{ "cells": [ { "cell_type": "markdown", "id": "30c7f92a", "metadata": {}, "source": [ "# Web API\n", "\n", "This notebook is a tutorial of the API used for submitting simulations to our servers." ] }, { "cell_type": "code", "execution_count": 1, "id": "e3db6278", "metadata": {}, "outputs": [], "source": [ "import tidy3d as td\n", "import tidy3d.web as web\n", "\n", "# set logging level to ERROR because we'll only running simulations to demonstrate the web API, we dont care about the results.\n", "td.config.logging_level = \"ERROR\"\n" ] }, { "cell_type": "markdown", "id": "33ed2fc9", "metadata": {}, "source": [ "## Setup\n", "\n", "Let's set up a simple simulation to get started." ] }, { "cell_type": "code", "execution_count": 2, "id": "0f48e0d0", "metadata": {}, "outputs": [], "source": [ "# whether to print output in web functions, note: if False (default) they will all run silently\n", "verbose = True\n", "\n", "# set up parameters of simulation\n", "dl = 0.05\n", "pml = td.PML()\n", "sim_size = [4, 4, 4]\n", "freq0 = 3e14\n", "fwidth = 1e13\n", "run_time = 1 / fwidth\n", "\n", "# create structure\n", "dielectric = td.Medium.from_nk(n=2, k=0, freq=freq0)\n", "square = td.Structure(\n", " geometry=td.Box(center=[0, 0, 0], size=[1.5, 1.5, 1.5]), medium=dielectric\n", ")\n", "\n", "# create source\n", "source = td.UniformCurrentSource(\n", " center=(-1.5, 0, 0),\n", " size=(0, 0.4, 0.4),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n", " polarization=\"Ex\",\n", ")\n", "\n", "# create monitor\n", "monitor = td.FieldMonitor(\n", " fields=[\"Ex\", \"Ey\", \"Ez\"],\n", " center=(0, 0, 0),\n", " size=(td.inf, td.inf, 0),\n", " freqs=[freq0],\n", " name=\"field\",\n", ")\n", "\n", "# Initialize simulation\n", "sim = td.Simulation(\n", " size=sim_size,\n", " grid_spec=td.GridSpec.uniform(dl),\n", " structures=[square],\n", " sources=[source],\n", " monitors=[monitor],\n", " run_time=run_time,\n", " boundary_spec=td.BoundarySpec.all_sides(boundary=pml),\n", ")\n" ] }, { "cell_type": "markdown", "id": "31a360a5", "metadata": {}, "source": [ "## Running simulation manually\n", "\n", "For the most control, you can run the simulation through the Tidy3D web API.\n", "Each simulation running on the server is identified by a `task_id`, which must be specified in the web API.\n", "Let's walk through submitting a simulation this way." ] }, { "cell_type": "code", "execution_count": 3, "id": "00aa7bf9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[12:44:18] Created task 'webAPI' with task_id 'fdve-fecc0afb-0864-432b-a6d7-d2b4ff98c508v1'.          webapi.py:139\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:18]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'webAPI'\u001b[0m with task_id \u001b[32m'fdve-fecc0afb-0864-432b-a6d7-d2b4ff98c508v1'\u001b[0m. \u001b]8;id=558727;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=558264;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d0a9c4932c76444aa5b8c01361576752", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:44:25] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:25]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=948920;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389791;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:44:31] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:31]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=226910;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=207105;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[12:44:36] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:36]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=187901;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=482471;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=668852;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=720526;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=451885;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=789026;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7b72196cabc14b0a9089100f4f1e6456", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:44:41] status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:41]\u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=29352;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=682622;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:44:44] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:44]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=979297;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=589863;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "220bbe7f7e3f43658a3d76395288e286",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:44:49] loading SimulationData from data/sim.hdf5                                                  webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:49]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/sim.hdf5 \u001b]8;id=864094;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=742837;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# upload the simulation to our servers\n", "task_id = web.upload(sim, task_name=\"webAPI\", verbose=verbose)\n", "\n", "# start the simulation running\n", "web.start(task_id)\n", "\n", "# monitor the simulation, dont move on to next line until completed.\n", "web.monitor(task_id, verbose=verbose)\n", "\n", "# download the results and load into a simulation data object for plotting, post processing etc.\n", "sim_data = web.load(task_id, path=\"data/sim.hdf5\", verbose=verbose)\n" ] }, { "cell_type": "markdown", "id": "78cb3ca3", "metadata": {}, "source": [ "While we broke down each of the individual steps above, one can also perform the entire process in one line by calling the [web.run()](../_autosummary/tidy3d.web.webapi.run.html#tidy3d.web.webapi.run) function as follows.\n", "\n", "```python\n", "sim_data = web.run(sim, task_name='webAPI', path='data/sim.hdf5')\n", "```\n", "\n", "(We won't run it again in this notebook to save time).\n", "\n", "Sometimes this is more convenient, but other times it can be helpful to have the steps broken down one by one, for example if the simulation is long, you may want to [web.start](../_autosummary/tidy3d.web.webapi.start.html) and then exit the session and load the results at a later time using [web.load](../_autosummary/tidy3d.web.webapi.load.html#tidy3d.web.webapi.load).\n" ] }, { "cell_type": "markdown", "id": "01806b3b", "metadata": {}, "source": [ "## Job Container\n", "\n", "The [web.Job](../_autosummary/tidy3d.web.container.Job.html) interface provides a more convenient way to manage single simuations, mainly because it eliminates the need for keeping track of the `task_id` and original [Simulation](../_autosummary/tidy3d.Simulation.html).\n", "\n", "While [Job](../_autosummary/tidy3d.web.container.Job.html) has methods with names identical to the web API functions above, which give some more granular control, it is often most convenient to call [.run()] so we will do that now." ] }, { "cell_type": "code", "execution_count": 4, "id": "148d4559", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[12:44:49] Created task 'job' with task_id 'fdve-b619ca0c-74b7-4152-9846-8506c3c5507dv1'.             webapi.py:139\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:49]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'job'\u001b[0m with task_id \u001b[32m'fdve-b619ca0c-74b7-4152-9846-8506c3c5507dv1'\u001b[0m. \u001b]8;id=412354;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=798824;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6ba552a0094d4c52bf64c04cf3b671ea", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:44:51] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:51]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=37711;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=829878;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:44:53] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:44:53]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=158807;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=86130;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[12:45:00] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:00]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=907155;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=323560;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=80482;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=55083;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=181116;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=974917;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "50d880f7155249a28ba8d5281cbe0500", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:07] status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:07]\u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=854276;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64737;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:12] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:12]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=470594;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628919;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7f8e532f962e4612b6a4f57a3f295168",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:17] loading SimulationData from data/sim.hdf5                                                  webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:17]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/sim.hdf5 \u001b]8;id=608530;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727336;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# initializes job, puts task on server (but doesnt run it)\n", "job = web.Job(simulation=sim, task_name=\"job\", verbose=verbose)\n", "\n", "# start job, monitor, and load results\n", "sim_data = job.run(path=\"data/sim.hdf5\")\n" ] }, { "cell_type": "markdown", "id": "ebceab07", "metadata": {}, "source": [ "Another convenient thing about [Job](../_autosummary/tidy3d.web.container.Job.html) objects is that they can be saved and loaded just like other Tidy3d components.\n", "\n", "This is convenient if you want to save and load up the results of a job that has already finished, without needing to know the `task_id`." ] }, { "cell_type": "code", "execution_count": 5, "id": "55808199", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3c08b322efdd4718a394d6513465d285", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:18] loading SimulationData from data/sim.hdf5                                                  webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:18]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/sim.hdf5 \u001b]8;id=242447;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=872276;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# saves the job metadata to a single file\n", "job.to_file(\"data/job.json\")\n", "\n", "# can exit session, break here, or continue in new session.\n", "\n", "# load the job metadata from file\n", "job_loaded = web.Job.from_file(\"data/job.json\")\n", "\n", "# download the data from the server and load it into a SimulationData object.\n", "sim_data = job_loaded.load(path=\"data/sim.hdf5\")\n" ] }, { "cell_type": "markdown", "id": "47ef716b", "metadata": {}, "source": [ "## Batch Processing\n", "\n", "Commonly one needs to submit a batch of Simulations.\n", "One way to approach this using the web API is to upload, start, monitor, and load a series of tasks one by one, but this is clumsy and you can lose your data if the session gets interrupted.\n", "\n", "A better way is to use the built-in [Batch](../_autosummary/tidy3d.web.container.Batch.html) object.\n", "The batch object is like a [Job](../_autosummary/tidy3d.web.container.Job.html), but stores task metadata for a series of simulations." ] }, { "cell_type": "code", "execution_count": 6, "id": "b40efc4f", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[12:45:18] Created task 'sim_0' with task_id 'fdve-cc019bf0-0b2d-46ab-8616-9b0698638c5av1'.           webapi.py:139\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:18]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_0'\u001b[0m with task_id \u001b[32m'fdve-cc019bf0-0b2d-46ab-8616-9b0698638c5av1'\u001b[0m. \u001b]8;id=967450;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=963846;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "61309f101dba4549bb833e313ea9bf08", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:20] Created task 'sim_1' with task_id 'fdve-365989f1-9315-4aa2-90df-6e6553c6c5ccv1'.           webapi.py:139\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:20]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_1'\u001b[0m with task_id \u001b[32m'fdve-365989f1-9315-4aa2-90df-6e6553c6c5ccv1'\u001b[0m. \u001b]8;id=412369;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=106456;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f7067c9ba2334b039e52964a5b20c12d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:21] Created task 'sim_2' with task_id 'fdve-5fabfe5c-ab16-40f5-91c8-bfd19b4c3166v1'.           webapi.py:139\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:21]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'sim_2'\u001b[0m with task_id \u001b[32m'fdve-5fabfe5c-ab16-40f5-91c8-bfd19b4c3166v1'\u001b[0m. \u001b]8;id=45575;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=427560;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "87146129b36048619435720e7b4f000e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:28] Started working on Batch.                                                               container.py:402\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:28]\u001b[0m\u001b[2;36m \u001b[0mStarted working on Batch. \u001b]8;id=886453;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=963352;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#402\u001b\\\u001b[2m402\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3114f057bf8b4421931dcacf061b93e0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:53] Batch complete.                                                                         container.py:436\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:53]\u001b[0m\u001b[2;36m \u001b[0mBatch complete. \u001b]8;id=189462;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py\u001b\\\u001b[2mcontainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=883988;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/container.py#436\u001b\\\u001b[2m436\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# make a dictionary of {task name : simulation} for demonstration\n", "sims = {f\"sim_{i}\": sim for i in range(3)}\n", "\n", "# initialize a batch and run them all\n", "batch = web.Batch(simulations=sims, verbose=verbose)\n", "\n", "# run the batch and store all of the data in the `data/` dir.\n", "batch_results = batch.run(path_dir=\"data\")\n" ] }, { "cell_type": "markdown", "id": "0ae64033", "metadata": {}, "source": [ "When the batch is completed, the output is not a [SimulationData](../_autosummary/tidy3d.SimulationData.html) but rather a [BatchData](../_autosummary/tidy3d.web.BatchData.html). The data within this [BatchData](../_autosummary/tidy3d.web.BatchData.html) object can either be indexed directly `batch_results[task_name]` or can be looped through `batch_results.items()` to get the [SimulationData](../_autosummary/tidy3d.SimulationData.html) for each task.\n", "\n", "This was chosen to reduce the memory strain from loading all [SimulationData](../_autosummary/tidy3d.SimulationData.html) objects at once.\n", "\n", "Alternatively, the batch can be looped through (several times) using the `.items()` method, similar to a dictionary." ] }, { "cell_type": "code", "execution_count": 7, "id": "e855fe08", "metadata": { "tags": [] }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f8f4f20d688143a98a4f97fd1abdd2f8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:45:58] loading SimulationData from data/fdve-cc019bf0-0b2d-46ab-8616-9b0698638c5av1.hdf5          webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:45:58]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93mcc019bf0-0b2d-46ab-8616-9b0698638c5a\u001b[0mv1.hdf5 \u001b]8;id=96572;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=266397;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "92971eef9bb945dba09ee02e35ef56c3", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:46:03] loading SimulationData from data/fdve-365989f1-9315-4aa2-90df-6e6553c6c5ccv1.hdf5          webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:46:03]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m365989f1-9315-4aa2-90df-6e6553c6c5cc\u001b[0mv1.hdf5 \u001b]8;id=477088;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=441350;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "59c5f3da214747cb98cfb18f7b20fce7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:46:05] loading SimulationData from data/fdve-5fabfe5c-ab16-40f5-91c8-bfd19b4c3166v1.hdf5          webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:46:05]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/fdve-\u001b[93m5fabfe5c-ab16-40f5-91c8-bfd19b4c3166\u001b[0mv1.hdf5 \u001b]8;id=7422;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263616;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "{'sim_0': 13540217.099674325, 'sim_1': 13540217.099674325, 'sim_2': 13540217.099674325}\n" ] } ], "source": [ "# grab the sum of intensities in the simulation one by one (to save memory)\n", "intensities = {}\n", "for task_name, sim_data in batch_results.items():\n", " intensity = sim_data.get_intensity(\"field\").sel(f=freq0)\n", " sum_intensity = float(intensity.sum((\"x\", \"y\")).values)\n", " intensities[task_name] = sum_intensity\n", "\n", "print(intensities)\n" ] }, { "cell_type": "markdown", "id": "b1e19538-d559-4ea2-b555-0df0135417ff", "metadata": {}, "source": [ "## Asynchronous Batching\n", "\n", "Finally, one can make use of the [asyncio package](https://realpython.com/async-io-python/) to perform asynchronous processing of several simulations.\n", "\n", "For this purpose, a [web.run_async](../_autosummary/tidy3d.web.run_async.html) function is provided, which works like the regular `web.run` but accepts a dictionary of simulations. \n", "\n", "Here is the previous example repeated using this feature." ] }, { "cell_type": "code", "execution_count": 8, "id": "0a56613f-78f0-4aad-bb4f-826193a809b0", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8f69467ddd9e40f08b6f2e281cb6a1e5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "batch_results = web.run_async(simulations=sims, verbose=verbose)\n" ] }, { "cell_type": "code", "execution_count": 9, "id": "4189dce5-6ec8-4bc4-a1a2-946a06bd9de5", "metadata": { "tags": [] }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "52000534bcd34fb09768253836797a57", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:46:39] loading SimulationData from ./fdve-df3d1b92-5e4d-4c22-84cc-9bf19bd7e6e9v1.hdf5             webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:46:39]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from .\u001b[35m/\u001b[0m\u001b[95mfdve-df3d1b92-5e4d-4c22-84cc-9bf19bd7e6e9v1.hdf5\u001b[0m \u001b]8;id=237702;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=624044;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1e48c2baa3974a29b86398c498484a2f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:46:41] loading SimulationData from ./fdve-820ab543-162f-4faa-b0a4-f4e6c023a356v1.hdf5             webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:46:41]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from .\u001b[35m/\u001b[0m\u001b[95mfdve-820ab543-162f-4faa-b0a4-f4e6c023a356v1.hdf5\u001b[0m \u001b]8;id=21631;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=211878;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "eef4441b0fe640e981c4d3ff4dd0606d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[12:46:45] loading SimulationData from ./fdve-f2e6b3b1-3149-40e3-86ea-d3d351865250v1.hdf5             webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[12:46:45]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from .\u001b[35m/\u001b[0m\u001b[95mfdve-f2e6b3b1-3149-40e3-86ea-d3d351865250v1.hdf5\u001b[0m \u001b]8;id=617478;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=525989;file:///Users/twhughes/Documents/Flexcompute/tidy3d-docs/tidy3d/tidy3d/web/webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "{'sim_0': 13540217.099674325, 'sim_1': 13540217.099674325, 'sim_2': 13540217.099674325}\n" ] } ], "source": [ "# grab the sum of intensities in the simulation one by one (to save memory)\n", "intensities = {}\n", "for task_name, sim_data in batch_results.items():\n", " intensity = sim_data.get_intensity(\"field\").sel(f=freq0)\n", " sum_intensity = float(intensity.sum((\"x\", \"y\")).values)\n", " intensities[task_name] = sum_intensity\n", "\n", "print(intensities)\n" ] }, { "cell_type": "code", "execution_count": null, "id": "72f88de8-04ea-4223-a8c0-ec2a2b3ef132", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0c6c173fb0f24876b0ad6c75c34faa9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0d4c3f3a8cf4426aaa5d6f9fba86ec34": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1f294a0abccc40549aaa4071393ba958": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_38f687d417364249a7d4390c02d48859", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Starting 'webAPI'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mStarting 'webAPI'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "1f555a4e39c9482c8c2e317bc5670440": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "20182501639f48518f539cfe71982bd5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "29fd9e7151254c4a864d2b4b0391678b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "33cb1762d91247ffbe6f0a08df3fbc7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3893a9c3e17b46e78a0b003cdb14bf27": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_0d4c3f3a8cf4426aaa5d6f9fba86ec34", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB12.2 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m12.2 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "38f687d417364249a7d4390c02d48859": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3b62c5f9a29047ae9b87a9de345a7757": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b1c04a2f0840439e90d2f8fcb3921601", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%3.0/3.0 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m3.0/3.0 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "41e0d6c26122467b91636b26fd2fe051": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "504b6fdbd6eb4e2298a47add601444be": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "51e781c01fc2433ca4ec091471486db9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_0c6c173fb0f24876b0ad6c75c34faa9a", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%3.0/3.0 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m3.0/3.0 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "5587e34346a74314b25f75fb52e18fd5": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_504b6fdbd6eb4e2298a47add601444be", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB13.6 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m13.6 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "56af0d39e6954f5bb0c2869994495f96": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_41e0d6c26122467b91636b26fd2fe051", "msg_id": "", "outputs": [ { "data": { "text/html": "
done w/ \"sim_0\" ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\ndone w/ \"sim_1\" ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\ndone w/ \"sim_2\" ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "done w/ \"sim_0\" \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\ndone w/ \"sim_1\" \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\ndone w/ \"sim_2\" \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "5a11f6d714894375bdadf71ef784e3c2": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_cc95f9cf34b54a188cfca460385b0732", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Starting 'job'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mStarting 'job'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "5d31447b8fa04b6f9a40aed6cc9aabfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "60e67366770e44709dc2824867e37822": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "62f5972eb0da4fd8870efb64b92a550a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a59688fb496c4ce8bd1ffbd91ac842c2", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB12.1 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m12.1 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "668ad0b4670d4031856c051b8b3d0c31": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ffe7e065e0d4e17a347450da896f5b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "80b44e7380e34045ab5dee88fae87a5f": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_20182501639f48518f539cfe71982bd5", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%3.0/3.0 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m3.0/3.0 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "879ebff50da64d70a8afa2c50baa2f5c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_33cb1762d91247ffbe6f0a08df3fbc7a", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB13.2 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m13.2 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "8b8a5541cd61474ea1a06a20d74cc10a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_c58fd048ff954bea9786de3b80dbc70a", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Finishing 'webAPI'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mFinishing 'webAPI'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "975bcb65596b4851b34c92d7a6c32c99": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_60e67366770e44709dc2824867e37822", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB1.9 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m1.9 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9892e0190dba4e7094ce9d08d93d5ce3": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6ffe7e065e0d4e17a347450da896f5b6", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB12.7 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m12.7 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "9b775ddd39224435b56d46681f09145e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_ae515fc361cf47248c597e38c545fbf0", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB4.7 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m4.7 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a223021dc29241f8af22264dca0982b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a5631142ac8347e3a79c53fbefcc7b6c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a59688fb496c4ce8bd1ffbd91ac842c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ae515fc361cf47248c597e38c545fbf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1c04a2f0840439e90d2f8fcb3921601": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1c206df930042cb8b7fadea90752a2c": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_c47894c877fc47de9f73d47a00b398c4", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 3.30e-01) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 3.30e-01) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "c47894c877fc47de9f73d47a00b398c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c58fd048ff954bea9786de3b80dbc70a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cc95f9cf34b54a188cfca460385b0732": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d217aea0e4f240eda1aaaa581c615f7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d22f0b46d6464d419f87c7ddd5f77f3d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a223021dc29241f8af22264dca0982b1", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Finishing 'job'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'job'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "d574855c550d46a88177e2a06e337d54": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_5d31447b8fa04b6f9a40aed6cc9aabfc", "msg_id": "", "outputs": [ { "data": { "text/html": "
sim_0: status = success ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\nsim_1: status = success ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\nsim_2: status = success ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "sim_0: status = success \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsim_1: status = success \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\nsim_2: status = success \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "e1ba0eb463454eebb5b7f5a07ca84b4a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_29fd9e7151254c4a864d2b4b0391678b", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%3.0/3.0 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m3.0/3.0 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "e4e03f2e0c294be4a17e15fe8053873e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_d217aea0e4f240eda1aaaa581c615f7e", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB3.6 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m3.6 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f396cdaf857146f595eaf098b70d57b9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_668ad0b4670d4031856c051b8b3d0c31", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 3.30e-01) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 3.30e-01) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "fe102176bd394d26889e31aaf69c6040": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_1f555a4e39c9482c8c2e317bc5670440", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%3.0/3.0 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m3.0/3.0 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "fe1c8255730c4d5d813592053e8e935a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a5631142ac8347e3a79c53fbefcc7b6c", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%307.0/307.0 kB13.5 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m307.0/307.0 kB\u001b[0m • \u001b[31m13.5 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }