFVt449e9q+TSv0KuSG9CNS/rTpzLHw/YzSusPTyMeokAlx8hKgU9idOynYOyzcPix2wb/vhr002iY5blJ9qJi8Vub7efdNt+4t0Wt9AcNdFmWIh5SXfcgmE6iXfMTE1UNTe2ObFORVhXEUlKvGvLAwiZCoKa03cd0hQEpRO4gqoKXXXa731xVoWAAu/icmIiNSHtRA+3GXcScDPmJtxRN8k2YLc0Or/HorCNKOKNrbDicVhRA/GWKKRlw3KTbjseT3ktTtKtQqgKVF2DGgpACwWgBDToZQbUUACKpjvjuW0LMN0ebj3gjBsHILQAYMYTPeCaDaED0kpMrOYl1n6yLTN73DPuF2r2fTo9jok79W9Muqmoci2rTg/kEokE3LSQNNFKYmKx5DJsL+lujTtB20tUG6NxWLb0r54bpg2znYQ1oCkpwTz56nlAVWBLp2QtbsuU0nOvVzpb73N6j2+2x73edO9x7yKC94XEu/rfHDX9dseSku+U87ltD7pJt9f+8pAGXVGgqzZC7ixwIalAVxXAtJ2r/Ip7McBOLtsDAGeyGcArR0/9m3lt786/AE6qRkTUu7oTp1OGhiXfn9TD7Twm/d+9hDtq2omLxpadknR7cbLZMGFYTo92m2Fha7PhJ9qthpOEm6ZTmWa7Xem2LaEoAkJxSmYVRUBz41skoCIc0BBw41s4oKI8KFNisHOR2YItFeiqM9pVAWApEqrbAy4l3HI6t4fbNp2ybq+c3IhCxt2fRhQy1gYZbYHd1uIm2W2I7WiGFTVgRg2YLW2w4iZsw4Jt2bDiqcmuojqvRw04iXegIgIloEMLBWAbppOEh4NQzThURXXa5P30/iZK1Onp1nQIU4cIOI/563ZbIjGpmh/Ak9qhdD1hZq94acnH7OX94RvaEUccgTlz5mDmzJkIh8M5n49JN/VJnXX+JpYFS/ReA+7YMPdBL6lOjM92ytS8YVmAc6U9ZlpoizsBP247wbyhNQ7D/QLgBXjLzkxYVT/ZVvxe4gpT85PWcECFIgQsVUCXXjm2c6xp2YgmjUfzx4Fn+aTyvng4xzu95UEJ9wuA86XCKbmz0RJ3vox4FwuaoqafgDsXEqx2k+5wQHOSbtWZvdWypf86vC8uXnsUXXHfU+F/efKS7og/ys3tkQcglNTqBG8W82zXxJObx5LzfiBpVvye6m8XWX7xi1/gnHPOQXV1dbGbQlRw6UPBpEzEgrhtI2raaI0nKs5ibtz2/t97Q7za3PjWHDXRaljY1hJDq5uAG4YFI2rCMm1IW8KMp874LdzEW1UVqJoCw7DQHFARDpiIBFQnfoc0WLZEUFNSZjsHFOc7gBSA5iSmmg1YQkAm55C2s1yYV14u4zG/nFzaFqRpOAm3EYXV0uQn3PGWKGI7mmG2tMGMGog1xmAZNqy4BcuwYBtpSXdAgaIqUHUFakCF2RaHFnaSbgBQ46YzNtyyoQSiTrKtBfykW9o2hKJAmnGn3DzoLHkkVBXQdPdJtERPdHs93NQvKRi4E6klmzBhAi655BJccMEF+MEPfoA5c+bg4IMP7vH5mHRTyciWiPvJt387sb62d/XcmWjF9nuLdSWpp9kN8FHTRtS0/KvnO1rjbrJtwjBttCaNE8vW0+31DnuJalhX/d9VRSCsq+7/NgW66iTJUbeM3StdB5KT+MTHVXpZuPdczhcCp7fbS7ijlu2X23ntbmgz/J56LxFvP+m2ENQUBDTVL5sPB1TnuQMqgpoKRUgANuLuMcml7V7pu7PeqeJOtub+Xdr5CGaC3f8JcJ3uZE1NTbjqqqtwxBFHYPLkycVuDlGPdHFkVFaWnRjy5VRoOWXjMdOJY15puDfhmXdh2Uu4m6ImmmMmtjYbMAwL8ZgFM24h1haHbUlYpg3LcpJvj5dwC0VA1QQsM4C4riIWUNAW1BDQEpeAq8K6fxHZq0pThHOR2Yt1lhTuhf/Eh5O/7rY7aZrtJtiwbXd5MHcSNSMKK2rAaGxBvCUKsyWK2I4mxFsMmG0m2rZHYUZNWIYFaUnEo2bK+6fqKhRVQAmoUHUF4ZoQtKgJLRSHomvQrUSSrBlR58I3AOkm3jIWhQSc8vOAu8awokLG44AWd98vDVLq3f/j+uO9un8o9Q0CuU+k1h/ceuutuOmmm/CXv/wF9913H6ZMmYIxY8bgzDPPxI9//GMMGTKkW+dj0k19RnvxO+vs5Wll5f5EanZiTW2vXK0hGvevnOuKQGVIhyqc3tqYm/hubzXQZlhJgTzmjBMznEBuxm3/6nl6qZ2mq1AUAUUVUDUFkbCOcEBFRcj5CQBGwEZ5SENIlVDd8U5xS2LTtjY0ucHUG1vmJdWe5DL3VsOCJSWqwzpCO5dBdydzSb5osLXZQHPMRJvh9ATsaDZgWU77bUvCNKyM16AIpwdAD6pQNQWqqiAYUNFWHkB5SEdYV1ER0vxyeegqbOmU1llueX6zYUFXncnXnGoCiYgbr4VIlMInqhTcX7JMLJecfCe3lCGASo1hGHj66aexadMmWJaFWCyGp556Crvssgvmzp2LU089FeXl5VBVFUOHDsXxxx+PUChU7GYTZdVZnp0cr2WW35PLyxOx2vZjSGvcQnPMxLZmA5YtMagyiJqw7o/hbmiNY0dbHA2tBna0xtGwrQ3xmAkjZiEeMxFticKKtcE2DVhGm/NctgVFUSEUFYoWcDY9gFBZBHpQgx5UEQzrsGyJpoiOncqDKA85X48VIRDRVSi2RKt7Ad8b8x1QdcQFEPC7721/DW5hRmG3NMJu3Aa7rcWZVVx3E14jCrutBbHtTYjtaIbR1AKjsRWNXzTBaDYQb4mj9Zs2RC0bhi1h2BJtVqI8XxUCAQUIKMLfyneEoJcFECjTIW2JQEUUgcoy2IYJLRSEriju2t1Owt22+WtI20agogxaJAxRVgnFtpx1vXU3cOtBZxI4AFAze7xlZ73fHK9dsvIxkVp/ydk1TcNJJ52Ek046CVu2bMHdd9+Nn/3sZ7jiiitw/PHH4yc/+QmOPvrorp2rwG0lyptsk7L4ZeVJP6PuFfLWuI2mmIktLU4S+vHmZry8ZiP+cOkR+LrFQGvcCfQ72uL4YlsbGtqcIN7cGkdrYwxGzIQZt2HGLRhtcVim6S7dYUFa7tgnVYUaCPuJqqarCFcEoOkqgmENelCDYdqoCuswTBu15QFUhnTUhnWMUBUsuPhW7HXUNFTuFEFtZTBlfJnX250Yv2Zi8/Y2NHzTig+efhQvPPYrNERNNMRMRNucLyNbmw38e2sLmlrjMGIm4jELbc0GjJgJ23Rei2nEMl6DcL+Q6MEAtIAKTVcRCKpoLA8iGNZQEdFRHXHK1mrLA7CkRFVQQ1BVUBFxSujvfO0z7D6oDJUhJ2DbQS1l6TQr6cIIkFhiLGUSnv7yKU0p8rHmZ6l+ZZs1axb++Mc/oq6uDrquQ9d17LHHHli9ejUWL16M+++/H7FYDJZlYfPmzRg7dizefvvtYjebqMva6/FOXXEkdXiRYToXawGgKWai2bCwtdXA140xbG0x8PGXjfji4614+PKj8NmOVmxpcSq2vmpow5bGGFqaDLQ1x7Dj6xbEmnbAaG1AvKUBbds3w3YnCuuIUFSEa4ZAC5cjWF4LvawK1YMr0FIexI5yA2HdqfDSFQFVODE7qCn41fMf48BRtYhXhRHRVahC9Yd/adItLTfaYDftgNWwFfFNn2DL2+uw24WXAs1bYX5TD9nWAmNHM5o+34y2b5rQurUN0e1RbPmsAQ1xCw1xG19GTbQlVeh1JKwKDGkyUKWrqNIV1G2PIlQTQmTnFoR3KoNeFnJ6v8NlUGsGQ4lU4PrTfoLTfrgPqkYPQ7CmHMHqGLTqWnc5MXconBYAVCfud1ZmzjHb1N+9+eabWL58OR5++GEMHjwYs2fPxqZNm/Dd734X5513Hm666aZOz8Gkm0pS+ozmiRlRpV+yFjVtxCzbv2re0GqgelAZPvzHWnzVFEPUtLG5OYbG1jg2bmtBQ6sJo82EYZhobYzCNCyYRhSWEUO81VnKQ0rLKRNzA4wQChQ9CEXToepBKHoQwfIq6AEVelBFIKihrTqEqoiOqnAAVWENw6rDqA3pqA7pCFXujOYdUb+33Ag5Sbo3ttobg+1NENPWZKC1MYbK4Xtg3XtrsSNqYntrHPVNMTS0xtHYZmCzf+XfSbqjzW2w4lHY8RiseAxmrDXjNUBRoKg6tGAEih6EFoxACwYQKgtAD2rYFtLwZVBD804R1JQ5r2NbeQiRgIrqkIbygIItjUFUh52EuyqkQTdtBN3JaSxbQioi7W+Wpaub+q2c1/ws0Qsyzz77LP7617/iO9/5TsZjK1asSLn9ySefYI899sC2bdu6tOYnUV/T7kzm7k/voqs38ScAfzLT5qiJHW1xbG2OobUxhnjMwPr31+LTba2ob45hW7OBjzc3o63FQNTdmuo3It7aCKO1MWWSsE7bCaCleTMAQAuXQw9Xwtg6CuHyIIIRHcq2cmwpD2FLZRA7qsIYXB5AbUjDjlYN25oNDIoEEDVthDQlZckwSBuw4rCjLZCtjYhtd8Ztv/P+R5AN38D65ksYW+oR3daE7Ru+RNvWNkR3xNDaEMW/W+PYEbfRanVz/LQFbGwFdCFQqavYzWxDxdcawlvDCNeEUROPI1hTgWBtJbSdG6HuVIedAyqavmpGsKYBAKDqOtRgC2SoDNJ0Z0p3e+2Bdnq1Oc673+KKI44tW7bggQcewPLly/Hxxx/jxBNPxP/8z/9g2rRp/neS2bNnY/r06Uy6aeDIVl4ed8eFeROutLpjp6UETHeW7+aoiYa2OHa0xBFtjcNoi8OImmhraIIZbYYZa4VltMFoaYS04tmfXFGham7iHQxBmibMcDniRhCWKaEF1KRJ0IC4acOUEori9DIbMROxaBx6m+bM0OquL6opwh+H3Ro1/f3MuAWhOOVtpi0Rs53X2NhmYJv3OqImjGgc8Wgboju+hhVrhRU3/OS7PVq4HFogDDUYgRYMAxgEK+5MxmLbEg1thj+RmxGxEbATH6vepG0BzV3vVLX9v4VlqzmN/6PSJvJQqlaq63TX1NRg/PjxXdp39OjR2HPPPdHa2sqkm0pe1uo0eIm27cfFmLvUV3PURHM07kxkGnMqywAgZkvnsZiJthYDbU0Goi0xRBu+QevWL9uPzV1ktjXDbGuGGgpDWjtD2hHsaIkjpGuIRFUYFYm2ekuIepOgWnbahQbbdJJW0xm7bUWTet2tOKQZQ7wlCqO5FdEdUbRtj6JxRxRbDad3OxdxKbHVMBFUgLgN1NhOeX1ZU6szs3k4CNUtF1eFgNFswGhshRoKIt7SBq0sBGFEE5OtxQ2IYFoPd44rzlBpyEt5eX6aUlTDhw/H6NGjceaZZ2L27NkYNGhQxj7jxo3DpEmTunQ+Jt3UJyUHscQkaQnZZkIFvEDu/e5MLtZmWO6SIjZsd0ZUw7YRsyRaY06Qj7bGEWs1EGs1YbRF0ba9Hma0BWastfOAbluwjFZYBhBvbYC0TOhGJbRQOSyzEnrQSZAbhICuKoi5XzZsG7BibTDbmhFrC0APxiGlhJSJCdMAIGZYfq91PGohHm11xqy5a5C3Gc4YuIa2OIw20+kBaI3BbGlEPNqMtu31HSbaybwvH0LVoYfLnfsiVbDtkJN0h3XoqoKQriBu2TBtxV9BxHuf2wxnLH1YT+7JsBFyp3hNfPnK/Ltm9oKDJedU0j755JNu7f/hhx8WqCVExZM+D0vyOt3eqiGt7rwq/jwqSXGuJeY8FmtNJNzRhq9zTriTRbdvdpfEGoxoawg7As5a3t7yZTYkYm47Y24lnQ2ZiGHuGt0ybjhbLAorbsKMGoCUzn1RZ6byeFMr2rY6CfeWmIVvjK730nfmy6iJuO0Mtxu0FTCaolDDQehtIQRME7CdseLxljiMljj0ljbEIyEEogY003AmUwOc98KriPPW685bK6kvEyIPE6kJgVL/F7Nq1SocfvjhHe5TWVmJ1atXd+l8HHhBJc1bdsQJfIkr0d5s2nG319iypbN2p5vsmraEaTs94VHTdkvJbcQN00k8oy2IR5t7FNDjbuJqRpudpDpuwXRnE497S4TZbpvNOGzTcC4GmM5kZ5ZpO0ufmDZihgXLcidAi7u/xw3nGDivI27aiMZNxOM2zLjzhcWKtcI0WmFGm7uccKe8r1YcRmsjzFgbzFgrjKjpTiZnIRq3EY07Y81MO/G+y6S1wG13XXRvAxJ/o+SlYmjg8Nb9zGUjov7BW/XCsqVf4WVY7rKc3gVy04ANL1ZbiMWdOG0aUcTbmmG0NOa1Td5FZzPWCtOwEIs71VqWTCxP7awX7m52YrWUlJBm2+5a3RakZUNabtCTNmzTgmXEYcZMxFviaDYlmswelJR3osWy0WzaaItZMGMWpGnCNi2/TNywJay4BduwYBnO8mKWEXcSbrft3SnXJ+pPtmzZAgDtJtymaeLNN9/s9nmZdFO/kpLs2YnAaJgWbFvCdidZk+54srhlIxa3YJkW4oblJMlGqzvuuWcBx47HEG9rcUvTW2HFbSfht5xk1XSvjgNwE253dnF3sy23t9t0SrqtpGTc8r6ImHHYXq+4hJvIO4+bMcPvQY+3NefwZlpOib3RCtuMwTQsWHGJWNxC3HaWILPdCWQk4LTfW8vcff+T/y40cHkTqeW6lbojjjgC999/P9ra2ordFKK8kUlbMjtp8+9z47OVFKstCX8pS8NdZcNZ7suJwV6sNrw4GG2DZbTltZfbE29rcS6Ym873gljcci8uu+33Lgy48S0jtrnZuXSXCLPjJqy45fSAWzakacE2DFgxC3HTQquV/4QbAFotG22WM+u5GbNgRuOw45ZT4m7biEsJy3C/b9g2bDfxTk64Zbbk2xu3zvHc/Zo3JCyXrZSvkw8dOtRPvAFg7Nix+Pzzz/3bW7du7dFyn/3hewwNQOk93N5ty3aW0PI39+q54Sa9lpvwmpaE6Sbc8bjtrPEZi8GMNiPe2sH47S6yjFant7yt2ek9d8vlYnHLGdPt9sSbsTZYpuEky0ait9s0nPaaccv/AuL1dtumATPWBtsbmx53vhjEDRtxw/aT7XhbS496uZMZLY0wWxphtjXDiBkw48665c4XETulJ9tylzXz3u+4LZP+Du3/zaj/c3qqRU5bf+jqnjBhAi655BLU1dVh7ty5eP3114vdJKIe84ZDJcuWaDv3J6qiAGeYkRcf4rbtXxw3ky4wm0abEyfdC9aWacGIGYhH89/L7bGMVqe327BhulVdXqyTACwzsYRn+ozs/g0/aXUSbcsrHbfisE0nAY63mWg2JVosiViBJjxpNC00mzbMNhO24fR0w7IB23ZmRjcsmFETZlscVtx0E2/LWUfcjCe69wG39z7tr+rdZ9upyTiT8pIn8rD11O23346RI0ciFArhoIMO6lGPcq7SP9c+++wzxOPxDvfpCibd1O8k93ZbacFM2m5Zm3vbcr80OJsF270KnJd2mHH3fNJ53iyB1V+CzL2SbNvS2T+pp9i7L3E7sb/HsgHYidchLee5cyWlM8u5ZTkB2JZIaYtMe01m2u3kpJxooLv11lvx5ZdfYvny5diyZQumTJmCffbZBzfddBM2b95c7OYRFZxlp85gnjxBmVdq7sXA9DgnbTgrb9hWQXq5/eeRdkoMdtrqPSZheROEysRryeCXlrvl5e5lCNuy3MTcGf4WL1DC7bXZktKfCFUmjdG2JNx2pUr//uP02DOBHmgUIXLeenKd/JFHHsGCBQtw9dVX4+9//zv2339/TJs2LaXXua/oyZj3HiXdRx99NK699tqM+7dv397lBcKJeouVlLxmu7/QcimzTr9YnP4lBMh8HXkNkO7VeqJcCOReqlaqs5en0zQNJ510Ep544gl88cUXOPXUU/Gzn/0MI0aMwIwZM/D888/n9fkYr6mU+XOCJE+uWuCYJG3b78XqyUXjbHG6GCxe8KYSc8stt2Du3Lk444wzsM8++2DZsmWIRCK49957i920vOjR7OUvvPAC3nvvPbz77rt48MEHUVZWBgAwDAMvvvhiXhtIlCtvFnAl7Vu72kvf4tOftzuEAsBKvq1m7JP+OoSSxwIWRc3v+WjA4pqfqd58800sX74cDz/8MAYPHozZs2dj06ZN+O53v4vzzjuvS2t+dgXjNZUyxe1NUnpxeIlQFL8XqyfPmy1OF4PaD4bkUHHkY0SXAGBaFhobU4eCBINBBIPBjP0Nw8A777yDhQsX+vcpioKpU6dizZo1uTWmm4QQaGpqQigUgpQSQgg0Nzf7ryX9NXVVj79NP/fcc6ivr8fBBx+Mzz77rKenIeoR7wNBgYCS9HVcVVLLYlRFQHV/CkVAUZ37NcX5qasKFFWBqqlQtCC0QARqIJx7AxUVWjACLRiBqqlQNQFVUaCpChT3uQFADYahagGomgahCKiaAkVToKju74qAqirOpgnnthZw19CGc4wioKsCiubuowfddbYjOb8MLRhOvC+6DlURUFQFuqZCFe57KhIXNYKa4rznSmqZUcpb4/7N+skwXaIu27JlC26++Wbst99+OPzww/H111/jf/7nf/DZZ5/h2muvxe9+9zs8++yzWLZsWV6fl/GaCqEnywqpihenE7Hai9FqUgxUVQWKFgAAN5bDiYu6DjUUhhrIPb5lpTjfBVRNhaYpCKhO+7xr24oqENBU97uF81pSCH9HCFWBUBUoARWAAigKVF2DoqlQAyoimkBYLVwQDKsKQqoCRVfc91V1r+QDAUVADSgQqhPTvbYKRQEU1d2c292+8C4U/3moNAkpc94A4K233kJVVVXKtmTJkqzP+c0338CyLAwZMiTl/iFDhqC+vr7grzmZlBJ77LEHampqUFtbi+bmZkyYMAE1NTWoqanBnnvu2aPz9nid7qFDh+LFF1/EGWecgUmTJuHRRx/F3nvv3dPTEeUkOe57McwJiIlgLoSTtCpwgqWiOEm3pgonKdZUWHoQaiDoBJwcSsRULQhFD0DVg06irypQNEBXFTchdb9wKCqEoroJt5vEuptwripAKBLCa7+quPurUITzGhUhoCcn6HoIqh6Eqgdg6cGcJlNT9SDUUBiKqrsXD1ToqoCmuu1JeuO9CwD+FyiR9LdQmGAPZN5MqLnoD+Xlw4cPx+jRo3HmmWdi9uzZGDRoUMY+48aNw6RJk/L6vIzX1FvaS7WULLUqyfmmE6fd+OheJFe1gBsnUy+Qa1oIaiAIy2jNe/tVzfkO4OSdiVisCOEMk0n6TuHFv4zY5iatQnGTbu+FCuc+RVeh6AqCivC3Qkym5p1bDWoQmlu1pjrJf0ARUAIqVF2FElChKF7S3U51W1fvo/4hH5PhSYlJkyZh5cqVKXdn6+Xua7q67nZ39eh/jHdlMxgM4qGHHsKFF16I6dOn44477shr47Lp7qx2jz76KPbaay+EQiGMHTsWTz/9dMHbSMWTMpFDUgIY0FT/Cjrg/BvWVSeQB3UnmdR0BUrA6dXVQ+VO4OxJG/QgtFDY6eUORKAFnCvmqqYioAqnt9v9AqJoAShaINGb7QZo58uF18OdujnH6O5EFd7rEIl9dN3pQc+1t1tRoQbCTi93MOw+NxDUVeiKAhWJ3goBOG11vzSp7vuf/HehgSy3mct70qPWF61atQofffQRfvrTn2ZNuAGgsrIyrwG/mPEaYMweCLozY3Fy73ZyvA5oir8pqkjp6fZidcCLcaEw1EAYQtXz/lq0kBvzNBWK+/1AU4T/ZVlRE9Vc3utJfYHudwzFSWAVXYOqq5DCTWo1FUogADWoQtdURFQFkYzu8twFFacXPex+N9BCOhRd9RN/XbiVf6pwLgQEtEQvt0v4Pd5d+C7k9W6zh5uSqKqKysrKlK29pHvnnXeGqqoZk4pu3rwZdXV1vdFc3xFHHNGlrbt69L8jfZr0q666Cg8++CBuvvnmnpyuy7o7q91rr72G//qv/8KcOXPw7rvvYsaMGZgxYwbef//9graTctfZF21v3d70MvPkMjXdLXeOBFSEdRXhgApNV6GpAgFVQVBRUBHSUBHSEYroCJUFEKkII1Rdi3DNEISrhyBQXgNF7+JVOUWFFi5HuKYO4eo6hGrqEKqoQCisIxjRURHWUR7SEdIUKIrTZi1UBi1cDj2ouZuKQFBDOKShPKQhEtIQdO8PhnVnn7Iq6GVVUABoikA4qKE8pKM84jxPuCKIYHmV046aIQhW7tStUjxFDyJQXoNI7VCEa+sQqqxBpCKEUHkAZZGA+55pCGkKAkkXEIIB5z2uCGkIagp0t3dCVxXnC1ZaWXlHay/3p0SLOJGaF6MOP/zwrI+bplmwZVGKFa8BxuyBTkFmrPY//5NidchNtsO6ikjAiYF6yImnmiIQVBSUB924Ux5AqLzMj2/5FKoZ4sTu6lqE3Jgd0VUEFae6S4FAwP0+oSsKQpoX29wLDkJxkmtdB7QARDAELRSAGtKdF61qUEMh6JEQghVhhGpDGBTSMCSoYVCgx4WnGco1BUOCGgYHVZRXBRGqDkKLhKGGAhB6AFAUlGsK9LIA9DIdelkIaigALRyECIYALeBsiuon0tLdmFwPDELauW/oXvVGIBDAxIkTsWrVKv8+27axatWqHq2J3Rf16H/Np59+mnGV/uSTT8Ybb7xR0Bnmujur3W233Ybp06fjpz/9Kfbee29cd911OOCAA/Db3/62YG2k/POuoCcHcI/3ZTw5kOtuwq2rCnRFQTjgBnK35xgANOEE+nBARWVIQySiI1yuI1zmJN/BqkF+UI/sNAzByp2gR6qgBiJQ9CCEqkOoup+ghqoGIVI71AnaNU7QDpeFEKkIIBhxEuKqiI6KkOaUtCvCSbz1APRQCMGw5m46Im5SG3ET2PKkxDsQdC8cBMJQFCfpDmkKKoIaqsI6ImEdobCOSEUA4YoIwjWDEK6uQ7h2CMK1w/wEPP01qIEI9EgVwrXDENlpGCK1wxCurUO4ojzxvkQ0VEcCzvMEVaiqAk0I/wJCOOnihq4o7vvv/C285SNElgQq5YsZ+t+EWVRcfWHNz6FDh6YkmmPHjsXnn3/u3966dWvBvlQUK14DjNmUybv4qqtJsVoRfpwuD+kIBlToQQ1awLngrakCEfficiiiIVwWQLiqAuHaOgTKa3pclZbMu2Aeqt4J4fIAIkkxW1UVv0c74F7ID2kKdNWLa0lRSyhOwu0m3kpAgxYOAEJAqBqgB6GXh6BXRBCpDSG8cxiDIzrqQhrKtdwTWV0IDAs556usDiFc4zyXFg5AC4ecNsAZ0x0o06GXBaGXhf3EW2g6hJ7YmGAPUFJmX3u9W1v3h0wsWLAA//3f/4377rsPH330Ec4991y0tLTgjDPOKMCLzG7OnDloamrq8v7nnXcevvnmmy7t26NLa7vttlvW+/fdd1/su+++PTllp3oyq92aNWuwYMGClPumTZuGxx9/vN3nicViiMUSY2B7OkMdFZYX5LwraV4S55VaA/B7usMBFYZpoyKkY4sbOwKagA0FVWGnPK22PIgmTUGzokDVnQBuGjrMeDks04IWKnfWqbbisKUF2LZfRqZpIQhNc8dS6whGAtB0BYGgBi2goqYigPKQjuqw7iTQbmNNW8KOGwhFAgiVBRByH3cuEKh++VrAtKEpAk2KQLzMQqzNRDOcJnhJd3ko8V85FrehBVTEAyaMmAJF2Rlxw4S0TFjxKKxYW+I1AICiQBGqM247FPYnkdEDKkLlAQQCTq9DWUhDTcRpY3lQc0vlnTbakIgEVFS7jwc1BUFVSfwt1MRENN7XE/ZiDxz5uJjSk+O9ntZly5bhoIMOwq233opp06Zh/fr1GDx4cI4t6rr03ubPPvsM8Xi8w33ypRjxGuidmM143fckf64nf8QrQqbcp7oTmQJAUFMQ0lSUhzS0GhaqIzoaQzo0XYVtO3OhlIc02LZEWSTgn1xRFFjGcOitjTCjzYi3NXdvDhNFhR4qhx6pQCBShUh1NcJlAQTDAdSWB/2YHUiKcwE33nq93d6kcE6bnARVaDpEIAQRCEEvCztl21ICqu70fkfCCMQtRAaVQShuyXxDDHFbotG00Gw6P7sjoiooU50e7LqIjmBlAMHqICK1YQQqIghUlEELBZ3vLbYNw5YI14QQrKlAoDICvSwMJRRx2u2W9UNxyuL915b+R2Uy3n9J2aOkOVc//OEP8fXXX2PRokWor6/H+PHj8cwzz2RMrlZIjzzyCC688EKMGzeu032bmppw9913Y9GiRV06d/7qWQqso1nt1q1bl/WY+vr6bs+Ct2TJkqxrmlLxpSZpqR8G3tIYQkjoSiKQx22JyqAGVRFoippYF7Ow19gJGBo1ETVtbG010BAzUbW1FU1REw1tBpqiJrY3RGHELJhxC6ZhwWgzYUsJ27RT1t1WFOHPtKoFnJ+hsoBTDh50eqmH10RQ7V41rwxq2CkSQEVQQ1PMxKhJBsLlAVRUBLFTeQDhgIaAO3ZNcyN5zLT9sW6WLWGZNurXN2PkPuNg2RINMRN1bXE0RuNoaI2jZnsbdrQaaI6aiMdMRFvizuuI27BMG2bcgrSl/zq8SWuEIhAIalBU4YxD11WUVQZR7va8V4UD2G3nCCpDOioCKgaXBxHRFQRVFY+s3YTddlJQWx5ARFcR0VW3J0Px/z7e3yh9DByT7wFA5D6uvyfHJ/e0AsCyZcvw1FNP4d5778Xll1+eU3vyrb/9P+iNmM14XTq8f90pF8gV76Ksgoiuoiqiw3Lj0o7WOJq2B6AN/xb2VhUMbjXQErcQ+KoJ25pj+KYxhmhrHOEtLYhF4zBaW2C2NaNtez0sIwrLNGDF2iBty18325tDxVmVQ0e4pg5aqByBsgoEwjqqdoogXB5AVXkA++1ShUGVQVSHdOxSGUJVUMOj//cl9h6qYOeyACoCqrNah1vF5ZGKBigaRCAEJVwGvbwMgcoyHDC8FkIfAmv7IFhba2E2NmBHeQTRrQ2I7mhF2/Yotv9rB2JNBhriFuqjFtosG1FbwrAl2iwblvvVQxVuT7UinBnKFeH3lJeFNVTtVoVwTQihmhBCO1WhevQuCFSXQ6mogVq1E2TcgHVgHSp3q0V4p0onIY+EIIJhZ9Oczgih6ZlJN1GBnX/++Tj//POL9vwHHHAAjj/+eBxwwAHQNA26rmPvvffGZZddhnvvvRevvvoqotEobNvGhx9+iLq6ui6POS+ZpLu3LFy4MOVKe2NjI0aMGFHEFlE2/vIdSck24F09d+4LaQpsCVSGdAQ1FaE6FfsMrcBXTTHoqgJbSmhusK8tD/iJbXnIgqoItBkWYoYFy7IRj1mwTNtJVpOu/inCSboVdzkyTVdRHtGdceQBp0fYSaad0mtFEYjbEt+0Gvim1cDB44aiLW7549mCbhu8sW6WLRG2JSKmilhQQzigoa0yiHF7TMdn21tRHnT+C+uqU54HAIZpIxxQ0WZYaIrG0RDUYMad9tuWhGk4X0CyvQ7NXVpE051y/MGVIWectnsBoTLkjnFzLwBETRtNMQvjh1chatkIqYrba6H45XfO3ydzhtdSHqNL3SOQhzU/u3l8X1rzkwqD8bpvSP4st2T2+9NjtZIUq4OqgoiuIG6rQHnAr/IaXhvBZ9tasUuVs0SmqghUu9VpqiKwI6DCtiXiMRPxWAhGrAqBilrYpgE7bsAy2vyEG3CSbqGozuSlwTBCZSHoQQ2BoFPOXlUbRnVER215EFURHSFNha4IxC0b29riOHC3GpiWjfKghvKABs1dpUNxX48UCoRQIFUdSrgMsG2oO9Vhp4llsLZ+BVFWCWlZgBaAGgwiWF0OoSrOeOpQMwAg1hBDeUscNd+0IWo5PdJO0p3a0RBQUhPvcHUQelkAgTIdFcPKEahwe7ErIk7ZuKICpgGrYSvspu3Yffo4KLqGQKWTcCtllVBCEUBzeuOdN0xNfPB2knxLJuX9S55mLy/F8YIPPvgg7r77bnz55ZewbRvRaBS/+93v8Mwzz2DdunWYOnUqqqqqoKoqfvCDH2DWrFldPnfJJN09mdWurq6u27PgtbdoOxWPF7itLJUu/pKYXsmaAqjSC+ROEhq3nJ7X8oCassyHN/4buorKkO4kvm6yqgoBw7LRZpgwTButhuX0MrubtJ1lvAD4SXJAcxLO8pDuJ9DhgJoI3kk9v7YtEVIV7D64DG1uEpy8vJma9G0l+XmrTecLh5dg27Z0llNRFER056KDEUkk3eVBp1zdMG2YtoRh2jBM238NQNJSX+64Ok0RTo+7pqA6rDsXDAJO6Z+XcHtLn9nSaXdlSEe5lP74ba8H3O/pTirB6yh5YiJOnYnFYhllxNk+t3vS01ooQgg0NTUhFApBSgkhBJqbm/3X0R/LonsjZjNe977OPqLb+wz3Y7V7BlUkxWhNIm6rKJdwJihzy8ktWyKsq7ClG+ekgqqI7q+QEdBUWLaEYViIu5VpoYgOM+5cIPequvy2aYp/gVnVBEKRgDtHioJgUMPQ6jCqws447vKgE+801YthAlVu1VxQVVARdFYj8ZYjTTyJCqkFADsMpQyAbUGUVSbeB1WFCIQA20KwpgJKQIOia9BCQQhVQbzGgNEcR7AyCCtuwTIsWIYNK25Bul+ChDvruLfcl6orCNeEoIU1aCENkcFV0MvC0MpC/lhtaLq/FKoIhFA+wvlcVMJlztjzUAQiXAYl4E6k5rxhkO4YcC+pTkmuO0u0mYiXLAFnMrTc9H55ej6MGDEC1113Xcp9GzduxMiRI/Hkk0/i+OOP7/G5SybpTp7VbsaMGQASs9q1V4YwefJkrFq1ChdddJF/38qVK/vNLHj9TXKsznblPPm+RAB3eKXLtgB0704NUN0JViw7tWfXO18EKuJu73XIVFCmq4iGbH8cuLe1GhYs93jLTrvinLSEiKYIZwxY0vInEd2bWEz4ib4qFH/tUSss/eTZoyYFce95k8vavUnKNFXx1+pWLecLiyIE4raNNsOCYdqojugpSbclZcZr8JL8sLs8SqLX3xu7JhDUnAsXyROkOe9jYrI0J7l2xpk770ni9XivKTEUIPPvmvy38f/WmQ9TCRI5jg/zjl+6dCluvPHGlMeuvvpqXHPNNTmdv5CklNhjjz1Sbk+YMCHldn8rL2fM7v86uiAOpI3pdn/6MUHC7+mOuPOo6IpATLMRt5zZypOHQMUtCVVIVIVTL5AHNCXl4nhr1IRl2X5lV2p7BIQCqJoCIYRflRZwL5bvVBZwYl5ARVXQnZtEcy80KwpU3YmxQU1BIGkiOH+9caE4SaoaAHQbEAqUCkCYcci4AZhxSEWFsJwL7Xp1tdvLHYQZjUEJaDCjBqxoDEZjq5Nwx21Iy4ZlpCZAiuqss+0l33pZ0D9XsKbc/10NBfzE2lsSTARCQFml87umOzOaazqUQAgiXAbhrtgiFa3THu5O//BUmvLR012iSXc2u+66K6ZNm4bx48fndJ6SSboBZ1a7008/HQceeCC+/e1v49Zbb02Z1W7WrFnYZZddsGTJEgDAhRdeiCOOOAI333wzTjjhBDz88MN4++23cffddxfzZVCS5HGa6Ulxh8e5P7NNqJacgENxrqbbikwkr+5PxRYAnA+VoDs7qTfrudfT7fUKh93eaK/HOVlyObjXWxzwzqcKRHQ1kWy731JUCChCQhGi3ded/ljyFxBnndPEsiuKLaEKBZZ0Xp8und7vuG37Y8G915LtNXhtT+61VxWBMl1NSfBDWuJ1eV+YnL9hYt1VVYHfE5EYx52lvLzDv3B2XO+7RHkzoeZ0Duf4+fPn48orr0x5KFtvZ19a8zOf626XEsbs/iHXOJ0sMZFmIlbrqkBQJnqU4+4wLC9O2TIRKy339+QhWK26CsOyUW7aaA7EEXNjnWGmfuYkx2mvKi15qbKqiI5yP9l2Em7drSTzKtUCmhPXvNJyb0UO/0V5s30rGqDagBZ0SrvhpCAC8Mu3RTAMBe7Fcl2DtGyoUQO2EYIaCsI24rDjppN0x83U91FRoKiJ9bX1srDTYx4OIFBRBjUUcGcjDzhJdlLS7fxxVAhVdcrJveQ7GHLGc3sJtqpmJttKz3qvWX5Ope6vf/1rzucoqaS7s1ntNm7cCCXpA+GQQw7BQw89hKuuugpXXHEFvvWtb+Hxxx/HfvvtV6yXQDnIlm55wc77HqAKAdsb360AihTuv3IB6SakXq+3IiRURYHq7h+3JeKKQDApwMfdyUvKQ3bWZNV5HuEnmX5Cqrg90G4pmrduuNNm96KAIqG7p+vOFxnvHGrSG6Irwk+4VeG8FluViNtOqZ73mCUzv4h4rwGAf7FAFU5vevJ624oQ/sQx3mv0XovXw+2tma4qbu92Uk+39z8zvWc7+WZPe/uYiw8cwWAQlZWVne7Xk57WQjniiCN69fn6CsbsgSFlxvJ2YplIugALOOXlUnGTajjVUQCgSycOW1LCls6Fbq8azYu/cUVCVwVC7iof5UlVaeVBpyw9W6xLjtWqIvxe7rD7szKoOYm2e7Hcu+DszU/ixXHVjZHeuZzX571QJ7GV0v16bTs93iIAJ+FVVSgApFvqLTUdUg9ABAwIVYEVNWAZcWjhAGzL6eX2Eu+U91NVIBTF+akq0EIBKLoGNaBDr4g4yba3XriXdKuqkzQrqnMhQFGcmcoVBUJ3lguDFnR6uIHEutwpLzC5Ed0oNafSkq8x3ZSipJJuoONZ7V544YWM+2bOnImZM2cWuFXUFSkzfHbj/6If0JMOSu/hTr7tJaOKELBs+JfbbQlIKaAqElIKPwFXhO2XZNtur7Cu2inB3raln7im8xNPN8lOlFqLlB7u5F74ZFYPP5iylqBLuF9Y4H9JyXgNgfZfg1cC7/Wie186vC8bycl28iRpCoR/xd/rwUh+vc5EaqlfTvpbOS21T0DmPD6sJ8d31tNKhceYXVqyhNsczpX4jM9cMgyQSePEFAgounux261M82J03Lb9BFxVBCz3grJp2dBVp/Q8bjsxuy1t/pVkfqVZ0hCqgJq4sOwNpfJmU/finXexWVXg93DrSnLMS5pszC0xF9J2vp1oAQjb9CdZ83uKNR3CtiD0AGQgBGnGIfQAVLcM3YrF/GRbWjZsK3UJMcUdD+8l3WooAMUdty3CZU4CndKD7SbXiuok/4ri9nQn9YArGqSiQbqzl3u3/deW/DNfmKz3TSwv97388su466678Mknn+CPf/wjdtllFzzwwAMYNWoUDjvssG6dq+SSbhq4kntIvf/K/hcD73PbFn5MsyQgFAkVwk24nXU2nYQbAAQsRUKXKuKKhC0VP9CHLCXlSrvTS+w+RcbY8ETSDcDtFYZ7X3oZdvbE29OVBLyjxN2WEpY7M3t6+733pNMLByJxkSCxDqnwX4vXo+0l1kCWxBupvfEiqdc7vcebk6cNBPkrL++OvrDm55w5c3DrrbeioqKiS/ufd955WLx4MXbeeecCt4wo/7LFaSB1fW5nx8QeQgoIIaFKAcsW0BWkJd2Ji+S6KlJ6wIOm5cc125aIh9zYZ8uMseb+BXm3hzp5XhRdVRBUE2Xkyb3b3r5+BVdSL7dIf83eDOaK5vwE3GTcdAOl5pRze7Oq2zakaUCacchACDANSNuGMKKAbTm94Zbl9JinvNFOJHV6r1U/yfbGbAtd93u0RSCUSLK9fRQFUJ1Scr9HWwhnTLrX061o/h8u29JhLBnvx2w7899cd/WDnu4//elP+PGPf4wf/ehHePfddxGLxQAADQ0N+PnPf46nn366W+dj0k19UnIelm2ylsQQKjeh9f5zK4Ble+OmncmJpHSCrS0lZFIC7hzn/FSFcBNyL3FNlGMDQDzpydtLugGkJKjeY36ymV6G1kXJT5d+bPpnmvfFxP9dJiXcSfenSy8TB5CSZHvP7SXaXpLt3Z+caDvHOn+b1KTc+92rSsjk79/Oe0ElSiL3ANzD44u95ucjjzyCCy+8EOPGjet036amJtx9991YtGhRL7SMKDfe53S2iU/TeZ//0t83KSjY3pAuN1bDScBtKSAVQJeJ+U3ilpKSkMfc6jT/8bSx4Clt8ONcekWXE7OTh08lhowlere9Y1T3tpoU+xJvipJIWqUzA7SfiAvF7/WGtKEoqtPDbYecidYCIWddcTPuTLrm9W67yXfmm5o0Pjs5yfYT8Cy92V5vfFKiDSXptqIlkmlFTfR0q2k93umSv5wwGS95QuajOq30k+7rr78ey5Ytw6xZs/Dwww/79x966KG4/vrru30+Jt1EREQFcsABB+D444/HAQccAE3ToOs69t57b1x22WW499578eqrryIajcK2bXz44Yeoq6vr9YneiIiIKNX69esxZcqUjPurqqqwY8eObp+PSTf1GZ3NkJoyPswtS/P2spHU4+1eZJVSQIU3llu6vdnwe7MB+KXnztX1xHHJ5ehAopOto5nGE+302pjas51tybOe6Ojiodcz4N92e+9T92n/NWRre/LM4ymzkacdl9yTnegNTxBJveDeOZLvbw9nLO8PilNe3hc8+OCDuPvuu/Hll1/Ctm1Eo1H87ne/wzPPPIN169Zh6tSpqKqqgqqq+MEPfoBZs2YVu8lE7epOnE7u6fLGU7tju5yY4lalKQpSYrNXkQb3Pqd83OulTsRkbygYkFqOntwur1oteVhW8vKW6atueMOkksdsq2lDqrze7pTx3PBKy92ebUUDbBNSC0BYZlKZuQIo7nhZoQBqAELaEEEbsOKQtu2UlMcN9/2yU3q5pW35s6E7L8br7c5SPt5BzzaQuSRYyj7e40ri8cw/dsc92iw/L2Ec0w0AqKurw4YNGzBy5MiU+1955RXsvvvu3T4fk24iIiqsvJSqlWbSPWLECFx33XUp923cuBEjR47Ek08+ieOPP75ILSMiIspCyjwMCctPU4pp7ty5uPDCC3HvvfdCCIEvv/wSa9aswcUXX9yjYWBMuqkoujNDarZxY17PtupNxOLeL4WAkIkDpZTuc7lju4GUMd2J3m0krqwj6Xf36rqNpJN2QknaJ7mTtr0Jw7raj9uVz6/kyVqlTJzdTp3Spt3j2+udT+/VdvbNXAYm22Pe4+l/x/RjO25ZJnaAl5J89HT3gwju2nXXXTFt2jSMHz++2E0hyir587Wn//VSYrY3f0pyj3fWqjT3YSR6s1UvjrkrkCQq0AQCamobs1V3tffakif/BBI92sm9214s83q4/UqupPtTqrGEAgjprMmtaIA3i7lQnPHd7lJhTgPcx92x37AC7ouxoYSSeho7++xMWtrL662W3gv1xmun7ZfSs+3t692nZN/fP3+u2APe97GnGwBw+eWXw7ZtHHPMMWhtbcWUKVMQDAbx05/+FGeddVa3z8d/+URERL3sr3/9K4YNG1bsZhAREVEWQghceeWV2LZtG95//328/vrr+Prrr1FVVYVRo0Z1+3zs6aY+qbNxY/7Fcm8sd9IVteQO0Gw93874bXfMkj9WO3Gk9JbfSj6P7F63arZe2EJf4WrvmmRyj3dn0tudPuN4eo92h/sknydlPHtmD3c6juPuZ+TAHdNN1F95n9PJMTpbRRqQiNHJPd7eyOTEvCvZYrPIiMl+BZqUKX1pqXE8s70Z8S3L3CROWzPnJknu4fbGcmeduVza7hMp/izlwh3HLb3eQ9tO9Hq7n40SgNASvYsyraexveE1KT3P6ct6pfV+p7wR6T3X2Xq308+RfO70N5RLifUrwqu+yEUJV6fFYjFcc801WLlypd+zPWPGDCxfvhz/8R//AVVVMX/+/G6fl/8ziIio8Lwvkbls/cDLL7+M0047DZMnT8amTZsAAA888ABeeeWVIreMiIgIeYrXpZt0L1q0CHfeeSdGjhyJTz/9FDNnzsTZZ5+NpUuX4uabb8ann36Kyy67rNvnZU83FVVXxo1lu5ou/cecn8lX1L3Zsb2r484a3YknlEDKFfbE86eO2872Fb9LY9C72Emb6xWvrqYgXb3Y2JXe+fRx2v79ycdk6dVOvz/9mMQ+Hb957ACnUvanP/0JP/7xj/GjH/0I7777LmKxGACgoaEBP//5z/H0008XuYVEmbozvru9WODPw5IWn/1j2onNzn4irfIscaSd1h7ZxYCXdU4Rkb1yK3k+kvT7k3vIAXcGc+9FSRspPd7ehcPkXm/AmaEcQMqFRX88d+pKLR28oKTfUyN3Rm928j4d9WpnOVeP1+Nm73dpGeBjuh999FHcf//9+N73vof3338f48aNg2ma+L//+79OV9zpCP8XEBFRYUnpLn2T41birr/+eixbtgz//d//DV3X/fsPPfRQ/P3vfy9iy4iIiAgAvvjiC0ycOBEAsN9++yEYDGL+/Pk5JdwAe7qJiKjABAbukmHJ1q9fjylTpmTcX1VVhR07dvR+g4iIiNLlo6e7hMd0W5aFQCDg39Y0DeXl5Tmfl0k39RmdlbB1NLla1km5RKL0TE05d+LY9NJzfx8kytyySS9p67QtBdBR+5J11Fag8/ZmLwNP2yft6l+2c7b3NCwpHwDyMZFalwdU9F11dXXYsGEDRo4cmXL/K6+8gt133704jSLKUXuxub1ScyBzSFh6Wbj/aFrZufMcqedKPbbrAaOz4VLtLW+ZPPlaNtJdHswpqXY/t4QKKb010pz7ksvNAbcYN1uJeXdkK+PuoFw8Y9KzjsrJ2zt/tvN0sC/1fULmfqG8lMvLpZSYPXs2gsEgACAajeKcc85BWVlZyn5//vOfu3VeJt1ERES9YO7cubjwwgtx7733QgiBL7/8EmvWrMHFF1+MRYsWFbt5RERE/iz7uZ0jP00phtNPPz3l9mmnnZaX8zLpJiKiwsu11KyES9U8l19+OWzbxjHHHIPW1lZMmTLFX47krLPOKnbziIiIBrzly5cX5LxMuqlP6mqpuVfK1l5BmSqyXGwTqTOeqlkO7mwG1GzH9FW5trWjiSPaK03v6Cm7sgY3S8r7Ga7TDcD5v3TllVfipz/9KTZs2IDm5mbss88+uOuuuzBq1CjU19cXu4lEHerOMLBknQ4J6yAup8fjlGFh6Y3qpqxDobq0SofI/tTuTOVeuXXqw4lSc0iZKMnO8tmWjzks2l0vO2speLY3InM/rsE9QEjJC+UFwP89RERUYM74sFy3UhWLxbBw4UIceOCBOPTQQ/H0009jn332wQcffIA999wTt912G+bPn1/sZhIREQ34dboLhT3dREREBbRo0SLcddddmDp1Kl577TXMnDkTZ5xxBl5//XXcfPPNmDlzJlS1q1MjEhERFU4+LnQL9nRnYNJNfZ5X9dSdUjag49Jzr3St3Y+EtPN2NgN4T/V0pvO+0J6u7NqVUvKUc7KsvJ8a2OXljz76KO6//35873vfw/vvv49x48bBNE383//9X87rfhIVS0exOV1XhoRlHQ6W/ERA1hVJ8qErK26kx7N2/+u6JeZAohw7MZt50sllUrm5x31/8l7G3dnnTCfP12l7WHZO1Ckm3UREVFgDfEz3F198gYkTJwIA9ttvPwSDQcyfP58JNxER9T35WKeb5eUZmHRTycj2/bSjK+xdmdClq19506+q9+SjJJ9fr7NO/taD8+SrTd3t0QbYq00Dh2VZCAQC/m1N01BeXl7EFhHlT3uf5T2ZaK2zsNDT6rCO9GTiz07jV9okaek9xRk938mNyfcFxm70Qnerh5292/0Xk+6CYNJNREQFlo+e7tIN4FJKzJ49G8FgEAAQjUZxzjnnoKysLGW/P//5z8VoHhERUYJtOVsuSjhmFwqTbiIiKighZR4mZSnd8vLTTz895fZpp51WpJYQERF1TNoS0s4t5na29O5AxKSbSlp6iVd3JnTpivS1Rf3n7fIZek++29STkvH2sJR8gJMSyDGA53x8ES1fvrzYTSDqdZ2t6Z2ss3jT1fLzXHTWhh7FsXbW4s5Wxu1fWCxg2XbOE7SxpJyox5h0ExEREREREcvLC6RkLllt27YNP/rRj1BZWYnq6mrMmTMHzc3NHR5z5JFHQgiRsp1zzjm91GIiIvJJmftGJYMxm4ioRHlJdy4bY3aGkunp/tGPfoSvvvoKK1euRDwexxlnnIGzzz4bDz30UIfHzZ07F4sXL/ZvRyKRQjeViqij8q+e/P/PZ4l1f8e3ito3sJcMG4gYsylZd1cfSVesWJy3p00vy87yeZb3tbl7qq+0g4pG2haklWtPN2N2upJIuj/66CM888wzeOutt3DggQcCAH7zm9/g+OOPx0033YRhw4a1e2wkEkFdXV1vNZWIiNIN8InUBhrGbCIiolQlcTlrzZo1qK6u9oM3AEydOhWKouCNN97o8NgHH3wQO++8M/bbbz8sXLgQra2tHe4fi8XQ2NiYshEREVHX9FbMZrwmIioA2859Y3l5hpLo6a6vr8fgwYNT7tM0DbW1taivr2/3uFNPPRW77bYbhg0bhn/84x+47LLLsH79+g7XQl2yZAmuvfbavLWd+o7ulInxsyKBZeOUO5aXDyS9FbMZr0tbV2JLb8biXo112Uq4e/MzjiXk1BHb5kRqBVDUpPvyyy/HL3/5yw73+eijj3p8/rPPPtv/fezYsRg6dCiOOeYYfPLJJxg9enTWYxYuXIgFCxb4txsbGzFixIget4GIaMCTYNLdD/S1mM14TUSUf9K2IJl0511Rk+6LL74Ys2fP7nCf3XffHXV1ddiyZUvK/aZpYtu2bd0a+3XQQQcBADZs2NBu0h0MBhEMBrt8Tuqf2LtLRJSqr8Vsxuv+b0DFYvY+E/VrRU26Bw0ahEGDBnW63+TJk7Fjxw688847mDhxIgDg+eefh23bflDuirVr1wIAhg4d2qP2EhFRD8g8lKrlejzljDGbiGgA8MZl54I93RlK4rLa3nvvjenTp2Pu3Ll488038eqrr+L888/HKaec4s+CumnTJuy111548803AQCffPIJrrvuOrzzzjv47LPP8Je//AWzZs3ClClTMG7cuGK+HCKiAUZC2nbOG5UGxmwiotLllZfntHFIWIaSmEgNcGY0Pf/883HMMcdAURScfPLJ+PWvf+0/Ho/HsX79en+m00AggOeeew633norWlpaMGLECJx88sm46qqrivUSiIgGJinz0NPNAF5KGLOJiEqUbXEitQIomaS7trYWDz30ULuPjxw5EjLpDzxixAi8+OKLvdE0IiIiSsKYTURElFAySTcREZWofPR0S47pJiIiKjjJMd2FwKSbiIgKStoS0sotac71eCIiIuqctOzcYy6T7gxMuomIqMBk7lfNOaabiIio8PIyppsxO11JzF5OREREREREVIrY001ERIXFdbqJiIhKA2cvLwgm3UREVFhSQuYYwHM9noiIiDonbRsyxyFdkkl3BpaXExHRgHfDDTfgkEMOQSQSQXV1ddZ9Nm7ciBNOOAGRSASDBw/GT3/6U5im2bsNJSIiKiSvpzuXjUl3BibdRERUWNKdSC3XrYAMw8DMmTNx7rnnZn3csiyccMIJMAwDr732Gu677z6sWLECixYtKmi7iIiIepVt5yHpLlzMLtWL5CwvJyKigpIlUF5+7bXXAgBWrFiR9fFnn30WH374IZ577jkMGTIE48ePx3XXXYfLLrsM11xzDQKBQEHbR0RERImL5JMnT8Y999yT8bh3kbyurg6vvfYavvrqK8yaNQu6ruPnP/95EVrsYE83EREVlpR5KFcr7vIja9aswdixYzFkyBD/vmnTpqGxsREffPBBEVtGRESUP1La/rjunm6FLC+/9tprMX/+fIwdOzbr495F8t///vcYP348jjvuOFx33XW4/fbbYRhGwdrVGSbdRERUMmKxGBobG1O2WCxW8Oetr69PSbgB+Lfr6+sL/vxERES9Ih9julG8Md199SI5k24iIiqsPI7pXrp0KaqqqlK2JUuWZH3ayy+/HEKIDrd169b15jtBRETUt+VpIjXLsniRPAnHdBMRUWFJG9LKz5ju+fPn48orr0x5LBgMZj3m4osvxuzZszs87+67796l56+rq8Obb76Zct/mzZv9x4iIiCjhrbfeQlVVVcp9V199Na655pqMfS+//HL88pe/7PB8H330Efbaa698NrFXMekmIqLC8sZ058I9PhgMorKyskuHDBo0CIMGDcrteV2TJ0/GDTfcgC1btmDw4MEAgJUrV6KyshL77LNPXp6DiIio2KRl5eFCuY1JkyZh5cqVKfcP5IvkTLqJiGjA27hxI7Zt24aNGzfCsiysXbsWADBmzBiUl5fj2GOPxT777IMf//jHuPHGG1FfX4+rrroK8+bNa/dLBBERUcnJxzKdUkJVVV4kT8Kkm4iICiuPPd2FsmjRItx3333+7QkTJgAAVq9ejSOPPBKqquLJJ5/Eueeei8mTJ6OsrAynn346Fi9eXNB2ERER9Spvne5cFHD28lK9SM6km4iICkpCOkuI5HKOAi8ZtmLFinbX6PbstttuePrppwvaDiIiImpfqV4kZ9JNREREREREkLblT16aw1ny0pZsSvUiOZNuIiIqrBIoLyciIiJASjv36jQpIfLUnv6CSTcRERWWzMP4MCbdREREBSctG9LKcUiXXbie7lLFpJuIiApL5j4mWzKAExERUYli0k1ERERERER56elmeXkmJt1ERFRYLC8nIiIqDXbuY7oLuWRYqWLSTUREhcWJ1IiIiEpCXsZ0M+nOoBS7AURERERERET9Vckk3TfccAMOOeQQRCIRVFdXd+kYKSUWLVqEoUOHIhwOY+rUqfj4448L21AiIkohpYS0rJw3Kh2M2UREpUna0u/t7vHGyU8zlEzSbRgGZs6ciXPPPbfLx9x444349a9/jWXLluGNN95AWVkZpk2bhmg0WsCWEhFRCikB285tkzmWulGvYswmIipNtmXlvEmWl2comTHd1157LQBgxYoVXdpfSolbb70VV111Fb7//e8DAO6//34MGTIEjz/+OE455ZRCNZWIiJJxIrUBhzGbiKg0SU6kVhAl09PdXZ9++inq6+sxdepU/76qqiocdNBBWLNmTbvHxWIxNDY2pmxERERUOD2J2YzXRERUKvpt0l1fXw8AGDJkSMr9Q4YM8R/LZsmSJaiqqvK3ESNGFLSdRET9npSQtpXzRv1XT2I24zURUf7lPJ7bsllenkVRk+7LL78cQogOt3Xr1vVqmxYuXIiGhgZ/+/zzz3v1+YmI+h0p/XK1XDYqrr4WsxmviYjyLx9JNziRWoaijum++OKLMXv27A732X333Xt07rq6OgDA5s2bMXToUP/+zZs3Y/z48e0eFwwGEQwGe/ScRESUyZm9PLekWVoM4MXW12I24zURUf7l40I3e7ozFTXpHjRoEAYNGlSQc48aNQp1dXVYtWqVH7AbGxvxxhtvdGs2VSIiImLMJiIaCGzbhp3rhXIm3RlKZkz3xo0bsXbtWmzcuBGWZWHt2rVYu3Ytmpub/X322msvPPbYYwAAIQQuuugiXH/99fjLX/6C9957D7NmzcKwYcMwY8aMIr0KIqIBSOapXI1KBmM2ERFRQsksGbZo0SLcd999/u0JEyYAAFavXo0jjzwSALB+/Xo0NDT4+1x66aVoaWnB2WefjR07duCwww7DM888g1Ao1KttJyIayKQ7pjunc3BMd0lhzCYiKk3Syn1IGNjRnaFkku4VK1Z0ut5neimDEAKLFy/G4sWLC9gyIiIiSsaYTURUmvJSXcaJ1DKUTNJNREQlKi8TqbGnm4iIqNA4kVphMOkmIqKCkjaTbiIiIhq4mHQTEVFhSQnbsnI6hW3ndjwRERF1Li/l5ezpzsCkm4iIiIiIiAA796Sb5eWZmHQTEVFBcfZyIiKi0mDbNmyO6c47Jt1ERFRYnEiNiIiIBjAm3UREVFAyD0k3mHQTEREVHJcMKwwm3UREREREROQm3blNXsry8kxMuomIqLA4ppuIiKgk5GOdbs5enolJNxERFZS0JewcS9VsiwGciIiIShOTbiIiIiIiIuI63QXCpJuIiAqLs5cTERGVBMl1uguCSTcRERWUlLknzUy6iYiICs+27JyHhEnOXp6BSTcRERVWPiZSk0y6iYiIqDQx6SYiIiIiIiLOXl4gTLqJiKigJMd0ExERlYR8TKTGMd2ZmHQTEVFh2Uy6iYiISoG0JGSuy3Qy587ApJuIiApKQsLOsVQt1+OJiIioc7YtOZFaASjFbgARERERERFRf8WebiIiKiyWlxMREZUGW+bcU80h3ZmYdBMRUUE5E6lZuZ0jx+OJiIioc7YlYec8pptZdzqWlxMR0YD22WefYc6cORg1ahTC4TBGjx6Nq6++GoZhpOz3j3/8A4cffjhCoRBGjBiBG2+8sUgtJiIiKgxv9vKcNibdGdjTTUREhSVlzmt+5rxmaAfWrVsH27Zx1113YcyYMXj//fcxd+5ctLS04KabbgIANDY24thjj8XUqVOxbNkyvPfeezjzzDNRXV2Ns88+u2BtIyIiotLHpJuIiAoqP+t0F+6q+fTp0zF9+nT/9u67747169fjzjvv9JPuBx98EIZh4N5770UgEMC+++6LtWvX4pZbbmHSTURE/UZelgzjNCwZSqa8/IYbbsAhhxyCSCSC6urqLh0ze/ZsCCFStuQvVkRE1AvcidRy2np5ybCGhgbU1tb6t9esWYMpU6YgEAj4902bNg3r16/H9u3be7VtpYAxm4ioNHljunPZWF6eqWR6ug3DwMyZMzF58mTcc889XT5u+vTpWL58uX87GAwWonlERNQLYrEYGhsbU+4LBoN5/WzfsGEDfvOb3/i93ABQX1+PUaNGpew3ZMgQ/7Gampq8PX9/wJhNRFSapG3nXp3GpDtDyfR0X3vttZg/fz7Gjh3breOCwSDq6ur8jV+MiIh6l5SAbdk5bwCwdOlSVFVVpWxLlizJ+ryXX355Rs9p+rZu3bqUYzZt2oTp06dj5syZmDt3bsHfm/6KMZuIiCihZHq6e+qFF17A4MGDUVNTg6OPPhrXX389dtppp2I3i4ho4MjjRGrz58/HlVdemfJYe72hF198MWbPnt3heXfffXf/9y+//BJHHXUUDjnkENx9990p+9XV1WHz5s0p93m36+rquvQaqHOM2URExWXbEjbX6c67fp10T58+HSeddBJGjRqFTz75BFdccQWOO+44rFmzBqqqZj0mFoshFov5t9PLGImIqHvyM5Gac3wwGERlZWWXjhk0aBAGDRrUpX03bdqEo446ChMnTsTy5cuhKKmFYJMnT8aVV16JeDwOXdcBACtXrsSee+7J3tg86W7MZrwmIso/aUlIJdeJ1Jh1pytqeXlPSv+645RTTsH3vvc9jB07FjNmzMCTTz6Jt956Cy+88EK7xyxZsiSlbHHEiBE9fn4iIur7Nm3ahCOPPBK77rorbrrpJnz99deor69HfX29v8+pp56KQCCAOXPm4IMPPsAjjzyC2267DQsWLChiy3tXX4vZjNdERPmXj+Fg7OnOVNSe7u6W/uVq9913x84774wNGzbgmGOOybrPwoULU75ENTY2MpATEeVC5r78SCGXDFu5ciU2bNiADRs2YPjw4anP635zqKqqwrPPPot58+Zh4sSJ2HnnnbFo0aIBtVxYX4vZjNdERFQqipp0d6f0Lx+++OILbN26FUOHDm13n3zPgktENNBJG/5EaD0+R47Hd2T27NmdJpMAMG7cOLz88ssFa0df19diNuM1EVH+5aW8nF3dGUpm9vKNGzdi7dq12LhxIyzLwtq1a7F27Vo0Nzf7++y111547LHHAADNzc346U9/itdffx2fffYZVq1ahe9///sYM2YMpk2bVqyXQURE1O8xZhMRlSZpu4l3LluBrpN/9tlnmDNnDkaNGoVwOIzRo0fj6quvhmEYKfv94x//wOGHH45QKIQRI0bgxhtvLEyDuqFkJlJbtGgR7rvvPv/2hAkTAACrV6/GkUceCQBYv349GhoaAACqquIf//gH7rvvPuzYsQPDhg3Dsccei+uuu45XxomIepGEhMx1JlROylJSGLOJiEqTtGzYom+u071u3TrYto277roLY8aMwfvvv4+5c+eipaUFN910EwBnqNGxxx6LqVOnYtmyZXjvvfdw5plnorq6uqhDwkom6V6xYgVWrFjR4T7Jf+BwOIy//e1vBW4VERF1xikvzy0A57p8CfUuxmwiIsq36dOnY/r06f7t3XffHevXr8edd97pJ90PPvggDMPAvffei0AggH333Rdr167FLbfcUtSku2TKy4mIqES5S4bluhEREVFhSVvmvPXmmO6GhgbU1tb6t9esWYMpU6YgEAj4902bNg3r16/H9u3be61d6Uqmp5uIiIiIiIgKx7YkbJHjkDAJWJaFxsbGlPvzPQHmhg0b8Jvf/Mbv5QaA+vp6jBo1KmW/IUOG+I/V1NTk7fm7gz3dRERUWDLHCVms3JccIyIqJCkEN25F2fL+bzkPlWnSlnjrrbdQVVWVsi1ZsiTrc15++eUQQnS4rVu3LuWYTZs2Yfr06Zg5cybmzp2b9/ch39jT3QlvzFlTU1ORW0JEVHjeZ10+J0HJy5huJt3UCcZrIhpoChGz82XSpElYuXJlyn3t9XJffPHFnS7dufvuu/u/f/nllzjqqKNwyCGH4O67707Zr66uDps3b065z7tdV1fX1ebnHZPuTnj/mL81ZkyRW0JE1HuamppQVVWVl3NJd0x3TufgmG7qBOM1EQ1UeY3Zdh6qy6SEqqqorKzs0u6DBg3CoEGDurTvpk2bcNRRR2HixIlYvnw5FCW1cHvy5Mm48sorEY/Hoes6AGDlypXYc889i1ZaDjDp7tSwYcPw+eefo6KiAqKbJRyNjY0YMWIEPv/88y7/oxtI+P50jO9P+/jedCyX90dKiaamJgwbNqxArSMqjFziNcDPlY7wvekY35+O8f1pX67vTSFitm1J2Mh1mc88NSbNpk2bcOSRR2K33XbDTTfdhK+//tp/zOvFPvXUU3Httddizpw5uOyyy/D+++/jtttuw9KlSwvTqC5i0t0JRVEwfPjwnM5RWVnJD5kO8P3pGN+f9vG96VhP3598XS33SJn7kl9cMow6k494DfBzpSN8bzrG96djfH/al8t7k/eYbduQOa7TjRyT9vasXLkSGzZswIYNGzI+770S+6qqKjz77LOYN28eJk6ciJ133hmLFi0q6nJhAJNuIiIqNJl7qRonUiMiIiq8vtzTPXv27E7HfgPAuHHj8PLLLxemET3E2cuJiIiIiIiICoQ93QUUDAZx9dVX53U9uv6E70/H+P60j+9Nx/ra+yOlhJ3jRGicvZwKra/9v+lL+N50jO9Px/j+tK8vvjfSkpC59nT3wdnUi01IvitERFQgl1xyCTb+z//gojGjczpPq2XhO6++hm3bthV19lEiIqL+qLm5GRUVFXhk+D6oUHPrl/3d9i8xfPapuO222/LUutLHnm4iIiooyTHdREREJUHa6LNjuksZx3QTERERERERFQh7uomIqKCkRB7GdPOyORERUaFJS+Y8JpujlzOxp7uXfPbZZ5gzZw5GjRqFcDiM0aNH4+qrr4ZhGMVuWp9www034JBDDkEkEkF1dXWxm1N0t99+O0aOHIlQKISDDjoIb775ZrGb1Ce89NJLOPHEEzFs2DAIIfD4448Xu0l9xpIlSzBp0iRUVFRg8ODBmDFjBtavX1/sZjmkhLRz34h6A+N15xizUzFmZ8eY3b6+HLNtKXPeCrRMd0lj0t1L1q1bB9u2cdddd+GDDz7A0qVLsWzZMlxxxRXFblqfYBgGZs6ciXPPPbfYTSm6Rx55BAsWLMDVV1+Nv//979h///0xbdo0bNmypdhNK7qWlhbsv//+uP3224vdlD7nxRdfxLx58/D6669j5cqViMfjOPbYY9HS0lLsprk93TKnjWO6qbcwXneOMTuBMbt9jNnt68sx25Iy5y3XMeH9EWcvL6Jf/epXuPPOO/Gvf/2r2E3pM1asWIGLLroIO3bsKHZTiuaggw7CpEmT8Nvf/hYAYNs2RowYgQsuuACXX355kVvXdwgh8Nhjj2HGjBnFbkqf9PXXX2Pw4MF48cUXMWXKlKK145JLLsGnDzyIC0aMzOk8bZaF49e+xdnLqSgYr7NjzGbM7irG7I71hZjtzV5+/6A9Ua6oOZ1rRVM9Rp51GmcvT8Ke7iJqaGhAbW1tsZtBfYhhGHjnnXcwdepU/z5F+f/t3X9sFHUax/HPtvYXB1SgvZZIWylETn5pr2IsRtNNUPlHU0+JiiJVLJAUEykam2Cq/xmVCJzceQeRAhFPSJBgIEdKgAaiBQ6kKr0ruSUCsr0WtIVKqQV35v7ALtaVlnZmmJnl/Uom6c7O7D7dpH3y7Pf5fr8JmjZtmurq6lyMDH5z7tw5SfLG/xjDlBkxLB+AW8jX+C3kbNjFSzk7Ylo/GNKNRdHtklAopPfee0/z5s1zOxR4yHfffadIJKKsrKwe57OystTc3OxSVPAbwzD00ksv6d5779XEiRPdDie6ZZjVA3AD+RpXQ86GHbyWs+1pL8evUXRbVFlZqUAg0OvR2NjY455wOKzp06drxowZKisrcyly5w3kswFgXXl5uY4cOaKPP/7Y7VAAzyBf946cDbjDaznbsGOk2+1fwoPYMsyiRYsWqbS0tNdr8vPzoz83NTUpGAxq6tSpWrlypcPRuau/nw2kjIwMJSYmqqWlpcf5lpYWZWdnuxQV/GTBggXaunWr9uzZo1GjRrkdjqQrC6lZYbB6OSwiX/eOnN1/5GxY5cWcDWdQdFuUmZmpzMzMa7o2HA4rGAyqsLBQ1dXVSkiI70aD/nw2uCw5OVmFhYXauXNndLERwzC0c+dOLViwwN3g4GmmaerFF1/U5s2bVVtbq9GjR7sd0hWmKdOw1mxm9X6AfN07cnb/kbMxUF7O2d0t4lYwpzsWRfd1Eg6HVVxcrLy8PC1ZskRnzpyJPse3odLJkyfV2tqqkydPKhKJqL6+XpI0duxYDR482N3grrOKigrNnj1bd911l+6++24tW7ZMHR0deu6559wOzXXnz59XKBSKPv7mm29UX1+v4cOHKzc318XI3FdeXq6PPvpIW7Zs0ZAhQ6LzCdPT05WWluZqbIx0w0/I130jZ19Bzr46cvbVeTlnd7eIW8HX5LEouq+THTt2KBQKKRQKxbSPsGubVFVVpbVr10YfFxQUSJJ2796t4uJil6JyxxNPPKEzZ86oqqpKzc3NuvPOO7V9+/aYhVpuRAcPHlQwGIw+rqiokCTNnj1ba9ascSkqb3j//fclKebvpbq6us+WUQBXkK/7Rs6+gpx9deTsq/NyzrZnpJv/lb/GPt0AAMe8/PLLCq1aq/kZ1uaqdRoR/en41+zTDQCAA7r36V6ePla/s7hP98YLp/WHebPYp/sXGOkGADjq8pZhzOkGAMDr7GgvZ0Q3FkU3AMBRzOkGAMAfDNkwp5uUHYOiGwAAAABweU63xbFqau5YFN0AAGcZkmnxa3OTr80BAHBcxJQiFl+DFcNiUXQDABxlypRhMQNbvR8AAMAtFN0AAAAAAFvayw0azGNQdAMAHGWasrznp9VFXQAAQN9oL3cGRTcAwFF2rIRK0Q0AgPMMFlJzBEU3AMBRpkzLI920qgEAAL+i6AYAAAAA2NJebtgSSXyh6AYAOOrynG5rr0F7OQAAzrNln24mdcdIcDsAAFesW7dOI0aMUFdXV4/zJSUlmjVrlktRAdaY+jmJWzwAwCvI14hXhg0HGTsWRTfgITNmzFAkEtGnn34aPXf69Glt27ZNzz//vIuRAQNn/DzSbfVw0iOPPKLc3FylpqZq5MiRmjVrlpqamnpc89VXX+m+++5TamqqcnJy9PbbbzsbFADPIl8D6A+KbsBD0tLSNHPmTFVXV0fPffjhh8rNzVVxcbF7gQFxLhgMauPGjTp69Kg2bdqkY8eO6fHHH48+397ergcffFB5eXk6dOiQ3nnnHb3xxhtauXKli1EDcAv5GvHKjs40RrpjMacb8JiysjJNmTJF4XBYt9xyi9asWaPS0lIFAgG3QwMGxI7Vy51uL1+4cGH057y8PFVWVqqkpESXLl1SUlKS1q9fr4sXL2r16tVKTk7WhAkTVF9fr3fffVdz5851NDYA3kS+RjyyZSE1qu4YjHQDHlNQUKA77rhD69at06FDh9TQ0KDS0lK3wwIGzPRBe/kvtba2av369Zo6daqSkpIkSXV1dbr//vuVnJwcve6hhx7S0aNH1dbWdv2CA+AZ5GvEI8OWkW6q7l9jpBvwoBdeeEHLli1TOBzWtGnTlJOT43ZIgCd0dXWpvb29x7mUlBSlpKRYfu1XX31VK1as0IULF3TPPfdo69at0eeam5s1evToHtdnZWVFnxs2bJjl9wfgP+RrANeCkW7Ag2bOnKlTp05p1apVLMgC3zNk30j30qVLlZ6e3uN48803f/N9KysrFQgEej0aGxuj17/yyis6fPiwampqlJiYqGeffZZtTwD0inyNeGNHvqa9PBYj3YAHpaen67HHHtO2bdtUUlLidjiAJd1bhllh/Hz/woULtXjx4h7PXW2Ue9GiRX22eubn50d/zsjIUEZGhm677TbdfvvtysnJ0b59+1RUVKTs7Gy1tLT0uLf7cXZ2dn9/HQBxgnyNeGPLPt02xRJPKLoBjwqHw3r66adtaZsF3GT+YqR6oLrvT0lJ0dChQ6/pnszMTGVmZg7o/QzDkKToHrxFRUVavHhxdGE1SdqxY4fGjRtHazlwgyNfI57YsZAaTWKxaC8HPKatrU2bN29WbW2tysvL3Q4HiHv79+/XihUrVF9frxMnTmjXrl166qmnNGbMGBUVFUm63EKanJysOXPmqKGhQRs2bNDy5ctVUVHhcvQA3EK+BnCtGOkGPKagoEBtbW166623NG7cOLfDASyzo73cyS3DBg0apE8++USvv/66Ojo6NHLkSE2fPl2vvfZadOQqPT1dNTU1Ki8vV2FhoTIyMlRVVcV2YcANjHyNeGRHe7lhUyzxhKIb8Jjjx4+7HQJgK8PG9nInTJo0Sbt27erzusmTJ2vv3r3OBQLAV8jXiEfdi59aQXd5LIpuAICjTJmeHukGAOBGl5KSojQlKKwu5WvQgF/HlKkm/ahbb73VvuDiAHO6AQAAAOAGlpSUpKV/+6sOqM1Se3lIHepURPPnz7cxOv+j6AYAOMq8hj09r3WfbgAA4Iw5c+YoIOk/Oj+g+3+SqQM6q7+s+UBpaWn2BudzFN0AAEddnh9mWj4AAIBzbrrpJq3dskmHdFYXB7AcWoPalaIEPfPMMw5E528U3QAAAAAAPfzwwxqmJNXrXL/u+1ERfaF2/aNmmxITEx2Kzr8ougEAjjJ1ebTbysE4NwAAzgsEAtpyYK++1g86r5+u+b4vdE6/V7IeeOABB6PzL1YvBwA4itXLAQDwjylTpihPaTqosypWRp/Xt+uS/q3z+uLLeueD8ylGugEAjmIhNQAA/KXm2NcK6YK+18U+rz2gsxqjQZo8efJ1iMyfKLoBAAAAAFH5+fkar8Hap7ZerzutLp1Qp3Z+23idIvMn2ssBAI4yZb09nPZyAACur9rvj2vkiEydUqdGKXYLMFOm9qlNkzREo0aNciFC/2CkGwDgKIP2cgAAfGf48OH6o4Zqn9pk/saSpifUqTZdUu25b12Izl8ougEAjupeSI19ugEA8Jfdnf9Tlwz9Vx09zhsytV9tWrLizxo6dKhL0fkHRTcAAAAAIEZqaqr+vn6d/qWz+klG9HyjzsuUNHfuXPeC8xGKbgCAo1i9HAAA/3ryySeVqkQd0Q+SpIsydFBntXrTBiUlJbkcnT9QdAMAHGVIllvLDdrLAQBwRUJCgjbu2q7DOqdORfSl2pWuJD366KNuh+YbrF4OAAAAALiqYDCobKXqM7XqhDq15/PPFAgE3A7LNyi6AQCOatKP2mu2WnoNo+9LAACAg/7ZcFATJ0zQaA1SUVGR2+H4CkU3AMAxZWVlMgx7SuayvDzdfPPNtrwWAADon/Hjx+vzujrl5+e7HYrvBEyTiXIAAAAAADiBhdQAAAAAAHAIRTcAAAAAAA6h6AYAAAAAwCEU3QAAAAAAOISiGwAAAAAAh1B0AwAAAADgEIpuAAAAAAAcQtENAAAAAIBD/g8xXRroj8lO8wAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# compute the effective indices for the symmetric and anti-symmetric modes\n",
"n_p = symmetric_coupler.n_eff.values[0][0]\n",
"n_m = symmetric_coupler.n_eff.values[0][1]\n",
"del_n = n_p - n_m\n",
"print(f\"Effective indices: {n_p}, {n_m}\")\n",
"\n",
"# plot the mode profiles\n",
"fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4), tight_layout=True)\n",
"\n",
"symmetric_coupler.plot_field(\"Ey\", mode_index=0, ax=ax1)\n",
"symmetric_coupler.plot_field(\"Ey\", mode_index=1, ax=ax2)"
]
},
{
"cell_type": "markdown",
"id": "b2b25d5e",
"metadata": {},
"source": [
"After obtaining $n_+$ and $n_-$, we will calculate $n_1$ and $n_2$ in a similar fashion for the phase control section, where the waveguide widths are 600 nm and 400 nm. The gap is 300 nm."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "95794c46",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHWCAYAAAB+JiOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvC0lEQVR4nO3deXhUVZ7G8bcCppIACTBklcimQxAQ0iwxiLJFguKSURlxmQCN0GK0pYMLKAOCw6Rt2VplERXixkhjC9hgoyEQUIwiSJ4WFBQFgUjCIlRBhESTM3/4UN1lEhIwVKUO38/z3Efq1Dn3/u7Vx3o599wqhzHGCAAAwEJB/i4AAADgfCHoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugACEh5eXlyOBzKy8vzdykA6jGCDoB6be7cucrOzvZ3Gedk8eLFmj17tr/L8PLSSy+pQ4cOCgkJ0WWXXaZnn3221mNLS0v16KOPKi4uTqGhoUpKSlJOTk6VfT/88EP17t1bYWFhiomJ0e9//3udOHGirk4DqDUHv3UFoD7r1KmTWrRoUWnmpqKiQmVlZQoODlZQUP38O9sNN9ygbdu2ac+ePf4uRZL0/PPP695779Wtt96q1NRUvf/++3r11Vf1xz/+UY8++miN4++44w69+eabGjt2rC677DJlZ2frk08+0bp169S7d29Pv4KCAiUnJ6tDhw4aPXq09u/fr+nTp6tfv376+9//fj5PEaiEoAMEgJKSEjVq1MjfZfhFdUEnENSnoHPy5EnFx8fryiuv1MqVKz3td999t5YvX659+/apWbNm1Y7ftGmTkpKS9PTTT+uhhx6SJJ06dUqdOnVSVFSUPvzwQ0/f66+/XgUFBdqxY4fCw8MlSS+++KJGjRqld999VwMHDjxPZwlUVj//GgRYrLCwUCNHjlRcXJycTqfatGmjMWPGqKysTJKUnZ0th8Oh9evX67777lNUVJRatmzpGT937lx17NhRTqdTcXFxysjI0LFjx7yO8dVXX+nWW29VTEyMQkJC1LJlSw0dOlQul8vTJycnR71791bTpk3VuHFjtW/fXo899liN9ddmXGlpqSZPnqxLL71UTqdT8fHxeuSRR1RaWlppf6+99pp69uypsLAwNWvWTNdcc43ee+89SVLr1q21fft2rV+/Xg6HQw6HQ3379pVU/RqdpUuXqlu3bgoNDVWLFi109913q7Cw0KvP8OHD1bhxYxUWFiotLU2NGzdWZGSkHnroIZWXl9d4DVasWKHBgwd7/h22a9dOTz75pNfYvn37atWqVfr22289tbdu3brafS5atEgOh0MLFy70av/f//1fORwOvfPOOzXWdSbr1q3TkSNHdN9993m1Z2RkqKSkRKtWrTrj+DfffFMNGjTQ6NGjPW0hISEaOXKk8vPztW/fPkmS2+1WTk6O7r77bk/IkaT09HQ1btxYf/nLX37VeQBnq6G/CwAuJN9995169uypY8eOafTo0UpISFBhYaHefPNN/fDDDwoODvb0ve+++xQZGalJkyappKREkvTEE09oypQpSklJ0ZgxY7Rz507NmzdPn3zyiTZu3KiLLrpIZWVlSk1NVWlpqR544AHFxMSosLBQK1eu1LFjxxQREaHt27frhhtu0BVXXKGpU6fK6XRq165d2rhx4xnrr824iooK3XTTTfrggw80evRodejQQZ999plmzZqlL7/8UsuXL/f0nTJlip544gn16tVLU6dOVXBwsD7++GOtXbtWAwcO1OzZs/XAAw+ocePGevzxxyVJ0dHR1daXnZ2tESNGqEePHsrKylJxcbH+/Oc/a+PGjdq6dauaNm3q6VteXq7U1FQlJSVp+vTpWrNmjWbMmKF27dppzJgxZ7wO2dnZaty4sTIzM9W4cWOtXbtWkyZNktvt1tNPPy1Jevzxx+VyubR//37NmjVLktS4ceNq9zlixAi99dZbyszM1LXXXqv4+Hh99tlnmjJlikaOHKnrr7/e0/fo0aO1CmRhYWEKCwuTJG3dulWS1L17d68+3bp1U1BQkLZu3aq777672n1t3bpV//7v/+4VXiSpZ8+ekn6+XXW65p9++qnScYKDg9W1a1dPHYDPGAA+k56eboKCgswnn3xS6b2KigpjjDGLFi0ykkzv3r3NTz/95Hn/4MGDJjg42AwcONCUl5d72p977jkjySxcuNAYY8zWrVuNJLN06dJq65g1a5aRZA4dOnRW9ddm3KuvvmqCgoLM+++/79U+f/58I8ls3LjRGGPMV199ZYKCgsx//Md/eJ2PMf+8FsYY07FjR9OnT59Kx1m3bp2RZNatW2eMMaasrMxERUWZTp06mZMnT3r6rVy50kgykyZN8rQNGzbMSDJTp0712mdiYqLp1q3bmS+CMeaHH36o1Pa73/3OhIWFmVOnTnnaBg8ebFq1alXj/k47cOCAad68ubn22mtNaWmpSUxMNJdccolxuVxe/Vq1amUk1bhNnjzZMyYjI8M0aNCgyuNGRkaaoUOHnrG2jh07mv79+1dq3759u5Fk5s+fb4wxZunSpUaS2bBhQ6W+Q4YMMTExMTVdBqBOcesK8JGKigotX75cN954Y6W/7UqSw+Hwej1q1Cg1aNDA83rNmjUqKyvT2LFjvRbfjho1SuHh4Z5bDxEREZKkd999Vz/88EOVtZye2VixYoUqKipqfQ61Gbd06VJ16NBBCQkJOnz4sGfr37+/pJ9voUjS8uXLVVFRoUmTJlVaTPzLa1Ebmzdv1sGDB3XfffcpJCTE0z548GAlJCRUeWvm3nvv9Xp99dVX65tvvqnxWKGhoZ4/Hz9+XIcPH9bVV1+tH374QTt27Djr2k+LiYnRnDlzlJOTo6uvvloFBQVauHBhpVmU119/XTk5OTVu6enpnjEnT570mjH8VyEhITp58uQZazt58qScTmeVY0+//6//rK5vTccB6hq3rgAfOXTokNxutzp16lSr/m3atPF6/e2330qS2rdv79UeHBystm3bet5v06aNMjMzNXPmTL3++uu6+uqrddNNN+nuu+/2hKDbb79dL774ou655x6NHz9eAwYM0C233KLbbrvtjE8w1WbcV199pS+++EKRkZFV7uPgwYOSpK+//lpBQUG6/PLLa3U9alLd9ZGkhIQEffDBB15tISEhlWps1qyZjh49WuOxtm/frokTJ2rt2rVyu91e7/3rOqhzMXToUL322mtatWqVRo8erQEDBlTqc9VVV531fkNDQz3rwH7p1KlTXuGtuvFVrbE6deqU5/1//Wd1fWs6DlDXCDpAPfVrPhBmzJih4cOHa8WKFXrvvff0+9//XllZWfroo4/UsmVLhYaGasOGDVq3bp1WrVql1atXa8mSJerfv7/ee+89r5mkX9ZU07iKigp17txZM2fOrHIf8fHx53xedam6c6zJsWPH1KdPH4WHh2vq1Klq166dQkJC9Omnn+rRRx89qxmyqhw5ckSbN2+WJH3++eeqqKioFD4PHTpUqzU6jRs39qwLio2NVXl5uQ4ePKioqChPn7KyMh05ckRxcXFn3FdsbGylRd2SdODAAUnyjI+NjfVq/2Xfmo4D1DVuXQE+EhkZqfDwcG3btu2cxrdq1UqStHPnTq/2srIy7d692/P+aZ07d9bEiRO1YcMGvf/++yosLNT8+fM97wcFBWnAgAGaOXOmPv/8c02bNk1r16713FqqTk3j2rVrp++//14DBgxQSkpKpe30jEu7du1UUVGhzz///IzHq+1trOquz+m2X16fc5WXl6cjR44oOztbDz74oG644QalpKRU+Wj2udyCy8jI0PHjx5WVlaUPPvigyi8c7NGjh2JjY2vcpk+f7hnTtWtXSfKEqNM2b96siooKz/vV6dq1q7788stKM1gff/yx1/47deqkhg0bVjpOWVmZCgoKajwOUNcIOoCPBAUFKS0tTX/7298qfQhIkqnhK61SUlIUHBysZ555xqvvSy+9JJfLpcGDB0v6+fHen376yWts586dFRQU5Lmd8P3331fa/+kPoKpuOZxWm3H/+Z//qcLCQr3wwguV+p48edLzBFlaWpqCgoI0derUSrMg/3p+jRo1qvT4fFW6d++uqKgozZ8/3+sc/v73v+uLL77wXJ9f6/RM0L/WWFZWprlz51bq26hRo7O6lfXmm29qyZIl+uMf/6jx48dr6NChmjhxor788kuvfueyRqd///5q3ry55s2b57WvefPmKSwszOv6HD58WDt27PBa43XbbbepvLxcCxYs8LSVlpZq0aJFSkpK8szURUREKCUlRa+99pqOHz/u6fvqq6/qxIkTGjJkSK2vB1An/LsWGriw7N+/38TExJiwsDAzduxY8/zzz5snnnjCdOzY0Rw9etQY88+nrqp6Mmvy5MlGkhk4cKB57rnnzAMPPGAaNGhgevToYcrKyowxxixbtsxcfPHFZuzYsWbu3LnmmWeeMT169DAXXXSRyc/PN8YY8+CDD5rExEQzceJE88ILL5hp06aZiy++2LRs2dIcO3as2vprM668vNxcf/31xuFwmKFDh5pnn33WzJ4929x7772mefPmXuf13//930aS6dWrl5k+fbp59tlnTXp6uhk/frynz3333WccDod58sknzf/93/+Z3NxcY0zlp67+9dolJSWZ2bNnmwkTJpiwsDDTunVrz/U15uenrho1alTt9T2Tw4cPm2bNmplWrVqZGTNmmJkzZ5rExETTpUuXSvX86U9/MpLMH/7wB7N48WLz9ttvV7vf4uJi06JFC9OvXz/PU2eHDx820dHRJjk5udKTaedizpw5RpK57bbbzAsvvGDS09ONJDNt2jSvfqevw7+eizE/PzXVsGFD8/DDD5vnn3/e9OrVyzRs2NCsX7/eq9+WLVuM0+k0iYmJZt68eebxxx83ISEhZuDAgb/6HICzRdABfOzbb7816enpJjIy0jidTtO2bVuTkZFhSktLjTFnDjrG/Pw4eUJCgrnoootMdHS0GTNmjNeH+DfffGN++9vfmnbt2pmQkBDTvHlz069fP7NmzRpPn9zcXHPzzTebuLg4ExwcbOLi4swdd9xhvvzyyzPWXttxZWVl5qmnnjIdO3Y0TqfTNGvWzHTr1s1MmTKl0qPSCxcuNImJiZ5+ffr0MTk5OZ73i4qKzODBg02TJk2MJM+j5lUFHWOMWbJkiWd/zZs3N3fddZfZv3+/V59fE3SMMWbjxo3myiuvNKGhoSYuLs488sgj5t13361Uz4kTJ8ydd95pmjZtaiSd8VHzW265xTRp0sTs2bPHq33FihVGknnqqadqrKs2FixYYNq3b2+Cg4NNu3btzKxZs7we5zem+qBz8uRJ89BDD5mYmBjjdDpNjx49zOrVq6s8zvvvv2969eplQkJCTGRkpMnIyDBut7tOzgE4G/wEBAAAsBZrdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArMVvXdWgoqJC3333nZo0aXJOX+cOAADqnjFGx48fV1xc3Bl/jJigU4Pvvvuu3vwIIQAA8LZv3z61bNmy2vcJOjVo0qSJpJ8vZHh4uJ+rAQAA0s+/6xcfH+/5nK4OQacGp29XhYeHE3QAAKhnalpWwmJkAABgLYIOAACwFkEHAABYi6ADAACsFTBBJysrSz169FCTJk0UFRWltLQ07dy5s8ZxS5cuVUJCgkJCQtS5c2e98847PqgWAADUBwETdNavX6+MjAx99NFHysnJ0Y8//qiBAweqpKSk2jEffvih7rjjDo0cOVJbt25VWlqa0tLStG3bNh9WDgAA/MVhjDH+LuJcHDp0SFFRUVq/fr2uueaaKvvcfvvtKikp0cqVKz1tV155pbp27ar58+fX6jhut1sRERFyuVw8Xg4AQD1R28/ngJnR+SWXyyVJat68ebV98vPzlZKS4tWWmpqq/Pz8aseUlpbK7XZ7bQAAIDAFZNCpqKjQ2LFjddVVV6lTp07V9isqKlJ0dLRXW3R0tIqKiqodk5WVpYiICM/Gzz8AABC4AjLoZGRkaNu2bXrjjTfqfN8TJkyQy+XybPv27avzYwAAAN8IuJ+AuP/++7Vy5Upt2LDhjD/iJUkxMTEqLi72aisuLlZMTEy1Y5xOp5xOZ53UCgAA/CtgZnSMMbr//vu1bNkyrV27Vm3atKlxTHJysnJzc73acnJylJycfL7KBAAA9UjAzOhkZGRo8eLFWrFihZo0aeJZZxMREaHQ0FBJUnp6ui6++GJlZWVJkh588EH16dNHM2bM0ODBg/XGG29o8+bNWrBggd/OAwAA+E7AzOjMmzdPLpdLffv2VWxsrGdbsmSJp8/evXt14MABz+tevXpp8eLFWrBggbp06aI333xTy5cvP+MCZgAAYI+A/R4dX+F7dAAAqH+s/x4dAACAmhB0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALBWQAWdDRs26MYbb1RcXJwcDoeWL19+xv55eXlyOByVtqKiIt8UDAAA/Cqggk5JSYm6dOmiOXPmnNW4nTt36sCBA54tKirqPFUIAADqk4b+LuBsXHfddbruuuvOelxUVJSaNm1a9wUBAIB6LaBmdM5V165dFRsbq2uvvVYbN248Y9/S0lK53W6vDQAABCarg05sbKzmz5+vv/71r/rrX/+q+Ph49e3bV59++mm1Y7KyshQREeHZ4uPjfVgxAACoSw5jjPF3EefC4XBo2bJlSktLO6txffr00SWXXKJXX321yvdLS0tVWlrqee12uxUfHy+Xy6Xw8PBfUzIAAKgjbrdbERERNX4+B9QanbrQs2dPffDBB9W+73Q65XQ6fVgRAAA4X6y+dVWVgoICxcbG+rsMAADgAwE1o3PixAnt2rXL83r37t0qKChQ8+bNdckll2jChAkqLCzUK6+8IkmaPXu22rRpo44dO+rUqVN68cUXtXbtWr333nv+OgUAAOBDARV0Nm/erH79+nleZ2ZmSpKGDRum7OxsHThwQHv37vW8X1ZWpnHjxqmwsFBhYWG64oortGbNGq99AAAAewXsYmRfqe1iJwAA4Du1/Xy+4NboAACACwdBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrBVTQ2bBhg2688UbFxcXJ4XBo+fLlNY7Jy8vTb37zGzmdTl166aXKzs4+73UCAID6IaCCTklJibp06aI5c+bUqv/u3bs1ePBg9evXTwUFBRo7dqzuuecevfvuu+e5UgAAUB809HcBZ+O6667TddddV+v+8+fPV5s2bTRjxgxJUocOHfTBBx9o1qxZSk1NPV9lAgCAeiKgZnTOVn5+vlJSUrzaUlNTlZ+fX+2Y0tJSud1urw0AAAQmq4NOUVGRoqOjvdqio6Pldrt18uTJKsdkZWUpIiLCs8XHx/uiVAAAcB5YHXTOxYQJE+RyuTzbvn37/F0SAAA4RwG1RudsxcTEqLi42KutuLhY4eHhCg0NrXKM0+mU0+n0RXkAAOA8s3pGJzk5Wbm5uV5tOTk5Sk5O9lNFAADAlwIq6Jw4cUIFBQUqKCiQ9PPj4wUFBdq7d6+kn287paene/rfe++9+uabb/TII49ox44dmjt3rv7yl7/oD3/4gz/KBwAAPhZQQWfz5s1KTExUYmKiJCkzM1OJiYmaNGmSJOnAgQOe0CNJbdq00apVq5STk6MuXbpoxowZevHFF3m0HACAC4TDGGP8XUR95na7FRERIZfLpfDwcH+XAwAAVPvP54Ca0QEAADgbBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArBVwQWfOnDlq3bq1QkJClJSUpE2bNlXbNzs7Ww6Hw2sLCQnxYbUAAMCfAiroLFmyRJmZmZo8ebI+/fRTdenSRampqTp48GC1Y8LDw3XgwAHP9u233/qwYgAA4E8BFXRmzpypUaNGacSIEbr88ss1f/58hYWFaeHChdWOcTgciomJ8WzR0dE+rBgAAPhTwASdsrIybdmyRSkpKZ62oKAgpaSkKD8/v9pxJ06cUKtWrRQfH6+bb75Z27dvP+NxSktL5Xa7vTYAABCYAiboHD58WOXl5ZVmZKKjo1VUVFTlmPbt22vhwoVasWKFXnvtNVVUVKhXr17av39/tcfJyspSRESEZ4uPj6/T8wAAAL4TMEHnXCQnJys9PV1du3ZVnz599NZbbykyMlLPP/98tWMmTJggl8vl2fbt2+fDigEAQF1q6O8CaqtFixZq0KCBiouLvdqLi4sVExNTq31cdNFFSkxM1K5du6rt43Q65XQ6f1WtAACgfgiYGZ3g4GB169ZNubm5nraKigrl5uYqOTm5VvsoLy/XZ599ptjY2PNVJgAAqEcCZkZHkjIzMzVs2DB1795dPXv21OzZs1VSUqIRI0ZIktLT03XxxRcrKytLkjR16lRdeeWVuvTSS3Xs2DE9/fTT+vbbb3XPPff48zQAAICPBFTQuf3223Xo0CFNmjRJRUVF6tq1q1avXu1ZoLx3714FBf1zkuro0aMaNWqUioqK1KxZM3Xr1k0ffvihLr/8cn+dAgAA8CGHMcb4u4j6zO12KyIiQi6XS+Hh4f4uBwAAqPafzwGzRgcAAOBsEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgrYb+LgCAf4xZmOvvEs67eb8d4PNj1tfr6o9rAdQHzOgAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKx1TkGnf//+mjJlSqX2o0ePqn///r+6KAAAgLpwTl8YmJeXp88++0xbt27V66+/rkaNGkmSysrKtH79+jotEAAA4Fyd862rNWvWqKioSFdeeaX27NlThyUBAADUjXMOOrGxsVq/fr06d+6sHj16KC8vrw7LAgAA+PXOKeg4HA5JktPp1OLFi/Xggw9q0KBBmjt3bp0WBwAA8Guc0xodY4zX64kTJ6pDhw4aNmxYnRQFAABQF84p6OzevVuRkZFebbfeeqsSEhK0efPmOikMAADg1zqnoNOqVasq2zt27KiOHTv+qoIAAADqCl8YCAAArBVwQWfOnDlq3bq1QkJClJSUpE2bNp2x/9KlS5WQkKCQkBB17txZ77zzjo8qBQAA/hZQQWfJkiXKzMzU5MmT9emnn6pLly5KTU3VwYMHq+z/4Ycf6o477tDIkSO1detWpaWlKS0tTdu2bfNx5QAAwB8CKujMnDlTo0aN0ogRI3T55Zdr/vz5CgsL08KFC6vs/+c//1mDBg3Sww8/rA4dOujJJ5/Ub37zGz333HM+rhwAAPhDwASdsrIybdmyRSkpKZ62oKAgpaSkKD8/v8ox+fn5Xv0lKTU1tdr+klRaWiq32+21AQCAwHROT135w+HDh1VeXq7o6Giv9ujoaO3YsaPKMUVFRVX2LyoqqvY4WVlZVf5gKWCbeb8d4O8SrMR1BeqXgJnR8ZUJEybI5XJ5tn379vm7JAAAcI4CZkanRYsWatCggYqLi73ai4uLFRMTU+WYmJiYs+ov/fyzFk6n89cXDAAA/C5gZnSCg4PVrVs35ebmetoqKiqUm5ur5OTkKsckJyd79ZeknJycavsDAAC7BMyMjiRlZmZq2LBh6t69u3r27KnZs2erpKREI0aMkCSlp6fr4osvVlZWliTpwQcfVJ8+fTRjxgwNHjxYb7zxhjZv3qwFCxb48zQAAICPBFTQuf3223Xo0CFNmjRJRUVF6tq1q1avXu1ZcLx3714FBf1zkqpXr15avHixJk6cqMcee0yXXXaZli9frk6dOvnrFAAAgA85zC9/ihxe3G63IiIi5HK5FB4e7u9yAACAav/5HDBrdAAAAM4WQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAawVM0Pn+++911113KTw8XE2bNtXIkSN14sSJM47p27evHA6H13bvvff6qGIAAOBvDf1dQG3dddddOnDggHJycvTjjz9qxIgRGj16tBYvXnzGcaNGjdLUqVM9r8PCws53qQAAoJ4IiKDzxRdfaPXq1frkk0/UvXt3SdKzzz6r66+/XtOnT1dcXFy1Y8PCwhQTE+OrUgEAQD0SELeu8vPz1bRpU0/IkaSUlBQFBQXp448/PuPY119/XS1atFCnTp00YcIE/fDDD2fsX1paKrfb7bUBAIDAFBAzOkVFRYqKivJqa9iwoZo3b66ioqJqx915551q1aqV4uLi9I9//EOPPvqodu7cqbfeeqvaMVlZWZoyZUqd1Q4AAPzHr0Fn/Pjxeuqpp87Y54svvjjn/Y8ePdrz586dOys2NlYDBgzQ119/rXbt2lU5ZsKECcrMzPS8drvdio+PP+caAACA//g16IwbN07Dhw8/Y5+2bdsqJiZGBw8e9Gr/6aef9P3335/V+pukpCRJ0q5du6oNOk6nU06ns9b7BAAA9Zdfg05kZKQiIyNr7JecnKxjx45py5Yt6tatmyRp7dq1qqio8ISX2igoKJAkxcbGnlO9AAAgsATEYuQOHTpo0KBBGjVqlDZt2qSNGzfq/vvv19ChQz1PXBUWFiohIUGbNm2SJH399dd68skntWXLFu3Zs0dvv/220tPTdc011+iKK67w5+kAAAAfCYigI/389FRCQoIGDBig66+/Xr1799aCBQs87//444/auXOn56mq4OBgrVmzRgMHDlRCQoLGjRunW2+9VX/729/8dQoAAMDHHMYY4+8i6jO3262IiAi5XC6Fh4f7uxwAAKDafz4HzIwOAADA2SLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaARN0pk2bpl69eiksLExNmzat1RhjjCZNmqTY2FiFhoYqJSVFX3311fktFAAA1BsBE3TKyso0ZMgQjRkzptZj/vSnP+mZZ57R/Pnz9fHHH6tRo0ZKTU3VqVOnzmOlAACgvnAYY4y/izgb2dnZGjt2rI4dO3bGfsYYxcXFady4cXrooYckSS6XS9HR0crOztbQoUNrdTy3262IiAi5XC6Fh4f/2vIBAEAdqO3nc8DM6Jyt3bt3q6ioSCkpKZ62iIgIJSUlKT8/34+VAQAAX2no7wLOl6KiIklSdHS0V3t0dLTnvaqUlpaqtLTU89rtdp+fAgEAwHnn1xmd8ePHy+FwnHHbsWOHT2vKyspSRESEZ4uPj/fp8QEAQN3x64zOuHHjNHz48DP2adu27TntOyYmRpJUXFys2NhYT3txcbG6du1a7bgJEyYoMzPT89rtdhN2AAAIUH4NOpGRkYqMjDwv+27Tpo1iYmKUm5vrCTZut1sff/zxGZ/ccjqdcjqd56UmAADgWwGzGHnv3r0qKCjQ3r17VV5eroKCAhUUFOjEiROePgkJCVq2bJkkyeFwaOzYsfqf//kfvf322/rss8+Unp6uuLg4paWl+eksAACALwXMYuRJkybp5Zdf9rxOTEyUJK1bt059+/aVJO3cuVMul8vT55FHHlFJSYlGjx6tY8eOqXfv3lq9erVCQkJ8WjsAAPCPgPseHV/je3QAAKh/Lvjv0QEAACDoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGCtgAk606ZNU69evRQWFqamTZvWaszw4cPlcDi8tkGDBp3fQgEAQL3R0N8F1FZZWZmGDBmi5ORkvfTSS7UeN2jQIC1atMjz2ul0no/yAABAPRQwQWfKlCmSpOzs7LMa53Q6FRMTcx4qAgAA9V3A3Lo6V3l5eYqKilL79u01ZswYHTlyxN8lAQAAHwmYGZ1zMWjQIN1yyy1q06aNvv76az322GO67rrrlJ+frwYNGlQ5prS0VKWlpZ7XbrfbV+UCAIA65tcZnfHjx1daLPzLbceOHee8/6FDh+qmm25S586dlZaWppUrV+qTTz5RXl5etWOysrIUERHh2eLj48/5+AAAwL/8OqMzbtw4DR8+/Ix92rZtW2fHa9u2rVq0aKFdu3ZpwIABVfaZMGGCMjMzPa/dbjdhBwCAAOXXoBMZGanIyEifHW///v06cuSIYmNjq+3jdDp5MgsAAEsEzGLkvXv3qqCgQHv37lV5ebkKCgpUUFCgEydOePokJCRo2bJlkqQTJ07o4Ycf1kcffaQ9e/YoNzdXN998sy699FKlpqb66zQAAIAPBcxi5EmTJunll1/2vE5MTJQkrVu3Tn379pUk7dy5Uy6XS5LUoEED/eMf/9DLL7+sY8eOKS4uTgMHDtSTTz7JjA0AABcIhzHG+LuI+sztdisiIkIul0vh4eH+LgcAAKj2n88Bc+sKAADgbBF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFiLoAMAAKxF0AEAANYi6AAAAGsRdAAAgLUIOgAAwFoEHQAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADAACs1dDfBdR3xhhJktvt9nMlAADgtNOfy6c/p6tD0KnB8ePHJUnx8fF+rgQAAPzS8ePHFRERUe37DlNTFLrAVVRU6LvvvlOTJk3kcDj8Xc6v5na7FR8fr3379ik8PNzf5VxwuP7+xfX3L66/f9l2/Y0xOn78uOLi4hQUVP1KHGZ0ahAUFKSWLVv6u4w6Fx4ebsV/6IGK6+9fXH//4vr7l03X/0wzOaexGBkAAFiLoAMAAKxF0LnAOJ1OTZ48WU6n09+lXJC4/v7F9fcvrr9/XajXn8XIAADAWszoAAAAaxF0AACAtQg6AADAWgSdC9SePXs0cuRItWnTRqGhoWrXrp0mT56ssrIyf5d2wZg2bZp69eqlsLAwNW3a1N/lWG/OnDlq3bq1QkJClJSUpE2bNvm7pAvGhg0bdOONNyouLk4Oh0PLly/3d0kXjKysLPXo0UNNmjRRVFSU0tLStHPnTn+X5VMEnQvUjh07VFFRoeeff17bt2/XrFmzNH/+fD322GP+Lu2CUVZWpiFDhmjMmDH+LsV6S5YsUWZmpiZPnqxPP/1UXbp0UWpqqg4ePOjv0i4IJSUl6tKli+bMmePvUi4469evV0ZGhj766CPl5OToxx9/1MCBA1VSUuLv0nyGp67g8fTTT2vevHn65ptv/F3KBSU7O1tjx47VsWPH/F2KtZKSktSjRw8999xzkn7+aZf4+Hg98MADGj9+vJ+ru7A4HA4tW7ZMaWlp/i7lgnTo0CFFRUVp/fr1uuaaa/xdjk8wowMPl8ul5s2b+7sMoE6VlZVpy5YtSklJ8bQFBQUpJSVF+fn5fqwM8D2XyyVJF9T/6wk6kCTt2rVLzz77rH73u9/5uxSgTh0+fFjl5eWKjo72ao+OjlZRUZGfqgJ8r6KiQmPHjtVVV12lTp06+bscnyHoWGb8+PFyOBxn3Hbs2OE1prCwUIMGDdKQIUM0atQoP1Vuh3O5/gDgCxkZGdq2bZveeOMNf5fiU/x6uWXGjRun4cOHn7FP27ZtPX/+7rvv1K9fP/Xq1UsLFiw4z9XZ72yvP86/Fi1aqEGDBiouLvZqLy4uVkxMjJ+qAnzr/vvv18qVK7Vhwwa1bNnS3+X4FEHHMpGRkYqMjKxV38LCQvXr10/dunXTokWLFBTEBN+vdTbXH74RHBysbt26KTc317MAtqKiQrm5ubr//vv9Wxxwnhlj9MADD2jZsmXKy8tTmzZt/F2SzxF0LlCFhYXq27evWrVqpenTp+vQoUOe9/hbrm/s3btX33//vfbu3avy8nIVFBRIki699FI1btzYv8VZJjMzU8OGDVP37t3Vs2dPzZ49WyUlJRoxYoS/S7sgnDhxQrt27fK83r17twoKCtS8eXNdcsklfqzMfhkZGVq8eLFWrFihJk2aeNalRUREKDQ01M/V+QaPl1+gsrOzq/2fPP9J+Mbw4cP18ssvV2pft26d+vbt6/uCLPfcc8/p6aefVlFRkbp27apnnnlGSUlJ/i7rgpCXl6d+/fpVah82bJiys7N9X9AFxOFwVNm+aNGiGm+z24KgAwAArMWiDAAAYC2CDgAAsBZBBwAAWIugAwAArEXQAQAA1iLoAAAAaxF0AACAtQg6AADAWgQdAABgLYIOAACwFkEHAABYi6ADwGqvvPKK/u3f/k2lpaVe7Wlpafqv//ovP1UFwFcIOgCsNmTIEJWXl+vtt9/2tB08eFCrVq3Sb3/7Wz9WBsAXCDoArBYaGqo777xTixYt8rS99tpruuSSS9S3b1//FQbAJwg6AKw3atQovffeeyosLJQkZWdna/jw4XI4HH6uDMD55jDGGH8XAQDnW7du3XTbbbdp4MCB6tmzp/bs2aP4+Hh/lwXgPGvo7wIAwBfuuecezZ49W4WFhUpJSSHkABcIZnQAXBBcLpfi4uL0008/6ZVXXtHtt9/u75IA+ABrdABcECIiInTrrbeqcePGSktL83c5AHyEoAPgglFYWKi77rpLTqfT36UA8BFuXQGw3tGjR5WXl6fbbrtNn3/+udq3b+/vkgD4CIuRAVgvMTFRR48e1VNPPUXIAS4wzOgAAABrsUYHAABYi6ADAACsRdABAADWIugAAABrEXQAAIC1CDoAAMBaBB0AAGAtgg4AALAWQQcAAFjr/wFBu4M1M7IESQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"w_top = 0.6 # width of the top waveguide in the phase control section\n",
"w_bottom = 0.4 # width of the bottom waveguide in the phase control section\n",
"gap_pc = 0.3 # gap size in the phase control section\n",
"\n",
"# define the phase control section\n",
"phase_control = waveguide.RectangularDielectric(\n",
" wavelength=lda0,\n",
" core_width=(w_top, w_bottom),\n",
" core_thickness=h_si,\n",
" core_medium=si,\n",
" clad_medium=sio2,\n",
" gap=gap_pc,\n",
" grid_resolution=40,\n",
" mode_spec=td.ModeSpec(num_modes=2, precision=\"double\"),\n",
")\n",
"\n",
"# plot the cross section\n",
"phase_control.plot_structures(x=0)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a91d6a5d",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Effective indices: 2.5682454486532205, 2.217684204006945\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGFCAYAAADgjJA1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACKBUlEQVR4nO3deZgU1bk/8G9V9Tpbw8Aww8giSwRkEUTFIS6gCKhRuRpujCaAQbwqmihEhegFQQ0SFzCRJSYCGvWn0URNNFGQzQ1ciHNRIrhERJEZUGCG2XqpOr8/qqumerpn7arp7pnv53nqYbq6uvp0A/PWW+c950hCCAEiIiIiIiIisp2c6gYQERERERERdVRMuomIiIiIiIgcwqSbiIiIiIiIyCFMuomIiIiIiIgcwqSbiIiIiIiIyCFMuomIiIiIiIgcwqSbiIiIiIiIyCFMuomIKKUqKyvx/vvvp7oZRERE1Ixdu3ahvLw81c3IOJIQQqS6EURE1HkpPYZBO7QL7733Hk455ZRUN4eIiIgSOHDgAIqP6w0ptxhaxb5UNyejMOkmIqKU+eqrr9Cnbz9IucWAUKFV7k91k4iIiCgBpWAIRF0FRM0hvPXGVowdOzbVTcoYLC8nIqKU6TtyAqRAHyh9zoSoPoQtW7akuklERETUwBdffAHtu0+h9DodcsFQnDHxMrDvtuWYdBMRUUp88sknEEc+h9JzFCSXF3KPYTjnwv9mECciIkozA0afB6nL8ZB8XSD3GAZRdwQbNmxIdbMyBpNuIiJKicFjJkPKHwDJGwAAyAVDIULH8NJLL6W4ZURERGTYtWsXxNG9UIpGAQAkxQO5cDgmT7mCN8pbiEk3ERG1u9LSUoiKfVAKTzL3SYobcuEIXPzf06FpWgpbR0RERIbh378AcrfvQfLmmvvk7kMgwjX461//msKWZQ4m3URE1O5OPvsiyN0HQ/LkxOyXuw0C1BCefvrpFLWMiIiIDO+99x7EsW8gW26SA4AkuyAXjcQPr5yJSCSSotZlDibdRETUrt566y2IqjLIhSPinpNkF5SikbjyqmsRDodT0DoiIiIyjDlnCuTuQyC5s+Kek/O/BwgNvv7jU9CyzMKkm4iI2o0QAmdOugxywTBILl/CY6T8gYAkw99/XPs2joiIiEybNm2CqPkWco/hCZ+XZAVK0SioZaUIBoPt3LrMwqSbiIjazfr16yHqjkLuMbTRYyRJhtJzFNTyUtTW1rZj64iIiAjQb5JPuOhyyIXDILm8jR4nde0HKC5kDTi7HVuXeZh0ExFRu9A0DZP/60rIhcMhKZ4mj5UCxwMuH3IGMogTERG1t7///e8QoWOQu5/Y5HH6jfKToZX/H6qrq9updZmHSTcREbWLv/71r0CkFnL3Ic0eK0kSlJ6joZXvRGVlZTu0joiIiAD9JvklP5oOufAkSIq72eOlvD6QPLnI+95Z7dC6zMSkm4iIHBeJRDD1J1frAVx2teg1Uu5xkHxd0PUE9nYTERG1l6effhpQw/qKIi0gSRLknidDK/8IR44ccbh1mYlJNxEROc7XfzwgNMjdTmjxa/QgPhraoY9w6NAhB1tHREREABAOh3HlVddCKRoFSVZa/Do5txhSVjd0H8wb5Ykw6SYiIkcFg0GoZR9A6TkKktS6sCPnFELKKULRUC5HQkRE5DRf/7MBSYaUP6DVr5V7job27ccoKytzoGWZjUk3ERE5KmvA2YDigdSlf5terxSdDO3b3fj6669tbhkREREZamtroZX/H5SeJ7f6JjkAyNkFkHKLcdzwcxxoXWZj0k1ERI6pqqqyBHCpTeeQsrpBCvRGn5Hn2tw6IiIiMuQMPAtw+SEF+rb5HErRydC++wRffPGFjS3LfEy6iYjIMU888QQkdw6kvN5JnUcpOhniu0/x3Xff2dQyIiIistIO7tLHcrfxJjkASP6ukAJ9MXDMD2xsWeZj0k1ERI6pqKgAfHlJBXAAkHwBAIJrgBIRETnE5xKQfHlJn0fy5WH6D8bY0KKOo2XrthAREbWRBKlVM6ASERFRakiSknTMbst48I6OSTcRETlLYtJNRESUEeTkk24kWd3WEfE2BBEREREREZFDmHQTEZGzoj3dyW5ERETkLEmWk4/ZSZSX33vvvZAkCTfddJO5r66uDrNnz0a3bt2Qk5ODyy67DOXl5TZ82vbDpJuIiBxljOlm0k1ERJTejDHdScXrNpaXv/fee/j973+PESNGxOy/+eab8fe//x3PPvsstm7dim+++QaXXnqpHR+33XBMNxEROUuSIClMmomIiNKdpMhJx+y29HRXVVXhyiuvxB/+8Afcfffd5v6Kigo8+uijeOqpp3DOOecAANauXYshQ4Zg+/btOP3005Nqa3thTzcRERERERHZRlVVVFZWxmzBYLDR42fPno0LL7wQEyZMiNm/Y8cOhMPhmP2DBw9Gnz59sG3bNsfabzf2dBMRkaMkSYLM8nAiIqK0J8tK0jFbkiTs3LkTgUAgZv/ChQtx5513xh3/9NNP41//+hfee++9uOfKysrg8XjQpUuXmP2FhYUoKytLqp3tiUk3ERE5i0uGERERZQRJkm1YMkzGiBEjsHXr1pjdXq837tCvvvoKv/jFL7Bhwwb4fL7k3jeNsbyciIiIiIiIbKMoCvLy8mK2REn3jh07cPDgQZx88slwuVxwuVzYunUrfvvb38LlcqGwsBChUAhHjx6NeV15eTmKiora6dMkjz3dRETkLPZ0ExERZQYbVgyRWjF7+bnnnosPP/wwZt9VV12FwYMH47bbbkPv3r3hdruxceNGXHbZZQCAPXv2YN++fSgpKUmqne2JSTcRETlKXzKMhVVERETpTl+nO8mY3YqkOzc3F8OGDYvZl52djW7dupn7Z86ciTlz5iA/Px95eXm48cYbUVJSkjEzlwNMuomIyGns6SYiIsoIdozpbsuSYU1ZtmwZZFnGZZddhmAwiEmTJmHlypW2vofTmHQTERERERFRWtiyZUvMY5/PhxUrVmDFihWpaZANmHQTEZGjJPZ0ExERZQTJhjHdrSkv7yyYdBMRkcOYdBMREWUCfUx3epWXdwRMuomIyFmSBElh0k1ERJTuJFlJPmbL7OluiLchiIiIiIiIiBzCnm4iInIUx3QTERFlBpaXO4NJNxEROYtJNxERUWbgRGqO4G0IIiIiIiIiIoewp5uIiBwlSTJk9nQTERGlPVlWko7ZLC+Px6SbiIgcxvJyIiKiTCBJdozpZnl5Q0y6iYjIWRzTTURElBEkW8Z0s6e7IX4jRO1gy5YtkCQJW7ZsSXVTiIiIqBGM10TkBCbdRDZauXIl1q1bl+pmtMlTTz2F5cuXp7oZMR599FEMGTIEPp8P3/ve9/C73/2uxa8NBoO47bbbUFxcDL/fjzFjxmDDhg0Jj3377bdxxhlnICsrC0VFRfj5z3+Oqqoquz5Gp2csGZbsRkRkF8ZrezFedxzGkmFJbSwvj8Okm8hGjQXxs846C7W1tTjrrLPav1EtlG5B/Pe//z2uvvpqDB06FL/73e9QUlKCn//851i6dGmLXj9jxgw8+OCDuPLKK/HQQw9BURRccMEFePPNN2OOKy0txbnnnouamho8+OCDuPrqq/HII49g6tSpTnysTopJNxGlF8Zr+zBedyySZEO8Znl5HI7pJttVV1cjOzs71c1IK7Isw+fzpboZGaO2tha33347LrzwQjz33HMAgFmzZkHTNNx111245ppr0LVr10Zf/+677+Lpp5/Gfffdh1/+8pcAgGnTpmHYsGG49dZb8fbbb5vH/upXv0LXrl2xZcsW5OXlAQCOP/54zJo1C+vXr8fEiRMd/KSdBMd0E6Ulxut4jNetw3jdAcmcSM0JvA1BTdq/fz9mzpyJ4uJieL1e9OvXD9dddx1CoRAAYN26dZAkCVu3bsX111+PHj16oFevXubrV65ciaFDh8Lr9aK4uBizZ8/G0aNHY97j008/xWWXXYaioiL4fD706tULl19+OSoqKsxjNmzYgDPOOANdunRBTk4OBg0ahF/96lfNtr8lrwsGg1i4cCEGDhwIr9eL3r1749Zbb0UwGIw73xNPPIHTTjsNWVlZ6Nq1K8466yysX78egP6Lf9euXdi6dateTitJGDduHIDGx4g9++yzGD16NPx+P7p3746f/OQn2L9/f8wxM2bMQE5ODvbv348pU6YgJycHBQUF+OUvfwlVVZv9Dl588UVceOGF5t/hgAEDcNddd8W8dty4cXj55Zfx5Zdfmm0//vjjGz3n2rVrIUkS1qxZE7P/17/+NSRJwj/+8Y9m29WUzZs347vvvsP1118fs3/27Nmorq7Gyy+/3OTrn3vuOSiKgmuuucbc5/P5MHPmTGzbtg1fffUVAKCyshIbNmzAT37yEzOAA3rAz8nJwZ///OekPgcRUXthvI7FeK1jvCZKD+zppkZ98803OO2003D06FFcc801GDx4MPbv34/nnnsONTU18Hg85rHXX389CgoKsGDBAlRXVwMA7rzzTixatAgTJkzAddddhz179mDVqlV477338NZbb8HtdiMUCmHSpEkIBoO48cYbUVRUhP379+Oll17C0aNHEQgEsGvXLvzgBz/AiBEjsHjxYni9Xnz22Wd46623mmx/S16naRouvvhivPnmm7jmmmswZMgQfPjhh1i2bBk++eQTvPDCC+axixYtwp133omxY8di8eLF8Hg8eOedd7Bp0yZMnDgRy5cvx4033oicnBzcfvvtAIDCwsJG27du3TpcddVVOPXUU7FkyRKUl5fjoYcewltvvYUPPvgAXbp0MY9VVRWTJk3CmDFjcP/99+O1117DAw88gAEDBuC6665r8ntYt24dcnJyMGfOHOTk5GDTpk1YsGABKisrcd999wEAbr/9dlRUVODrr7/GsmXLAAA5OTmNnvOqq67CX//6V8yZMwfnnXceevfujQ8//BCLFi3CzJkzccEFF5jHHjlypEUXG1lZWcjKygIAfPDBBwCAU045JeaY0aNHQ5ZlfPDBB/jJT37S6Lk++OADnHDCCTGBGQBOO+00AHqJmtHmSCQS9z4ejwcjR44020HJkSQJksKebiKnMF4zXjeG8ZpaS1KU5GM2y8vjCaJGTJs2TciyLN5777245zRNE0IIsXbtWgFAnHHGGSISiZjPHzx4UHg8HjFx4kShqqq5/+GHHxYAxJo1a4QQQnzwwQcCgHj22WcbbceyZcsEAHHo0KFWtb8lr/vTn/4kZFkWb7zxRsz+1atXCwDirbfeEkII8emnnwpZlsV//dd/xXweIeq/CyGEGDp0qDj77LPj3mfz5s0CgNi8ebMQQohQKCR69Oghhg0bJmpra83jXnrpJQFALFiwwNw3ffp0AUAsXrw45pyjRo0So0ePbvpLEELU1NTE7fuf//kfkZWVJerq6sx9F154oejbt2+z5zMcOHBA5Ofni/POO08Eg0ExatQo0adPH1FRURFzXN++fQWAZreFCxear5k9e7ZQFCXh+xYUFIjLL7+8ybYNHTpUnHPOOXH7d+3aJQCI1atXCyGEePbZZwUA8frrr8cdO3XqVFFUVNTc10DNuPfee0VW/7Giz1VPJr0BEF9++WWqPxJR2mG8ZrxuCuM1tZTP5xM9L30g6XgdGHmpuOqqq1L9cdIKb0NQQpqm4YUXXsBFF10Ud1cRiB+rMWvWLCiWu2KvvfYaQqEQbrrpJsiyHHNcXl6eWW4UCAQAAK+++ipqamoStsW4g/ziiy9C07QWf4aWvO7ZZ5/FkCFDMHjwYHz77bfmds455wDQy6YA4IUXXoCmaViwYEHM5wHaNm7l/fffx8GDB3H99dfHjB278MILMXjw4ITlWNdee23M4zPPPBP/+c9/mn0vv99v/nzs2DF8++23OPPMM1FTU4Pdu3e3uu2GoqIirFixAhs2bMCZZ56J0tJSrFmzJu5u9ZNPPokNGzY0u02bNs18TW1tbUzPjJXP50NtbW2TbautrYXX6034WuN565+NHdvc+xARpRrjNeN1cxiviVKP5eWU0KFDh1BZWYlhw4a16Ph+/frFPP7yyy8BAIMGDYrZ7/F40L9/f/P5fv36Yc6cOXjwwQfx5JNP4swzz8TFF1+Mn/zkJ2aA/9GPfoQ//vGPuPrqqzFv3jyce+65uPTSS/HDH/4wLqBateR1n376KT7++GMUFBQkPMfBgwcBAJ9//jlkWcaJJ57You+jOY19PwAwePDguBk7fT5fXBu7du2KI0eONPteu3btwh133IFNmzahsrIy5jnrOLy2uPzyy/HEE0/g5ZdfxjXXXINzzz037pjvf//7rT6v3+83xyE2VFdXF3Nh0tjrE43xq6urM5+3/tnYsc29D7UQJ1IjcgzjtY7xummM19RSkg0TqbG8PB6TbrJFMr/sHnjgAcyYMQMvvvgi1q9fj5///OdYsmQJtm/fjl69esHv9+P111/H5s2b8fLLL+OVV17BM888g3POOQfr16+PuWPfsE3NvU7TNAwfPhwPPvhgwnP07t27zZ/LTo19xuYcPXoUZ599NvLy8rB48WIMGDAAPp8P//rXv3Dbbbe1qicike+++w7vv/8+AODf//43NE2Lu7A6dOhQi8aI5eTkmOPSevbsCVVVcfDgQfTo0cM8JhQK4bvvvkNxcXGT5+rZs2fcBDcAcODAAQAwX9+zZ8+Y/Q2Pbe59qGUkMOkmSheM185ivNYxXmcuO5bplJh0x+E3QgkVFBQgLy8PH330UZte37dvXwDAnj17YvaHQiF88cUX5vOG4cOH44477sDrr7+ON954A/v378fq1avN52VZxrnnnosHH3wQ//73v3HPPfdg06ZNZjlZY5p73YABA3D48GGce+65mDBhQtxm3NkeMGAANE3Dv//97ybfr6Wla419P8a+ht9PW23ZsgXfffcd1q1bh1/84hf4wQ9+gAkTJiRcvqMtZXezZ8/GsWPHsGTJErz55psJ1w099dRT0bNnz2a3+++/33zNyJEjAcC8QDC8//770DTNfL4xI0eOxCeffBLXU/DOO+/EnH/YsGFwuVxx7xMKhVBaWtrs+1DLSBIgy1LSGxHFY7xmvG4JxmtqKTviNVcMi8ekmxKSZRlTpkzB3//+97hfcAAghGjy9RMmTIDH48Fvf/vbmGMfffRRVFRU4MILLwSgLwERiURiXjt8+HDIsmyWEB0+fDju/MYv10RlRoaWvO6///u/sX//fvzhD3+IO7a2ttac2XXKlCmQZRmLFy+Ou9ts/XzZ2dlxS6wkcsopp6BHjx5YvXp1zGf45z//iY8//tj8fpJl3HG3tjEUCmHlypVxx2ZnZ7eqfO25557DM888g3vvvRfz5s3D5ZdfjjvuuAOffPJJzHFtGSN2zjnnID8/H6tWrYo516pVq5CVlRXz/Xz77bfYvXt3zBjDH/7wh1BVFY888oi5LxgMYu3atRgzZozZIxIIBDBhwgQ88cQTOHbsmHnsn/70J1RVVWHq1Kkt/j6IiFKB8ZrxujmM10Spx/JyatSvf/1rrF+/Hmeffba5PMeBAwfw7LPP4s0334xZIqOhgoICzJ8/H4sWLcLkyZNx8cUXY8+ePVi5ciVOPfVUc/mITZs24YYbbsDUqVNxwgknIBKJ4E9/+hMURcFll10GAFi8eDFef/11XHjhhejbty8OHjyIlStXolevXjjjjDMabUNLXvfTn/4Uf/7zn3Httddi8+bN+P73vw9VVbF79278+c9/xquvvopTTjkFAwcOxO2334677roLZ555Ji699FJ4vV689957KC4uxpIlSwDoS2SsWrUKd999NwYOHIgePXqYk7xYud1uLF26FFdddRXOPvts/PjHPzaXIDn++ONx8803t/WvLcbYsWPRtWtXTJ8+HT//+c8hSRL+9Kc/JbwIGz16NJ555hnMmTMHp556KnJycnDRRRclPO/Bgwdx3XXXYfz48bjhhhsAAA8//DA2b96MGTNm4M033zTL1to6Ruyuu+7C7NmzMXXqVEyaNAlvvPEGnnjiCdxzzz3Iz883j3344YexaNEibN682VxndcyYMZg6dSrmz5+PgwcPYuDAgXjsscewd+9ePProozHvdc8992Ds2LHmv/Ovv/4aDzzwACZOnIjJkye3uu2UgCRBauee6lWrVmHVqlXYu3cvAGDo0KFYsGABzj//fAD6GMC5c+fi6aefRjAYxKRJk7By5comlw0iSleM14zXjNeM17aRkHzMZld3vFRNm06Z4csvvxTTpk0TBQUFwuv1iv79+4vZs2eLYDAohKhfgiTRMiVC6EuODB48WLjdblFYWCiuu+46ceTIEfP5//znP+JnP/uZGDBggPD5fCI/P1+MHz9evPbaa+YxGzduFJdccokoLi4WHo9HFBcXix//+Mfik08+abLtLX1dKBQSS5cuFUOHDhVer1d07dpVjB49WixatChuOY01a9aIUaNGmcedffbZYsOGDebzZWVl4sILLxS5ubkCgLkcScMlSAzPPPOMeb78/Hxx5ZVXiq+//jrmmOnTp4vs7Oy4z7dw4ULRkv/Cb731ljj99NOF3+8XxcXF4tZbbxWvvvpqXHuqqqrEFVdcIbp06SIANLkcyaWXXipyc3PF3r17Y/a/+OKLAoBYunRps+1qiUceeUQMGjRIeDweMWDAALFs2bKYJV+EqP8eGn63tbW14pe//KUoKioSXq9XnHrqqeKVV15J+D5vvPGGGDt2rPD5fKKgoEDMnj1bVFZW2vIZOrt7771X5HzvTDHw+r8mvaEVS4b97W9/Ey+//LL45JNPxJ49e8SvfvUr4Xa7xUcffSSEEOLaa68VvXv3Fhs3bhTvv/++OP3008XYsWOd/CqIHMV4zXidCOM1tYbP5xN9rng46Xidf+qPuGRYA5IQzdQdERERtdHSpUtxz5p/oOfE5HuDPnn4v/Dll1+iT58+bXp9fn4+7rvvPvzwhz9EQUEBnnrqKfzwhz8EAOzevRtDhgzBtm3bcPrppyfdViIiokzj9/tR9MMH4OmS3MR03737DC4e6seaNWtsalnm45huIiLKGMFgEJWVlTFbU2NFAUBVVTz99NOorq5GSUkJduzYgXA4jAkTJpjHDB48GH369MG2bduc/ghERETUyTDpJiIiZ0XHhyW7AcDKlSsRCARiNmOMZkMffvghcnJy4PV6ce211+L555/HiSeeiLKyMng8nrhxroWFhSgrK3P62yAiIkpbtsRrDumOw4nUiIjIURJsmJQl6vrrr8eiRYti9nm93oTHDho0CKWlpaioqMBzzz2H6dOnY+vWrba0g4iIqCOSbJj8tC3L2nV0TLqJiChjeL1e5OXltehYj8eDgQMHAtBn+33vvffw0EMP4Uc/+hFCoRCOHj0a09tdXl6OoqIiJ5pNREREnRjLy4mIyFmSBNmGLVmapiEYDGL06NFwu93YuHGj+dyePXuwb98+lJSUJP0+REREmUqyIV6znzsee7qboWkavvnmG+Tm5rJUgog6PCEEjh07huLiYnPt1mTZWV7eUvPnz8f555+PPn364NixY3jqqaewZcsWvPrqqwgEApg5cybmzJmD/Px85OXl4cYbb0RJSQlnLs9gjNdE1Nk4ErPl5MvLuU53PCbdzfjmm2/Qu3fvVDeDiKhdffXVV+jVq5c9J5PaP+k+ePAgpk2bhgMHDiAQCGDEiBF49dVXcd555wEAli1bBlmWcdlllyEYDGLSpElYuXJlu7aR7MV4TUSdlZ0xW5KTj9mtzblXrVqFVatWYe/evQCAoUOHYsGCBTj//PMBAHV1dZg7dy6efvrpmJhdWFiYVDvbE5PuZuTm5gIAPv3sM/NnIqKO6tixY/jewIEZ//vu0UcfbfJ5n8+HFStWYMWKFe3UInJaa+K1JIT5s0hwdWh9vqnjWnL+TNWaz0tEqdFRYnavXr1w77334nvf+x6EEHjsscdwySWX4IMPPsDQoUNx88034+WXX8azzz6LQCCAG264AZdeeineeuutVDe9xZh0N8MoUcvNzW3x5D1ERJnOzvJcSZIgt3NPN3U+rYnXTLqbx6SbKHPYGbNlG2J2a9tz0UUXxTy+5557sGrVKmzfvh29evXCo48+iqeeegrnnHMOAGDt2rUYMmQItm/fnjHDwph0ExGR4yRO20lERJT29PLyZE8CqKqKysrKmN1er7fRZT4Nqqri2WefRXV1NUpKSrBjxw6Ew2FMmDDBPGbw4MHo06cPtm3bljFJNy+DiIjIUZIUXfczyY0oGZIQ5iYkydySPVei/UREmcqOeC1JwM6dOxEIBGK2JUuWNPq+H374IXJycuD1enHttdfi+eefx4knnoiysjJ4PJ6YJT4BoLCwEGVlZQ5/G/ZhTzcRERERERHZZsSIEdi6dWvMvqZ6uQcNGoTS0lJUVFTgueeew/Tp0+Nen8mYdBMRkeM4ppuIiCj9SbI9Y7oVRWnVfFgejwcDBw4EAIwePRrvvfceHnroIfzoRz9CKBTC0aNHY3q7y8vLUVRUlFQ72xPLy4mIyFGSJJnrfiazESUj2ZJyIqLOwI6YDRt+zWqahmAwiNGjR8PtdmPjxo3mc3v27MG+fftQUlKS/Bu1E/Z0ExERERERUUrMnz8f559/Pvr06YNjx47hqaeewpYtW/Dqq68iEAhg5syZmDNnDvLz85GXl4cbb7wRJSUlGTOJGsCkm4iInCaBPdWUcm1ZJqwlz3fUidOa+76IqGOyo7qstZOfHjx4ENOmTcOBAwcQCAQwYsQIvPrqqzjvvPMAAMuWLYMsy7jssssQDAYxadIkrFy5Mqk2tjcm3URE5CgJ+rqfRERElN5kSUo6Zrf21Y8++miTz/t8PqxYsQIrVqxoe6NSjEk3ERE5S+KYbCIiokygr9OdZMzmjfY4TLqJiIiow2OJNBERpQqTbiIichbHdBMREWUGG6rTeI8zHpNuIiJylITk1/wkIiIi58k2rdNNsZh0ExGRsyQGYEq9xmYZZ9l58ziTOVHnIUlS8jGbvybiyKluABEREREREVFHxZ5uIiJylAR9NlQiIiJKb5KUfMxmQUy8jLoMev3113HRRRehuLgYkiThhRdeaPL4LVu2mCUS1q2srKx9GkxERIBUP0YsmY0yRyrjdWNl5FZCksyNiIjq2RGvOaQsXkYl3dXV1TjppJNavTD6nj17cODAAXPr0aOHQy0kIiIixmsiIqJ6GVVefv755+P8889v9et69OiBLl262N8gIiJqlmTD8iOUWdIxXlt7tTkxWNsZ3x2/N6IOSrYhZvPXQ5yM6uluq5EjR6Jnz54477zz8NZbbzV5bDAYRGVlZcxGRETJSVQ63NqNOj7GayKi1LIjXkvMuuN06KS7Z8+eWL16Nf7yl7/gL3/5C3r37o1x48bhX//6V6OvWbJkCQKBgLn17t27HVtMRNTxSBzTTc1gvCYiSg+yDTGb98njZVR5eWsNGjQIgwYNMh+PHTsWn3/+OZYtW4Y//elPCV8zf/58zJkzx3xcWVnJQE5EROQgu+N1cyXQLI0mIqL21KGT7kROO+00vPnmm40+7/V64fV627FFREQdHMd0UxswXhMRtT/JljHdEoDmV5LoTDpd0l1aWoqePXumuhlERJ2GBEBh0k2txHhNRNT+ZFlKOmYz5MfLqKS7qqoKn332mfn4iy++QGlpKfLz89GnTx/Mnz8f+/fvx+OPPw4AWL58Ofr164ehQ4eirq4Of/zjH7Fp0yasX78+VR+BiKjTkSQm3Z1NusTrlqzZTW3DGeCJOibFhqRbYk93nIxKut9//32MHz/efGyM5Zo+fTrWrVuHAwcOYN++febzoVAIc+fOxf79+5GVlYURI0bgtddeizkHERER2YvxmoiIqF5GJd3jxo2DaOKu9bp162Ie33rrrbj11lsdbhURETVFkpK/a06ZhfG6c2GvN1HHIdsQsxny42VU0k1ERJlHBsvLiYiIMoF95eVk1aHX6SYiIiIiIiJKJfZ0ExGRoziRGhERUWZQ5ORjNkN+PCbdRETkKEmS4GIEJiIiSnuKDTFbZnl5HCbdRETkKPZ0ExERZQZ7xnTb1JgOhGO6iYiIiMgWkhBcH52IqAH2dBMRkaMksKebiIgoE8g29HSzvDwee7qJiMhR+jrdctJbayxZsgSnnnoqcnNz0aNHD0yZMgV79uyJOaaurg6zZ89Gt27dkJOTg8suuwzl5eV2fnQiIqKMYke85pJh8Zh0ExGRo/SkO/mtNbZu3YrZs2dj+/bt2LBhA8LhMCZOnIjq6mrzmJtvvhl///vf8eyzz2Lr1q345ptvcOmll9r98YmIiDKGbEPMZnFbPJaXExFRh/PKK6/EPF63bh169OiBHTt24KyzzkJFRQUeffRRPPXUUzjnnHMAAGvXrsWQIUOwfft2nH766aloNhEREXVATLqJiMhRdo7pDgaDqKysjNnn9Xrh9XqbfF1FRQUAID8/HwCwY8cOhMNhTJgwwTxm8ODB6NOnD7Zt28akmyhJ1snUBEtNiTKGHet0s7w8HsvLiYjIUcaSYXaUl69cuRKBQCBmW7JkSZPvr2kabrrpJnz/+9/HsGHDAABlZWXweDzo0qVLzLGFhYUoKytz5HsgIiJKd7IN8bqV07B0CuzpJiKijHH99ddj0aJFMfua6+WePXs2PvroI7z55ptONo2IiIgoId6HICIiR0mQoEjJb4CeYOfl5cVsTSXdN9xwA1566SVs3rwZvXr1MvcXFRUhFArh6NGjMceXl5ejqKjIke+BqLPi2t1EmcOOeC2hdeXlnWHFESbdRETkKNnG8vKWEkLghhtuwPPPP49NmzahX79+Mc+PHj0abrcbGzduNPft2bMH+/btQ0lJiS2fm4iIKNMoKZi9vDOsOMLyciIicpQxprs9zZ49G0899RRefPFF5ObmmuO0A4EA/H4/AoEAZs6ciTlz5iA/Px95eXm48cYbUVJSwknUiIio05LbcKO7odZOpNYZVhxh0k1ERB3OqlWrAADjxo2L2b927VrMmDEDALBs2TLIsozLLrsMwWAQkyZNwsqVK9u5pUSdhyQEZzIn6iRUVW3TaiNAx1xxhEk3ERE5SpIkuNq5p1u0YPyoz+fDihUrsGLFinZoERERUfpzycnHbFkCdu7ciUAgELN/4cKFuPPOO5t8bUddcYRJNxEROcrOdbqJKLNx/W6i9CZLyZeXy5KEESNGYOvWrTH7W9LL3VFXHGHSTUREjkrFmG4iIiJqPUVOPmZLEqAoCvLy8lr1OmPFkddff73RFUesvd2ZtOIIZy8nIiIiIiKilOgMK46wp5uIiBwl2VCqRkQdDydWI0o/dsxeLrfy/3VnWHGESTcRETmKY7qJiIgyg2LLkmGtO74zrDjCpJuIiIiIiIhSojOsOJJRY7pff/11XHTRRSguLoYkSXjhhReafc2WLVtw8sknw+v1YuDAgVi3bp3j7SQionrGRGrJbpQ5GK+ppaQWXGwTUfsxZi9PZmtteXlnkFFJd3V1NU466aQW3+H44osvcOGFF2L8+PEoLS3FTTfdhKuvvhqvvvqqwy0lIiKDZEMAZ9KdWRiviYgykx3xmjl3vIwqLz///PNx/vnnt/j41atXo1+/fnjggQcAAEOGDMGbb76JZcuWYdKkSU41k4iILLhkWOfDeE1ElJlSMZFaZ5BRPd2ttW3bNkyYMCFm36RJk7Bt27ZGXxMMBlFZWRmzERERkXMYrzs3SQiWmRNRh9ahk+6ysjIUFhbG7CssLERlZSVqa2sTvmbJkiUIBALm1rt37/ZoKhFRhyWB5eXUNMZrIqL0oNgwJIwd3fE6dNLdFvPnz0dFRYW5ffXVV6luEhFRRpM5kRo5gPG642GPN1HqKXLyMZvl5fEyakx3axUVFaG8vDxmX3l5OfLy8uD3+xO+xuv1wuv1tkfziIg6BY7ppuYwXhMRpQc7xnRLEgDeP4vRoXu6S0pKsHHjxph9GzZsQElJSYpaRERERA0xXhMRUUeWUUl3VVUVSktLUVpaCkBfYqS0tBT79u0DoJeaTZs2zTz+2muvxX/+8x/ceuut2L17N1auXIk///nPuPnmm1PRfCKiTkmCpI8RS3KjzMF4TclgiTlR6tgRr1leHi+jysvff/99jB8/3nw8Z84cAMD06dOxbt06HDhwwAzoANCvXz+8/PLLuPnmm/HQQw+hV69e+OMf/8jlR4iI2hkDcOfCeE1ElJkkJJ80M+LHy6ike9y4cRBN3P1ct25dwtd88MEHDraKiIiIrBiviYiI6mVU0k1ERJlHkgCFt72JqBWMEnPBKhmidqXYELP53zYek24iInKUBH02VCIiIkpvsiwlHbMlZt1xmHQTEZGjJE6ERkRtxB5vINl55TrxV0dtINsQszNqpu52wu+EiIiIiIiIyCHs6SYiIkdJ4OzlREREmUC2YckvlpfHY9JNRESO4kRqRJQsSYgOU2Le3suQt/b9OsjXTG1ky0Rq9jSlQ2HSTUREjuJEakRERJlBkpKP2bxxE49juomIiIiIiIgcwp5uIiJylg3jw4iIMmkm8/YuIbdTS9qeAX8F1EYc0+0MJt1EROQoCRzTTURElAnsGNPNUup4/E6IiIiIiIiIHMKebqImtLU8jFU1RPW4ZBgR2SndZjK3o5RcS2E9elt+Pydqbhr9lVASJFvKy21qTAfCpJuIiBwlSYDC2cuJiIjSniJLScds3miPx6SbOpX2upHclvfh7yfqqCRwIjUislcqJ1VrbYxPphfbrsuWpr6lptrXmt/d1tPwV37mkm2I2fzrj8cx3UREREREREQOYU83ERE5SrJhJlQiIiJynmxDzGalQzwm3dTh2FlC3taSMLsmJQH4i4syHydSIyKntNekaq25HGjJtUNrri40G65rWjNE13poY5+lud/pLDXPXLas080C8zgsLyciIkcZE6klu7XW66+/josuugjFxcWQJAkvvPBCzPNCCCxYsAA9e/aE3+/HhAkT8Omnn9r0qYmIiDKPbEO85typ8Zh0ExFRh1RdXY2TTjoJK1asSPj8b37zG/z2t7/F6tWr8c477yA7OxuTJk1CXV1dO7eUiIiIOjKWl1NGa0v1txOziDa8odfa92iqjIdl55Tp9PLy9n/f888/H+eff37C54QQWL58Oe644w5ccsklAIDHH38chYWFeOGFF3D55Ze3Z1OJKAlOzmTeXDhvLt439mxTJePCgaVW1Jhy78a/J1lquvTdeGWiz93YtQzX9M4sspR8zObfbzz2dBMRkaMkSYJiwwYAwWAQlZWVMVswGGx1m7744guUlZVhwoQJ5r5AIIAxY8Zg27Zttn12IiKiTKJISDpet3ZMd2cYDsakmzKKELFbYzQhGt0A/S5uSzZVxG5aI1vD41TRsvM31147vguijmTlypUIBAIx25IlS1p9nrKyMgBAYWFhzP7CwkLzOSLKLJJNwbC52NpYnE4U5xNeM2gCQsRuqla/teQao7Vbw/e3bg3b0di1jpbg2qYl3wtRczrDcDCWlxMRkePsmr38+uuvx6JFi2L2eb1eW85NRETU2UmwYfbyVr68MwwHY083ERE5Sp+9PPkN0BPsvLy8mK0tSXdRUREAoLy8PGZ/eXm5+RwREVFnY0e8liVAVVUOB7NgTzelvZZUKTVWytSaCUyam7ikJetkWieeUBMcn2jyksYmq5CQ3EQlnMSC0oUdd83t1q9fPxQVFWHjxo0YOXIkAKCyshLvvPMOrrvuutQ2jojaLNlJ1ZobuhZ3fNwxDc8nGn+uidc1fG3MezTeRABN96glug6xvoukv3H9uRocrjUYq2t9vrH1vRP9/uc63unLrnW6d+7ciUAgELN/4cKFuPPOO1t1ro4yHCzjerpXrFiB448/Hj6fD2PGjMG7777b6LHr1q2DJEkxm8/na8fWEhFRqlRVVaG0tBSlpaUA9LvlpaWl2LdvHyRJwk033YS7774bf/vb3/Dhhx9i2rRpKC4uxpQpU1La7o6EMZuIqHMaMWIEKioqYrb58+enulkpk1E93c888wzmzJmD1atXY8yYMVi+fDkmTZqEPXv2oEePHglfk5eXhz179piPm1omgYiI7CcB5uzj7en999/H+PHjzcdz5swBAEyfPh3r1q3DrbfeiurqalxzzTU4evQozjjjDLzyyitM9GzCmE1ElHlky4ohbSVJgKIoyMvLS7o91uFgPXv2NPeXl5eblWqZIKOS7gcffBCzZs3CVVddBQBYvXo1Xn75ZaxZswbz5s1L+BpJklo1Pi8YDMaMN6isrEyu0dRmTpZ4JXy+mde3RMOS8oZlWQ1nVpWl+te0pPQ8Ucl5S8rNed1KqSRJ9k2k1hrjxo1rctiIJElYvHgxFi9e3I6t6jycjtmM19QUSYhWlZi35pqjqbJw43eOdb9IcGxM2Xkj7WjLUDirxNcVwvK8/qcq6ktfra+JuUYx9jW4WrKWmzdXat7c9QqvVdKDXeXldukow8Eyprw8FAphx44dMYPoZVnGhAkTmhxEX1VVhb59+6J379645JJLsGvXribfZ8mSJTFL0fTu3du2z0BE1BlJsG8iNcoM7RGzGa+JiOwn2zD5aWPzFTWmMwwHy5jLmG+//RaqqrZqEP2gQYOwZs0avPjii3jiiSegaRrGjh2Lr7/+utH3mT9/fszYg6+++srWz0FERNTRtUfMZrwmIuoY3n//fYwaNQqjRo0CoA8HGzVqFBYsWAAAuPXWW3HjjTfimmuuwamnnoqqqqqMGw6WUeXlrVVSUoKSkhLz8dixYzFkyBD8/ve/x1133ZXwNV6vl2u+plCiqqmWlJLrxxnnSFxG3lg5mFkK1kg72lJmHlNiZfm5YflWzIyhCWYLVUV8qVdDzc0QCrB0i1JLsqFUjTq+1sZsxmtqTrIzmbekrDzR7OQNj2t4nWG8pOE54p+vP1NT1z1WsdcJ+gFmabjlezB+bHhd0rD8vLHrlkTl5s2VmnNG88xgS3l5K1/eGYaDZUzS3b17dyiKktSaqm63G6NGjcJnn33mRBOJiKgRvIDqXBiziYgykyQxZjshY8rLPR4PRo8ejY0bN5r7NE3Dxo0bY+6MN0VVVXz44YcxM99R6glRv1lpQiS8yyyg3921bqomIISAqgn9cXQLa/qfEU1/LhzdItEtpMZuwYi+hVSBuoiGuoiGoFq/1UYSb9ZjgqpmvtY4p/U9whoQUvX3N9qjRtujWtquNvhs1s9n3YzvxPqdNbpueYLvmYjIbozZlE4kIeImMm1Ow15m62RoRu+1ELHXHALRnxtcb4Q1/XokogpEVH2/fk2g6ZsmUGe5DqlTNdSpGoKqQFAVqI0I1EW32rBlS3RNYnnefE3EOI9+Xuu1SZ0qENL0thjXRWbbVUvbjesUY7NcpzT8TozvJdF1ClFnlTE93YBe3z99+nSccsopOO2007B8+XJUV1ebM6NOmzYNxx13HJYsWQIAWLx4MU4//XQMHDgQR48exX333Ycvv/wSV199dSo/BhFRpyIBkG2cyZQyA2M2EVHmkSElHbPtnL28o8iopPtHP/oRDh06hAULFqCsrAwjR47EK6+8Yk7Usm/fPshyfef9kSNHMGvWLJSVlaFr164YPXo03n77bZx44omp+ghERJ0SS9U6H8ZsIqLMY0d5OWN+PEm0ZsG/TqiyshKBQABl5eW2LPBOupb8qzNKu5qauKThOpiJJiWxTljScL8mRMzrVOM9Y14T/bmZ4ijrXUF9XWLLz5DMfdYJTYxJSuonMImd3MS6H4j2GDZcu1uSGl0b02xbI7/9+EuRGqqsrERRYSEqKips+Z23dOlSvPnuDty38o9Jn2tIUQBffvkl+vTpk/S5qOMx4nV5WRnjNTWqsUnVYidQTTyBWsx1hGXSNOu1R/31Rf0+tcE1hnFtoUGYx1qvNawTqalafXvqX1/fPtUyC6x1aUUj7ivmdYRkPl9//aE/Z16fRPcZx0kx5zHeI/Fj4/j6tsRPqtbYJUdzk3bxWqVxdsdsv9+P5ze9jeP7D0jqPCvuvxfV35VhzZo1Sbepo8iYMd1EREREREREmSajysup42tsAjBDojvMxmPjDrN+XGN3nut7to27zMZdYiH0u8jWO8vWu8rWu8lGO613Z613kBXLcgtuRYIkidi7x9Ee7vq7ySKu51sFoMixPe+SJCVcrsNYpkOW4pfzMNrb2PIcvINM7YH/zoioTYTW/DFWUtP9SZIQrVpCzHqdgQY/119PxPZwW69HjEnHgPqealWL7ekOq5ZrjQbXIQAQ1oR5Ls3Sc268xsraM633bkevReTYHm/rtYrx2Lw2iZ5SkfTrFwDQGn5l0fNZVhgze7+BBkupWa5RDAwJ6cuW2cv5FxyHSTcRETmKE6kRERFlBhnJx2xG/HhMuiltJbq73Nhzxpip5sZtW3u363/WH4c1DWFVWO40A+Fo97YqjN7uxD3xivUOsuXusiwBblmGIut/uhUp7m5y/ZhvYY75NsZWCTXau22MnWrQq218BzIEJEnSf5bqvyP2dlO64L8xImpUa3uzW3quRnq9W9rbnehaI1Evt9HzbH1cPw5bX24LiO2xNq47GlbXGUuFapbzWK9FIqpmeb/4axJrlZ2119utyAmvUay93W5ZP8at1L/OpZjfmn5+o/KuwRw6QOPj5ZuTqHqQUseWidTsaUqHwqSb0l5MiZKI/VNYgpoWLQ9vLNG2TlaiCmEm2HURPeiFtfqfjTU2jeBmBsNGkm5ZlmImKzGCnVuW4FZkuGUJiqzBq+iJtxHkPC4pNuGOBkABAYhoaVeD9FmBcVMhdjITIeoTb70dTLyJiCiN2ZlsN3X+ZkrOW3SqBut2xybY8UPZjMQ4Er2eAIBQRP8zqKoIqyLmWsR6c9/6WDPW/I5ej4Q1zVwrG0BMZ4A5yZkswWNNsmUJPkWGLEsJEu/6xz6Xfo3gE/r3pSff0e8uWnNuJN1GCbpmucqwlprHTKrG6wsiJt3UvhIN2W5uHHfM683z1CfbQPSuMOrHTiVKtBP1aoc1DcGIZga0mrBm3lUOawIhVUMoUh/gGgtyDTePS9Z7uCUgy61AlvUEPMutmEm4LEnQRP1dZaPHW5VE/QykcjSIyZbvzwiq0W9DWHq4jcRb/14TJ96NfrdMvMkh1tn8iYgcT7Ybez9L8t3asd3mqRCbZDeWcFvHbxvJdk1YBQAEVQ11EQ1htf6mv6aJmB5sa0JeG1ahagKhiIbakGpej0Q0EXc94rJch3hcsvmz362Y1xvWeWeMpNwtSwiqMryKjLCmf19ZbsXMFKTod2ck0NY5dOq/1Ea+s/qJaVr9fVP7S7RSTqvPwb/qOEy6Ka1Yf3cn6lQ2e7oTPNYDUHz5uBkELaVcerDTA11NWI0m3hpqwipCEc3cquoiZlALqbF3lw1msi3VJ91ZHsUMeDk+l1largrALWtm4q2/Hmbyrcj6XWZh1JND6D3olu5rqUHskqLJtTXx1p9vw8UEE29yCP9ZERGApBNuqYWvF4l6t4VmS+Jtnq6JhNuYfFUVAkG1PtkG9OS7LqKZ1x5Gcm0wEnbjWqQ2pF+bBCMaqoKRaGeAFpN8A4A3mmQrsgy/R4FHkeG1XIuYSbgS+90YybhPkRF2yXqy3YDRi17f2RHdb/n+mis1t14+cVK19CWBfydOYNJNaS/hmO6G5eVabKCz9monmg3U6N2ui2ioCkUQjGioDauoqAkjFNFQE1IRUo1ApyflRo+38X4Gaw+3EfByfG54FD3QhSKafpfZowcxnyIjrAn4ose6hQRV0/TZQ7X6O9BuRYKkSdFarvqxVKLB/OQimikbd9+tgazh45bgDWkiInJEEgl3S5PthsfHJd8NEm/zeClxNV5jjF7uhgm3sAxjA/SZyY3Zyesi9Um3ccPfuNYwrius61sbSffRmnD0uAiO1UXM/UITUC1LqyiKDCl6PZLjc0U7ABT4o0m0tecbiL2W8bhk5HldMTOjA/o4b+uxIgVlS9a/F16bUKZi0k0ZRTSIiGZ5E+oTbqMky7h7bKX3dOuBL6zpyfexYAS1IRW1IRXfVYVQG9YT7ZqQqvd0RzRomkAkrEJo8W0AAFmR9LFSigzFJaMmpJp3l1VNIMujIBTRoMgSNE3AGz2F3tstQ5YENCEB0aXDjN5vuGQAEqIxD6qlfFxYcm9rcp2o1LylJeax3zWDG9lDgpRwLgEiIitJaAl7qFubcDd7Tkvi3VRvtx6V44no/DH6z8Zyo/UVdsbPQHQ4WzRhDUaiPd6WXuta41pDE3BZysIBoDakWo6LoCak4lh1CGpEg6YKqNHE2+glV6LXIJIkIRLRUOtR4PcoCHmUmCo8I4E2kncAZsdAtqgvIXdbSs3Dqt6m6GFxw/2A2PHd8X3llClkKfmYLbGvPA6TbspImiXYGY+NYBdWhTlJSThaemXMxGnMSG4k3DVhPdjVhlQcq4ugojaEmmgCHgypCNZGoKoatIgGVY0GN03EBBlJkvQgJ0tmwIuEVbjcSn3gDLuQE9FLu1RPfSjyuWQAerm5dXZ0tyJBta6bafQ+i/pfYsZ3IEn1wc1IrhMl4W3BxJtsYceanx3Mvffei2uvvRZdunRJdVOIUs6aVDdMkptNuBs+30TSnrDkvKVtlKS4m+4iWkVXP9RNmD3dRiJsnX3cSL7rool0RU0YNSEVFbVhqJrQy8C99ZfmRhXesbowquoiCAYjqKsOQ1U1REIqhBCIhCw93S4ZsqJfkwih94IbVXp+T/15jSq8mpCKqmAEAOAPKWbVnnHN5FU1M9k2eu6t113UMdkye3kHi/l2xGwm3ZS2jOAWM867wXP1S3IIc7KSmrBqTlJSE1ahCYGuPreeyEZnAa2NlnZVBSM4WBlEVTCCqrowDh6tQzioIhLWNyO4aRENoWAEQlMhNP1OtdBUSLKe7ro8XjPpll0yvH4XXG4Fbq8LwZAKr0dBrk//75brc0HNciNbAFluGbKkQI7eqa6IBr8stwK3rJecK7JirpeoSLE93NbvSoMUM3GadSmxZH73MfGmZFnmvyUAx44dwx133IGzzz4bJSUlqW4OkfOaSJwTJdVG4t1owt1UIt6CJcOSIUFPwI2JzxpO3mqtuANgdgAAehINANWhCA5XhfBddQgVNSEcPFqHSFiFx+vCCcV5yPIoUKPXKhU1IRyuDCJUF0GwNozaYyGEghFoqoZIKAgtHDKvR2S3B7LLA8Ulw5/jhcerwON3IxyMwOuSofrcZmKtagKHjtVh/6FqSLKE3GwPAL2M3Chx9ykyvK76zwFYk+9oZ0Yj35M1Kefs5ZlFRvIxuyP9ldsVs5l0U0Yx77BGH1sn9DDGZ9eEVRwLqagKRXCgog47vzqKOyYNQl1Yw+Ho3eRjRsCrCuHT8mOoqQ2jrjqMqqN1CNaGEQ6GEKmtQl3lIajBWqihOoRrq8yk20i8AUCSFSgePxQj2Hl88Obmw+XLgcufg+w8H7x+F4743agJqeiW40V+nQfdcjzI9eizmed6XQh43bh82RuYet5AFAd8+qzn0Ww3y62/lyLL5mc2JlSThQR96Hf8Gt5hDfC7kl/7sjXjqZikE9ULhUL4xz/+gf3790NVVQSDQbz88ss47rjjMGvWLFxxxRXIycmBoijo2bMnLrjgAvh8vlQ3m6hdxCTVxs+aCuHyxh+cKNFuahC2JMUl4DE93glKzI1x3frqItFJSWGpHEN0eS0h4JYlfHUsArcsxVTfWYe4ATA7AADgWEi/sX6oMogDFXU4cLQWVZVBfLu/Et9+vgvHDnyOWevuQnlVEBU1YXx9pAYHK4M4eqgatVUh1FXXofrQPoSrK6CG6hAJ1kIN1ZofUXZ5oHj9cHn8yOpWDHd2AN7sHGTleiErMtAF8LsV9O2ehXy/B8OPC2DmzAXoOWoCuh+XDwAIqZqZdLtlGa7opGtZbv1Pswcfscl33F9Hg/llACbflP6cjNlMuintNT2Rmv6nKoQ5bqomrOrlWNFe7KM1YXzyYSkqghEcromgJqLim6O1OFwdxpGaIA5+V4tQbRjB2giqj1QgUleFcG0V1FAtQlVHmm2fgH4TIGzZV+PJgsvnh+Lxoza/CG6fHx6fG7Vd/Pg224WA342u2V5UF2Qjx6Oge5YHAZ8LgW5Z+K4qhJxor3iOqsEdkcyJTNwyoDW4/aiJxtfqFkLg/z4obdH33CpNBM5Ro062//0o47VlNv2OYNq0aXjuuedQVFQEt9sNt9uNE044AZs3b8bixYvx+OOPIxgMQlVVlJeXY/jw4Xj//fdT3WwiR8X1YBuPo0H9Xx98EH+cNaNrzYxn1t891pm2zV7w6NwnxnOiPqGMPmz0bfMHDINlHrPoeG4RLSmP9hBr9T/XhvTkuyak4mhNCDXVIdQcC6Lq24M4duBzAMDBz3Zhz8EqVNSE8Wl5FWqPBXHkYBWClUcQrDqC2sPfNPpR1egWAlB38FN4svLgyemKqpyuCB/pgspsNw7neaEdzMVxeT707uIHAFSVfQF/bjaOVYeQ63Ohqk6/0x/IUhFR9Yo+a889APiYQXRcksSY7UDM5n8ZSivNjREyx03F3WmtHzdlzEpeG1LNtS0BQNOAkKYhHNFQURtBZW0IR6vDqK0KIlgTQai2DrVHyhCurUSktiqpz6GGaqCGaoBo+bmaFUAkOw8ut2zOPi7LEqqDXrhkSZ+FVOg33WvD+phyj0vWP48qm+Vcevla/ERqQkDv7UbsBGoJv8ME08LIrS0EasvMbNRp2bHmZ6Zav349/vnPf+K8886Le27dunUxjz///HOccMIJOHz4MPLz89uphURpJuFSXw3utJv7Gylutp7DWn6VRClWY3m+9ToEqC8vN+O2qO/1NpJufUhbBKHaCOpqwghWHY45ZzCsj/kO1oZRWx1G7ZGDqKs41KKOALNd4SDqKg4hEqqFGg7Cl+OHLAEVLgXBsN4eI/aHqo6grroOwVp9dvSaaDtrQyrCvvjhfDHv05KFulvaZsu5OPlm6shS512n28mYzaSbUkJrwV3qlkzSISxJuDFuKhjRUBdRozOSR6BGx1BFhL6WZW1EH8tdURtGqC6C2qowQtVVCFU3fQe5TTQVtUfKoYZq4Y7UwePtBaB+NueakIosj4JI9M54JKwvCWIm3VrsHXNj3Jj1+xECcb/dEs2wnijZbuy5FiXhTLyppTrxRGpdu3bFyJEjW3TsgAEDMGjQINTU1DDppszX1hnHo6+TGvR+x/Z0t3ByNSP5buNamC3tT284cZp1cjX95nlsT3dtKIJwMIJgXRih2jDC1ZXmuTSh94TXhCKoqw6hrjqI2iPlCNdUtKrthkhtFbRIGP6uRVBcCtzeCOrCqn7dEf2E4doqhKsrEA52QU1dBLXRcvhQRIubBK7+c8a/FydX6xhsmUjNnqa0OydjNpNuSnuJEkhjj/ELvn7iEg2qEOYyGKomoKkaNKGXXEeiZV514QhCIRXhkIpIOKyXlNdUxr2PLe1XwwjXVkFSXAiHInB5FETCEYQiCiKqHtA0IaBp0NfctGxadOI3azBv6leZBnsmrNIgWt/7TURxPv/881Yd/+9//9uhlhClqYbJtd3njlsurIne7kaa0FjTGu43e7m1+nWtVQGzp9vYF4xoUCMiukWgRUIx5wmrGurC+jGRUB3CdclV32nhICLBGkTCPkQi+k0A64qqWiQENVSLSFiNznhen3TXz53Tur+fmGu3znrXlTKOkzGbSTdllPjlOvQ/jbvKqtDHG4Wia2DWhFREwhoEFD2BVTUEwypqgipCQRWh2gjCVUcQPPYdglVHHWu3Fg4iWHkYvtyjUFz5UFwSXG4XqoMqcnwaIpp+xzkSVqN3uOt7ulWtvkxN1Sw3/Y1zQ59UTYYe15h4U7rh7OVEZEhmzW0AMb3cUhN90cKIX4kSb5tp0US7YW93/XOxs5fXhvQVUsLBCCK1+jwyhoiqV+wFw5o+sWt1JWCZvLWtQlVH4M7KQyQYQTCi6tcdlmuqSKgWkZCGcFA1y8tDEc28YaBZrkOA+GuRlmAinhk4e7kzeB1EKScsW0tpIr6MSdVETKCz9hYDehKpj7OKTgQS7QVX1TC0SMSWoNYUoYahqWGoEQ2aCqiaZgZjs1S8wYdSRWxQbG9NlaQDaN1fGnVqUnRilmS2THf22Wfj8ccfR21tbfMHE1GTmkq4U6lhzNYaVLAZmzA3Na6nW9U0aKoGQEBTw7CDpoYh1Ii+DGqi0vBwyLwGMdoY0yaBmN5x6rhsideM2XGYdJPjhKjfnNJwYo+myqA0TUAIyxaJQAhnE27zvYUKITT9bm+0B9u8KRD92RqU619nnUQu/cdNpfA+AVHaGjVqFH75y1+iqKgIs2bNwvbt21PdJKIOq72S8kQ3xo0b/A2T1IYTrAGIWYIUaDBzuiYgtCQrA8wTaxBCja4lriWe+8VyTQLoQ/Lir0dS2xlA1F7sjtltSrrPOeccLFq0KG7/kSNHcM455yTVIKL2Yk1chWpTUGv2TTV9i2sLAxh1XMbs5clumW758uX45ptvsHbtWhw8eBBnnXUWTjzxRNx///0oLy935D0Zr6lDSbY0PUMYnQNatCfcDkJocdc61msPu96HMp8dMbsDhGzbY3abku4tW7bg4YcfxpQpU1BdXW3uD4VC2Lp1a1tOSR2YUWXSnpUmSvQKXUlwpS7LeumLEv1TkmXILne7tEtW3JAUl156I0tQJAmyrM9kLkd/Viyb+TpL0pEJCUgHqCoiG0k2bR2By+XCpZdeihdffBFff/01rrjiCvzv//4vevfujSlTpmDTpk22vh/jNXUoDo/NbotES1spkgRFAhQp0X4p5nWSrECKLi8K6KuHmNcpLvuuTyTFBdnlhiQBiixDil53mM/LinkdYnAlvB6REn5m6jgYs+vZGbPb/NvrtddeQ1lZGU4//XTs3bu3rachatN/0IaJpxJNoq3BwAgSRgCRIZmB0K3oJ5AVGYrbC9nl/JyCkuKGrLj1IKroQU822x09pkE2raR7cEvjplEasaGXO91vNLXWu+++i4ULF+KBBx5Ajx49MH/+fHTv3h0/+MEP8Mtf/tLW92K8po5INBOAmnu+vcgJEldFliCZW2zSrT8vQ1ZkABJkxZ6kW1bcgCxDUeSEv09lt8e8BmnYXgAJbyJQx2RHvE7nS9e2sCNmtznp7tmzJ7Zu3Yrhw4fj1FNPxZYtW9p6KqI2S9SDrkh6wDDu0MqKZIZeyehZlqVoUANktxeKxw/Fk+VoWxWPF7LbC9kIei6YNwoA/aaAJEvwumQz4BlJuXF3XLH8jzVuVDT8T2xnPwBnLyeyz8GDB/HAAw9g2LBhOPPMM3Ho0CH8v//3/7B3714sWrQIf/zjH7F+/XqsXr3a1vdlvKZ0ImzsrW4ssY7Z306944rcfC+wtZJNkiX9WsDtgezymMfIMuBS9Hjvcsv2Jd0eL1xuFyRF1q+BGjwvyUq0U0C/fjJ7uS2980Sdid0xu03de8Yssl6vF0899RTuvvtuTJ48GbfddltbTkfUJOusxcaPxgQpxo1YtyLBLUc3RYbfo8DvUZDlUeByK5AlAZciwatIyPIo6JLlQTCsQdU88OYE9HPKCqoPfmn/B5AVeHO6wJ3TBb7cXPiy3fD6PfD73MjxueB1y/AoMmQZ8Hhd8HtcyIq2363E9t7LkpTw7qFxV9GuSwsm22QnCR1j9vFk9erVCwMGDMDPfvYzzJgxAwUFBXHHjBgxAqeeeqpt78l4TWlPkqPLekktm4XTOD6qyR7tRAm3jb+LjFPJkMzx0UaFmjt6l9wtS/BEf87yKOafHq8Ct0+B25cFtz8Hkeha3LIkwedSkONzweNzwZvXFe6sAMI1FW1up+z2wpfbHV6/Bx6PCz6XApdiubZweeDJCsDt1a+Z/B49PfB7FLijF1rG5zFu/tdfjzX23cQ/wziQGTrKiiHJsjtmt+kaveGMh3fccQeefPJJPPDAA205XausWLECxx9/PHw+H8aMGYN33323yeOfffZZDB48GD6fD8OHD8c//vEPx9tIzTPHMDfxn7olJaVGT7ce4CT4XDLcsh6w9MTbBcWl/zN3RYOgx6Ugx+tCIMsFX5Yb/hw3/Hld4O9aBF/XQrj8OTZ+UAVZ+T3hCxTAF+gBX7YbvmwPPH4XAlluZHkUPfhFvwuXW4bHVX/ToP5Ggr7pibWkb9HXNBbYGu5vLpE2z9vShJu/j6kVWF4ObNy4ER9//DFuueWWhMEbAPLy8rB582bb3jOV8RpgzO7UJLl+a+3rYOkRN7O7Br3XzZ3X+nxLJ5aREj9s7qXGdYjR263fMDd+d9V3ChixPcfnhtvrgtfnhsfvhjs7zzyXLAE+t4wsjwu+bA982V54u3SHJ6dr8+1PwOXP0a9vcvzwZbng8es39l1Sfbz3ZAfgzg7A7XXB73Mhx6tvHpcMt6Jv1us2fYv/vdyRfl93ZhLLywHYH7PblHR/8cUXcW9+2WWX4Z133sGaNWvacsoWeeaZZzBnzhwsXLgQ//rXv3DSSSdh0qRJOHjwYMLj3377bfz4xz/GzJkz8cEHH2DKlCmYMmUKPvroI8faSMlp7he2NYjJUn2SWJ94y/C6ZPiiiasRNAC9ZMsj68/l+FzomuVFl2w3/DleZOV64M/NQlb+ccjKL4Y/v7jNAQ4AFE8WvHndkJXfE/78Ivi7FiAr1w9/thdZ2W7kZ7sR8HuQ5VHglSW4ogm1JEvI8brg9yjwKUawqy/vMj5rw8nprL3csZUB8Yl3Y1urdIBfptR+JJu2TGXEqDPPPDPh85FIpNlktK1SFa8BxmyykTXYJUq+E20NX9vwZ5s0vA5R5PoJ05TodYmxGUm33x3tyfbrN/+9Ofkx47q9Lj3p9vhc8Ge74e9SZF6btLhdbi98gQL9dV2L4Mv2wJvlRiBLr7CzcmflwZftg9fvQq5PT8qzGt78j24Ny81b0onS4jbbeC5qO8ZsZ2J2m5Luvn37JuxdGzp0KKZPn96WU7bIgw8+iFmzZuGqq67CiSeeiNWrVyMrK6vRC4eHHnoIkydPxi233IIhQ4bgrrvuwsknn4yHH3640fcIBoOorKyM2Si1EiXiDRNPRZLglvVebq9LD2i5Xhe65XjQJcuNiDBKtvSkO+B3IT/bje45PuTkeJCV50V2nhc53bogq1sRsgv7IrtHH2T36Atf10J487pBdnshKW6gwYQnkBUoniy4swLw5nWDP78YOYV9kF3QF9k9+iK7Sx5yAj5k5XmRm+dB91wfuuV40TXbDb9bD2ouSdLXMtcEcn0uZHtc8LoUeBVZ/1zRnm79LnrsdxH7vUhx+zWImHU/k5bJv0mp02ltT6sTevbsGZNoDh8+HF999ZX5+LvvvkNJSYkj752qeA04H7MZrzOXkOTEY7slqWXLgrWk5zouQa//uf69E5/DeiM6UW+3vta1fpwi11+HKJak0Yjb7uhcLV6XXsnmccnI9bnQJcuDrGwPsnK9yOneAzmFxwMAjtZF4Pe6kOPTr2H8uV7kdvUju3t3ZBf2RU5RP/gCBXBnBSC7vbEfWXHD5c+BN68bcov6IbuwL7K6FSEnPwfZeV4EcrwI+D3wuhVEhMDBmiAA6Nc7eV7kZnsQyPIgx6e/v16GLsOlxM41Ywx1Y25MduvIMdv5KZttEgqFsGPHDsyfP9/cJ8syJkyYgG3btiV8zbZt2zBnzpyYfZMmTcILL7zQ6PssWbIk4ZqmlB7qx09F/5Tq/3QremBTLeWUhble5AzohrxufVDscSGoaqiLaCisCeFYKIKKmjByv6tBRU0Ix+oiqDhah1AwgkhIRTiooq4mBDWiQQ3VQg3WQouE4taylGQFskufCMWYEMWX7YHLrcDllpGd54PbqyAny41e+Vno4ncjkOVGwO9Gj2wPstwKstwKVCFwrnIYBbleBHwueBXZvElgzCIqSfUXANbLFRn1CbfxnUjQJ5UbftIouGTjubZHSAZXajMpuX97bWX0tK5evRpjxozB8uXLMWnSJOzZswc9evRot3Y0LPHeu3cvwuFwk8dkuvaI2YzXHYiRBAsNkBWcPGpU/VMNk/DWrtXdILmPSfYtP4vo7yjjv2LMGtYAtOhDIQRUAdRFBGrCGjQIKJL+Og3R2CsDsqafz0i8ASDbrd+0z/G5EAi5EYro1xORUDbc3pPQY9BwfO0uRv/ibHSNaPBWBnG4Ooj9h6pRVx1GsC6MqqODEAmFoQZroYZqEQnVmu10efyQXR4oXj/8udnw+t3w+PUy9sKCLHTL8aKL342CPC9qQyqe2bYPA8ZNQVaOB7n5fvP5HJ+eHhhD9gBYxnZHrydQf11ifp28TugQ7Kg2kNrQQ9PRY3bGJN3ffvstVFVFYWFhzP7CwkLs3r074WvKysoSHl9WVtbo+8yfPz8m6FdWVqJ3795JtJzs1PC+uPFf2lgKzOeSzUBplEJ1jT4Oa1r0WESTcwXIAnqEvNFSrwgUWUJtSEUkrCIS0lBX44Ya0aCpWYiEVGhCQEQjr9BE/fIaigzZJUNx6bORur0uPen2yOiS60VWdAxXj1yvfgfZ60KWWzEnJglrAqomMLgwN9o+Bb7onXGjvFz//PW/CCUpPuBZE27jsbWXSxOiTb9IGUgpGRJS82/I2tMKAKtXr8bLL7+MNWvWYN68ee3foCZ0tElr2iNmM15nPiHJsUl1NAmWhNb4LOfWBL05rUy4E7YRsQm3JuofexQJarTXW5NE9BpFAmTALUcnHpM0eF16su116W3O8bkQiug/e1wKPC4ZNV18cEWHw9WG1OhzMnJ8bmRneyBHry0URUYkrCESyoKqalAj9d+D4pLN6xFfthserwturwKvV+9Z97sVKLKEqroIakMqju8TwHf5fnhcMrpk6dcogSw3sqMTqRnD9YD6ZDvREPtEGqvIo/RnSxVDG17f0WN2xiTd7cXr9cLr9TZ/IDnOTCoT3E0ynjNm0RQQ0X/MMrLcerALaxp80Z7v+vFHQh/3bczCKUlQ87zwexTkhvTx37UhFaGIipqQiqpsI+nWEAlr0CwJt9mW6LIfkgx9OTJFht+nnyvLoyA/22uOjcrP8SDbreil49E7yO7ompmyIiHf79Z77WUZimzcZZbNz2mUsQGWXv7o9yFLsb/jrAm3QNuqwjtYHkAdgFFSbJXo93ZbelopszBeZ5AmEuW4xBuxyXGi52PO2UItWaosUS933DHQk29Z0m/iayIam4WxroqAEBKindrwumTURRNjbzSBzfXqVyzGdUKO12Veq2R5FLO6TT/ehR55PtT6IjhWF4HLIyMS0qCqGoQmzD8lo/Q7mnh7/S54LSu55Hj1sdqeaPWcxyXjuK5ZKMj1AdBnVM/P8SDgdyMr2nhvdCw6UH8Twejhtl6DECWiqmqL4jXQOWJ2xiTd3bt3h6IoKC8vj9lfXl6OoqKihK8pKipq1fGU/uqT7Whoi1Z6K+ZMYgKSJMMtA6rQe71VTQ+gqhDmY3hd8Kkawm4Btywh1+tCWBUIZLkRimjRxFtDTUhFSNWgagKhiAo1mmyrlqS7ft3N+kDmdyvm+K0cnys6GYmMXI8+Psoo2cpyK+bYL+NzGI/NMWJyfVmXdQKT+rvNsQm3bNlvPG5t7sxkm+yW6OZZW6xcuRLLly+P2bdw4ULceeedMfva0tPqFEmScOzYMfh8PgghIEkSqqqqzIuRjjgWmTGbWqO5hFhYesCTPm9c73fTvdzmz5bfYZIkQYKAIkvQoCfrEgSEBECTAFnof0JPVo0ktn5ZMX1/tltBfrYHteH66wvF0i3scclQNQGvS0YwoqE2rKKqLgxVEwhGjGsTLeZ4JbrGdo7PrY8hj04wG8hym9coxntY31OJXpNkuRWzYyLX60JWdNI144aBuWSY5bswMAHvGCQhko7ZkhDYuXMnAoFAzP5E8RroHDE7Y5Juj8eD0aNHY+PGjZgyZQoAQNM0bNy4ETfccEPC15SUlGDjxo246aabzH0bNmxwbMIaSl6i0GctSzJ+BajRH8zecAhIIpq0yoAqhH7XWUhQZP2us5mAy/VrfMuqgOrWE+GIqkGR9FLvkE8zk281WvodimiINJJ0u8zEW9/8lrvJ2dEycrcswW/52RiDbiTaxlIjRrIN6Mm2dRy3sYwDkDi4JUq4W4PJNjlCnyXQllNdf/31ceN40723UwiBE044IebxKMuYVSOodySM2ZRQgzW2W8uaRDeWgDeZwDeRcLc2x5ABqNE/NQnmWt1KdIcmRYe6KRLcmrXnuv4axq1ICKt6Uq1pwtxv8Lj0xFqRJYQiGrIi+kSxoYgGVQjz+sRgXodEe8yNidsUWUKOz2U+J0eH5JmfRdYnozXKyb1m77Zk9nAbX5U53K2Z64zmrudao4P9ekx/QrMhZguMGDECW7dujdmb7vEacC5mZ0zSDQBz5szB9OnTccopp+C0007D8uXLUV1dbdb+T5s2DccddxyWLFkCAPjFL36Bs88+Gw888AAuvPBCPP3003j//ffxyCOPpPJjUAsZv5wbBiHAknAaP+gRD7KwJtz6zN16wo2YBBwA3EJCWNaDWVjVENb0GTo1IRBW9V7xuohm9pIbd5OtAc5gTbj1mdQlc11Laxm50cNtXVfcSLTrlxypD2rG0iPWYCclSKwlJJ9wEzlHtLqHqjFerxd5eXnNHteWnlan2LnudiZhzKaEkky8DS0pF3eCEW9VEZ21XNZrzK2Jt74/2k4hmeOirWXrbllCWBMIqxo0IUMV+vPW5FvfL+BRZPM6JCfaw23dDNZrESPZVmTJ7O1umHDLcv1jY4UX6xA8Y24ZAAmq7BJ8N40kIon28xIlfUlCSz5mCwFFUVoUr4HOEbMzKun+0Y9+hEOHDmHBggUoKyvDyJEj8corr5ilCPv27YMs1/8SHjt2LJ566inccccd+NWvfoXvfe97eOGFFzBs2LBUfYROz/i9a72jbJ3YK9E4qph1p6PPm4ll9LGeR0sQ0O8+iWjwEjAS7tgEXHLL+j6XgDsiQRMywqpAllsPgEbws/6c6C60QZH04GV8HrdlaQ09sdYDlhH03IoR6OoTbSPxVmTLBHGyFDMzuSLHz9yeKOGO+f4sPzc1iRrvJFNH0paeVqecffbZ7fp+6YIxmxrVmsnQ7HqvBpoqK094GkmKKzGXhZ5sK7IEScC8BtFnWjPulgsYkTvLre+SJf2mv35TXzZv9BvXGGFV/16MfT4lei3iqb8uqX/eknRbeqGNSViNpNqlyGZybVyf6K+pP96YQ8ar6OXwbkUyVz+pH+YW/Qzm99Cqr5Eooc4QszMq6QaAG264odEvf8uWLXH7pk6diqlTpzrcKiIialJ7XFw30FxPKzmPMZuIKMPYMiSs9WPCO3rMzrikmzo3o0fX+K+sRe8kK9DLuYSov9usSPUTnDTs9Y4O64aqSZDd0fHeir6smCbkBpOv6SXl1l54a4+3edfX7I2WzJ7thnebjZ8b9m6bjwFLubllkjTLneX6ceyx30misnL2clNaEKL1AyZt0FxPa3uYOXMmli9fjtzc3BYdf/3112Px4sXo3r27wy0jSgMNe6HtvjmXZAm6hMSpg1FhpqG+t1tG/WPIRm939GjF+Dk6A7hbgubSh7KpQkBzNZj01Rj7rRk94Ep0Xpr6HnHjmkSzlJdbK+6svdoAzKFtxjUKgLg5ZYyebsXs1ZZiVk8xzg1Yrjks30tblwlLdk1ospkdMbsNL+/oMVsSbVnduxOprKxEIBBAWXl5i8clUPMa+1eXqLxcxDyv/2mMYRIN9gshzETb2G/sM95XT8DRoOxcf2yUaRnHGUEQQEwJl9FWa6CwlnVZg5N1HJReHm55bEnYrYm2vg9x+/T3gfm8wUjOrZhwU1tUVlaiqLAQFRUVtvzOW7p0KT7Y8T4e++Pvkz6XL9ANX375Jfr06ZP0udpLTk4O3n77bYwYMaLZY48dO4auXbvi66+/5ozdbWDE6/KyMsbrjqiphLzVy4fFBz5riLdeiyS8zhD1zyW+zoi9nghrsdcRxjGx1yCxibfRjobXIUZHQKK2xlyTNJFcN7xeaTi3jHkNA0vSbSlHBwCXZdUV8z0bSbqT6RTQX9/k052a3THb7/fj/bdfx8ABA5I6z933/gb7yw5izZo1SbepPTkZs9nTTURE5JCTTz4ZF1xwAU4++WS4XC643W4MGTIEt912G9asWYO33noLdXV10DQN//73v1FUVMSEm4iIKAWcjNlMuiklrHctWzOpmsEofTIKNcwSMEkvL4ekP6dEy79ie74Rd0e6/k625djo3WfjdYnam+jzxJaD1882bi0fN15TPxFJ/R3pxvYbnzPRpGmN3T0G2MtNqSfZOHt5pnnyySfxyCOP4JtvvoGmaairq8Mf//hHvPLKK9i9ezcmTJiAQCAARVHw3//935g2bVqqm0yUnmyarbzVE6hBv0YwKsYlSYIMoye6vsxcQfSaxLgGiC4TJiDMIG1UmcdW2xnXIhKg1Pd+A9aqPb3H2/jZ0LACD4hf0guA2ZsN1A9rM34GEg93Mz67cb0lm+eKfdxYSXmiaxRecmQIG2YvT3ad71RxMmYz6SYiImfZuE53punduzfuuuuumH379u3D8ccfj5deegkXXHBBilpGRESUQIomUksHTsZsJt2Utoy7srHjlWKPMSZSs951NsYUGXezE/V8A9Y7yPW95tZfMcZ63g173BubVCVR260ToOmPY8c1NezVbvgZG06W1txxidqQCHu4iVKnT58+mDRpEkaOHJnqphB1Ki3t5ZYlKWG1nbW3WwhhPlak+mo7TQAKADk6Y6sGCVL04qK+kg5xlXTC+rNx/WH2eFurAFv4YdHw2iG6L1Evt+VzN1WFp79eZ/R4t/VyguO4KVPYFbOZdBMRkcM6b093Y/75z3+muglERETxhJZ8zM7Q8vLG2BGzmXRTyjU2vtvQ1Dhv8y6ucXfZ6OW2HKdE70RDkiCg34HWz2V9X707vOGvGP00rb/dGjPGO2Z/7LkSjXNqbExU3HMJ3pd3jiltMekmohRp7ThuILa323i1MbYbiK+0A+J7vQG92s7a6222KUG1nX6Mpd2i8esfoz0NNXdtkOj6JFEVnvX5hMeY544/Jm5/gjZRGrMj6c7Q8nIn2TMrBRERUWOEADQt+a0DeOONN/CTn/wEJSUl2L9/PwDgT3/6E958880Ut4yIiAj63aNk43UH6em2M2Yz6SYiImoHf/nLXzBp0iT4/X588MEHCAaDAICKigr8+te/TnHriIiIyGB3zGZ5OaWVlpaaNyz50p+LP5FRQt5Y2bl5jGQs7ZFYWycuMZvTzDFNlZE3dR79WJaUU5oTnXfJMKu7774bq1evxrRp0/D000+b+7///e/j7rvvTmHLiDqm1pSVS1L8dUdj1xzWMnNjeBsQLS1vcBLJ0o6Y4W2WCV6BxKXnsB6fRJF2/DVHg+fN/c0PaUu0bGlTx8c+z+uVTCAh+SXDOkJPt90xm0k3ERE5j0k39uzZg7POOitufyAQwNGjR9u/QURERA1xTDcA+2M2y8uJiMhhIrruZ5JbhisqKsJnn30Wt//NN99E//79U9AiIiKiBuyI14zZcdjTTWnLKDNqbkZzQC/9SlSVZM4i2vCkiC89NzQsDUt0TGskKsEytKaMvP41zTeGJVpE6WfWrFn4xS9+gTVr1kCSJHzzzTfYtm0b5s6diwULFqS6eUQdSltmLE9UYg40PbQtptQ8ehLrkLSGs5sDlmuK6KoqQHzpuVWi65LWaq4cHPFvm3i4XINZzJt6ff15WFZOmcfumM2km4iInCXA8nIA8+bNg6ZpOPfcc1FTU4OzzjoLXq8Xt9xyC66++upUN4+IiCjaU83ycrtjNsvLiYjIYfpEaslumU6SJNx+++04fPgwPvroI2zfvh2HDh1CIBBAv379Ut08IiIiW+K11AHKy+2O2ezpprTX3IzmQOLSpURlYFZxpeeJ3jDmfI23UW9D08/HvU0LjmlJKTnA0iyidBYMBnHnnXdiw4YN5l3yKVOmYO3atfiv//ovKIqCm2++OdXNJOoQ2lJWbtVYiTkQG5Mbu8ZoqtxcibmeSfwmCVtved/WpDLNfRNNlY+35Nim3oMl5ZSpnIrZTLqJiMhhdpSqZa4FCxbg97//PSZMmIC3334bU6dOxVVXXYXt27fjgQcewNSpU6EoSvMnIiIiclonn73cqZjNpJsySsM7o01VrzR1l7W5XvBEkplMrTEt7cm24t1hyji2jA/LXM8++ywef/xxXHzxxfjoo48wYsQIRCIR/N///V+TEy0SUesk28ttaG2FnWY5qNmeb8ubJKqga8nkrm3Rkt81TVXs2VGdx193GcKOpDuDy8uditlMuomIyHmdOOn++uuvMXr0aADAsGHD4PV6cfPNNzPhJiKiNNS5J1JzKmZzIjUiIiIHqaoKj8djPna5XMjJyUlhi4iIiCgRp2I2e7opozV206m5qpa2lHU3pAlhy3mawo4w6gik6OzlnZUQAjNmzIDX6wUA1NXV4dprr0V2dnbMcX/9619T0TyijGdXWXkixqlbM5ytqXLz2Ne1ogHmuVvwmpaeO9HbtfC41lz/8Foms9iyYkgGl5c7FbOZdBMRkbOEALTOm3RPnz495vFPfvKTFLWEiIioGZqWfMzO4KTbqZjNpJuIiJyXwQE4WWvXrk11E4iIiFpGCMZsB2TMmO7Dhw/jyiuvRF5eHrp06YKZM2eiqqqqydeMGzcOkiTFbNdee207tZhSSZKa3uxgV2m50+0kImpvjNnUXpwsLbdqTXyWJSnhFnfONmyy1LKtLedO9LFa+lma+r6IKIN6uq+88kocOHAAGzZsQDgcxlVXXYVrrrkGTz31VJOvmzVrFhYvXmw+zsrKcrqpRERk1cmXDOuMGLOJiDKUHTG7E/eUNyYjku6PP/4Yr7zyCt577z2ccsopAIDf/e53uOCCC3D//fejuLi40ddmZWWhqKioxe8VDAYRDAbNx5WVlW1vOKUt3nklak+deyK1zqa9YjbjdefWXj3cjWnJWt4NtaSHWGvmZHZ+ajsq9ng91fHYMZGalMFLhjklI8rLt23bhi5dupjBGwAmTJgAWZbxzjvvNPnaJ598Et27d8ewYcMwf/581NTUNHn8kiVLEAgEzK137962fAYiIqLOoL1iNuM1ERFliozo6S4rK0OPHj1i9rlcLuTn56OsrKzR111xxRXo27cviouLsXPnTtx2223Ys2dPk1O8z58/H3PmzDEfV1ZWMpATESWLPd2dRnvFbMZrIiInaCwvd0BKk+558+Zh6dKlTR7z8ccft/n811xzjfnz8OHD0bNnT5x77rn4/PPPMWDAgISv8Xq95rpsRERkA47p7hDSLWYzXndeqS4tb6ip5rQ297BrklanpHnzyA62xGwm3Q2lNOmeO3cuZsyY0eQx/fv3R1FREQ4ePBizPxKJ4PDhw60arz1mzBgAwGeffdZo0k1ERDYTAtDUVLeCksSYTUTUCWhq8jGbN9rjpDTpLigoQEFBQbPHlZSU4OjRo9ixYwdGjx4NANi0aRM0TTODckuUlpYCAHr27Nmm9hIREXVWjNlERERtkxETqQ0ZMgSTJ0/GrFmz8O677+Ktt97CDTfcgMsvv9ycBXX//v0YPHgw3n33XQDA559/jrvuugs7duzA3r178be//Q3Tpk3DWWedhREjRqTy4xARdTICQtOS3igzMGaTU4QkpV1peXMaru+d7utXN9XedG0z2cuOeC04pjtORiTdgD6j6eDBg3HuuefiggsuwBlnnIFHHnnEfD4cDmPPnj3mTKcejwevvfYaJk6ciMGDB2Pu3Lm47LLL8Pe//z1VH4GIqHMyysuT3ShjMGYTEWUooSUfrx1Muu+55x6MHTsWWVlZ6NKlS8Jj9u3bhwsvvBBZWVno0aMHbrnlFkQiEcfa1BIZMXs5AOTn5+Opp55q9Pnjjz8+5q5K7969sXXr1vZoGhERNYVjujsdxmwiogxl25huxZbmNBQKhTB16lSUlJTg0UcfjXteVVVceOGFKCoqwttvv40DBw5g2rRpcLvd+PWvf+1Im1oiY5JuIiIiIuqcMq2svCU64EcictyiRYsAAOvWrUv4/Pr16/Hvf/8br732GgoLCzFy5EjcdddduO2223DnnXfC4/G0Y2vrZUx5ORERZSYhBISqJr05KVPL1YiIiOwkVC35eK0JqKqKysrKmC0YDDre/m3btmH48OEoLCw0902aNAmVlZXYtWuX4+/fGCbdRETkMAFoWvKbg4xyteuuuy7h80a5WigUwttvv43HHnsM69atw4IFCxxtF1Fnl4mTpxFlNGFDvBYCO3fuRCAQiNmWLFniePPLyspiEm4A5uOysjLH378xTLqJiChjBINBR+6cL1q0CDfffDOGDx+e8HmjXO2JJ57AyJEjcf755+Ouu+7CihUrEAqFkn5/IiKijmTEiBGoqKiI2ebPn5/w2Hnz5kGSpCa33bt3t/MnsBeTbiIicpaNs5evXLkyJXfO07VcjYiIyFZ2xGuhQVEU5OXlxWxerzfhW86dOxcff/xxk1v//v1b1PyioiKUl5fH7DMeFxUVJffdJIETqRERkbOEgLBp9vLrr7/enETF0FgQt1O6lqsRdVQsKSdKDX2t7eRidmvX6S4oKEBBQUFS72koKSnBPffcg4MHD6JHjx4AgA0bNiAvLw8nnniiLe/RFuzpJiIiZwnYNqbb6/W2+M55ZyhXIyIispUd8drBdbr37duH0tJS7Nu3D6qqorS0FKWlpaiqqgIATJw4ESeeeCJ++tOf4v/+7//w6quv4o477sDs2bPb5SZ9Y9jTTUREHdLcuXMxY8aMJo9pTbnau+++G7MvHcrViIiIOpMFCxbgscceMx+PGjUKALB582aMGzcOiqLgpZdewnXXXYeSkhJkZ2dj+vTpWLx4caqaDIBJNxEROS75UrW26AzlakQdEUvLiVJHCBtitnBuxZF169Y1uka3oW/fvvjHP/7hWBvagkk3ERE5y5hILY3t27cPhw8fjilXA4CBAwciJycnplztN7/5DcrKytKiXI2IiMhWlslL28zBpDtTMekmIiJnGWO601imlqsRdSTs4SZKA5Z5VNrMwTHdmYpJNxERdXqZWq5GRERE6Y9JNxEROUoIAaGmd3k5ERERAdC0pGO2EAJg4UoMJt1EROSw9B/TTUSpw7JyojRi15hu/reOwXW6iYiIiIiIiBzCnm4iInJWBsxeTkRERIhOpJZsTzcnUmuISTcRETlLCIg0n72ciFKDpeVE6UVfp5uzl9uNSTcRETmLPd1ERESZget0O4JjuomIiIiIiIgcwp5uIiJyGHu6iageS8qJ0hjHdDuCSTcRETmLY7qJiIgygh1jugWT7jhMuomIyFkc001EUezlJkpzHNPtCI7pJiIiIiIiInIIe7qJiMhh7OkmIiLKCBzT7YiM6em+5557MHbsWGRlZaFLly4teo0QAgsWLEDPnj3h9/sxYcIEfPrpp842lIiIYghNQKhq0htlDsZsSoSl5UTpT2g2xGvO4xInY5LuUCiEqVOn4rrrrmvxa37zm9/gt7/9LVavXo133nkH2dnZmDRpEurq6hxsKRERUefGmE1ERFQvY8rLFy1aBABYt25di44XQmD58uW44447cMkllwAAHn/8cRQWFuKFF17A5ZdfnvB1wWAQwWDQfFxZWZlcw4mIOj3Bu96dTHvEbMZrIiIHaDbEbJaXx8mYnu7W+uKLL1BWVoYJEyaY+wKBAMaMGYNt27Y1+rolS5YgEAiYW+/evdujuUREHZcxe3myG3VYbYnZjNeZQ0gSS8uJMoUd8ZpJd5wOm3SXlZUBAAoLC2P2FxYWms8lMn/+fFRUVJjbV1995Wg7iYg6PCH0MWJJbtRxtSVmM14TEdlPaFryMZtLhsVJadI9b948SJLU5LZ79+52bZPX60VeXl7MRkRE1NmlW8xmvE5vRu82e7iJiFI8pnvu3LmYMWNGk8f079+/TecuKioCAJSXl6Nnz57m/vLycowcObJN5yQiorYQEBzTnfEYs4mIOj4htORjNsvL46Q06S4oKEBBQYEj5+7Xrx+KioqwceNGM2BXVlbinXfeadVsqkRElBwhAKEy6c50jNlERB2fULWkY7bQmHQ3lDFjuvft24fS0lLs27cPqqqitLQUpaWlqKqqMo8ZPHgwnn/+eQCAJEm46aabcPfdd+Nvf/sbPvzwQ0ybNg3FxcWYMmVKij4FEVEnJIQZxJPZKHMwZhMRZSjNhnjNnu44GbNk2IIFC/DYY4+Zj0eNGgUA2Lx5M8aNGwcA2LNnDyoqKsxjbr31VlRXV+Oaa67B0aNHccYZZ+CVV16Bz+dr17YTERF1JozZRERE9TIm6V63bl2z632KBndVJEnC4sWLsXjxYgdbRkRETRIc093ZMGYTEWUmoSUfsxv+fqcMSrqJiCgziWh5ORF1fJytnCiz2TKki2O64zDpJiIiZ3EiNSIioowgNBsmUmNPd5yMmUiNiIiIiIiIKNOwp5uIiBwlhICmqqluBhERETVDU7WkYzaXDIvHpJuIiJzFidSIiIgygtC05GM2y8vjsLyciIiIiNpMSJK5ERE5Ze/evZg5cyb69esHv9+PAQMGYOHChQiFQjHH7dy5E2eeeSZ8Ph969+6N3/zmNylqcT32dBMRkaM4ezkREVGGSOOJ1Hbv3g1N0/D73/8eAwcOxEcffYRZs2ahuroa999/PwCgsrISEydOxIQJE7B69Wp8+OGH+NnPfoYuXbrgmmuucaRdLcGkm4iInMXZy4mIiDKCUG24Ue7QmO7Jkydj8uTJ5uP+/ftjz549WLVqlZl0P/nkkwiFQlizZg08Hg+GDh2K0tJSPPjggylNulleTkREzoqO6U52I2oJljq3D37PRB2TEMnHayEEVFVFZWVlzBYMBm1vb0VFBfLz883H27Ztw1lnnQWPx2PumzRpEvbs2YMjR47Y/v4txaSbiIiIiIiIbLNz504EAoGYbcmSJba+x2effYbf/e53+J//+R9zX1lZGQoLC2OOMx6XlZXZ+v6twfJyIiJylL5kGHuqiYiI0p2+ZFjyY7pHjBiBrVu3xuz3er0Jj583bx6WLl3a5Dk//vhjDB482Hy8f/9+TJ48GVOnTsWsWbOSam97YE83ERE5KzqRWrKbUzJ5NlRqGkugiYhaR2g2xGtNQFEU5OXlxWyNJd1z587Fxx9/3OTWv39/8/hvvvkG48ePx9ixY/HII4/EnKuoqAjl5eUx+4zHRUVFNn9bLceebiIicpRI84nUMnk2VCIiIjvZMZFaa2cvLygoQEFBQYuO3b9/P8aPH4/Ro0dj7dq1kOXYPuSSkhLcfvvtCIfDcLvdAIANGzZg0KBB6Nq1a6vaZScm3URElDGCwSAqKytj9nm93kbvnrdEJs+GSskzesElh5a46WhYNUBEqbJ//36MGzcOffv2xf33349Dhw6Zzxm92FdccQUWLVqEmTNn4rbbbsNHH32Ehx56CMuWLUtVswGwvJyIiJxm4+zlK1eudHxiFiBzZkMlIiKylR3x2qGbmBs2bMBnn32GjRs3olevXujZs6e5GQKBANavX48vvvgCo0ePxty5c7FgwYKU3yBnTzcRETlL2LDmZ9T111+PRYsWxexLppc7EWM2VKOXG9BnPO3Xr1/McdbZUFNZskZERGQXY0x3cudwJumeMWMGZsyY0exxI0aMwBtvvOFIG9qKPd1ERJQxvF5viydmmTdvHiRJanLbvXt3zGsybTZUSkwSguXiRESUNtjTTUREjkrVRGpz585t9o54ps+GSkREZCc7JlJzqrw8kzHpJiIiZwkBTWv/pLszzIZKRERkJ03Tko7ZrZ29vDNgeTkRETlKpPk63cZsqH369DFnQy0rK0NZWZl5zBVXXAGPx4OZM2di165deOaZZ/DQQw9hzpw5jrWLkmeUmTcsNef63a3D74uo87BjnW6nxnRnMvZ0ExFRp2bMhvrZZ5+hV69eMc8Zd+uN2VBnz56N0aNHo3v37mkxGyoRERGlPybdRETkLCEgVDXVrWhUJs+GSkREZCe9tzrJmC3af0hZumPSTUREDhPmOttE7aEtZdDW13DmcyLqtISWdMzmmO54TLqJiMhRQkvN7OVERETUOrbMo8Ix3XEyZiK1e+65B2PHjkVWVha6dOnSotfMmDEjbk3WyZMnO9tQIiKiTi4dY3Zjk6olkmjiMOu+zjCxWGf4jERE7SVjerpDoRCmTp2KkpISPProoy1+3eTJk7F27VrzsdfrdaJ5RETUGGHDmp+UURiziYgykx093Swvj5cxSfeiRYsAAOvWrWvV67xeL4qKilp8fDAYRDAYNB9XVla26v2IiCiWEAIak+5OpT1iNuM1EZH9NC35mM0lw+JlTHl5W23ZsgU9evTAoEGDcN111+G7775r8vglS5YgEAiYW+/evduppURERJ1ba2K2k/HaWopulFi3pjydiIjIqkMn3ZMnT8bjjz+OjRs3YunSpdi6dSvOP/98qE1Mgz9//nxUVFSY21dffdWOLSYi6piEpiW9UcfW2pjNeE1EZD9b4jVvTsZJaXn5vHnzsHTp0iaP+fjjjzF48OA2nf/yyy83fx4+fDhGjBiBAQMGYMuWLTj33HMTvsbr9XIMGRGRjQTHdHcI6RazGa+JiOwnNI7pdkJKk+65c+dixowZTR7Tv39/296vf//+6N69Oz777LNGk24iIrKZJiBUBuBM19ljdmeZxbuzfE4iaoRqQ8zmffY4KU26CwoKUFBQ0G7v9/XXX+O7775Dz5492+09iYiIOgLGbCIiorbJmDHd+/btQ2lpKfbt2wdVVVFaWorS0lJUVVWZxwwePBjPP/88AKCqqgq33HILtm/fjr1792Ljxo245JJLMHDgQEyaNClVH4OIqNMRAtBULemNMgdjNhFRZtJUkXS8Znl5vIxZMmzBggV47LHHzMejRo0CAGzevBnjxo0DAOzZswcVFRUAAEVRsHPnTjz22GM4evQoiouLMXHiRNx1110cA0ZE1K4Elw/pZNIxZlvLpq0zkDdXTp1otvLmXtPYe7WGcQ7Olk5E7UmI5GM2k+54GZN0r1u3rtn1Pq1/wX6/H6+++qrDrSIiouboPd0MwJ0JYzYRUWbSe7qTTLpZnBYnY5JuIiIiIju0pqe6Pc/lxOuJiCj1mHQ3w7gTf+zYsRS3hIjIecbvOltLw7hkGLUDxmsi6myciNl2LBnGdbrjMeluhvGP+XsDB6a4JURE7efYsWMIBAL2nEyAS4aR4xiviaizsjVm27BkGOdxicekuxnFxcX46quvkJubCymJEq/Kykr07t0bX331FfLy8mxsYebjd5MYv5fE+L0kZtf3IoTAsWPHUFxcbGPriJxnV7wG+HumMfxeEuP3khi/l8Ts/F4YszMHk+5myLKMXr162Xa+vLw8/uJpBL+bxPi9JMbvJTE7vhfb7pZHCY0TqZHz7I7XAH/PNIbfS2L8XhLj95KYXd+L3TFbU5OP2awuj8ekm4iIHCU4ppuIiCgj2DKmm+XlcZh0ExGR4zQGYCIiorSnaSLpmM11uuPJqW5AZ+H1erFw4UJ4vd5UNyXt8LtJjN9LYvxeEuP3QmQf/n9KjN9LYvxeEuP3khi/l85JErwVQUREDlm6dCk2LX8Qi4edmPS5Tn9tC7788kv06dPHhpYRERGRld/vx+Mnj0CfrKykzvPH/+yFevZ4rFmzxqaWZT6WlxMRkbOEgMYx3URERGlPqMnHbC4ZFo9JNxEROUpoXKebiIgoEwgt+XW6OX15PI7pJiIiIiIiInIIk24iInKW0Hu6k92IiIjIWXbEa+HgiLKLL74Yffr0gc/nQ8+ePfHTn/4U33zzTcwxO3fuxJlnngmfz4fevXvjN7/5jXMNaiEm3Smwd+9ezJw5E/369YPf78eAAQOwcOFChEKhVDct5e655x6MHTsWWVlZ6NKlS6qbkzIrVqzA8ccfD5/PhzFjxuDdd99NdZNS7vXXX8dFF12E4uJiSJKEF154IdVNSrklS5bg1FNPRW5uLnr06IEpU6Zgz549qW5WHBEd053sRtTeGK8bx3hdjzE7FuN1YpkSs+2I107O0z1+/Hj8+c9/xp49e/CXv/wFn3/+OX74wx+az1dWVmLixIno27cvduzYgfvuuw933nknHnnkEcfa1BJMulNg9+7d0DQNv//977Fr1y4sW7YMq1evxq9+9atUNy3lQqEQpk6diuuuuy7VTUmZZ555BnPmzMHChQvxr3/9CyeddBImTZqEgwcPprppKVVdXY2TTjoJK1asSHVT0sbWrVsxe/ZsbN++HRs2bEA4HMbEiRNRXV2d6qYRdQiM141jvNYxZsdjvE6MMdseN998M04//XT07dsXY8eOxbx587B9+3aEw2EAwJNPPolQKIQ1a9Zg6NChuPzyy/Hzn/8cDz74YErbzSXD0sR9992HVatW4T//+U+qm5IW1q1bh5tuuglHjx5NdVPa3ZgxY3Dqqafi4YcfBgBomobevXvjxhtvxLx581LcuvQgSRKef/55TJkyJdVNSSuHDh1Cjx49sHXrVpx11lmpbg4Afcmw1+67H/874HtJn+vsd7dxyTBKOcbrWJ05XgOM2c1hvG5cOsZsv9+PR08YjF4+f1LnWbf/K6jnnoPf/e53Mfu9Xq+t65MfPnwY1113Hfbv348333wTADBt2jRUVlbGVFhs3rwZ55xzDg4fPoyuXbva9v6twZ7uNFFRUYH8/PxUN4NSLBQKYceOHZgwYYK5T5ZlTJgwAdu2bUthyygTVFRUAEDa/S7Ry8uT34jSAeM1GRizKRnpGrPtiNdC08dVBwKBmG3JkiW2tPG2225DdnY2unXrhn379uHFF180nysrK0NhYWHM8cbjsrIyW96/LZh0p4HPPvsMv/vd7/A///M/qW4Kpdi3334LVVUT/rJI5S8KSn+apuGmm27C97//fQwbNizVzYklAKFqSW9EqcZ4TVaM2dRW6Ryz9SXDkozZQmDEiBGoqKiI2ebPn5/wPefNmwdJkprcdu/ebR5/yy234IMPPsD69euhKAqmTZvm6DhyOzDptlFr/8EAwP79+zF58mRMnToVs2bNSlHLndWW74WIWmf27Nn46KOP8PTTT6e6KURpj/E6McZrovbRGWK2oijIy8uL2RorLZ87dy4+/vjjJrf+/fubx3fv3h0nnHACzjvvPDz99NP4xz/+ge3btwMAioqKUF5eHnN+43FRUZFDn7Z5rpS9cwc0d+5czJgxo8ljrP9gvvnmG4wfPx5jx45N+Yx6Tmrt99KZde/eHYqiJPxlkcpfFJTebrjhBrz00kt4/fXX0atXr1Q3J57GJb8ovTBeJ8Z43TqM2dQW6R6zbVmmU2vd6wsKClBQUNC2t9L0SrhgMAgAKCkpwe23345wOAy32w0A2LBhAwYNGpSy8dwAk25bteYfzP79+zF+/HiMHj0aa9euhSx33KKDZP4jdTYejwejR4/Gxo0bzUlHNE3Dxo0bccMNN6S2cZR2hBC48cYb8fzzz2PLli3o169fqpuUkBDgmGxKK4zXiTFetw5jNrVGpsRsO+ZRcarS+5133sF7772HM844A127dsXnn3+O//3f/8WAAQNQUlICALjiiiuwaNEizJw5E7fddhs++ugjPPTQQ1i2bJkzjWohJt0psH//fowbNw59+/bF/fffj0OHDpnPdfY7o/v27cPhw4exb98+qKqK0tJSAMDAgQORk5OT2sa1kzlz5mD69Ok45ZRTcNppp2H58uWorq7GVVddleqmpVRVVRU+++wz8/EXX3yB0tJS5Ofnd9rZrGfPno2nnnoKL774InJzc80xhIFAAH5/cjOP2klAQGjpPSb74osvRmlpKQ4ePIiuXbtiwoQJWLp0KYqLi81jdu7cidmzZ+O9995DQUEBbrzxRtx6660pbDU5jfG6cYzXOsbseIzXiWVKzIbQko7ZTo2vzsrKwl//+lcsXLgQ1dXV6NmzJyZPnow77rjDLF0PBAJYv349Zs+ejdGjR6N79+5YsGABrrnmGkfa1FJcMiwF1q1b1+gv487+1zFjxgw89thjcfs3b96McePGtX+DUuThhx/Gfffdh7KyMowcORK//e1vMWbMmFQ3K6W2bNmC8ePHx+2fPn061q1b1/4NSgOSJCXcv3bt2mZLRNvL0qVL8eqvl2J+cfJ39Cfu/pdjS4YtW7YMJSUl6NmzJ/bv349f/vKXAIC3334bAFBZWYkTTjgBEyZMwPz58/Hhhx/iZz/7GZYvX57yQE7OYbxuHON1PcbsWIzXiWVCzPb7/VhV3B/HeXxJnedP3x6A66LJWLNmjU0ty3xMuomIyDFLly7Fq/csxW1Fxyd9rsmffoBPPvkkbqZgu9f9BIC//e1vmDJlCoLBINxuN1atWoXbb78dZWVl8Hg8APRJp1544QVOLEVERB2C3+/HisJ+SSfdT3x3AO5LzmfSbdFxByYREVFaEKJ+YpZkNgBYuXKlY+t+Gg4fPownn3wSY8eONSdh2bZtG8466ywz4QaASZMmYc+ePThy5Iit709ERJQqQks+ZoNdunGYdBMRUca4/vrrW7zuZ2vddtttyM7ORrdu3bBv3z68+OKL5nNlZWUJ1+I1niMiIiJqDJNuIiJyliYgVC3pDdBLyVu67mdr1xy+5ZZb8MEHH2D9+vVQFAXTpk3r9ON2iYioc7EjXotWLhnWGXD2ciIicpQQyS8/0hatXXO4e/fu6N69O0444QQMGTIEvXv3xvbt21FSUoKioqKEa/ECnMWaiIg6Dk0V0ORklwxj0t0Qk24iInJWdEx3e0tmzWEtulxKMBgEAJSUlOD2229HOBw2x3lv2LABgwYNQteuXe1pMBERUappIvmYnd6rhKYEy8uJiKhTe+edd/Dwww+jtLQUX375JTZt2oQf//jHGDBgAEpKSgAAV1xxBTweD2bOnIldu3bhmWeewUMPPYQ5c+akuPVERESU7tjTTUREjhIAtDQuNcvKysJf//pXLFy4ENXV1ejZsycmT56MO+64wxwvHggEsH79esyePRujR49G9+7dsWDBAq7RTUREHYomRNIxW3D68jhMuomIyFECAmoaJ93Dhw/Hpk2bmj1uxIgReOONN9qhRURERKmhiuRjNudRi8ekm4iIHCUEkIIh3URERNRKmg0xmyE/Hsd0ExERERERETmEPd1EROQoAaR1eTkRERHpVJF8zE7neVxShT3dRGnk8ccfR7du3cxligxTpkzBT3/60xS1iig5etKd/EZElC4Yr6mj0pB8vOaKYfGYdBOlkalTp0JVVfztb38z9x08eBAvv/wyfvazn6WwZURERGRgvCai1mDSTZRG/H4/rrjiCqxdu9bc98QTT6BPnz4YN25c6hpGlAQh6mdDTWYjIkoXjNfUUdkRrxmy43FMN1GamTVrFk499VTs378fxx13HNatW4cZM2ZAkqRUN42oTYzyciKijoTxmjoiO4Z0sbw8HpNuojQzatQonHTSSXj88ccxceJE7Nq1Cy+//HKqm0XUZum+TjcRUVswXlNHpNlQXSYY8+Mw6SZKQ1dffTWWL1+O/fv3Y8KECejdu3eqm0REREQNMF4TUUtwTDdRGrriiivw9ddf4w9/+AMnZKGMJ2yYuZzl6USUjhivqaOxI16zvDwek26iNBQIBHDZZZchJycHU6ZMSXVziJLCJcOIqKNivKaORrMhXrO6PB7Ly4nS1P79+3HllVfC6/WmuilESTFmLyci6ogYr6kjsWPFEPZ0x2PSTZRmjhw5gi1btmDLli1YuXJlqptDRERECTBeE1FLMekmSjOjRo3CkSNHsHTpUgwaNCjVzSFKGpcMI6KOiPGaOiINycdsFrfFY9JNlGb27t2b6iYQ2UoP4IzARNSxMF5TR2RPeTljfkOcSI2IiIiIiIjIIezpJiIiRwnOPk5ERJQR7FgxhMVt8Zh0ExGRowSSL1UjIiIi52mcvdwRTLqJiMhRnEiNiIgoM7Cn2xkc001ERERERETkEPZ0ExGRo/Qx3bztTURElO7sKS9nzG+ISTcRETmO47uIiIjSn4bkYzZT7ngsLyciIkcZ63QnuxEREZGzNJF8zG6PkB0MBjFy5EhIkoTS0tKY53bu3IkzzzwTPp8PvXv3xm9+8xvnG9QMJt1ERERERESUMW699VYUFxfH7a+srMTEiRPRt29f7NixA/fddx/uvPNOPPLIIyloZT2WlxMRkaM4ezkREVFmUJF8zHZ6SNk///lPrF+/Hn/5y1/wz3/+M+a5J598EqFQCGvWrIHH48HQoUNRWlqKBx98ENdcc43DLWsck24iInKUYHk4ERFRRlCFgJrkqGwhBFRVRWVlZcx+r9cLr9eb1LnLy8sxa9YsvPDCC8jKyop7ftu2bTjrrLPg8XjMfZMmTcLSpUtx5MgRdO3aNan3byuWlxMREREREZFtdu7ciUAgELMtWbIkqXMKITBjxgxce+21OOWUUxIeU1ZWhsLCwph9xuOysrKk3j8Z7OkmIiJHsbyciIgoM2hCLzFP6hwARowYga1bt8bsb6yXe968eVi6dGmT5/z444+xfv16HDt2DPPnz0+yhe2PSTcRETlKT7qZdRMREaU7e8rLAUVRkJeX16Lj586dixkzZjR5TP/+/bFp0yZs27YtLnk/5ZRTcOWVV+Kxxx5DUVERysvLY543HhcVFbX8Q9iMSTcRETlKCPZ0ExERZQK7erpbo6CgAAUFBc0e99vf/hZ33323+fibb77BpEmT8Mwzz2DMmDEAgJKSEtx+++0Ih8Nwu90AgA0bNmDQoEEpG88NMOkmIiIiIiKiNNenT5+Yxzk5OQCAAQMGoFevXgCAK664AosWLcLMmTNx22234aOPPsJDDz2EZcuWtXt7rZh0ExGRowQ4ezkREVEmsGv28lQJBAJYv349Zs+ejdGjR6N79+5YsGBBSpcLA5h0ExGRw8IQqBSRVDeDiIiImlEFFbKQkjpH0PGVunXHH398wgR/xIgReOONN9qlDS3FpJuIiBzzve99D3tRi73Yn/S5CgsLWzwpCxEREbXOCSecgL/t3GnLua4YNMiW83QUkkhl/z8REXV4doYZSUru7jsRERElZndayJhdj0k3ERERERERkUPkVDeAiIiIiIiIqKNi0k1ERERERETkECbdRERERERERA5h0k1ERERERETkECbdRERERERERA5h0k1ERERERETkECbdRERERERERA5h0k1ERERERETkkP8Pj9z7lZfN27YAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# compute the effective indices for the first two modes\n",
"n_1 = phase_control.n_eff.values[0][0]\n",
"n_2 = phase_control.n_eff.values[0][1]\n",
"print(f\"Effective indices: {n_1}, {n_2}\")\n",
"\n",
"# plot the mode profiles\n",
"fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4), tight_layout=True)\n",
"\n",
"phase_control.plot_field(\"Ey\", mode_index=0, ax=ax1)\n",
"phase_control.plot_field(\"Ey\", mode_index=1, ax=ax2)"
]
},
{
"cell_type": "markdown",
"id": "50fa4702",
"metadata": {},
"source": [
"To perform the TMM analysis, we still need to obtain $\\theta_{t1}$ and $\\theta_{t2}$. This can be done by setting up FDTD simulations for the tapers. To get the phase shift, we place one [ModeMonitor](../_autosummary/tidy3d.ModeMonitor.html) right before the taper and another [ModeMonitor](../_autosummary/tidy3d.ModeMonitor.html) right after the taper. The phase difference calculated from the mode amplitudes is the phase shift we are looking for. Since the tapers are only 1 $\\mu m$ in length, the FDTD simulations are very fast.\n",
"\n",
"First, let's do the top taper that transitions from a 500 nm waveguide to a 600 nm waveguide."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "fd2a853f",
"metadata": {},
"outputs": [],
"source": [
"L_t = 1 # length of the tapers\n",
"l = 10 # length of the straight waveguide\n",
"\n",
"# define vertices\n",
"vertices = [(-l, 0), (L_t + l, 0), (L_t + l, w_top), (L_t, w_top), (0, w_sc), (-l, w_sc)]\n",
"\n",
"# define the top taper structure\n",
"taper_top = td.Structure(\n",
" geometry=td.PolySlab(\n",
" vertices=vertices,\n",
" axis=2,\n",
" slab_bounds=(-h_si / 2, h_si / 2),\n",
" ),\n",
" medium=si,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9faea023",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGQCAYAAADIlpb4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhV0lEQVR4nO3deXxU5b0/8M85s2VfyAJBUBFUVECURcEFrFS0VuW2WrW1oKVYF9oqXr3Q+hPRW7lqVdq6UG+v0rrU7Vb0qlURwRVRFFpEoS4oa4CEJJNMyJyZOc/vj+OZM5PMcmZyzpnM5PN+vfLSTOaceTLffMMnZ3keSQghQERERER5Tc71AIiIiIio9xjqiIiIiAoAQx0RERFRAWCoIyIiIioADHVEREREBYChjoiIiKgAMNQRERERFQCGOiIiIqICwFBHREREVAAY6oiIMrB69WpIkoTVq1fneihERHEY6oiIErj//vuxbNmyXA8jK48//jiWLFmS62EAAFRVxR133IFhw4ahqKgIY8aMwV//+lfT27e2tuLyyy9HXV0dSktLcdppp+Gjjz5K+Nznn38exx9/PIqKinDwwQdj4cKFCIfDVn0rRH2exLVfiYh6GjVqFGpra3sckVNVFYqiwOv1Qpb75t/F3/3ud/Hxxx/jq6++yvVQsGDBAvzXf/0X5syZgwkTJuC5557Diy++iL/+9a+46KKLUm6rqipOOeUU/OMf/8D111+P2tpa3H///di+fTs+/PBDHH744dHn/v3vf8fZZ5+NqVOn4uKLL8bGjRtx33334fLLL8cDDzxg97dJ1Ccw1BFRUoFAAKWlpbkeRk4kC3X5oK+Eup07d2LYsGG4/PLLce+99wIAhBCYMmUKtm7diq+++goulyvp9k899RQuvPBCPP300zj//PMBAPv27cMRRxyBs846C48//nj0uccccww8Hg/WrVsHt9sNALjxxhtx22234ZNPPsHIkSNt/E6J+oa++WcmEVlu586dmD17NgYPHgyfz4dhw4bhyiuvhKIoAIBly5ZBkiS88cYbuOqqq1BfX48hQ4ZEt7///vtxzDHHwOfzYfDgwbj66qvR2toa9xqfffYZvv/972PQoEEoKirCkCFDcNFFF6GtrS36nBUrVuDkk09GVVUVysrKcOSRR+JXv/pV2vGb2S4YDGLhwoUYMWIEfD4fhg4dihtuuAHBYLDH/h599FFMnDgRJSUlqK6uxqmnnopXX30VAHDooYdi06ZNeOONNyBJEiRJwtSpUwEkv6bu6aefxrhx41BcXIza2lpccskl2LlzZ9xzLr30UpSVlWHnzp2YMWMGysrKUFdXh3//939HJBJJ+x4899xzOPvss6M1HD58OG699da4badOnYoXX3wRX3/9dXTshx56aNJ9XnrppdHndf+4+eab044p3XhDoRCuuuqq6GOSJOHKK6/Ejh07sGbNmpTbP/PMMxg4cCC+973vRR+rq6vDD37wAzz33HPRun7yySf45JNPcPnll0cDHQBcddVVEELgmWee6dX3QZQv3OmfQkT5bteuXZg4cWL0+qSRI0di586deOaZZ9DZ2Qmv1xt97lVXXYW6ujrcdNNNCAQCAICbb74ZixYtwrRp03DllVdiy5YteOCBB/DBBx/gnXfegcfjgaIomD59OoLBIH7+859j0KBB2LlzJ1544QW0traisrISmzZtwne/+12MGTMGt9xyC3w+Hz7//HO88847KcdvZjtVVXHuuefi7bffxuWXX46jjjoKGzduxD333IN//etfWL58efS5ixYtws0334zJkyfjlltugdfrxdq1a/H666/jjDPOwJIlS/Dzn/8cZWVl+PWvfw0AGDhwYNLxLVu2DJdddhkmTJiAxYsXY8+ePfjd736Hd955B+vXr0dVVVX0uZFIBNOnT8cJJ5yA3/72t3jttddw1113Yfjw4bjyyitTvg/Lli1DWVkZ5s2bh7KyMrz++uu46aab4Pf7ceeddwIAfv3rX6OtrQ07duzAPffcAwAoKytLus+f/exnmDZtWtxjL7/8Mh577DHU19dHH2tqako5Nl15eTl8Ph8AYP369SgtLcVRRx0V95yJEydGv37yyScn3df69etx/PHH9zjNPXHiRDz44IP417/+hdGjR2P9+vUAgPHjx8c9b/DgwRgyZEj060QFTxBRwZs5c6aQZVl88MEHPb6mqqoQQoiHH35YABAnn3yyCIfD0a/v3btXeL1eccYZZ4hIJBJ9/N577xUAxEMPPSSEEGL9+vUCgHj66aeTjuOee+4RAMS+ffsyGr+Z7R555BEhy7J466234h5funSpACDeeecdIYQQn332mZBlWfzbv/1b3PcjhPFeCCHEMcccI6ZMmdLjdVatWiUAiFWrVgkhhFAURdTX14tRo0aJAwcORJ/3wgsvCADipptuij42a9YsAUDccsstcfs87rjjxLhx41K/CUKIzs7OHo/97Gc/EyUlJaKrqyv62Nlnny0OOeSQtPtL5LPPPhOVlZXi29/+dtzPAQBTHw8//HDcOA477LAerxEIBAQAMX/+/JRjKS0tFT/5yU96PP7iiy8KAOLll18WQghx5513CgBi27ZtPZ47YcIEceKJJ5r99onyGk+/EhU4VVWxfPlynHPOOT2OZADa6bBYc+bMibvO6bXXXoOiKLjmmmvijpjMmTMHFRUVePHFFwEAlZWVAIBXXnkFnZ2dCceiH7F67rnnoKqq6e/BzHZPP/00jjrqKIwcORJNTU3Rj29961sAgFWrVgEAli9fDlVVcdNNN/U4AtT9vTBj3bp12Lt3L6666ioUFRVFHz/77LMxcuTI6PsT64orroj7/JRTTsGXX36Z9rWKi4uj/9/e3o6mpiaccsop6OzsxObNmzMee3eBQAD/9m//hurqavz1r3+N+zlYsWKFqY/p06dHtzlw4ED0qF0s/X06cOBAyvGY3V7/b7LnpnsdokLB069EBW7fvn3w+/0YNWqUqecPGzYs7vOvv/4aAHDkkUfGPe71enHYYYdFvz5s2DDMmzcPd999Nx577DGccsopOPfcc3HJJZdEA9+FF16IP/3pT/jpT3+K+fPn4/TTT8f3vvc9nH/++SnvJDWz3WeffYZPP/0UdXV1Cfexd+9eAMAXX3wBWZZx9NFHm3o/0kn2/gDAyJEj8fbbb8c9VlRU1GOM1dXVaGlpSftamzZtwo033ojXX38dfr8/7mux1y1ma86cOfjiiy/w7rvvoqamJu5r3U/RmlFcXJzwesaurq7o163YXv9vsuemex2iQsFQR0RxevMP4F133YVLL70Uzz33HF599VX84he/wOLFi/Hee+9hyJAhKC4uxptvvolVq1bhxRdfxMsvv4wnn3wS3/rWt/Dqq68mvRPSzHaqqmL06NG4++67E+5j6NChWX9fVkp1t2cqra2tmDJlCioqKnDLLbdg+PDhKCoqwkcffYT/+I//yOjIZyK/+93v8Ne//hWPPvooxo4d2+PrjY2NpvZTWVkZ/RlqaGjAqlWrIISIOwq6e/duANo1b6k0NDREnxur+/YNDQ3Rx7vXeffu3dFr+IgKHU+/EhW4uro6VFRU4OOPP85q+0MOOQQAsGXLlrjHFUXB1q1bo1/XjR49GjfeeCPefPNNvPXWW9i5cyeWLl0a/bosyzj99NNx991345NPPsFvfvMbvP7669HTo8mk22748OHYv38/Tj/9dEybNq3Hh34kbfjw4VBVFZ988knK1zN7KjbZ+6M/1v39ydbq1avR3NyMZcuW4Ze//CW++93vYtq0aaiuru7x3ExPI7/11lv493//d1xzzTX40Y9+lPA5DQ0Npj6efPLJ6DZjx45FZ2cnPv3007h9rV27Nvr1VMaOHYuPPvqoR2Bdu3YtSkpKcMQRR8TtZ926dXHP27VrF3bs2JH2dYgKBUMdUYGTZRkzZszA//3f//X4Rw/Q5g1LZdq0afB6vfj9738f99z/+Z//QVtbG84++2wAgN/v7zF7/+jRoyHLcvS02P79+3vsX/8HN9GpM52Z7X7wgx9g586d+O///u8ezz1w4ED0Tt4ZM2ZAlmXccsstPcJC7PdXWlraY8qWRMaPH4/6+nosXbo07nv4+9//jk8//TT6/vSWfoQvdoyKouD+++/v8dzS0lLTp2N3796NH/zgBzj55JOjd9Amks01deeddx48Hk/cGIUQWLp0KQ466CBMnjw5bhybN29GKBSKPnb++edjz549+Nvf/hZ9rKmpCU8//TTOOeec6DV0xxxzDEaOHIkHH3wwbnqXBx54AJIkRee4Iyp0PP1K1A/cdtttePXVVzFlypTodB+7d+/G008/jbfffjtuyo3u6urqsGDBAixatAhnnnkmzj33XGzZsgX3338/JkyYgEsuuQQA8Prrr2Pu3Lm44IILcMQRRyAcDuORRx6By+XC97//fQDALbfcgjfffBNnn302DjnkEOzduxf3338/hgwZknJqCzPb/fjHP8ZTTz2FK664AqtWrcJJJ52ESCSCzZs346mnnsIrr7yC8ePHY8SIEfj1r3+NW2+9Faeccgq+973vwefz4YMPPsDgwYOxePFiAMC4cePwwAMP4D//8z8xYsQI1NfXR2+6iOXxeHD77bfjsssuw5QpU3DxxRdHpzQ59NBDce2112ZbtjiTJ09GdXU1Zs2ahV/84heQJAmPPPJIwlA+btw4PPnkk5g3bx4mTJiAsrIynHPOOQn3+4tf/AL79u3DDTfcgCeeeCLua2PGjMGYMWMAZHdN3ZAhQ3DNNdfgzjvvRCgUwoQJE7B8+XK89dZbeOyxx+JORS9YsAB//vOfsXXr1ui8eueffz5OPPFEXHbZZfjkk0+iK0pEIhEsWrQo7rXuvPNOnHvuuTjjjDNw0UUX4eOPP8a9996Ln/70pz2mVCEqWDm885aIHPT111+LmTNnirq6OuHz+cRhhx0mrr76ahEMBoUQxpQmiaY9EUKbwmTkyJHC4/GIgQMHiiuvvFK0tLREv/7ll1+Kn/zkJ2L48OGiqKhIDBgwQJx22mnitddeiz5n5cqV4rzzzhODBw8WXq9XDB48WFx88cXiX//6V8qxm91OURRx++23i2OOOUb4fD5RXV0txo0bJxYtWiTa2trinvvQQw+J4447Lvq8KVOmiBUrVkS/3tjYKM4++2xRXl4uAESnN+k+pYnuySefjO5vwIAB4kc/+pHYsWNH3HNmzZolSktLe3x/CxcuFGZ+Hb/zzjvixBNPFMXFxWLw4MHihhtuEK+88kqP8XR0dIgf/vCHoqqqSgBIOb3JlClTkk5PsnDhwrRjSicSiYjbbrtNHHLIIcLr9YpjjjlGPProoz2ep0/3snXr1rjH9+/fL2bPni1qampESUmJmDJlStKf0WeffVaMHTtW+Hw+MWTIEHHjjTcKRVF6/T0Q5QsuE0ZERERUAHhNHREREVEBYKgjIiIiKgAMdUREREQFgKGOiIiIqAAw1BEREREVAIY6IiIiogLAyYfTUFUVu3btQnl5ecZL7xARERH1lhAC7e3tGDx4MGQ5+fE4hro0du3a1WcWAiciIqL+a/v27RgyZEjSrzPUpVFeXg4AuOGGG1BcXGzZfvU5n2tra+HxeKAoSnSdyaqqKni9XsteK5Mx7du3DwDg8/lQWVnp+BgAoK2tLbqGZl1dXU6OkLIeBtZDw3oYWA8D66FhPTShUAh79uyJrkHsdrvjlsPL1oEDB3DHHXdEM0kyDHVp6D8QxcXFKCsrs2y/qqpCVVVUVFQAAAKBQLQJQqEQKisrHW1MVVXR3NyM0tJS+Hw+dHV1QZbltD9AVmtvb4fL5cKAAQMQDAYRCoVQU1OT8nCz1RRFYT2+wXpoWA8D62FgPTSshyEQCPR4771eL9xua+JWupDKGyVyLBQKoampCR6PB7W1tdEjd01NTVAUxZEx6A0ZCoVQW1uLmpoaVFRUwO/3o7293ZExAFpD+v1+VFRUoKamBrW1tQiFQmhuboaqqo6MQVEU1uMbrIeG9TCwHgbWQ8N6GBRFQUtLCyRJgs/nQ1FRESRJgqIoCIfDjoyBoS6HVFVFS0sLPB5P9K8JWZZRU1PjWGN2b0j9L4zy8nJHGzO2IfW/7rxer6ONGfsLkvVgPQDWIxbrYWA9NKyHQa+HfrpVkiTIsgyfz+dosGOoy5FIJIJwOAy3293j8LBTjZmsIXVONWaihtQ51ZiJfkHqWA8D62FgPTSsh4H1MPTXelRVVfWoh5PBLm9C3eLFizFhwgSUl5ejvr4eM2bMwJYtW9Ju9/TTT2PkyJEoKirC6NGj8dJLLzkw2tTC4TAURYEkST1+AHR2N2a6htTZ3ZipGlJnd2Om+gWpYz0MrIeB9dCwHgbWw8B6aJwMdnkT6t544w1cffXVeO+997BixQqEQiGcccYZCAQCSbd59913cfHFF2P27NlYv349ZsyYgRkzZuDjjz/O+PX1u1V7KzbQuVyulBdw2tWYZhtSZ1djmmlInV2NaaYhdayHgfUwsB4a1sPAehhYD41TwU4SVqUVh+3btw/19fV44403cOqppyZ8zoUXXohAIIAXXngh+tiJJ56IsWPHYunSpaZex+/3o7KyEvPnz0d1dXWv7qKJDXRerxdCCDQ0NKRtikybyK59ZdJEdu0rkyaya1+sh4H1MLAeGtbDwHoY+ks9FEXB7t27o9c4dqeqKoLBIIQQGd0V29HRgUWLFqGtrS06a0YieXOkrru2tjYAwIABA5I+Z82aNZg2bVrcY9OnT8eaNWuSbhMMBuH3++M+Yr+WbcKPDXR6WjfLqr+4etvcVv3F1Zvmtuovrt40N+thYD0MrIeG9TCwHgbWQ2P3Ebu8DHWqquKaa67BSSedhFGjRiV9XmNjIwYOHBj32MCBA9HY2Jh0m8WLF6OysjL6oa8m4fF4IITIKth1D3TZ/HXQ28a06q+13jamFX+t9bYxrfhrjfUwsB4G1kPDehhYDwProbEz2OVlqLv66qvx8ccf44knnrB83wsWLEBbW1v0Y/v27QC0IuinTDMJdlYEOl22jWnl4Xcg+8a08vB7to1p5eF31sPAehhYDw3rYWA9DKyHxq5gl3ehbu7cuXjhhRewatWqlOufAcCgQYOwZ8+euMf27NmDQYMGJd3G5/OhoqIi7kPndrszCnZWBjpdpo1pdUPqMm1MKxtSl2ljWtmQOtbDwHoYWA8N62FgPQysh8aOYJc3oU4Igblz5+LZZ5/F66+/jmHDhqXdZtKkSVi5cmXcYytWrMCkSZOyHofZYGdHoNOZbUy7GlJntjHtaEid2ca0oyF1rIeB9TCwHhrWw8B6GFgPjdlgZ/ae1rwJdVdffTUeffRRPP744ygvL0djYyMaGxtx4MCB6HNmzpyJBQsWRD//5S9/iZdffhl33XUXNm/ejJtvvhnr1q3D3LlzezWWdMHOzkCnS9eYdjekLl1j2tmQunSNaWdD6lgPA+thYD00rIeB9TCwHpp0wU5VVdOny/Mm1D3wwANoa2vD1KlT0dDQEP148skno8/Ztm0bdu/eHf188uTJePzxx/Hggw/i2GOPxTPPPIPly5envLnCrGTBzolAp0vWmE41pC5ZYzrRkLpkjelEQ+pYDwPrYWA9NKyHgfUwsB6aZMFOnwLFrLydp84p+jx1CxcuRFlZWY+vx4Y4j8djOtCpqgpVVU3NU5dObBPW1NTA7/c71pCxYpsQgGMNGSu2CSsqKtDc3OxIQ8ZiPQysh4H10LAeBtbDUCj1SDdPXTrd57ELhUIQQiAcDuPWW28t3Hnq+gr9iF1smrb7CF13+l9cbrc7+heX0w0JxP/FlYuGBIy/uPTmTLS2rt1YDwPrYWA9NKyHgfUwsB4a/YgdYMyN6/V6TY+BoY6IiIioADDU9ZJ++jVRunaKfvg8HA5H/8KyYxHndGIPn9u5iHMq+l9Y+l9c4XDYlkWcU2E9DKyHgfXQsB4G1sPAemgSnfVTFMX0GBjqeqH7TRGZzmNnhe4Xtfp8PlsWcU6n+0Wtdi3inEr3i1p9Pp8tizinwnoYWA8D66FhPQysh4H10CRaF1a/eSIUCpnaB0NdlpLd5epksEt2l5JVa/2ZlewuJScbM9ldSlat9WcG62FgPQysh4b1MLAeBtZDkyjQAfHX2JnBUJeFdNOWOBHs0t127lRjprvt3InGTHfbuRONyXoYWA8D66FhPQysh4H10CQLdDp9mVIzGOoyZHYeOjuDndl5hOxuTLPzCNnZmGbnEbKzMVkPA+thYD00rIeB9TCwHpp0gU4nSZKp/THUZSDTiYXtCHaZTgxpV2NmOjGkHY2Z6cSQdjQm62FgPQysh4b1MLAeBtZDYzbQZYKhziR9mY5MV4qwMthlO9O31Y2Z7UzfVjZmtjN9W9mYrIeB9TCwHhrWw8B6GFgPjR2BDmCoMy0UCmW99JcVwa63S7dY1Zi9XbrFisbs7dItVjQm62FgPQysh4b1MLAeBtZDY1egAxjqMtKblSK6B7tMVmezai2+3jamVWvx9aYxrVqLrzeNyXoYWA8D66FhPQysh4H10NgZ6ACGOtMyWaYjmWyO2Fm9uHK2jWn14srZNKbViytn05ish4H1MLAeGtbDwHoYWA+N3YEOYKgzzeydJ+nEBrtIJJLyB8HqhtRl2phWN6Quk8a0uiF1mTQm62FgPQysh4b1MLAeBtZD40SgAxjqciI22LW2tib8QbCrIXVmG9OuhtSZaUy7GlJnpjFZDwPrYWA9NKyHgfUwsB4apwIdwFCXMy6XC263O+HacnY3pC5dY9rdkLpUjWl3Q+pSNSbrYWA9DKyHhvUwsB6G/lqP7gdqnAx0AENdTsmyjOrq6rjGdKohY8eQqDGdakhdosZ0qiF1iX5Rsh6sB+uhYT0MrIeG9TDo9QiHw4hEIhBCOB7oAMD+V6CUPB4Pamtr0dTUhKamJgDaJMdONKROb8zm5mY0NTXB5/Ohq6vLsYbU6a/l9/uhKAqCwaBjDanTG5P1YD10rIeB9TCwHhrWw+D1elFdXY1du3YhGAzGPe5EoAN4pK5P8Hq9qKmpQSgUQigUQk1NjWMNqdMbUwiBrq4uFBUVOdqQuvLychQVFaGrqwtCCEcbUsd6GFgPDethYD0MrIeG9TB4PB64XC4IIRw9QqdjqOsDVFWF3++Pfu73+21ZNDidQCAQ/f9gMGjbIs6p6H9hJRqTU1gPA+thYD00rIeB9TCwHhr9NLguFAo5Wg+GuhyLvQairq4OdXV1tiwanE7sNRANDQ22LeKcSuw1EA0NDbYt4pwK62FgPQysh4b1MLAeBtZDo6oqWltbo0fofD6fpWu/m8FQl0P6D0DsRa12LBqcTveLWu1axDmVRBe12rGIcyqJLjJmPVgP1kPDehhYDwProdHrEQ6H4Xa7ozNcWLX2u1kMdTmiTz6c6KJWJxsz2V1KTjZmqruUnGrMVHeNsR6sB+vBeuhYDwProYmtR3V1ddwYnA52DHU5EHubc3V1dcKLWp1ozHS3nTvRmGZuO7e7Mc1MA8B6GFgPDethYD0MrIemv9bD4/H0eI6TwY6hzmGxgc7tdif8AdDZ2Zhm5xGyszEzmUfIrsbMZF4n1sPAemhYDwPrYWA9NKyHwalgx1BnUigU6vU+uk9EaOZWazsaM9OJIe1ozGwmhrS6MbOZqJP1MLAeGtbDwHoYWA8N62FwItgx1JmkB7Lebq8HOpfLZXpbKxsz25m+rWzM3sz0bVVj9mbmddbDwHpoWA8D62FgPTSsh8HuYMdQZ5IsywiHw1kFOyuWCrGiMXu7dIsVjWnF0i29bUwrltJhPQysh4b1MLAeBtZDw3oY7Ax2DHUmeTweuN3ujIOdlWu/9aYxrVqLrzeNaeVafNk2ppVrI7IeBtZDw3oYWA8D66FhPQx2BTuGugz4fL6Mgp0di/lm05hWL66cTWPasbhypo1px2LXrIeB9dCwHgbWw8B6aFgPgx3BjqEuQ2aDnR2BTpdJY1rdkLpMGtOOhtSZbUw7GlLHehhYDw3rYWA9DKyHhvUwWB3sGOqykC7Y2RnodGYa066G1JlpTDsbUpeuMe1sSB3rYWA9NKyHgfUwsB4a1sNgJtiZnYEjr0Ldm2++iXPOOQeDBw+GJElYvnx5yuevXr0akiT1+GhsbOz1WJIFOycCnS5VY9rdkLpUjelEQ+qSNaYTDaljPQysh4b1MPS6HqoCBL6O/1Azu9ie9TCwPwx9oR6pgl0mR/DyKtQFAgEce+yxuO+++zLabsuWLdi9e3f0o76+3pLxdA92TgY6XaLGdKohdYka08mG1HVvTCcbUsd6GFgPDethYD0MrIeG9TAkCnbBYBDhcNj0e2B/6rDQWWedhbPOOivj7err61FVVWX9gKAFOwAIh8MIh8OQJMmxQKfTG7OpqQm7d+8GAMcaUqc3ZnNzM/bt2xcdl1MNqdO/Z7/fD7/fD0mSHGtIHethYD00rIeB9TCwHhrWw6BnB0VRcODAgehjQghz29s2sj5k7NixCAaDGDVqFG6++WacdNJJSZ8bDAbjTqf6/X4AgBAi6eFPl8uFcDgc/VyW5bSHSlVVhRDCkpUqdG63Ozp2r9dr6yLKyRQXF6Orqyv6/7Hvi1O8Xm/0/ddDdy7eC9ZDw3oYWA9DxvUQISDc7R+2UAiQsh8D62Fgf2h6W49QKJQyL5jRPci6XC7TYyjoUNfQ0IClS5di/PjxCAaD+NOf/oSpU6di7dq1OP744xNus3jxYixatKjH48mKJISIHqGTJAlCCCiKkvZInR7qgsEgIpFIdt9gjHA4DCEEiouLoaoq/H4/vF4vJKkXv/EypKoqFEVBUVERAKCzszOjw8bZiIgI2iPxF7f6Ij74fD7IsoxIJIKOjg5Hj5wC/bce3en90C/rISKA0hL9VFUBBSWsB7Ksh4gASvffwQogZff7k/1h4O8rjRX1CIfDUFW1V++dHmZlWY4e/DF7pE4SZp/Zx0iShGeffRYzZszIaLspU6bg4IMPxiOPPJLw64mO1A0dOhS///3vUVFREfdcIQRaWloQDodRXV0Nj8eDQCCAjo4OlJWVobS0NOk4QqEQgsEgvvOd76CysjKj74EMHZEOvON/J+6xkypOQpmrLEcjIvpGqA3Y9ff4xwafBXjY71nh+0l5oK2tDS+99BJ8Ph88Hk/G23fPEKFQCC0tLVAUBTfeeCPa2tp6ZJFYBX2kLpGJEyfi7bffTvp1n88XPeQay+PxxJ1X1y+iVFUV9fX10a/p19P5/X643e6U1yVEIhFUVlZiwIABvfiO+jd32A2fFF+vqqoqVLiT/9ATOUKRgPZuv2KrqwBvdU6Gk/f4flKecLvdPTKDGe3t7ejs7ERVVVU0O3i9Xng8Hmzbts3ca2c82jy3YcMGNDQ09Gof6e6Kib3YMvZzIiIiou5S3XXs9XpN3+yZV6Guo6MDn3/+efTzrVu3YsOGDRgwYAAOPvhgLFiwADt37sRf/vIXAMCSJUswbNgwHHPMMejq6sKf/vQnvP7663j11VezHoPZ25wZ7IiIiCgdM9PImD2Vm1ehbt26dTjttNOin8+bNw8AMGvWLCxbtgy7d++OO0SpKAquu+467Ny5EyUlJRgzZgxee+21uH1kItN5axjsiIiIKBmr5wXMq1A3derUlHeALFu2LO7zG264ATfccIMlry2EyGoiQgY7IiIi6s6OiZ7zKtTlUmtra3SSxkwvfmSwIyIiIp1dK3cw1JkUDocxePDgrGeW7h7sEt1hS0RERIXNzqXYGOpMqqqq6vVSIbHBrqSkBC6Xy4qhERERUR6we21dhjqTsplEMBG9iK2trSknJyYiIqLCYXegAxjqcqK8vBzhcDgna+sRERGRs5wIdABDXc6UlpaaXsuNiIiI8pNTgQ4AnFspl3pwetFmIiIislc4HI7+v5OBDuCROiIiIiLLhEIhBAIBBINBRwMdwFBHREREZBmPx4OOjg7IsuxooAN4+pWIiIioIPBIHREREZFFQqEQysrK4Ha7HV9JiqGOiIiIyCIejwelpaXRBQucDHYMdTkUe4cMERER5b/YmS2cXvudoS5HAoEAQqFQrodBRERENnIy2DHU5UB7ezs6Ojq4TBgREVE/4FSwY6gzyaqjavpEhGVlZXC5XJbsk4iIiPo2J4IdpzQxqbW1tddrtcbOLM2jdERERP1LeXk5Kioq4Pf70d7ebvn+GepMcrvdaGpqyjrYOb1UCBEREfU9dgY7hjqTqqqq4PF4sgp2DHRERESksyvYMdSZJEkSampqMg52DHRERETUnR3BjqEuA7IsZxTsGOiIiIgoGauDHUNdhswGOwY6IiIiSsdMsDM7AwdDXRbSBTsGOiIiIjIrVbBTFAWtra2m9sNQl6VkwY6BjoiIiDKVKNgpioKmpqa4pcdS4eTDvaAHu+bmZjQ1NcHn86Grq4uBjoiIiDIWO0GxoigIBoPweDwoKSkxtT2P1PWSHuyEEOjq6kJRUREDHREREWWlvLwcRUVF6OrqghACNTU1kCTJ1LYMdRYIBALR/w8Gg71eeYKIiIj6J/0InS42Y6TDUNdLsdfQNTQ0ZD1BMREREfVv+jV0Ho8HDQ0N0WvszAY7hrpe6H5TRKbz2BEREREB8YGupqYGsixHb55gqLNZsrtcGeyIiIgoE4kCna68vBylpaWm9sNQl4V005Yw2BEREZEZqQKdriBD3ZtvvolzzjkHgwcPhiRJWL58edptVq9ejeOPPx4+nw8jRozAsmXLejUGs/PQMdgRERFRKmYCXSbyKtQFAgEce+yxuO+++0w9f+vWrTj77LNx2mmnYcOGDbjmmmvw05/+FK+88kpWr5/pxMIMdkRERJSI1YEOyLPJh8866yycddZZpp+/dOlSDBs2DHfddRcA4KijjsLbb7+Ne+65B9OnT8/otQOBAIQQGU8s3H2C4traWni93oxem4iIiAqHHYEOyLMjdZlas2YNpk2bFvfY9OnTsWbNmqTbBINB+P3+uA9AC3XZrhTBI3ZEREQE2BfogAIPdY2NjRg4cGDcYwMHDoTf78eBAwcSbrN48WJUVlZGP4YOHQpAu0ixNytFdA92oVAo630RERFR/rEz0AEFHuqysWDBArS1tUU/tm/fDsD8nSepxAa7lpYWqKra630SERFR32d3oAPy7Jq6TA0aNAh79uyJe2zPnj2oqKhAcXFxwm18Ph98Pp9tY9KD3d69e3kaloiIqB9wItABBX6kbtKkSVi5cmXcYytWrMCkSZNyNCKNLMuorq42vUAvERER5SenAh2QZ6Guo6MDGzZswIYNGwBoU5Zs2LAB27ZtA6CdOp05c2b0+VdccQW+/PJL3HDDDdi8eTPuv/9+PPXUU7j22mtzMfw4kiTxLlgiIqICE3tplZOBDsiz06/r1q3DaaedFv183rx5AIBZs2Zh2bJl2L17dzTgAcCwYcPw4osv4tprr8Xvfvc7DBkyBH/6058yns7ELjxSR0REVFgURYHH4wEARwMdkGehburUqRBCJP16otUipk6divXr19s4KiIiIiKNJEnYv38/ZFmG1+t1LNABeXb6lYiIiKgv04/SAUBFRYVjgQ5gqCMiIiKyjKIocLvd8Hg8aG5udnSmC4Y6IiIiIotIkoQBAwagtrbW8ZWkGOpyiJMPExERFRav1wtJknKyRChDXY6EQiFOPkxERFRgYme2cDrYMdTlgKIoaGlp4ZQmREREBc7JYMdQZ1KqqVQyoU9E6Ha7OfkwERFRP+BUsGOoM6m1tbXX18DFzizNZcKIiIj6DyeCHUOdSeFwGM3NzVkHu+5LhTDQERER9S92BzuGOpOqqqoQCoWyCnZOr/1GREREfZOdwY7pwiSPx4Pa2tqMgx0DHREREcWyK9gxYWTA6/VmFOwY6IiIiCgRO4IdU0aGzAY7BjoiIiJKxWywMzsDB5NGFtIFOwY6IiIiMiNdsFNVFa2treb2ZcP4+oVkwY6BjoiIiDKRLNipqorm5maEw2Fz+7FzkIWue7ALBoMMdERERJSx7sEuGAyiubkZoVAIVVVV5vZh7xALnx7sYleKYKAjIiKiTOnBzu12R4/Y1dbWwuPxmNve5vERERERkQMY6npJP0KnH7Hr7coTRERE1D/FXkNXW1sLr9eLpqYmhEIhU9sz1PVC95sifD5fVhMUExERUf+mB7pQKITa2lr4fL7oNXa8+9Vmye5yzXSCYiIiIurfugc6r9cLIP4aOzMY6rKQbtoSBjsiIiIyI1mg08myzLtf7WJ2HjoGOyIiIkolXaDTSZJkan8MdRnIdGJhBjsiIiJKxGygywRDnUmhUCiriYUZ7IiIiCiWHYEOYKgzrbW1NeuVIhjsiIiICLAv0AGAudspqNcrRejBrqmpCc3NzaioqLB4hEREhSOiqmjrVNDWGURbZxCB9r0o3bsPB5QQQmEVAsAXX26CIvN3KfUd4QMdaGs/AKkzDMnVM2IJIRA50AGoEbiKy7CrrQtAV9r9Hgh0mHp9hjqTqqqqer30V2ywa2lpQXFxsUWjIyLKD93DWtsBBa36/+uPHwgi0BWCiNmuBO043tUUt69NkSZ0IujsN0CUgit8AFVKGKokIORI/BeFgDt8AJJQEXYXQygRAJGE++lO6TI3+TBDnUlm7zxJRw92e/fuhaIoluyTiCjXsg1rRP1C90Anu2x5GYa6HPB6vaiurkYgEMj1UIiIUmJYI+olhwIdwFCXMx6Px9KLI4mIMpEsrPk7g2hlWCOyhoOBDsjDUHfffffhzjvvRGNjI4499lj84Q9/wMSJExM+d9myZbjsssviHvP5fOjqSn9RohN6e40eEVF3DGtEuSWpEcAlOx7ogDwLdU8++STmzZuHpUuX4oQTTsCSJUswffp0bNmyBfX19Qm3qaiowJYtW6KfW3VtHBGRkxjWiPKFgCscBCTJ0UAH5Fmou/vuuzFnzpzo0belS5fixRdfxEMPPYT58+cn3EaSJAwaNMjJYRIRmcawRlRYhOSCrCoAJITdRY4FOiCPQp2iKPjwww+xYMGC6GOyLGPatGlYs2ZN0u06OjpwyCGHQFVVHH/88bjttttwzDHHJH1+MBhEMGjcIu/3+wEA7V0K4LHu1vlwOISwEsbmnftR2m7ulmbqKaC2Y7vSHvfYx+1NKJU5zQHllivcispm7WdTFQLBUASf79+K5uBuhjWiAiYJY4EBV0RBWHIBDp0lzJtQ19TUhEgkgoEDB8Y9PnDgQGzevDnhNkceeSQeeughjBkzBm1tbfjtb3+LyZMnY9OmTRgyZEjCbRYvXoxFixb1eLyxJYD9FuYESY1AFhE8vmYzIm7OV5etsKsT+6t2xD32cesmuCMlORoRkUabVy3+Z/OjyDZ0ojxHIyIiZwiE3UWAJMMdPgB3+ADC7mJHgl1BX6k/adIkzJw5E2PHjsWUKVPwt7/9DXV1dfjjH/+YdJsFCxagra0t+rF9+3YHR0xERET5TEguQJIhZBfC7mJIQoU7fAAQ9h+Tz5sjdbW1tXC5XNizZ0/c43v27DF9zZzH48Fxxx2Hzz//POlzfD4ffD5fr8ZqjtDukCEiIqLCEXNETg92Th2xy5sjdV6vF+PGjcPKlSujj6mqipUrV2LSpEmm9hGJRLBx40Y0NDTYNUxzxDd3xvBKGiIiooLm5BG7vDlSBwDz5s3DrFmzMH78eEycOBFLlixBIBCI3g07c+ZMHHTQQVi8eDEA4JZbbsGJJ56IESNGoLW1FXfeeSe+/vpr/PSnP83dNxEzb40qc/JhIiKiQufUEbu8CnUXXngh9u3bh5tuugmNjY0YO3YsXn755ejNE9u2bYub0LelpQVz5sxBY2MjqqurMW7cOLz77rs4+uijM35tSTW3mG5KcRMRFkHmkToiIqJ+wYlgl1ehDgDmzp2LuXPnJvza6tWr4z6/5557cM8991jyuq5ICHJEgerK8uhat5mltcd4TR0REVF/YXewy5tr6nIt4vLAFVEgR5TMN87BUiFERETU99h5jR1DnUlC9iDi8mYe7BjoiIiIKIZdwY6hLgOqy5tZsGOgIyJKqwr7cLz8BjzosnS/h8sbMEz6BBLU9E8mcpgdwS7vrqnLNf2aOtc3oS7pNXYMdERESXnQhaPkj3Cs/DZGyB9DhoqOcCX+pY617DW+5/5vVGA/9okGrFenYGPkROzHwPQbEjnE6mvsGOqykDbYMdAREfUgQcVQ6TMc63oXo+U1KJdaIUFAEUVwSwoki2cEkBGBDBX10i6c5X4Up7uewZfq0dignoxP1fEIgks0Uu6ZCXZmZ+BgqMtS0mDHQEdEFKcK+zDKtRbHy2+gXtoJtxRCSHjRLqqgwg0JKjwIwoUQ3Eh8aYuMRLMFiKTP14XhQQAVgBAoQieOdK3Hka71CIgKbFQn4Z+RSfhKjITg1UiUQ6mCnRxR4Iow1NmuR7CTPQx0eWC/shXl7gZ45KJcD4XylsBAaQfaRDW6UGbZXkvRhmIpgCYx2LJ95opxevUdjJA3wicdgCpkHEAZOkQlgPgjES6E8QP3fUn314VSrIl8GxF4oo9Ncz2N411vJt3GjRBU6L+HJXShFF2iFDLCKEYnJrlexkT5NZ6epT4hUbCT1RBcEQVBlyf9DsBQ12uxwU4Pdwx0fVcg0oRXm2+FLLlxaNEkHFo8CXXeIyBJ/Cud0itHC0a53sPx8lsYKG3H6sh5eD1yvmX7P939v5ggv45t4nBsiJyMTeoEdKLCsv3bTT+9Osa1BmPkd6OnV7tECVpFDZLdmycgo0NUQk5yQ4MHClwIw41QXKirkPajVGpHQJQn3C4MT8JTrCrc0aN3Hig8PUt9Rmyw84QCAICIywshm7vOjqHOAqrsiTla52Kg68MiQkFYBKGqHfg08BL+1bkCle6DcFjJqTik6ESUuetyPUTqY9xQcIS8AcfK7+BIeQOKpE4ISHAhAjcsWGkm7rVCKJYCOEzahOHyJpwlHsUn6gT8Q52ML9RRUPvor+xStOE411tJT6+aoaQIUAJy0tOsEbjQhdKsxg1ICMGHEHxJT89+FDkV28XhWe6fKHNCdkGVXZBV7ZIDVfYAJn/X9M3fEPnkm2voAESLIHqz8gQ5wieXwwUvIlDQEtqGdW1/wT/an8Yg7ygcVnIyDvIdz9Oz/ZrAQdJWjJbXYKzrbVRiPyRJRVAUo03UQEBGJZpteeUI3GgTtZAQQTE6MV5ehePlN9GCenwUORkb1cnYK4bY8trZmuJ6Die6VqBcasEBURZ9j/KLfnq2BD4cQI20B5NcL+NI+SPcrdyDMPg7nZwhRxTIaiSaKdzhA1BM3kTEUNcbCW6KEDGnYRnscmPt/ofRGtye8GsqIhDfnOKRJAlu+OB2+SCEipA4gO1dH2BH1zoUuap4erYfij29Okj6Gh5JQVh40IEKRET3a1oEjnW9iyPkfyTcl4CErepR8GNA9LGh0r9wuvtvSS76B0qldohvfnkLuNCJcnSiHG4oqMI+fNv9NKaK5/vc6dkVkQuxXRyOsfLbGCFvRKXUDCFkdKIMIXjR/fq5vki7zi4Aj6QgItz4Wj0CH6mnYmPkRAY6coz8TYaIuLxQXV6o34Q6VzhoanuGumwlucvV9Dx2ZJtdXf9EINQEl5T4vZckCa5uv6QlSYZXKoUXpVBFGEE1wNOz/USy06sHRCkCogLJAkkXSlCFJlRJTYn3K4WwTwyGXxihbqC0A4fIWxDuERANnaJnSAvDi3Z4ASHgwwEcJvet07Mh+LBRnYSN6iRUogmjXe9FT8WWSn6EhBcHUJpyfMXoSBp23VIo6XvmRgilaEu63wMoi7lZojvtlKtP0s62BEQFPoh8C/+MTMbX4sg8PNpI+ax7oANiJyg+YGofGf8GmDVrFmbPno1TTz01000LR5ppSxjscs8jF6NIzu4Ihiy5USxVQgjB07MFK/3p1XSCKEEQJUn3X419ib8iZLSjOstxS9rripI+e3q2DbV4O/JdvBP5DoZKn2OM690eN010oRixN01IUFEkdaJF1COc6J8lAXQK/aifYY84GI0i8VF5AKhAC4oQ6HY0U7s5ohgByIhAQRG2RI7DevUUbFbH8eYIyolEgU6nBTtz/95kHOra2towbdo0HHLIIbjsssswa9YsHHTQQZnuJn+ZnIeOwS7/dT89GxTt+PLAW9gV3IDBvrH4Vs0NuR4iZekoeR3Ody9FldQMFTJaRU2C06t9W/fTswOl7TjT/VdMEq/iL6EbsE0ckePxydgmjsC28BF4BRdhpLw+enq2qsfpWUCFjGfDc7BFPS7h/krQjuNdb8Q99k7kO1gRuTDpGBZ4r0AJOgD0PL26VxwUPb3awmlMKIdSBbook5cAZRzqli9fjn379uGRRx7Bn//8ZyxcuBDTpk3D7Nmzcd5558Hjya9fjBnJcGJhBrv8J4QKRXQiJA5AgoRKdwMOLZqMEaWn5Xpo1Aufq6OxInwhjne9gQbpK5RLrQgLDw6gNG7KjL7O/c0RJ5cUxgFRim3icKyPnIod4rBcDy1OCEUpT89GhH2njT1SEJXQTpHz9Cr1NaYCXQay6qS6ujrMmzcP8+bNw0cffYSHH34YP/7xj1FWVoZLLrkEV111FQ4/vNBuAc9upQgGu9yIiBBCapJrEL45AiclWV9PO+0aRFANQECFRy7Gwb6JGFZyMg7yHcfTrgUghCK8p56B99RvY7D0FcbI72Ks6x1Uojl6GrYLJSn/0dfnTUssxZ1qkoAvxfUxIXhSXnumnXYNwIsgInChBQOxPnwKNqon9rm7YhNJdnrWJ7oQEdZOBxWCF4oowpfq0Ty9Sn2O1YEO6OWNErt378aKFSuwYsUKuFwufOc738HGjRtx9NFH44477sC1115rySD7Alc4CMnty2piYQY7ZxW7KhGKdEJFOOHXQ2oXJFmGu9v1OaoIIygCiAgFLsmDas8hGF5yKg4uOhFl7lonhk6Ok7BLDMOuyDC8FrkAh8v/xLHyOxgpr9fu4PzmhgkFReh+w0S51AJFJA/42na++MdQhgOiFK4kP5sAUCx1oFV0vyFHu0GiSOqEBKBTlOIf6kn4R+QkfCmOSXEjQN/V/fTsUOkLfG3xKePHQvPQJYp5epX6HDsCHZBFqAuFQnj++efx8MMP49VXX8WYMWNwzTXX4Ic//CEqKrSLUZ999ln85Cc/KahQ19ulv7oHOyHl3y/hfDGt7lcQ4cRH4Toie/FK083Qj6R0P71a7KrCoUXfxiElk1DnOZxTmfQjYXjxqToen6rjUY4WHCN/ED09WyJ19Dg9K4SM99VpWBWekXB/PhzA0a51cY9tUidikzIh6cL1Z7sfwbiY68ZiT6+GhA9fqsdgfeRUfKKORycSr6KQj0IowpfiGMv3u1scavk+iXrLrkAHZBHqGhoaoKoqLr74Yrz//vsYO3Zsj+ecdtppqKqqsmB4fUfYXQS5lytFxAa7iOw2feEjZcYte+F2Jb4rMSS0ZVfCIoig2sHTq5RQO6rTnJ4tgiSpUIQXAVQm3EeyU7ep5pULwwMJKkrgz9vTq0SUnJ2BDsgi1N1zzz244IILUFSU/B++qqoqbN26tVcD63MsCmDRYBcOQjW5QC9ZSYIsuaCKME+vkgnJT88KSLBjUl0BGWF48v70KhHFszvQAVmEuh//+Md2jKNfUV1eQKiQReLFq8k+5a6BGFdxCQZ4DkWtZwRPr5Jp3U/PjpQ/wtfiSEtf4/3I6fhKPRKb1XEFdXqVqL9zItABXFEiZ4TsgVCtXQyc0pMkGUeWnpHrYVCea0c1PlBPt3y/O8QI7BAjLN8vEeWOU4EOACfpySkeJSIiIiosMWfhnAx0AI/UEREREVlGEiokNQRJRBwNdABDHREREZFlhCTDFQkBkuRooAN4+pWIiIioIPBIHREREZFFJKEi4vIAkuz4SlIMdUREREQWEZKszXDxzYIFTgY7hrpc4jx1REREhSVmZgun135nqMsR7c4YhjoiIqJC5mSwY6jLAW3emhCXCSMiIuoHnAp2eXf363333YdDDz0URUVFOOGEE/D++++nfP7TTz+NkSNHoqioCKNHj8ZLL72U3QtbdFTNmIjQw8mHiYiI+gnV5UXE5YUrokD+JtxZLa9SxZNPPol58+Zh4cKF+Oijj3Dsscdi+vTp2Lt3b8Lnv/vuu7j44osxe/ZsrF+/HjNmzMCMGTPw8ccfZ/za7nAXJDXSq/HHziwtZB6lIyIi6k/sDnZ5FeruvvtuzJkzB5dddhmOPvpoLF26FCUlJXjooYcSPv93v/sdzjzzTFx//fU46qijcOutt+L444/Hvffem/FrC0mGO3wg62Dn9FIhRERE1PfYGezy5po6RVHw4YcfYsGCBdHHZFnGtGnTsGbNmoTbrFmzBvPmzYt7bPr06Vi+fHnS1wkGgwgGg9HP/X4/AKCssgJuCAhVgbe4ArLb/FsX6jqAsBqGu7QMnqJiAIAaCUMNhXDU4Q3wlpSb3hfF60IHNks74h4bOeggFKEsRyMi0ngibRgSGBD3WGnpQQi5KnM0ovzG95PygdLZjh0dX0L2eCC7UuWEYi0bBDvh9nij2SCZTils6vXzJtQ1NTUhEolg4MCBcY8PHDgQmzdvTrhNY2Njwuc3NjYmfZ3Fixdj0aJFPR6vryhFeXk5mpubEQp1orayFl5v+iNu7e3t8KsKBtQMQHm5Ed4URUFXVxfOOnYYBgwYkGIPlIo/7Edp61dxj02rGoEKd0VuBkSkU1qAbfG/f8YfPALwVudoQHmO7yflgf379+Ppf61DUVGRiYxQpmUEvx/l7qK4jNBdm2zuLGFenX51woIFC9DW1hb92L59e/RrsiyjpqYGHo8HTU1NUJTUh031YlVUVKQsFhEREfU/5eXlqKiogN/vR3t7e6/3lzdH6mpra+FyubBnz564x/fs2YNBgwYl3GbQoEEZPR8AfD4ffD5f0q/rwa65uRlNTU2orU18xI6BjoiIiNLRM4J+uVeizBAKhUztK2+O1Hm9XowbNw4rV66MPqaqKlauXIlJkyYl3GbSpElxzweAFStWJH2+WemO2DHQERERkVmpjtgpioLW1lZT+8mbI3UAMG/ePMyaNQvjx4/HxIkTsWTJEgQCAVx22WUAgJkzZ+Kggw7C4sWLAQC//OUvMWXKFNx11104++yz8cQTT2DdunV48MEHez2WZEfsGOiIiIgoU4mO2CmKgqamJrhN3pyZV6HuwgsvxL59+3DTTTehsbERY8eOxcsvvxy9GWLbtm2QZePg4+TJk/H444/jxhtvxK9+9SscfvjhWL58OUaNGmXJeLoHO5/Ph66uLgY6IiIiylhssFMUBcFgEB6PByUlJaa2z6tQBwBz587F3LlzE35t9erVPR674IILcMEFF9g2Hj3Y7d69G11dXSgqSn0HCxEREVEy+hG6rq4uAEBNTY3pmyjy5pq6viwQCET/PxgMpr0rloiIiCgR/QidLjZjpMNQ10ux19A1NDSYnu6EiIiIKJZ+DZ3H40FDQ0P05gmzwY6hrhe63xSR6Tx2REREREB8oKupqYEsy9G7YhnqbJbsLlcGOyIiIspEokCnKy8vR2lpqan9MNRlId20JQx2REREZEaqQKdjqLOJ2XnoGOyIiIgoFTOBLhMMdRnIdGJhBjsiIiJKxOpABzDUmRYIBLJaKYLBjoiIiGLZEegAhjrTAoFA1itFMNgRERERYF+gAxjqTCstLe3VShHdg10oFLJwdERERNTX2RnoAIY608zeeZJKbLBraWmBqqoWjIyIiIj6OrsDHcBQ5zg92Lndbp6GJSIi6gecCHQAQ11OyLKM6upqSJKU66EQERGRjZwKdABDXc5IkgSv15vrYRAREZGFYi+tcjLQAYDb1r1TSjxSR0REVFgURYHH4wEARwMdwFBHREREZBlJkrB//37Isgyv1+tYoAN4+pWIiIjIMvpROgCoqKhwLNABDHVEREREllEUBW63Gx6PB83NzY7OdMFQR0RERGQRSZIwYMAA1NbWOr6SFENdDnHyYSIiosLi9XohSVJOlghlqMuRUCjEyYeJiIgKTOzMFk4HO4a6HFAUBS0tLZzShIiIqMA5GewY6kwSQliyH30iQrfbzcmHiYiI+gGngh1DnUmtra29vgYudmZpLhNGRETUfzgR7BjqTAqHw2hubs462HVfKoSBjoiIqH+xO9gx1JlUVVWFUCiUVbBzeu03IiIi6pvsDHZMFyZ5PB7U1tZmHOwY6IiIiCiWXcGOCSMDXq83o2DHQEdERESJ2BHsmDIyZDbYMdARERFRKmaDndkZOJg0spAu2DHQERERkRnpgp2qqmhtbTW3LxvG1y8kC3YMdERERJSJZMFOVVU0NzcjHA6b24+dg7TS/v378aMf/QgVFRWoqqrC7Nmz0dHRkXKbqVOnQpKkuI8rrrjCsjF1D3bBYJCBjoiIiDLWPdgFg0E0NzcjFAqhqqrK3D7sHaJ1fvSjH2HTpk1YsWIFXnjhBbz55pu4/PLL0243Z84c7N69O/pxxx13WDouPdjFrhTBQEdERESZ0oOd2+2OHrGrra2Fx+Mxtb3b5vFZ4tNPP8XLL7+MDz74AOPHjwcA/OEPf8B3vvMd/Pa3v8XgwYOTbltSUoJBgwaZfq1gMIhgMBj93O/3Zz9wIiIiIofkxeGkNWvWoKqqKhroAGDatGmQZRlr165Nue1jjz2G2tpajBo1CgsWLEBnZ2fK5y9evBiVlZXRj6FDh6Z8vn6ETj9i19uVJ4iIiKh/ir2Grra2Fl6vF01NTQiFQqa2z4tQ19jYiPr6+rjH3G43BgwYgMbGxqTb/fCHP8Sjjz6KVatWYcGCBXjkkUdwySWXpHytBQsWoK2tLfqxffv2pM/tflOEz+fLaoJiIiIi6t/0QBcKhVBbWwufzxe9xs7s3a85Pf06f/583H777Smf8+mnn2a9/9hr7kaPHo2Ghgacfvrp+OKLLzB8+PCE2/h8Pvh8vrT7TnaXq37ErqmpCc3Nzby+joiIiFLqHui8Xi8A4xq7QCBgaj85DXXXXXcdLr300pTPOeywwzBo0CDs3bs37vFwOIz9+/dndL3cCSecAAD4/PPPk4Y6M9JNW8JgR0RERGYkC3Q6WZZN3/2a01BXV1eHurq6tM+bNGkSWltb8eGHH2LcuHEAgNdffx2qqkaDmhkbNmwAADQ0NGQ1XsD8PHQMdkRERJRKukCnkyTJ1P7yImUcddRROPPMMzFnzhy8//77eOeddzB37lxcdNFF0Ttfd+7ciZEjR+L9998HAHzxxRe49dZb8eGHH+Krr77C888/j5kzZ+LUU0/FmDFjshpHphMLZ7pWLBEREfUPZgNdJvIi1AHaXawjR47E6aefju985zs4+eST8eCDD0a/HgqFsGXLlujdrV6vF6+99hrOOOMMjBw5Etdddx2+//3v4//+7/+yev1QKJTVxMIMdkRERBTLjkAH5Mk8dQAwYMAAPP7440m/fuihh8YteDt06FC88cYblr1+a2srKisrszqNmuhULBEREfU/dgU6II+O1OVab1eK6H7ELjaAEhERUeGzM9ABDHWmVVVV9fpGh9hg19LSwmBHRETUT9gd6ACGOtPM3nmSTuzKE4qiWLJPIiIi6rucCHQAQ11OeL1eVFdX80gdERFRgXMq0AEMdTnj8XhsLSwRERE5L/aAjZOBDmCoyylORkxERFRYFEWBEMLxQAfk0ZQmRERERH2dEAL79++Hy+VCOBx2LNABPFJHREREZBmv14twOIxQKISamhpHL7ViqCMiIiKySCgUiv6/3+93dCUphjoiIiIiiwghMGDAANTV1Tm+RChDXQ5xShMiIqLC4vV6ozNcOL32O0NdjgghOPkwERFRgYmd2cLpYMdQlwOqqnKZMCIion7AyWDHUOcwfd6acDjMyYeJiIj6AaeCHUOdSYFAoNf7iJ2IsLq6mpMPExER9RNOBDumCpMCgQDa29uz3r77zNIej8fC0REREVFfZ3ewY6gzqbS0FH6/P6tgl4ulQoiIiKjvsTPYMdSZVFpaioqKioyDHQMdERERxbIr2DHUZaC8vDyjYMdAR0RERInYEewY6jJkNtgx0BEREVEqVgc7hrospAt2DHRERERkhplgZ3YGDoa6LCULdgx0RERElIlUwa69vZ2hzgndgx0DHREREWUjUbBrb2+H3+9HaWmpqX24bR5jwSsvLwcA+P1++P1+SJLEQEdEREQZ04NdU1MTdu/eDQCoqKgwfa0dj9RZIDZB+3w+BjoiIiLKitfrhc/ni35u9igdwFDXa/opV0mSUFRUhK6url6tPEFERET9V3t7O7q6ulBUVARJktDc3AwhhKltefq1FxJdQ6ef/waMU7NERERE6egZoqKiAuXl5VAUBU1NTbxRwm7JborIdIJiIiIiou6BDjCusQuHw6b2wSN1WUh3l2vszROxnxMRERF1lyjQ6bxeL6qqqkzth6EuQ2anLWGwIyIionRSBTqdx+MxtS+GugxkOg8dgx0RkUW81cCIy3M9CiJLmQl0mciba+p+85vfYPLkySgpKTF9GFIIgZtuugkNDQ0oLi7GtGnT8Nlnn2X1+kKIrCYW5jV2RERE1J3VgQ7Io1CnKAouuOACXHnllaa3ueOOO/D73/8eS5cuxdq1a1FaWorp06ejq6sr49dvbW3NeqUIBjsiIiLS2RHogDw6/bpo0SIAwLJly0w9XwiBJUuW4MYbb8R5550HAPjLX/6CgQMHYvny5bjooosSbhcMBhEMBqOf66dOFUVBXV1d9P8z5fP5UFJSgtbWVoTDYXi9XoTDYbS1tWW8LzJ0RDoQ9AfjHmsVrQi7zN0pRGSbUBvQ3u3nsKUV8Jibb4qI8k9bWxvC4TBCoVDS5wQCAXR0dKCsrAw+n89Upki1v1h5E+oytXXrVjQ2NmLatGnRxyorK3HCCSdgzZo1SUPd4sWLowEyVjgcRlNTU6/Hpe9HkiTIsoyXXnoJbnfqMug/IB6PJ+1zzVBVFYqiQJIkeL1eSJJkyzapCCGgKAqEEPB6vZDl9AeNzW7zd/zd9DiyeW9Zj+y3Safw6uHq9sxXTY2B9TCwPwysh6Yv1yMcDqO1tTX6b3yibVRVhSzL0eVFzejs7DT1vIINdY2NjQCAgQMHxj0+cODA6NcSWbBgAebNmxf93O/3Y+jQoZBl2ZIfAq/XC0VREIlEAGhH8FLd1RIIBBAIBFBWVpbRUiHpeDwetLS0IBKJoLq6OmWThUIh+P1+uN3utM/NRFFREVpaWtDR0YHq6uqU74MQAi0tLQiHw2mfm6nYv5rSvcesh4b1MLAe8c9lPViPWP2tHqFQCLIsJwx1+r/9Lpcr48u4zL5vOQ118+fPx+23357yOZ9++ilGjhzp0Ii0kBW75pouWerOhr6cmP7XS7Jma29vR2dnJ6qqqiy/c9br9cLj8aCpqQl+vx81NTUJvz9FUdDW1gafz5f0Ob1RX1+P5uZmtLW1Jb1eUb/rWFVV1NfXW762rtfrhdvtjv7iSfZesx4a1sPAehhYDw3rYeiP9fD5fNG8EPv9BoNBRCKR6HMyZTbU5fRGieuuuw6ffvppyo/DDjssq30PGjQIALBnz564x/fs2RP9Wi7ph387OjoS3jxh10WU3cdQW1uLUCgU/aGPpS9P4vF4bGlIAJBlGTU1NdFfEN2vLch0GplspbuZhfXQsB4G1sPAemhYD0N/rUei5byCwSDC4XDWgS4TOQ11dXV1GDlyZMqPbIswbNgwDBo0CCtXrow+5vf7sXbtWkyaNMmqb6FX3G43ysrKejSmEw2pS9aYTjSkLlljOtWQumS/KFkP1oP1YD10rIeB9TDo9ejo6Ihb0svJQAfk0ZQm27Ztw4YNG7Bt2zZEIhFs2LABGzZsQEdHR/Q5I0eOxLPPPgtAO1R5zTXX4D//8z/x/PPPY+PGjZg5cyYGDx6MGTNm5Oi76Km0tDSuMZ1sSF33xgwGg441pK57YwaDQUcbUtf9FyXrwXqwHgbWQ8N6GFgPQ3l5OcrKyqKXVjkd6IA8ulHipptuwp///Ofo58cddxwAYNWqVZg6dSoAYMuWLXFThNxwww0IBAK4/PLL0draipNPPhkvv/wyioqKHB17Ot1XnnCyIXV6Y+7bt8/xhtTpjdnU1BS907iurs6xhtSxHhrWw8B6GFgPDethYD0MpaWl2L9/f/RmSCcDHZBHoW7ZsmVp56gTIn7+J0mScMstt+CWW26xcWREREREuZc3p18LWewh81ytPKFfA6H/xRUOhxNe/Gon/RqIcDgcPWSe6OJXu7EeGtbDwHoYWA8N62FgPQyBQACqqsLlcsHtdiMcDsctaGA3hrocCwQCcddA5GJJse4Xtfp8vpR3Ndmh+0Wt+i3wye5qskv3a1JYD9aD9TCwHhrWw8B6GNrb29HR0QFZluH1euHz+RwPdgx1ORQOh9HR0dHjGggnGzPZXUrpble3UrK7lNLdrm61ZBcZsx6sB+vBeuhYDwPrYdDrUVZWFrdyh9PBjqEuRxRFgaqqKCsrS3hRqxONme62cycaM91t5041Zrq7xlgPDethYD0MrIeG9TD013okWkzAyWDHUJcD+szSsiynXLrFzsY0O4+QnY1pdh4huxvT7DQArIeG9TCwHgbWQ8N6GFgPg1PBjqHOJKt+GPV5a/SLKNOxozEznRjSjsbMdGJIuxoz03mdWA8N62FgPQysh4b1MLAeBieCHUOdSaFQKG6W6GzETkSYydw5VjZmtjN9W9mY2c70bXVjZjtRJ+uhYT0MrIeB9dCwHgbWw2B3sGOoy4CiKFkHu97OLG1FY/Z26RYrGrO3S7dY1Zi9nXmd9dCwHgbWw8B6aFgPA+thsDPYMdSZ5PV6IUlSVsHOqqVCetOYVq3F15vGtGotvt42plVL6bAeGtbDwHoYWA8N62FgPQx2BTuGOpMkSYLP58s42Fm99ls2jWn14srZNKbViytn25hWr43IemhYDwPrYWA9NKyHgfUw2BHsGOoyIMtyRsHOrsV8M2lMqxtSl0ljWt2Qukwb067FrlkPDethYD0MrIeG9TCwHgargx1DXYbMBju7Ap3OTGPa1ZA6M41pV0PqzDamXQ2pYz00rIeB9TCwHhrWw8B6GMwEO7OnqhnqspAu2Nkd6HSpGtPuhtSlaky7G1KXrjHtbkgd66FhPQysh4H10LAeBtbDkCrYhcNhhEIhU/thqMtSsmDnVKDTJWpMpxpSl6gxnWpIXbLGdKohdayHhvUwsB4G1kPDehhYD0OiYBcOhzO6mSP97LeUlB7sgsEgFEVBKBSCqqqOBTqd/sPm9/uhKAqCwaBjDanTG7OpqQlNTU0AtB9GJxpSpzdmc3Mzmpqa4PP50NXV5VhD6lgPDethYD0MrIeG9TCwHgY9O4TDYaiqCiEEJEkyPx+fnYPrD/RgJ4SAqqrRz51WXl6OoqIidHV1QQjhaEPqvF4vampqEAqFEAqFUFNT41hD6vTGFEKgq6sLRUVFjjakjvXQsB4G1sPAemhYDwPrYfD5fJBlORrq9LOCZjDUWSD2XLcQotcrT2RD/wtLFwgEHB+Dqqrw+/3Rz/1+vy2LOKcT+73rR1GdxnoYWA8N62FgPQysh4b1MITDYQghop+bvZ4OYKjrtdhr6IqLi7OeoLg3Yq+BaGhosG0R51Rir4Goq6tDXV2dLYs4pxN7DURDQ4NtizinwnoYWA8N62FgPQysh4b1MOjX0EmShOLi4ug1drxRwgHdb4rIdB47KyS6qNWORZxTSXRRqx2LOKfT/aJWuxZxToX1MLAeGtbDwHoYWA8N62GIDXSxmcLtdnNKE7slu8vVyWCX6i4lpxoz1V1KTjZmsruUnGxM1sPAemhYDwPrYWA9NKyHIVGg03X/PBWGuiykm7bEiWBn5rZzuxvTzG3nTjRmutvOnWhM1sPAemhYDwPrYWA9NKyHIVWg03k8HlP7YqjLkNl56OwMdpnMI2RXY2Yyj5CdjWl2HiE7G5P1MLAeGtbDwHoYWA8N62EwE+gywVCXgUwnFrYj2GUzMaTVjZnNxJB2NGamE0Pa0Zish4H10LAeBtbDwHpoWA+D1YEOYKgzLRQKZbVShJXBrjczfVvVmL2Z6dvKxsx2pm8rG5P1MLAeGtbDwHoYWA8N62GwI9ABDHWm9WalCCuCnRVLt/S2Ma1YusWKxuzt0i1WNCbrYWA9NKyHgfUwsB4a1sNgV6ADGOpM6+1KEd2DXSQSMb2tlWvxZduYVq7F15vGtGotvt40JuthYD00rIeB9TCwHhrWw2BnoAMY6kwze+dJKt2DnZkfRjsWV860Me1YXDmbxrR6ceVsGpP1MLAeGtbDwHoYWA8N62GwO9ABDHWOiw126WaJtqMhdWYb046G1GXSmFY3pC6TxmQ9DKyHhvUwsB4G1kPDehicCHQAQ11OxAa7lpaWhD8IdjakLl1j2tmQOjONaVdD6sw0JuthYD00rIeB9TCwHpr+Wo9EB2qcCnQAQ13OSJIEl8sFt9vdozGdaEhdssZ0oiF1qRrT7obUpfpFyXqwHqwH66FjPQyshya2Hi0tLXFjcDLQAXkU6n7zm99g8uTJKCkpQVVVlaltLr30UkiSFPdx5pln2jvQDMiyjKqqqrjGdLIhdd0b08mG1CVqTKcaUpfoFyXrwXqwHhrWw8B6GFgPjV4Pt9uNcDiMSCTieKADALftr2ARRVFwwQUXYNKkSfif//kf09udeeaZePjhh6Of9+YOVjvoPwjNzc3Yt28fAO0H1KmG1Ok/9H6/H36/H5IkOdaQOr0xm5qasHv3bgBwrCF1rIeB9TCwHhrWw8B6GFgPjX6gpqOjI3r0VL/cyql65M2RukWLFuHaa6/F6NGjM9rO5/Nh0KBB0Y/q6mqbRpg9WZZRUVER/byiosLRhtSVlpZG/9/n8znakDqv1xsXvGPH5BTWw8B6GFgPDethYD0MrIdGluW499/j8Thaj7wJddlavXo16uvrceSRR+LKK69Ec3NzyucHg8HoXxv6h90URUFzczM8Hg88Hg+am5ttWTQ4Ff2QuSRJKCoqQldXly2LOKfT3t6Orq4uFBUVQZIk2xZxToX1MLAeGtbDwHoYWA8N62EIhUKIRCLRS76sXvs9nYIOdWeeeSb+8pe/YOXKlbj99tvxxhtv4Kyzzko58e/ixYtRWVkZ/Rg6dKitYwyFQtFrIGpra1FbW2vLosGpdL8GoqamxpZFnNOJvQaipqbGtkWcU4m9JoX1YD0A1iMW62FgPTSsh0FRFLS0tESvodPDpZPBLqehbv78+T1uZOj+sXnz5qz3f9FFF+Hcc8/F6NGjMWPGDLzwwgv44IMPsHr16qTbLFiwAG1tbdGP7du3Z/366aiqipaWlriLWu1YNDjdGBJd1Gr1Is7pJLqo1Y5FnFNJdJEx68F6sB4a1sPAemhYD4NeD7fbDZfLBUmSLFkiNFM5DXXXXXcdPv3005Qfhx12mGWvd9hhh6G2thaff/550uf4fD5UVFTEfdhBvzPG7Xb3uKjVqcZMd5eSU42Z6i4lpxoz1V1jrIeB9TCwHhrWw8B6GPprPaqqqnrUw8lgl9O7X+vq6lBXV+fY6+3YsQPNzc1oaGhw7DUT0W9z1u+USXQRZexdTU1NTZbfSWT2tvPYu5piP7eKmdvOY+9qam5utvzOLjPTALAeBtbDwHpoWA8D62Hoj/VIFNr0YBcMBqMh2+22J37lzTV127Ztw4YNG7Bt2zZEIhFs2LABGzZsQEdHR/Q5I0eOxLPPPgsA6OjowPXXX4/33nsPX331FVauXInzzjsPI0aMwPTp0zN+fSGEJd9H7Lw1Lpcr5Q+XXX9xZTqPkF1/cWUyj5Bdf3FlMq8T62FgPQysh4b1MLAeBtZD49QRu7wJdTfddBOOO+44LFy4EB0dHTjuuONw3HHHYd26ddHnbNmyBW1tbQAAl8uFf/7znzj33HNxxBFHYPbs2Rg3bhzeeuutrOaqUxSl1z8I2UxEaHVjZjsxpNWNmc3EkFY3ZjYTdbIeBtbDwHpoWA8D62FgPTROBDtJWHUIqkD5/X5UVlZi/vz5KCkpyXoSwe6BDtAapKGhwVRjWDFLtxX7sGKW7t7uw4pZ03u7D9bDwHoYWA8N62FgPQz9oR6KomD37t095quLpaoqgsEghBDwer2mTsV2dHRg0aJFaGtrS3mtf94cqcs1j8cDIQSCwWDGCd+KpUJ6+xeXVUu39PYvLiuaurd/cVnR1KyHgfUwsB4a1sPAehhYD42dR+wY6kySZRlerzfjYGfl2m/ZNqbVa/Fl25hWrsWXbWNauTYi62FgPQysh4b1MLAeBtZDY1ewY6jLgNvtzijY2bGYb6aNadfiypk2ph2LK2famHYsds16GFgPA+uhYT0MrIeB9dDYEewY6jJkNtjZEeh0ZhvTrobUmW1MOxpSZ7Yx7WhIHethYD0MrIeG9TCwHgbWQ2M22Jm9/YE3SqTR1taGqqoq3HDDDSguLo4+rqoqQqEQAO0HQ5IkU1/T6W+7vqxLNoQQaG1tRTgcRlVVVdx+Un3NaoFAAIFAAKWlpT0WUE71NSuFQiG0trbC7Xajqqoq7j1P9TUrsR4G1sPAemhYDwPrYSi0euhLfwLIqHZCiGjA9ng8ccFRCIH29nbcc889aG1tRWVlZdL9MNSlsWPHDtvXfyUiIiJKZ/v27RgyZEjSrzPUpaGqKnbt2oXy8nJL/2Ly+/0YOnQotm/fbttSZP0J309r8f20Dt9La/H9tBbfT2vZ9X7qR+sGDx6c8vRvTpcJyweyLKdMxb1l5/qy/RHfT2vx/bQO30tr8f20Ft9Pa9nxfqY67arjjRJEREREBYChjoiIiKgAMNTliM/nw8KFC7Nah5Z64vtpLb6f1uF7aS2+n9bi+2mtXL+fvFGCiIiIqADwSB0RERFRAWCoIyIiIioADHVEREREBYChjoiIiKgAMNT1Eeeeey4OPvhgFBUVoaGhAT/+8Y+xa9euXA8r73z11VeYPXs2hg0bhuLiYgwfPhwLFy5Mumg1pfeb3/wGkydPRklJCaqqqnI9nLxz33334dBDD0VRURFOOOEEvP/++7keUl568803cc4552Dw4MGQJAnLly/P9ZDy2uLFizFhwgSUl5ejvr4eM2bMwJYtW3I9rLz0wAMPYMyYMdEJhydNmoS///3vORkLQ10fcdppp+Gpp57Cli1b8L//+7/44osvcP755+d6WHln8+bNUFUVf/zjH7Fp0ybcc889WLp0KX71q1/lemh5S1EUXHDBBbjyyitzPZS88+STT2LevHlYuHAhPvroIxx77LGYPn069u7dm+uh5Z1AIIBjjz0W9913X66HUhDeeOMNXH311XjvvfewYsUKhEIhnHHGGQgEArkeWt4ZMmQI/uu//gsffvgh1q1bh29961s477zzsGnTJsfHwilN+qjnn38eM2bMQDAYhMfjyfVw8tqdd96JBx54AF9++WWuh5LXli1bhmuuuQatra25HkreOOGEEzBhwgTce++9ALS1pIcOHYqf//znmD9/fo5Hl78kScKzzz6LGTNm5HooBWPfvn2or6/HG2+8gVNPPTXXw8l7AwYMwJ133onZs2c7+ro8UtcH7d+/H4899hgmT57MQGeBtrY2DBgwINfDoH5GURR8+OGHmDZtWvQxWZYxbdo0rFmzJocjI+qpra0NAPi7spcikQieeOIJBAIBTJo0yfHXZ6jrQ/7jP/4DpaWlqKmpwbZt2/Dcc8/lekh57/PPP8cf/vAH/OxnP8v1UKifaWpqQiQSwcCBA+MeHzhwIBobG3M0KqKeVFXFNddcg5NOOgmjRo3K9XDy0saNG1FWVgafz4crrrgCzz77LI4++mjHx8FQZ6P58+dDkqSUH5s3b44+//rrr8f69evx6quvwuVyYebMmeDZcU2m7yUA7Ny5E2eeeSYuuOACzJkzJ0cj75uyeT+JqDBdffXV+Pjjj/HEE0/keih568gjj8SGDRuwdu1aXHnllZg1axY++eQTx8fBa+pstG/fPjQ3N6d8zmGHHQav19vj8R07dmDo0KF49913c3IIt6/J9L3ctWsXpk6dihNPPBHLli2DLPPvl1jZ/GzymrrMKIqCkpISPPPMM3HXfs2aNQutra08Et8LvKbOOnPnzsVzzz2HN998E8OGDcv1cArGtGnTMHz4cPzxj3909HXdjr5aP1NXV4e6urqstlVVFQAQDAatHFLeyuS93LlzJ0477TSMGzcODz/8MANdAr352SRzvF4vxo0bh5UrV0bDh6qqWLlyJebOnZvbwVG/J4TAz3/+czz77LNYvXo1A53FVFXNyb/fDHV9wNq1a/HBBx/g5JNPRnV1Nb744gv8v//3/zB8+HAepcvQzp07MXXqVBxyyCH47W9/i3379kW/NmjQoByOLH9t27YN+/fvx7Zt2xCJRLBhwwYAwIgRI1BWVpbbwfVx8+bNw6xZszB+/HhMnDgRS5YsQSAQwGWXXZbroeWdjo4OfP7559HPt27dig0bNmDAgAE4+OCDcziy/HT11Vfj8ccfx3PPPYfy8vLodZ6VlZUoLi7O8ejyy4IFC3DWWWfh4IMPRnt7Ox5//HGsXr0ar7zyivODEZRz//znP8Vpp50mBgwYIHw+nzj00EPFFVdcIXbs2JHroeWdhx9+WABI+EHZmTVrVsL3c9WqVbkeWl74wx/+IA4++GDh9XrFxIkTxXvvvZfrIeWlVatWJfw5nDVrVq6HlpeS/Z58+OGHcz20vPOTn/xEHHLIIcLr9Yq6ujpx+umni1dffTUnY+E1dUREREQFgBcbERERERUAhjoiIiKiAsBQR0RERFQAGOqIiIiICgBDHREREVEBYKgjIiIiKgAMdUREREQFgKGOiIiIqAAw1BEREREVAIY6IiIiogLAUEdERERUABjqiIhssG/fPgwaNAi33XZb9LF3330XXq8XK1euzOHIiKhQSUIIketBEBEVopdeegkzZszAu+++iyOPPBJjx47Feeedh7vvvjvXQyOiAsRQR0Rko6uvvhqvvfYaxo8fj40bN+KDDz6Az+fL9bCIqAAx1BER2ejAgQMYNWoUtm/fjg8//BCjR4/O9ZCIqEDxmjoiIht98cUX2LVrF1RVxVdffZXr4RBRAeOROiIimyiKgokTJ2Ls2LE48sgjsWTJEmzcuBH19fW5HhoRFSCGOiIim1x//fV45pln8I9//ANlZWWYMmUKKisr8cILL+R6aERUgHj6lYjIBqtXr8aSJUvwyCOPoKKiArIs45FHHsFbb72FBx54INfDI6ICxCN1RERERAWAR+qIiIiICgBDHREREVEBYKgjIiIiKgAMdUREREQFgKGOiIiIqAAw1BEREREVAIY6IiIiogLAUEdERERUABjqiIiIiAoAQx0RERFRAWCoIyIiIioA/x/J4LfVCDbzoAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# simulation domain size\n",
"Lx = L_t + l / 2\n",
"Ly = 5 * w_sc\n",
"Lz = 9 * h_si\n",
"\n",
"# define a mode source that injects te mode\n",
"mode_spec = td.ModeSpec(num_modes=1, target_neff=3.47)\n",
"mode_source = td.ModeSource(\n",
" center=(-l / 5, w_sc / 2, 0),\n",
" size=(0, Ly, 4 * h_si),\n",
" source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n",
" direction=\"+\",\n",
" mode_spec=mode_spec,\n",
" mode_index=0,\n",
" num_freqs=7,\n",
")\n",
"\n",
"# define a mode monitor to measure the phase before the taper\n",
"mode_monitor_1 = td.ModeMonitor(\n",
" center=(0, w_sc / 2, 0),\n",
" size=(0, Ly, 4 * h_si),\n",
" freqs=freqs,\n",
" mode_spec=mode_spec,\n",
" name=\"mode_1\",\n",
")\n",
"\n",
"# define a mode monitor to measure the phase after the taper\n",
"mode_monitor_2 = td.ModeMonitor(\n",
" center=(L_t, w_top / 2, 0),\n",
" size=(0, Ly, 4 * h_si),\n",
" freqs=freqs,\n",
" mode_spec=mode_spec,\n",
" name=\"mode_2\",\n",
")\n",
"\n",
"run_time = 4e-13 # simulation run time\n",
"\n",
"# define a simulation\n",
"sim = td.Simulation(\n",
" center=(0, w_sc / 2, 0),\n",
" size=(Lx, Ly, Lz),\n",
" grid_spec=td.GridSpec.auto(min_steps_per_wvl=20, wavelength=lda0),\n",
" structures=[taper_top],\n",
" sources=[mode_source],\n",
" monitors=[mode_monitor_1, mode_monitor_2],\n",
" run_time=run_time,\n",
" medium=sio2,\n",
")\n",
"\n",
"# plot simulation\n",
"sim.plot(z=0)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "71c60cd6",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"
[11:19:34] Created task 'top_taper' with task_id 'fdve-29043c49-cb78-4092-8442-5c9df9060b47v1'. webapi.py:140\n",
"
[11:19:44] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:289\n",
"cost after a simulation run. \n",
"
\n"
],
"text/plain": [
"\u001b[2;36m[11:19:44]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=34893;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=624469;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#289\u001b\\\u001b[2m289\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
[11:20:38] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:289\n",
"cost after a simulation run. \n",
"
\n"
],
"text/plain": [
"\u001b[2;36m[11:20:38]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=903359;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=25368;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#289\u001b\\\u001b[2m289\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
[11:21:40] Maximum FlexCredit cost: 0.286. Use 'web.real_cost(task_id)' to get the billed FlexCredit webapi.py:289\n",
"cost after a simulation run. \n",
"
\n"
],
"text/plain": [
"\u001b[2;36m[11:21:40]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.286\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=2152;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=963881;file://C:\\Users\\xinzhong\\Desktop\\tidy3d\\tidy3d\\web\\webapi.py#289\u001b\\\u001b[2m289\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"