{ "cells": [ { "cell_type": "markdown", "id": "2d4263f9", "metadata": {}, "source": [ "# Euler waveguide bend" ] }, { "cell_type": "markdown", "id": "03eb4470", "metadata": {}, "source": [ "Efficiently routing light in a densely packed photonic chip has been a central topic in the photonic industry. This inevitably requires the use of waveguide bends of various angles and radii. Electromagnetic waves can travel in straight waveguides for a long distance with very little loss. However, when it enters a waveguide bend, significant reflection and leakage could occur. \n", "\n", "The most common waveguide bends are circular bends. A silicon waveguide bend typically has a loss in the order of 0.01 dB. This loss is sufficiently small for many applications. However, in cases where a large number of bends are used, the total loss due to the bends can be quite large. Therefore, new methods to reduce bending loss is needed. Recently, [T. Fujisawa et al.](https://opg.optica.org/oe/fulltext.cfm?uri=oe-25-8-9150&id=362937) demonstrated that a waveguide bend following the clothoid curve, also known as the Euler bend, yields a much lower loss compared to a circular bend due to its smooth curvature transition. In this example notebook, we model a 90 degree Euler waveguide bend and compare its loss to a conventional circular bend. The loss of the Euler waveguide bend is found to be several times smaller compared to the circular bend of the same effective radius at the telecom wavelength.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 1, "id": "b27b7f93", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:44:58.720991Z", "iopub.status.busy": "2023-03-27T20:44:58.720590Z", "iopub.status.idle": "2023-03-27T20:44:59.919494Z", "shell.execute_reply": "2023-03-27T20:44:59.918838Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import scipy.integrate as integrate\n", "from scipy.optimize import fsolve\n", "import gdstk\n", "\n", "import tidy3d as td\n", "import tidy3d.web as web\n" ] }, { "cell_type": "markdown", "id": "6171eabc", "metadata": {}, "source": [ "## Clothoid Bend vs. Circular Bend" ] }, { "cell_type": "markdown", "id": "9f1647e0", "metadata": {}, "source": [ "The expression for a clothoid curve (Euler curve) whose starting point is at the origin is given by \n", "\n", "$$\n", "x = A \\int_{0}^{L/A} cos(\\frac{\\theta^2}{2})d\\theta,\n", "$$\n", "$$\n", "y = A \\int_{0}^{L/A} sin(\\frac{\\theta^2}{2})d\\theta,\n", "$$\n", "and \n", "$$\n", "RL=A^2,\n", "$$\n", "where $A$ is the clothoid parameter, $L$ is the curve length from $(0,0)$ to $(x,y)$, and $1/R$ is the curvature at $(x,y)$. At the end point of the clothoid curve, the curve length is $L_{max}$ and the curvature is $1/R_{min}$. Unlike a circular curve, the curvature of a clothoid curve varies linearly from 0 to $1/R_{min}$. A 90 degree Euler waveguide bend is constructed by connecting two pieces of clothoid curves with a circular curve. One clothoid curve starts at $(0,0)$ and the other starts at $(R_{eff},R_{eff})$, where $R_{eff}$ is the effective waveguide bending radius. To ensure a smooth transition of curvature, we choose a $L_{max}$ such that the derivative is continuous at the connecting points.\n", "\n", "In this example notebook, we model waveguide bends with a 4 $\\mu m$ effective bending radius. First, we plot the shapes of the two types of bends to get a sense of how the Euler bend and the circular bend differ. More specifically, we try the case with $A=2.4$." ] }, { "cell_type": "code", "execution_count": 2, "id": "bf5fb3bd", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:44:59.921866Z", "iopub.status.busy": "2023-03-27T20:44:59.921496Z", "iopub.status.idle": "2023-03-27T20:44:59.938680Z", "shell.execute_reply": "2023-03-27T20:44:59.938086Z" } }, "outputs": [], "source": [ "R_eff = 4 # effective radius of the bend\n", "A = 2.4 # clothoid parameter\n" ] }, { "cell_type": "markdown", "id": "7a80be45", "metadata": {}, "source": [ "An important step in constructing the Euler bend is to determine $L_{max}$. Here we do it numerically by first setting $L_{max}=0$. $L_{max}$ is then slowly increased at some small step. At each increment, we check if the tangent curve is perpendicular to that of the circular curve. Once this condition is met, we obtain the correct value of $L_{max}$ as well as the coordinates of the clothoid." ] }, { "cell_type": "code", "execution_count": 3, "id": "adea8def", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:44:59.940627Z", "iopub.status.busy": "2023-03-27T20:44:59.940462Z", "iopub.status.idle": "2023-03-27T20:45:00.023715Z", "shell.execute_reply": "2023-03-27T20:45:00.023146Z" } }, "outputs": [], "source": [ "L_max = 0 # starting point of L_max\n", "precision = 0.05 # increasement of L_max at each iteration\n", "tolerance = 0.01 # difference tolerance of the derivatives\n", "\n", "# determine L_max\n", "while True:\n", " L_max = L_max + precision # update L_max\n", " Ls = np.linspace(0, L_max, 50) # L at (x1,y1)\n", " x1 = np.zeros(len(Ls)) # x coordinate of the clothoid curve\n", " y1 = np.zeros(len(Ls)) # y coordinate of the clothoid curve\n", "\n", " # compute x1 and y1 using the above integral equations\n", " for i, L in enumerate(Ls):\n", " y1[i], err = integrate.quad(lambda theta: A * np.sin(theta**2 / 2), 0, L / A)\n", " x1[i], err = integrate.quad(lambda theta: A * np.cos(theta**2 / 2), 0, L / A)\n", "\n", " # compute the derivative at L_max\n", " k = -(x1[-1] - x1[-2]) / (y1[-1] - y1[-2])\n", " xp = x1[-1]\n", " yp = y1[-1]\n", " # check if the derivative is continuous at L_max\n", " R = np.sqrt(\n", " ((R_eff + k * xp - yp) / (k + 1) - xp) ** 2\n", " + (-(R_eff + k * xp - yp) / (k + 1) + R_eff - yp) ** 2\n", " )\n", " if np.abs(R - A**2 / L_max) < tolerance:\n", " break\n", "\n", "# after L_max is determined, R_min is also determined\n", "R_min = A**2 / L_max\n" ] }, { "cell_type": "markdown", "id": "2105c43c", "metadata": {}, "source": [ "After determining the first piece of the clothoid curve, the second piece can be obtained simply by mirroring it with respect to $y=-x+R_{eff}$." ] }, { "cell_type": "code", "execution_count": 4, "id": "eed38c95", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.025841Z", "iopub.status.busy": "2023-03-27T20:45:00.025671Z", "iopub.status.idle": "2023-03-27T20:45:00.043303Z", "shell.execute_reply": "2023-03-27T20:45:00.042773Z" } }, "outputs": [], "source": [ "# getting the coordinates of the second clothoid curve by mirroring the first curve with respect to y=-x+R_eff\n", "x3 = np.flipud(R_eff - y1)\n", "y3 = np.flipud(R_eff - x1)\n" ] }, { "cell_type": "markdown", "id": "de05e33b", "metadata": {}, "source": [ "The last step is to determine the circular curve connecting the clothoid curves. This can be done simply by enforcing a circle $(x-a)^2+(y-b)^2=R_{min}^2$ to pass the endpoints of the clothoid curves. Here, we use the `fsolve` function from `scipy.optimize` to solve for $a$ and $b$." ] }, { "cell_type": "code", "execution_count": 5, "id": "108b88fb", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.045345Z", "iopub.status.busy": "2023-03-27T20:45:00.045181Z", "iopub.status.idle": "2023-03-27T20:45:00.063608Z", "shell.execute_reply": "2023-03-27T20:45:00.063067Z" } }, "outputs": [], "source": [ "# solve for the parameters of the circular curve\n", "def circle(var):\n", " a = var[0]\n", " b = var[1]\n", " Func = np.empty((2))\n", " Func[0] = (xp - a) ** 2 + (yp - b) ** 2 - R_min**2\n", " Func[1] = (R_eff - yp - a) ** 2 + (R_eff - xp - b) ** 2 - R_min**2\n", " return Func\n", "\n", "\n", "a, b = fsolve(circle, (0, R_eff))\n", "\n", "# calculate the coordinates of the circular curve\n", "x2 = np.linspace(xp + 0.01, R_eff - yp - 0.01, 50)\n", "y2 = -np.sqrt(R_min**2 - (x2 - a) ** 2) + b\n" ] }, { "cell_type": "markdown", "id": "a469aadb", "metadata": {}, "source": [ "Now we have obtained the coordinates of the whole Euler bend, we can plot it with a conventional circular bend to see the difference. Compared to the circular bend, we can see the Euler bend has a smaller curvature at $(0,0)$ and $(R_{eff},R_{eff})$. This allows a slower transition to and from the straight waveguides, which leads to smaller reflection and scattering loss." ] }, { "cell_type": "code", "execution_count": 6, "id": "418298bf", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.065490Z", "iopub.status.busy": "2023-03-27T20:45:00.065354Z", "iopub.status.idle": "2023-03-27T20:45:00.273767Z", "shell.execute_reply": "2023-03-27T20:45:00.273219Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGiCAYAAAA4MLYWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD/0lEQVR4nO3deXxU1f3/8dfMJJnsCSGBBEhYw06QLYDgBipQta6Ur9UKSl0oKBSpikvFKoaqqFX54VIB61K0VrRVgSIFUZRdlB3ZDEIgQMieTJKZ+/vjQjAFyTZ3ZkLez8djHpl75845n8GBvL3n3HNthmEYiIiIiPiZ3d8FiIiIiIBCiYiIiAQIhRIREREJCAolIiIiEhAUSkRERCQgKJSIiIhIQFAoERERkYCgUCIiIiIBQaFEREREAoJCiYiIiAQES0PJtGnTsNlsVR6dO3e2sksRERFpoIKs7qBbt2589tlnpzoMsrxLERERaYAsTwhBQUEkJiZa3Y2IiIg0cJaHku+//54WLVoQGhrKwIEDycjIICUl5YzHulwuXC5X5bbH4yEnJ4emTZtis9msLlVERES8wDAMCgoKaNGiBXZ7zWeK2AzDMKwqauHChRQWFtKpUyeysrJ47LHHOHDgAJs3byYqKuq046dNm8Zjjz1mVTkiIiLiQ/v376dVq1Y1Pt7SUPK/cnNzad26Nc8++yxjx4497fX/PVOSl5dHSkoK+/fvJzo62ldlioiISD3k5+eTnJxMbm4uMTExNX6fT2edxsbG0rFjR3bt2nXG151OJ06n87T90dHRCiUiIiINTG2nXvh0nZLCwkJ2795NUlKSL7sVERGRBsDSUDJlyhQ+//xz9u3bx1dffcW1116Lw+HgxhtvtLJbERERaYAsHb758ccfufHGGzl27BgJCQkMHjyYVatWkZCQYGW3IiIi0gBZGkrmz59vZfMiIuIlhmFQUVGB2+32dynSQAQHB+NwOLzappZXFRFp5MrKysjKyqK4uNjfpUgDYrPZaNWqFZGRkV5rU6FERKQR83g87N27F4fDQYsWLQgJCdFilVItwzA4cuQIP/74I6mpqV47Y6JQIiLSiJWVleHxeEhOTiY8PNzf5UgDkpCQwL59+ygvL/daKPHpJcEiIhKYarMUuAjUfg2SmtC3UERERAKCQomIiIgEBIUSERFptJYvX47NZiM3N9frbV988cVMmjTJ6+3WxJgxY7jmmmv80nd9KJSIiEiDNGbMGGw222mP4cOH+7s0qSNdfSMiIg3W8OHDmTt3bpV9Z7qxq5XKysoICQnxaZ/nKp0pERGRKgzDoLiswucPwzBqXavT6SQxMbHKo0mTJgDs27cPm83Gxo0bK4/Pzc3FZrOxfPnyn23zyy+/5IILLiAsLIzk5GTuueceioqKKl9v06YNjz/+OLfccgvR0dHccccdP9tWRUUFEyZMICYmhvj4eB555JEqn9PlcjFlyhRatmxJREQE/fv3r1LbvHnziI2NZfHixXTp0oXIyEiGDx9OVlZW5TFut5vJkycTGxtL06ZNue++++r0ZxkIdKZERESqKCl30/WPi33e79Y/DSM8xL+/lnbv3s3w4cN54oknmDNnDkeOHGHChAlMmDChyhmZZ555hj/+8Y88+uijZ23vjTfeYOzYsaxZs4Z169Zxxx13kJKSwu233w7AhAkT2Lp1K/Pnz6dFixYsWLCA4cOHs2nTJlJTUwEoLi7mmWee4c0338Rut3PzzTczZcoU3n77bQBmzpzJvHnzmDNnDl26dGHmzJksWLCAIUOGWPSnZB2FEhERabA+/vjj05Y5f/DBB3nwwQfr1F5GRgY33XRT5QTV1NRUXnjhBS666CJmz55NaGgoAEOGDOHee++ttr3k5GSee+45bDYbnTp1YtOmTTz33HPcfvvtZGZmMnfuXDIzM2nRogUAU6ZMYdGiRcydO5cnn3wSgPLycl5++WXat28PmEHmT3/6U2Ufzz//PFOnTuW6664D4OWXX2bxYt+HSm9QKBERkSrCgh1s/dMwv/RbW5dccgmzZ8+usi8uLq7ONXz77bd89913lWchwBzOOrkcf5cuXQDo27dvjdobMGBAlUXGBg4cyMyZM3G73WzatAm3203Hjh2rvMflctG0adPK7fDw8MpAApCUlER2djYAeXl5ZGVl0b9//8rXg4KC6Nu3b4McwlEoERGRKmw2m9+HUWoqIiKCDh06nPG1k6vU/vSXc3l5+VnbKyws5M477+See+457bWUlJQq/dZXYWEhDoeD9evXn7ZM+0/P/gQHB1d5zWazNcjAURMN41snIiJSSwkJCQBkZWXRq1cvgCqTXs+kd+/ebN269WeDTm2tXr26yvaqVasqb2DXq1cv3G432dnZXHDBBXVqPyYmhqSkJFavXs2FF14ImJNr169fT+/evetdv68plIiISIPlcrk4dOhQlX1BQUHEx8cTFhbGgAEDmDFjBm3btiU7O5uHH374rO3df//9DBgwgAkTJvDb3/6WiIgItm7dypIlS3jppZdqXV9mZiaTJ0/mzjvvZMOGDbz44ovMnDkTgI4dO3LTTTdxyy23MHPmTHr16sWRI0dYunQpaWlpXHHFFTXqY+LEicyYMYPU1FQ6d+7Ms88+a8licL6gUCIiIg3WokWLSEpKqrKvU6dObN++HYA5c+YwduxY+vTpQ6dOnXjqqae4/PLLf7a9tLQ0Pv/8cx566CEuuOACDMOgffv2jBo1qk713XLLLZSUlJCeno7D4WDixIlVLiGeO3cuTzzxBPfeey8HDhwgPj6eAQMGcOWVV9a4j3vvvZesrCxGjx6N3W7ntttu49prryUvL69ONfuTzQjggan8/HxiYmLIy8sjOjra3+WIiJxzSktL2bt3L23btq28skSkJs723anr728tniYiIiIBQaFEREREAoJCiYiIiAQEhRIREREJCAolIiIiEhAUSkRERCQgKJSIiIhIQFAoERERkYCgUCIiIiIBQaFERETOaTabjQ8//NDSPpYvX47NZrPknjNjxozhmmuu8Xq7NTFt2jTOO+88n/WnUCIiIg3WoUOHuPvuu2nXrh1Op5Pk5GSuuuoqli5dWnlMVlYWI0aM8GOVUlO6IZ+IiDRI+/btY9CgQcTGxvL000/To0cPysvLWbx4MePHj6+8KV9iYuJZ2ykvLyc4ONgXJZ9VWVkZISEh/i7Dr3SmREREzqys6Ocf5aW1OLak+mPr4He/+x02m401a9Zw/fXX07FjR7p168bkyZNZtWpV5XE/Hb7Zt28fNpuNd999l4suuojQ0FDefvttwLyjcLdu3XA6nSQlJTFhwoQq79m4cWNlm7m5udhsNpYvX37G2o4dO8aNN95Iy5YtCQ8Pp0ePHvz973+vcszFF1/MhAkTmDRpEvHx8QwbNuysn/exxx4jISGB6Oho7rrrLsrKyipf83g8ZGRk0LZtW8LCwujZsyfvv/9+5esnh5eWLl1K3759CQ8P5/zzz2fHjh1V+pgxYwbNmzcnKiqKsWPHUlr6P/+dLaYzJSIicmZPtvj511Ivh5v+cWr76Q5QXnzmY1sPhls/ObX9fA8oPlb1mGl5tSotJyeHRYsWMX36dCIiIk57PTY29qzvf+CBB5g5cya9evUiNDSU2bNnM3nyZGbMmMGIESPIy8tj5cqVtarpp0pLS+nTpw/3338/0dHRfPLJJ/zmN7+hffv2pKenVx73xhtvMG7cuGr7Wrp0KaGhoSxfvpx9+/Zx66230rRpU6ZPnw5ARkYGb731Fi+//DKpqamsWLGCm2++mYSEBC666KLKdh566CFmzpxJQkICd911F7fddltl3++99x7Tpk1j1qxZDB48mDfffJMXXniBdu3a1fnPobYUSkREpMHZtWsXhmHQuXPnOr1/0qRJXHfddZXbTzzxBPfeey8TJ06s3NevX78619eyZUumTJlSuX333XezePFi3nvvvSqhJDU1laeeeqra9kJCQpgzZw7h4eF069aNP/3pT/zhD3/g8ccfp7y8nCeffJLPPvuMgQMHAtCuXTu+/PJLXnnllSqhZPr06ZXbDzzwAFdccQWlpaWEhoby/PPPM3bsWMaOHVv5Z/LZZ5/59GyJQomIiJzZgwd//jWbo+r2H3ad5dj/mSkwaVPdazrBMIx6vb9v376Vz7Ozszl48CBDhw6tb1mV3G43Tz75JO+99x4HDhygrKwMl8tFeHh4leP69OlTo/Z69uxZ5b0DBw6ksLCQ/fv3U1hYSHFxMZdddlmV95SVldGrV68q+9LS0iqfJyUlAebnT0lJYdu2bdx1111Vjh84cCDLli2rUY3eoFAiIiJnFnL6sIjPj/0Zqamp2Gy2ysmstfXTIZ+wsLCzHmu3m6Hqp0GovLz8rO95+umn+ctf/sLzzz9Pjx49iIiIYNKkSVXmgfxvHXVVWFgIwCeffELLli2rvOZ0Oqts/3RCr81mA8z5KIFCE11FRKTBiYuLY9iwYcyaNYuiotMnytZmvZCoqCjatGlT5TLin0pISADMS4tP+umk1zNZuXIlV199NTfffDM9e/akXbt27Ny5s8Y1/a9vv/2WkpJTE4ZXrVpFZGQkycnJdO3aFafTSWZmJh06dKjySE5OrnEfXbp0YfXq1VX2/XTCsC/oTImIiDRIs2bNYtCgQaSnp/OnP/2JtLQ0KioqWLJkCbNnz2bbtm01bmvatGncddddNGvWjBEjRlBQUMDKlSu5++67CQsLY8CAAcyYMYO2bduSnZ3Nww8/fNb2UlNTef/99/nqq69o0qQJzz77LIcPH6Zr1651+qxlZWWMHTuWhx9+mH379vHoo48yYcIE7HY7UVFRTJkyhd///vd4PB4GDx5cOVE3Ojqa0aNH16iPiRMnMmbMGPr27cugQYN4++232bJliya6ioiIVKddu3Zs2LCB6dOnc++995KVlUVCQgJ9+vRh9uzZtWpr9OjRlJaW8txzzzFlyhTi4+O54YYbKl+fM2cOY8eOpU+fPnTq1ImnnnqKyy+//Gfbe/jhh9mzZw/Dhg0jPDycO+64g2uuuYa8vNpdZXTS0KFDSU1N5cILL8TlcnHjjTcybdq0ytcff/xxEhISyMjIYM+ePcTGxtK7d28efPDBGvcxatQodu/ezX333UdpaSnXX38948aNY/HixXWquS5sRn1nC1koPz+fmJgY8vLyiI6O9nc5IiLnnNLSUvbu3Uvbtm0JDQ31dznSgJztu1PX39+aUyIiIiIBQaFEREREAoJCiYiIiAQEhRIREREJCAolIiJS7xVSpfGx4jujUCIi0oidXOGzuPhnbqYn8jNOrk7rcDiqObLmtE6JiEgj5nA4iI2NJTs7G4Dw8PDK5cdFfo7H4+HIkSOEh4cTFOS9KKFQIiLSyCUmJgJUBhORmrDb7aSkpHg1xCqUiIg0cjabjaSkJJo1a1btjeZETgoJCam8WaG3KJSIiAhgDuV4c36ASG1poquIiIgEBIUSERERCQg+CyUzZszAZrMxadIkX3UpIiIiDYhPQsnatWt55ZVXSEtL80V3IiIi0gBZHkoKCwu56aabeO2112jSpMlZj3W5XOTn51d5iIhIwzZr2S5umP0VH35zwN+lSICzPJSMHz+eK664gksvvbTaYzMyMoiJial8JCcnW12eiIhYLHbXhww78CK2H1b6uxQJcJaGkvnz57NhwwYyMjJqdPzUqVPJy8urfOzfv9/K8kRExAe+ib2M6RU3k9Wkj79LkQBn2Tol+/fvZ+LEiSxZsoTQ0NAavcfpdOJ0Oq0qSURE/ED3+pOasiyUrF+/nuzsbHr37l25z+12s2LFCl566SVcLpcW6RERaUR0Rx2pjmWhZOjQoWzatKnKvltvvZXOnTtz//33K5CIiDQSf9h9C3eEVLCu5GWgvb/LkQBmWSiJioqie/fuVfZFRETQtGnT0/aLiMg5yuOhmesHEu0Gqx0anpez04quIiJindJc7JiTSsqCo/1cjAQ6n96Qb/ny5b7sTkRE/K3kOACFRigee7Cfi5FApzMlIiJinZJcAHKJ9G8d0iAolIiIiHVOnCnJMyL8XIg0BAolIiJinZIcAI4bkdh0UbBUQ6FERESs4wjhUEgbMo3m/q5EGgCFEhERsU63a/hz+zd4sOK3/q5EGgCFEhERsZTnxDrzdruGb+TsFEpERMRSnhP3vlEmker4dJ0SERFpZD64k6l7V1FoH4nd1s3f1UiA05kSERGxzrFdtCjbRzAVGr6RaimUiIiIdU6sU3LciNLwjVRLoURERKxzIpTkEondplQiZ6dQIiIi1vB4oDQXgFwjAodCiVRDoURERKzhygPDA0AekSiTSHUUSkRExBonhm5KbaGUEYxDk0qkGrokWERErOEuh4QuHMx1A2hOiVRLZ0pERMQaCZ1g/CoebvYigIZvpFoKJSIiYqmTy8xr+Eaqo1AiIiKW8phzXTV8I9VSKBEREWt8/f9g1gCuLPwHoFAi1VMoERERa+RmwpFtRHjyAd2QT6qnUCIiItYoyQEg14gCICRIv3Lk7PQNERERa1QuMR8BKJRI9fQNERERa5y8GZ/nRChx6FeOnJ2+ISIiYo1ic/gmR8M3UkP6hoiIiDVOnCk56g4HIFhnSqQaWmZeRES8zzAgugU4QjhaaA7fKJRIdfQNERER77PZYNxKmLKDLHcMAE4N30g19A0RERFLlbvNJV11pkSqo2+IiIh434n73Xg8BhUe87kmukp1NKdERES8779PwJYFuNN/ByQBEOzQkq5ydoqtIiLifYc3Q85uKtwVlbt0pkSqo2+IiIh4X/ZWAFxxnSp3Bdv1K0fOTt8QERHxLleBeTM+oCg6FYDQYDt23ZFPqqFQIiIi3pW93fwZmUihw7wcOCJEUxilegolIiLiXSeGbmjelaIyc05JWIjDjwVJQ6FQIiIi3nUylDTrSkmZG9CZEqkZhRIREfGuqCRI6glJ51Hk0pkSqTlFVxER8a7Bk8wHULLxAAARToUSqZ7OlIiIiGWKTwzfhAXr/4GlegolIiLiPWXF4C6v3Dw5fKMzJVITCiUiIuI9G96AJ1vAwgcAKie6hmtOidSAQomIiHjPoc3gLgNnJACFJ8+U6OobqQGFEhER8Z79q82fLfsCkFdiDuXEhAX7qyJpQBRKRETEO4qOwbHvzefJ6cBPQkm4QolUT6FERES848e15s/4jhAeB+hMidSOQomIiHjH/lXmz+T+lbtOhpJohRKpAYUSERHxjv1rzJ9nCCU6UyI1oenQIiLiHd2uNYdtWp9fuUuhRGpDoURERLwj/XbzcYLbY1BQal4SrFAiNaHhGxERsURB6amVXRVKpCYsDSWzZ88mLS2N6OhooqOjGThwIAsXLrSySxER8Yd9KyFnDxhG5a7cYjOUhIc4CHbo/4GlepZ+S1q1asWMGTNYv34969atY8iQIVx99dVs2bLFym5FRMSXDAP+ORZe6AWZX1fuzikuA6BJeIi/KpMGxtI5JVdddVWV7enTpzN79mxWrVpFt27drOxaRER85fg+KMgCexAknVe5+0iBC4CEKKd/6pIGx2cTXd1uN//4xz8oKipi4MCBZzzG5XLhcrkqt/Pz831VnoiI1NXu/5o/k/tDSHjlboUSqS3LB/k2bdpEZGQkTqeTu+66iwULFtC1a9czHpuRkUFMTEzlIzk52eryRESkvk6GkvaXVNl9tFChRGrH8lDSqVMnNm7cyOrVqxk3bhyjR49m69atZzx26tSp5OXlVT72799vdXkiIlIf7grY+4X5vN2QKi9VnimJVCiRmrF8+CYkJIQOHToA0KdPH9auXctf/vIXXnnlldOOdTqdOJ368oqINBgHN4ArD0JjocV5VV7S8I3Uls+v0fJ4PFXmjYiISAN2cuim3cVgd1R56YiGb6SWLD1TMnXqVEaMGEFKSgoFBQW88847LF++nMWLF1vZrYiI+Er/u6B5NwiPP+0lnSmR2rI0lGRnZ3PLLbeQlZVFTEwMaWlpLF68mMsuu8zKbkVExFfCYqHLVaftNgxDc0qk1iwNJa+//rqVzYuISIDKL63AVeEBdKZEak435BMRkbpZ+RcoK4K0UdC0fZWXsvJKAIgNDyY02HGmd4ucRqFERERqz+OBr2dB4WFITj8tlBw4boaSlrFh/qhOGijdIUlERGrvwHozkDijoc2Fp718MNcMJS0USqQWFEpERKT2tn9s/uxwKQSdfsO9H3N1pkRqT6FERERqb8en5s/OV5zx5ZPDN62aKJRIzSmUiIhI7RzZCUd3gj0YUs+8xMMBnSmROlAoERGR2tnxifmz7QUQGnPGQzSnROpCoURERGrHXWGGkZ8Zuiktd3M431w4LTku3JeVSQOnS4JFRKR2LvoDDJ4EnoozvrzvWBEA0aFBNAkP9mFh0tAplIiISO05gs3HGew9YoaStgmR2Gw2X1YlDZyGb0REpOYObwHDOOshe0+cKWnbVEM3UjsKJSIiUjPHdsPs8+GlflBR9rOHVZ4piY/0VWVyjlAoERGRmtn8gfkzNvmMC6addHJOSZt4nSmR2lEoERGR6hkGbH7ffN79hrMeuveoGUra6UyJ1JJCiYiIVO/wFjiyHRxO6HLlzx6WV1LO0UJzaEdnSqS2FEpERKR6m/5h/ky97GcXTAPYcagAgBYxoUSF6nJgqR2FEhEROTt3BXw733yeNuqsh+44lA9Ap8Qoq6uSc5BCiYiInN3e5VB4CMKbQsfhZz10x2HzTEmnxGgfFCbnGi2eJiIiZ9duCNzyLyjMPutVN3Bq+KazzpRIHSiUiIjI2dnt0O6iag8zDIPth06eKVEokdrT8I2IiHhFVl4pBaUVOOw22iVE+LscaYAUSkRE5MwMA974JSyaCoVHqj18+4lJru3iI3AGOayuTs5BCiUiInJmP66DvZ/D2tfBUf1o/3c/5gHQveXPXzIscjYKJSIicmZr/2r+7H49hDWp9vCToSStlUKJ1I1CiYiInK7oGGxZYD7v99tqDzcM4yehJNbCwuRcplAiIiKn2/gWuF2QdB607F3t4Vl5pRwtdBFkt9GthdYokbpRKBERkao8Hlg3x3zebyzYbNW+5bsfcwHo2DyK0GBNcpW6USgREZGqdv8Xju8DZ0y1dwQ+6dsTQzc9kzWfROpOi6eJiEhVzTrDwAkQHA4hNbvT78kzJZpPIvWhUCIiIlXFtIJh02t8eLnbwzeZuQD0Som1piZpFDR8IyIi9bLlYD7FZW5iw4Pp2EzLy0vdKZSIiIip6Ci8+xvY+4W5mmsNrdl7DIC+reOw26ufFCvycxRKRETEtG4ObPsXLHmkVm9bszcHgP5t46yoShoRhRIREYHyUljzmvl84IQaXQYM4PEYrN13HIB0hRKpJ4USERGBjW9DUTZEt4KuV9f4bTuzC8grKSc8xKFF06TeFEpERBo7dwWs/Iv5/Py7wRFc47eu3mMO3fRp3YQgh36lSP3oGyQi0thtWQC5P0B4U+h9S63e+sX3RwEY0K6pFZVJI6NQIiLSmBkGfPmc+bz/uBovlgZQVuHh691mKLmoY4IV1Ukjo1AiItKYedyQ/ltI7GH+rIX1PxynqMxN04gQuiZpPonUn1Z0FRFpzBxB0Pc26HNrja+4OWnF90cAuLBjgtYnEa/QmRIREal1IAH4fIcZSjR0I96iUCIi0hgZBrw3Gja8Ce7yWr89u6CUrVn5AAxOjfd2ddJIKZSIiDRG3/8Htn4IC++Dktxav/2LneYE1x4tY4iPdHq3Nmm0FEpERBobw4DlGebzfr+FyNoPv3y27TAAF3fS0I14j0KJiEhjs/1jOPgNBEfAoIm1fntJmZvlJ+aTDOuW6O3qpBFTKBERaUw8blj6uPl84O8govbzQVZ8f4SScjetmoRpaXnxKoUSEZHG5Nv5cHQHhDUxl5Svg8WbDwEwvFsitjpctSPycxRKREQaC3cFLJ9hPh88GUJjat1EWYWncj7J8O4auhHvUigREWksHEFw/WvQ9RpIv71OTazac4z80goSopz0Tmni3fqk0dOKriIijUnKAPNRRwtPDN1c3rW5VnEVr9OZEhGRxsBVWO8myio8LNycBcCI7kn1bk/kf1kaSjIyMujXrx9RUVE0a9aMa665hh07dljZpYiI/K+cPfBsF/jsMXNeSR0t25FNbnE5zaOdDGzf1IsFipgsDSWff/4548ePZ9WqVSxZsoTy8nIuv/xyioqKrOxWRER+6rPHwJUPWRvNeSV1tGDDAQCuPq8lDg3diAUsnVOyaNGiKtvz5s2jWbNmrF+/ngsvvPC0410uFy6Xq3I7Pz/fyvJERM59+1aay8ljg8ser3MzecXl/Hd7NgDX9mrpndpE/odP55Tk5eUBEBcXd8bXMzIyiImJqXwkJyf7sjwRkXOLxw0L7zef9xkDid3r3NQnm7Ioc3vonBhFlyQtmCbW8Fko8Xg8TJo0iUGDBtG9+5n/YkydOpW8vLzKx/79+31VnojIuWf9PDi8yVyPZMgj9WpqwTc/AnBdb50lEev47JLg8ePHs3nzZr788sufPcbpdOJ06m6TIiL1VpwD/33CfH7JQxBR94mp+3OKWbvvOHabOZ9ExCo+CSUTJkzg448/ZsWKFbRq1coXXYqING4Hv4HyEkjoAn3H1qupBd+YE1wHdYineXSoN6oTOSNLQ4lhGNx9990sWLCA5cuX07ZtWyu7ExGRkzoMhfGroTS3XlfcuD0G7641h9I1wVWsZmkoGT9+PO+88w4fffQRUVFRHDpkrgQYExNDWFiYlV2LiEiT1kDrejXx+c5sDuSWEBsezC96aME0sZalE11nz55NXl4eF198MUlJSZWPd99918puRUQar80fmJcBe8lbqzIBuKF3K0KDHV5rV+RMLB++ERERH8nPgn9PNBdK+80CaD+kXs3tzylm2Q5zbZKbBtTvjItITejeNyIi54qFfzADSYve0Paiejc3f20mhgGDO8TTNj7CCwWKnJ1CiYjIuWDbx7Dt32BzwC9fAHv9hlpcFe7KCa43D0jxRoUi1VIoERFp6Erz4dMp5vNB90Bij3o3+dHGgxwtLCMpJpShXZrXuz2RmlAoERFp6Jb8EQqyIK4dXHR/vZszDIPXv9gLwK2D2hDs0K8K8Q1900REGrKsb2H9XPP5VS9AcP2XW/ji+6PsOFxARIiDUf00dCO+47Nl5kVExAKJaXDdX+HINmh7gVeafO2LPQCM6pdCTFiwV9oUqQmFEhGRhsxmg7SRXmtu+6F8vvj+KHabOXQj4ksavhERaYgOfgNFx7ze7KxluwEY0SOJ5Lhwr7cvcjYKJSIiDU3Jcfj7jTB7IBza5LVmdx8p5OPvDgIw4ZIOXmtXpKYUSkREGppPpphX2zijIK6915qdvXw3hgGXdmlOl6Ror7UrUlMKJSIiDcmm92Hz++Yiade+CiHeGWLZn1PMgm8OADBhiM6SiH8olIiINBS5mfDxZPP5hVOgVR+vNf3/lu/C7TG4IDWe85JjvdauSG0olIiINATuCvjgDnDlQat0uPA+rzW972gR7637EYB7hqZ6rV2R2lIoERFpCNa8CplfQ0gUXP8aOLy3osPzn+3E7TG4qGMC/drEea1dkdrSOiUiIg1Br5shayO0HwpN2nit2Z2HC/joW/OKmymXd/JauyJ1oVAiItIQhEbDda96vdln/7MTw4AR3RPp0SrG6+2L1IaGb0REApVhwLaPzZ8WWP9DDou2HMJug8mXdbSkD5HaUCgREQlUX70A794E/xzr9WBiGAZPfLINgF/1TSa1eZRX2xepC4USEZFAtG8lfPaY+bzNYPMeN1706aZDfJOZS1iwQ2dJJGAolIiIBJqCQ/D+rWC4IW0U9LnVq82XVXj486LtANx5UTuaRYd6tX2RulIoEREJJO5yeP82KDwMCV3gyue8fpZkzsq9ZOYUkxDl5PYL2nm1bZH6UCgREQkk/3kEflhprkcy6k0IifBq84fzS3lx6fcAPDC8MxFOXYQpgUOhREQkUOTsgbV/NZ9f+zLEe3911RkLt1NU5qZXSizX9mrp9fZF6kMRWUQkUMS1gzGfwI9roMuVXm9+3b4cFnxzAJsNHvtlN+x27w4LidSXQomISCBJ6W8+vKzc7eHhDzcDMKpvMmmtYr3eh0h9afhGRMSfKlzw/lg4tNnSbl7/ci/bDxXQJDyY+4Z3trQvkbpSKBER8RfDgI8nw+b34Z1fmQHFAvtzinn+s50APHRFV+IiQizpR6S+FEpERPxl5fOw8S2w2eGXL0CQ0+tdGIbBIx9tprTcw4B2cVzfW5NbJXAplIiI+MPWf8Fn08znw/8MHS61pJv31//I8h1HCHHYeeKaHti8vOaJiDcplIiI+NqB9fDBHebz9Dug/x2WdJOVV8Kf/r0VgMmXd6RDs0hL+hHxFoUSERFfOv4DvDMKKkqgw2UwLMOSbgzD4P5/bqLAVUGvlFit3CoNgi4JFhHxpbAm0Lw7FB+FkXPBYc0/w++u3c+KnUdwBtl5ZmRPHFqTRBoAhRIREV8KjYab/gGleeCMsqSLA7klPPHJNgCmXN6J9gkatpGGQcM3IiJW87hhy4fmJcAAjmCIiLekK8MwuP/97yh0VdCndRNuG9zWkn5ErKBQIiJiJcOATybDP0bDkkcs7+7NVT/w5a6jhAbbefqGNA3bSIOiUCIiYqVl02H9PMAGrdIt7WrLwTye+Ngctrl/eGfaadhGGhiFEhERq3z1Eqx42nx+xUzo+kvLuipyVXD3O99Q5vZwaZdmjDm/jWV9iVhFoURExArfvAX/ech8PuQR6DfW0u4e+Wgze44WkRQTytM39NQiadIgKZSIiHjb5n/Cv+42nw+cABfca2l3/1z/Ix9sOIDdBn/5v1400b1tpIFSKBER8bayYnOCa+/RcPkTYOFZi91HCnnkI/MOw5Mu7Uh62zjL+hKxmtYpERHxtt6/gfhUaNXP0kBSWu7m7ne+objMzfntmzL+kg6W9SXiCzpTIiLiDftWQmH2qe2UAWB3WNadYRhM/WATW7PyaRoRwnOjztPlv9LgKZSIiNTXns/hretg3pVQdNQnXb7+5V4WfHMAh93GrJt60zw61Cf9ilhJoUREpD52Lztxg71SiGsLzmjLu/zy+6M8+am5HskjV3RhQLumlvcp4gsKJSIidbXrM/j7/5l3/E0dBr/6GwRZe+XL/pxiJvx9Ax4DbujTitFaj0TOIQolIiJ1sXMx/P3X5hmSTr+AUW9CkNPSLovLKrj9b+vILS6nZ6sYnrimu9YjkXOKrr4REamtnYth/q/BUwGdr4Qb5lp+hsTjMbj3vW/ZfqiA+MgQXv5NH0KDrZtIK+IPCiUiIrXVvDtEt4RWfeHaV8y7/losY+E2Fm4+RIjDzuyb+5AUE2Z5nyK+plAiIlJbMS1h7BKIiLf0st+T/vb1Pl77Yi8AT49Mo18bLZAm5ybNKRERqY5hwOdPwab3T+2Lau6TQPLZ1sNM+9cWAP4wrBNXn9fS8j5F/MXSULJixQquuuoqWrRogc1m48MPP7SyOxER7/O4YeF9sGw6LLgTju32Wdff/ZjL3X//Bo8B/9cvmd9d3N5nfYv4g6WhpKioiJ49ezJr1iwruxERsUaFC/45Fta8am5fPh2a+iYYZB4r5rZ56ygpd3NhxwQe15U20ghYOqdkxIgRjBgxwsouRESsUZoH82+CfV+APRiufRl63OCTrg/nl3Lz66s5Wuiic2IUs37di2CHRtvl3BdQE11dLhcul6tyOz8/34/ViEijlfcjvD0SsrdCSKS5Bkn7IT7pOqeojJv/uprMnGJaNw3nb7elExVq/dU9IoEgoKJ3RkYGMTExlY/k5GR/lyQijdGmf5iBJDIRbl3os0BSUFrO6Dlr+D67kMToUN4a259muqeNNCIBFUqmTp1KXl5e5WP//v3+LklEGqNBk+DC++C3SyApzSddlpS5GfvGOjYdyCMuIoS3fptOcly4T/oWCRQBNXzjdDpxOq1dpllE5Iw2vW8uFx8SDjYbDHnIZ12Xlru56631rNmbQ5QziL/dlk6HZlE+618kUATUmRIREZ9zV8An95pX2Sy4Azwen3ZfWu7mzjfX8/nOI4QG23l9TD+6t4zxaQ0igcLSMyWFhYXs2rWrcnvv3r1s3LiRuLg4UlJSrOxaRKR6JcfhH2Ngz3LABi16m2dJfKS03M3tf1vHF98fJSzYwetj+pLeVqu1SuNlaShZt24dl1xySeX25MmTARg9ejTz5s2zsmsRkbPL3g7zb4ScPRAcAde9Cl2u9Fn3JWVmIPlylxlI5t7ajwHtmvqsf5FAZGkoufjiizEMw8ouRERqb/un8MHtUFYIMSlw4zuQ2MNn3ZuTWtfy1e5jhIc4mHdrus6QiBBgE11FRCxXVgQf/94MJG0ugJHzzBvr+UheSTlj561l3Q/HiQhx8MZt6fTVDfZEAIUSEWlsQiLMILL1I7j8cXD4bmGy7PxSbpmzhu2HCogODWLuren0ad3EZ/2LBDqFEhE59x3cCPkHoPMV5nbrgebDhzKPFXPz6+ZKrQlRTv52WzpdkqJ9WoNIoFMoEZFzl2HAhjfg0/vAHgR3LIOETj4vY1tWPrfMWcORAhcpceG8NbY/KU21MJrI/1IoEZFzk6sQPp5kLhkP5lLxkc18XsbXu49x55vryC+toHNiFH+7LV1Lx4v8DIUSETn3ZH0H798Gx74HmwOGPgLnTwS7b9eLfH/9j0z94DvK3Qb92jThr6P7EROmm+uJ/ByFEhE5t6x5DRY/BG4XRLWAG+b4fP6IYRg8t2QnL/zXXDzyyrQknhnZk9Bgh0/rEGloFEpE5NySf8AMJB1HwNWzIMK3C5K5Ktzc9/53fLTxIADjL2nPvZd1wm733UqxIg2VQomINHwVLgg6cTPPSx6CZt2gxw0+XTIeILuglHFvbWD9D8cJstt48toe/Kpfsk9rEGnIFEpEpOEqL4HPpsH+NXDbYggKMdcdSRvp81I27s/lzjfXcTjfRVRoELNv6sPgVN8tyiZyLlAoEZGG6eA38MEdcHSnub3rM+j8C7+U8t66/Ty8YDNlbg8dmkXy2i19aRsf4ZdaRBoyhRIRaVgqyuCLZ2DFM2C4ITLRnDuSeqnPSyl3e5j+yTbmfbUPgMu7Nmfmr3oSFaorbETqQqFERBqOrO/go9/BoU3mdrfr4IqZEO77e8cczC1hwjsb2JCZC8DvL+3I3UM6aEKrSD0olIhIw7H4QTOQhMWZYaT7dX4pY9n2bH7/3kZyi8uJCg3i2V+dx2Vdm/ulFpFziUKJiAQ2wzh1Fc2Vz8HyGTA8wy+rs1a4PTzzn528/PluANJaxTDr171JjtOS8SLeoFAiIoGpNB/++4R5Nc2w6ea++FS44XW/lLM/p5jfv7uRdT8cB2DM+W2Y+ovOOIO0IJqItyiUiEjg2fYxfPoHKDgINjv0+y3EtfVLKYZh8OHGA/zxwy0UuCqIcgbx5xvS+EWPJL/UI3IuUygRkcBxfB8sfAB2LjS3m7SFK5/1WyDJKy7noQ838fF3WQD0ad2E5351nu7wK2IRhRIR8b8KF3z1AqyYCRUlYA+CQZPgwikQHOaXklbuOsqUf3xLVl4pDruNSUNTGXdxe4Icvr2pn0hjolAiIv7nKoCvXjQDSZsLzCtrEjr5pZT80nIyPt3O39dkAtA2PoLnRp3HecmxfqlHpDFRKBER/8jdDzGtzCtrIuJh+J/B7oAeI31+z5qTlu/IZuoHm8jKKwXgNwNa88CIzkQ49U+liC/ob5qI+FbJcXM11tUvw6i3oNMIc/95N/qtpONFZUz/dBvvr/8RgJS4cP58fRoD2/v2DsMijZ1CiYj4hrsc1s2B5RlmMAHYtfRUKPEDwzD454YDPPnpNnKKyrDZzEt9/zCsE+Eh+udRxNf0t05ErGUYsO1f8NljkGMuOkZCF7j8Cb/cr+akXdkFPLRgM6v35gDQsXkkT17bg75tfL9kvYiYFEpExFofTYCNb5nPw+NhyEPQ6xZw+OefnyJXBbOW7eK1L/ZQ7jYIDbYzcWhHxg5uS0iQrqwR8SeFEhHxvp8uDd/lKtjyAQycAIPuAWeUX0ryeAwWfHOAPy/aTnaBC4AhnZvx2C+7aZl4kQChUCIi3pO9HZZNh5Z9YPAkc1/HYTDxO4hM8FtZ32QeZ9q/t/Lt/lzAnMj60BVduLxrc2x+utJHRE6nUCIi9XdkB3z+Z9j8AWDADyuh/10QHGqeMfFTIPnhWBHP/Gcn//72IAARIQ4mDEnltsFtdM8akQCkUCIidXd4K3zxzKkwAuZwzcUPmoHET44Wunhx6fe8vTqTCo9Z1/W9W3H/8E40i/ZfXSJydgolIlI3q1+FhX84td35SrjofkhK81tJeSXlzPlyL3/9Yg9FZW4ALuqYwH3DO9GtRYzf6hKRmlEoEZGaMQwoL4aQCHO73UVgc0CXK+HCP0BiD7+Vlldczusr9zJ35V4KSisASGsVwwPDO3N+h3i/1SUitaNQIiJn566AbR/ByhcgviNc/5q5P6ETTNoEMS39VtrxojJe/3Iv877aR6HLDCMdm0cycWhHftEjUZNYRRoYhRIRObPSfPjmTVj1MuSZN6fj2G5zf2i0ue2nQJJTVMZrX+zhb1/tqxym6ZwYxT1DUxneLRG7XWFEpCFSKBGRqnL2mPNFvnkLygrMfeFNod9vIf2OU4HED3YfKWTOl3v554YfKS33ANA1KZp7hqZyedfmCiMiDZxCiYhUtf0TWD3bfB7fCQaMg57/B8FhfinHMAxW7jrG61/uYdmOI5X7e7SM4Z6hqVzapZmGaUTOEQolIo1Z4RFzCfj4TtD5F+a+826CH76GfmOh/ZBTK7P6mKvCzUcbDzLny71sP2SesbHZ4NIuzRk7uC3928YpjIicYxRKRBobjwf2fg7r55lnRTzl0Cr9VCgJj4Mb3/FbebuyC3l3bSb/3HCAnKIys6QQByP7tOLWQW1pEx/ht9pExFoKJSKNRW4mbPy7eWYkN/PU/ha9oc/oqver8bGSMjefbspi/tpM1u47Xrk/KSaU0ee34cZ+KcSEB/ulNhHxHYUSkcbi49/Drs/M584YSBsJvUf7bbEzwzDYcjCf99btZ8E3ByrXF7HbzBvl/V+/FC7ulECQQ3fuFWksFEpEzjXuctj9X9j0Dxj6KMQmm/vP+zW4y6DXLeaCZ36auLr7SCH/2niQf397kD1Hiyr3t2oSxqi+yYzsm0xijJaCF2mMFEpEzgXuCvMmeFs+gK0fQcmJIZBmXeGCyebz7tebDz84mFvCv789yL++PciWg/mV+0OC7FzWpTmj+iUzuEO8LukVaeQUSkQassIjsGw6bP8Yik5dLktEM+h+HaRe7rfSMo8Vs2TbYRZtzqoyT8Rht3FBajy/7NmCy7o2JypUc0VExKRQItKQlBVB3o/mEu8AIeHw7XyoKIGwJuYdertdB20vBLvDp6V5PAbf/pjLZ9sOs2TrYXYeLqzyenrbOH7ZswW/6JFEXESIT2sTkYZBoUQk0OVmwvf/gR2LYO8KaNoBfveV+VpIBAx7Apq0gbYXgcO3Zx3yisv5es9RPt95lKXbDpNd4Kp8zWG3kd4mjku7NucXPRJJivHPHBYRaTgUSkQCUeYq2PZv82qZI9urvlZeBKV5EBpjbvf7rc/KclW4Wf/Dcb78/igrdx1l04E8PMap1yOdQVzUKYHLujTnkk7NdBmviNSKQomIv3nccGgTJPY4NeSy4U1zPREAmx2S+5vzQzr9why68dF6IsVlFXy7P4/1P+Swem8Oa/flVN5z5qQOzSIZ3CGeIZ2b0b9dHM4g3w4bici5Q6FExNc8bjj0HfzwFexbCT98aZ75uP2/0LKPeUzXX5o/Owwxl3oPa+KT0g7llbLuhxzW/3Cc9T8cZ+vBfCp+eioESIhyMrhDPIM7xDOoQ7wu3xURr1EoEfGVzNWwPAN+XHfq7rsnhUTB8X2nQknHYebDIoZhcCi/lM0H8tl8II8tB/PYfCCfQ/mlpx2bGB1KnzZN6Nu6CYM6xJPaLFL3nBERSyiUiHhTeSlkb4GDG+HABuh6NXQ8cVmu4YY9y8znzmhIGQCtB0GbwZB0Hjis+etYXFbB7uwivs8uYOfhQrZl5bPlYB5HC8tOO9Zug86J0fRt04Q+rc1Hy9gwhRAR8QmFEpH6KDluXpJ7aBNkfQdHtoGn4tTrIRGnQkmLXvCLZ8ww0qyrVy/ZNQyD7AIXPxwr5odjRezKLuT77EK+zy7gx+MlGMbp73HYbaQ2i6Rbixi6t4yme8sYuiRFE+nUPwsi4h/610fkbAwDCrPh2PdwZAcc3QnNu0HvW8zX3eWw6IGq7wmLMwNIi17Q4dJT+4PDIP32OpZhkFtcTlZeKVl5JRzMLTEDSI4ZQjJzik+bgPpTTSNC6NAsko7No+iYGEWPljF0TowiNFiTUkUkcPgklMyaNYunn36aQ4cO0bNnT1588UXS09N90bVI9cpLzUXJIpqe2C6BBXfB8b1wbM/p8z9Sh50KJZHNIG2UuU5IYpp5c7uY5BpfHVPh9pBTXMaxwhOPIhdHC8s4WugiO99FVl4Jh/JKOZhXctbQAebQS8smYbSOi6B9QgQdmkfRsVkkHZpF0jTSWcs/FBER37M8lLz77rtMnjyZl19+mf79+/P8888zbNgwduzYQbNmzazuXhorjwcqSs0VT8E847F+HhQeNh/5WVBwEPIPmsuzdxwBv55vHhsUaq4PUnZiRVKbHWJTIL6j+WjVr7KbcreHkl/MorTMTUm5m4KiCvKPHSO/pIKC0nLySyvILymnoLSC/NJyCkrLyS0uJ6eojGNFZRwvLjvj0MrPaRoRQmJMKEkxYbRuGk7rpuGkxIXTumkELWPDCAnSHXVFpOGyGUZt/kmsvf79+9OvXz9eeuklADweD8nJydx999088MADZ31vfn4+MTEx5OXlER0dbWWZEgDcHoOPNh4gOfNfgBsMA5vHjc2owOapwO4pozAsiczE4RgYGAYM2PQIIeX5BFcUElxRREh5ASEV5uNgXH8WnTersv3fLL8Ap7vwjH3vD+/CrPavUu42cHs89MpdRKERwX57EpmeZhS6HZScCB6l5R5Ky83nbk/9//rYbBAXHkLTyBDiI500jXTSNCKEhCgnSScCSFJMKIkxoRpuEZEGoa6/vy09U1JWVsb69euZOnVq5T673c6ll17K119/fdrxLpcLl+vUMtX5+fmnHSPnLrfHYPJ737LL+RBBtjMPVaxw9+DB8paV2985lxBtKz7jsceOHOKJT7ZVbocHmUOGR4jlsNGEQ0YTDhlxHDDiySuNgJz9lcd+SNpPWjpzkPkpmw3Cgh1EhQYRFRpM9MmfYT99fuq1hJPhIzKEJuEhOHR3XBERa0PJ0aNHcbvdNG/evMr+5s2bs3379tOOz8jI4LHHHrOyJAlgdhtc2DGBTdnp2HGDzYYHB26bAw9BVNiDyQ5uw2VNmmPDDAL/zrsDbDZcjnBK7RGUOiIptkdSEhRNiT2aqx0hnPx1v87+KMF2Ow6HjWC7jbYOO6kOG0F2G0F2O8EOG0EO+4ltG8FBdkKDHISFOAgNthMa7CAs2FH5MyzEQWiQg9AQOyEOuy6bFRGpp4C6+mbq1KlMnjy5cjs/P5/k5GQ/ViS+FOSw87fb0oHFZz3uhipbfS2sSEREfMnSUBIfH4/D4eDw4cNV9h8+fJjExMTTjnc6nTidukpARESkMbJ0qn5ISAh9+vRh6dKllfs8Hg9Lly5l4MCBVnYtIiIiDYzlwzeTJ09m9OjR9O3bl/T0dJ5//nmKioq49dZbre5aREREGhDLQ8moUaM4cuQIf/zjHzl06BDnnXceixYtOm3yq4iIiDRulq9TUh9ap0RERKThqevvby3/KCIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUiIiISEBRKREREJCAolIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUiIiISEBRKREREJCAolIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUiIiISEBRKREREJCAolIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUiIiISEBRKREREJCAolIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUiIiISEBRKREREJCAolIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUiIiISEBRKREREJCAolIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBATLQsn06dM5//zzCQ8PJzY21qpuRERE5BxhWSgpKytj5MiRjBs3zqouRERE5BwSZFXDjz32GADz5s2r8XtcLhcul6tyOy8vD4D8/Hyv1iYiIiLWOfl72zCMWr3PslBSFxkZGZVh5qeSk5P9UI2IiIjUR0FBATExMTU+PqBCydSpU5k8eXLltsfjIScnh+DgYFJSUti/fz/R0dF+rNB38vPzSU5OblSfGfS5G9PnboyfGRrn526Mnxn0ubdu3UqLFi1q9d5ahZIHHniAP//5z2c9Ztu2bXTu3LlWRZzkdDpxOp1V9sXGxlaeBoqOjm5U/2GhcX5m0OduTBrjZ4bG+bkb42eGxvu5W7Zsid1eu6mrtQol9957L2PGjDnrMe3atatVASIiIiJQy1CSkJBAQkKCVbWIiIhII2bZnJLMzExycnLIzMzE7XazceNGADp06EBkZGSt2nI6nTz66KOnDe2cyxrjZwZ97sb0uRvjZ4bG+bkb42cGfe66fG6bUdvrdWpozJgxvPHGG6ftX7ZsGRdffLEVXYqIiEgDZlkoEREREakN3ftGREREAoJCiYiIiAQEhRIREREJCAolIiIiEhAaVCjZt28fY8eOpW3btoSFhdG+fXseffRRysrK/F2a5aZPn875559PeHg4sbGx/i7HMrNmzaJNmzaEhobSv39/1qxZ4++SLLVixQquuuoqWrRogc1m48MPP/R3SZbLyMigX79+REVF0axZM6655hp27Njh77IsN3v2bNLS0ipX9xw4cCALFy70d1k+NWPGDGw2G5MmTfJ3KZaaNm0aNputyqOuK503JAcOHODmm2+madOmhIWF0aNHD9atW1erNhpUKNm+fTsej4dXXnmFLVu28Nxzz/Hyyy/z4IMP+rs0y5WVlTFy5EjGjRvn71Is8+677zJ58mQeffRRNmzYQM+ePRk2bBjZ2dn+Ls0yRUVF9OzZk1mzZvm7FJ/5/PPPGT9+PKtWrWLJkiWUl5dz+eWXU1RU5O/SLNWqVStmzJjB+vXrWbduHUOGDOHqq69my5Yt/i7NJ9auXcsrr7xCWlqav0vxiW7dupGVlVX5+PLLL/1dkqWOHz/OoEGDCA4OZuHChWzdupWZM2fSpEmT2jVkNHBPPfWU0bZtW3+X4TNz5841YmJi/F2GJdLT043x48dXbrvdbqNFixZGRkaGH6vyHcBYsGCBv8vwuezsbAMwPv/8c3+X4nNNmjQx/vrXv/q7DMsVFBQYqampxpIlS4yLLrrImDhxor9LstSjjz5q9OzZ099l+NT9999vDB48uN7tNKgzJWeSl5dHXFycv8uQeiorK2P9+vVceumllfvsdjuXXnopX3/9tR8rE6vl5eUBNKq/x263m/nz51NUVMTAgQP9XY7lxo8fzxVXXFHl7/e57vvvv6dFixa0a9eOm266iczMTH+XZKl//etf9O3bl5EjR9KsWTN69erFa6+9Vut2GnQo2bVrFy+++CJ33nmnv0uRejp69Chut5vmzZtX2d+8eXMOHTrkp6rEah6Ph0mTJjFo0CC6d+/u73Ist2nTJiIjI3E6ndx1110sWLCArl27+rssS82fP58NGzaQkZHh71J8pn///sybN49FixYxe/Zs9u7dywUXXEBBQYG/S7PMnj17mD17NqmpqSxevJhx48Zxzz33nHFl97MJiFDywAMPnDYp6H8f27dvr/KeAwcOMHz4cEaOHMntt9/up8rrpy6fW+RcMn78eDZv3sz8+fP9XYpPdOrUiY0bN7J69WrGjRvH6NGj2bp1q7/Lssz+/fuZOHEib7/9NqGhof4ux2dGjBjByJEjSUtLY9iwYXz66afk5uby3nvv+bs0y3g8Hnr37s2TTz5Jr169uOOOO7j99tt5+eWXa9WOZTfkq417772XMWPGnPWYdu3aVT4/ePAgl1xyCeeffz6vvvqqxdVZp7af+1wWHx+Pw+Hg8OHDVfYfPnyYxMREP1UlVpowYQIff/wxK1asoFWrVv4uxydCQkLo0KEDAH369GHt2rX85S9/4ZVXXvFzZdZYv3492dnZ9O7du3Kf2+1mxYoVvPTSS7hcLhwOhx8r9I3Y2Fg6duzIrl27/F2KZZKSkk4769elSxf++c9/1qqdgAglCQkJJCQk1OjYAwcOcMkll9CnTx/mzp2L3R4QJ3vqpDaf+1wXEhJCnz59WLp0Kddccw1gJu+lS5cyYcIE/xYnXmUYBnfffTcLFixg+fLltG3b1t8l+Y3H48Hlcvm7DMsMHTqUTZs2Vdl366230rlzZ+6///5GEUgACgsL2b17N7/5zW/8XYplBg0adNql/Tt37qR169a1aicgQklNHThwgIsvvpjWrVvzzDPPcOTIkcrXzvX/m87MzCQnJ4fMzEzcbjcbN24EoEOHDkRGRvq3OC+ZPHkyo0ePpm/fvqSnp/P8889TVFTErbfe6u/SLFNYWFjl/5727t3Lxo0biYuLIyUlxY+VWWf8+PG88847fPTRR0RFRVXOGYqJiSEsLMzP1Vln6tSpjBgxgpSUFAoKCnjnnXdYvnw5ixcv9ndplomKijptrlBERARNmzY9p+cQTZkyhauuuorWrVtz8OBBHn30URwOBzfeeKO/S7PM73//e84//3yefPJJfvWrX7FmzRpeffXV2o9m1P9CIN+ZO3euAZzxca4bPXr0GT/3smXL/F2aV7344otGSkqKERISYqSnpxurVq3yd0mWWrZs2Rn/u44ePdrfpVnm5/4Oz50719+lWeq2224zWrdubYSEhBgJCQnG0KFDjf/85z/+LsvnGsMlwaNGjTKSkpKMkJAQo2XLlsaoUaOMXbt2+bssy/373/82unfvbjidTqNz587Gq6++Wus2bIZhGPVNSCIiIiL11XAnZIiIiMg5RaFEREREAoJCiYiIiAQEhRIREREJCAolIiIiEhAUSkRERCQgKJSIiIhIQFAoERERkYCgUCIiIiIBQaFEREREAoJCiYiIiASE/w8+cJEQhASLUwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# obtain the coordinates of the whole Euler bend by concatenating three pieces together\n", "x_euler = np.concatenate((x1, x2, x3))\n", "y_euler = np.concatenate((y1, y2, y3))\n", "\n", "# the conventional circular bend is simply given by a circle\n", "x_circle = np.linspace(0, R_eff, 100)\n", "y_circle = -np.sqrt(R_eff**2 - (x_circle) ** 2) + R_eff\n", "\n", "# plotting the shapes of the Euler bend and the circular bend\n", "plt.plot(x_euler, y_euler, label=\"Euler bend\")\n", "plt.plot(x_circle, y_circle, \"--\", label=\"Circular bend\")\n", "plt.axis(\"equal\")\n", "plt.ylim(-1, R_eff + 1)\n", "plt.legend()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "c4fbcbe4", "metadata": {}, "source": [ "## Loss of a Circular Bend" ] }, { "cell_type": "markdown", "id": "7e4281c7", "metadata": {}, "source": [ "We first simulate a circular waveguide bend as a baseline reference. Then in the next section, we will simulate an Euler bend and compare their losses quantitatively. Both simulations share the same parameters and simulation setup. The only difference is the bend structure." ] }, { "cell_type": "code", "execution_count": 7, "id": "d46ffcb3", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.276002Z", "iopub.status.busy": "2023-03-27T20:45:00.275749Z", "iopub.status.idle": "2023-03-27T20:45:00.293840Z", "shell.execute_reply": "2023-03-27T20:45:00.293274Z" } }, "outputs": [], "source": [ "lda0 = 1.55 # central wavelength\n", "freq0 = td.C_0 / lda0 # central frequency\n", "ldas = np.linspace(1.5, 1.6, 100) # simulation wavelength range\n", "freqs = td.C_0 / ldas # simulation wavelength range\n", "fwidth = 0.5 * (np.max(freqs) - np.min(freqs)) # frequency width of the souce\n" ] }, { "cell_type": "code", "execution_count": 8, "id": "aa37e2e4", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.295859Z", "iopub.status.busy": "2023-03-27T20:45:00.295612Z", "iopub.status.idle": "2023-03-27T20:45:00.312551Z", "shell.execute_reply": "2023-03-27T20:45:00.311993Z" } }, "outputs": [], "source": [ "t = 0.21 # thickness of the waveguide\n", "w = 0.4 # width of the waveguide\n", "inf_eff = 100 # effective infinity of the simulation\n", "buffer = 1 # buffer distance\n" ] }, { "cell_type": "markdown", "id": "a3414324", "metadata": {}, "source": [ "The silicon waveguide on the oxide substrate has an oxide top cladding. Therefore, we will define two materials for the simulations. Both are modeled as non-dispersive in this case." ] }, { "cell_type": "code", "execution_count": 9, "id": "96ca40ac", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.314668Z", "iopub.status.busy": "2023-03-27T20:45:00.314377Z", "iopub.status.idle": "2023-03-27T20:45:00.332332Z", "shell.execute_reply": "2023-03-27T20:45:00.331769Z" } }, "outputs": [], "source": [ "n_si = 3.476 # silicon refractive index\n", "si = td.Medium(permittivity=n_si**2)\n", "\n", "n_sio2 = 1.444 # silicon oxide refractive index\n", "sio2 = td.Medium(permittivity=n_sio2**2)\n" ] }, { "cell_type": "markdown", "id": "f84a97f6", "metadata": {}, "source": [ "In the previous section, we obtained the coordinates that describe the Euler bend and the circular bend. To construct the 3D waveguide bend structure, we define a helper function here. We make use of `gdstk` to convert the coordinates of a bend to a Tidy3D [PolySlab](../_autosummary/tidy3d.PolySlab.html)." ] }, { "cell_type": "code", "execution_count": 10, "id": "6fad676b", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.334434Z", "iopub.status.busy": "2023-03-27T20:45:00.334263Z", "iopub.status.idle": "2023-03-27T20:45:00.354229Z", "shell.execute_reply": "2023-03-27T20:45:00.353664Z" } }, "outputs": [], "source": [ "# function that takes the x and y coordinates of a curve and returns a waveguide bend structure with a given width and thickness\n", "def line_to_structure(x, y, w, t):\n", " \n", " cell = gdstk.Cell(\"bend\") # define a gds cell\n", " \n", " # add points to include the input and output straght waveguides\n", " x = np.insert(x, 0, -inf_eff)\n", " x = np.append(x, R_eff)\n", " y = np.insert(y,0,0)\n", " y = np.append(y, inf_eff)\n", "\n", " cell.add(gdstk.FlexPath(x + 1j * y, w, layer=1, datatype=0)) # add path to cell\n", " \n", " # define structure from cell\n", " bend = td.Structure(\n", " geometry=td.PolySlab.from_gds(\n", " cell,\n", " gds_layer=1,\n", " axis=2,\n", " slab_bounds=(0, t),\n", " )[0], \n", " medium=si\n", " )\n", "\n", " return bend\n" ] }, { "cell_type": "markdown", "id": "26c2e973", "metadata": {}, "source": [ "Use the `line_to_structure` function to create the circular bend structure." ] }, { "cell_type": "code", "execution_count": 11, "id": "3a370a01", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.356250Z", "iopub.status.busy": "2023-03-27T20:45:00.356002Z", "iopub.status.idle": "2023-03-27T20:45:00.373306Z", "shell.execute_reply": "2023-03-27T20:45:00.372657Z" } }, "outputs": [], "source": [ "circular_bend = line_to_structure(x_circle, y_circle, w, t)\n" ] }, { "cell_type": "markdown", "id": "97e3cd4b", "metadata": {}, "source": [ "Defined a [ModeSource](../_autosummary/tidy3d.ModeSource.html) for excitation, a [ModeMonitor](../_autosummary/tidy3d.ModeMonitor.html) for detecting transmission, and a [FieldMonitor](../_autosummary/tidy3d.FieldMonitor.html) to visualize the field propagation and leakage in the bend. The fundamental TE mode is excited in the input waveguide. All boundaries are set to [PML](../_autosummary/tidy3d.PML.html) for efficient absorption of the outgoing radiation." ] }, { "cell_type": "code", "execution_count": 12, "id": "ab69656d", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.375389Z", "iopub.status.busy": "2023-03-27T20:45:00.375212Z", "iopub.status.idle": "2023-03-27T20:45:00.615210Z", "shell.execute_reply": "2023-03-27T20:45:00.614680Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAHWCAYAAADttCmyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABijElEQVR4nO3deXwb5YE//s/oGMmWJUuR7cS5L0IIuSAkECANRwpLKYV2S1mWpSnt0pYGWpZ2W/JqX1DYb5tu2aX04Gh3W9IfC+XoLnQXKDchHIWGQGjuhBDI5RxyJEuWLWmkeX5/uCPLsmRppBkd1uf9evkFkUczj/3M6ONn5jkkIYQAERERAQAs1S4AERFRLWEwEhERZWAwEhERZWAwEhERZWAwEhERZWAwEhERZWAwEhERZWAwEhERZWAwEhERZWAwEtWpdevWQZIkrFu3rtpFIRpVGIxENe6ee+7B2rVrq12Mkjz00EO46667ql0MAICqqvjxj3+MadOmwel0Yv78+fjd735X9PtDoRC+/OUvo729HS6XC+eeey7eeeednNv+7//+L0499VQ4nU5MnjwZt956K5LJpFE/CplNEFFNO/nkk8Xy5cuHvZ5KpUR/f79IpVKVL1SRLr74YjFlypRqF0MIIcTNN98sAIhrr71W/OpXvxIXX3yxACB+97vfFXxvKpUSZ555pnC5XOL73/+++MUvfiHmzJkj3G632LVr15Btn376aSFJkjj33HPFr371K3HDDTcIi8UivvrVr5r1o5HBGIxUF3p7e6tdhKrJF4z1oFaC8cCBA8Jut4tVq1alX1NVVSxbtkxMnDhRJJPJEd//yCOPCADiscceS7929OhR4fV6xZVXXjlk2zlz5ogFCxYIRVHSr333u98VkiSJ7du3G/QTkZkYjFRxBw4cEF/84hdFZ2enkGVZTJ06VXz1q18V8XhcCCHE/fffLwCIdevWieuuu060t7cLr9ebfv/dd98t5syZI2RZFp2dneJrX/uaCAaDQ46xa9cu8ZnPfEaMHTtWOBwOMWHCBHHFFVeIUCiU3ua5554TZ511lmhtbRUul0vMmjVLrF69umD5i3lfLBYTt9xyi5gxY4aQZVlMnDhR/PM//7OIxWLD9vfAAw+IxYsXi6amJuH1esWyZcvEs88+K4QQYsqUKQLAkC8tJF9++WUBQLz88stD9vfoo4+KU089VTidTuH3+8VVV10lDhw4MGSblStXCpfLJQ4cOCAuvfRS4XK5RFtbm/jmN79ZMCSEEOKJJ54Qn/jEJ9J1OH36dHH77bcPee/y5cuHlX2kkFy5cuWw7bWvW2+9tWCZRnL33XcLAGLr1q1DXn/ooYcEAPHqq6+O+P7LL79cjB07dljr/Mtf/rJobm5O1+vWrVsFAHH33XcP2e7gwYMCgPiXf/mXsn4OqgxbBe/aEuHQoUNYsmRJ+nnN7NmzcfDgQfz+979HX18fZFlOb/u1r30N7e3tuOWWWxCNRgEA3//+93HbbbdhxYoVuO6667Bz507ce++92LBhA15//XXY7XYkEglceOGFiMfjuOGGGzBu3DgcPHgQTz75JEKhEFpbW7F161Z88pOfxPz583H77bfD4XDg/fffx+uvvz5i+Yt5n6qq+NSnPoXXXnsNX/7yl3HSSSdh8+bN+MlPfoJdu3bhiSeeSG9722234fvf/z7OPPNM3H777ZBlGW+99RZeeuklXHDBBbjrrrtwww03oKWlBd/97ncBAGPHjs1bvrVr1+Kaa67B4sWLsWbNGhw5cgQ//elP8frrr+Pdd9+F1+tNb5tKpXDhhRfi9NNPx7/927/hhRdewL//+79jxowZuO6660b8PaxduxYtLS246aab0NLSgpdeegm33HILwuEw7rjjDgDAd7/7XfT09ODAgQP4yU9+AgBoaWnJu8+vfOUrWLFixZDXnnnmGTz44IPo6OhIvxYIBEYsm8btdsPhcAAA3n33XbhcLpx00klDtlmyZEn6+2effXbefb377rs49dRTYbEM7ZaxZMkS/OpXv8KuXbswb948vPvuuwCA0047bch248ePx8SJE9PfpxpX7WSmxvL5z39eWCwWsWHDhmHfU1VVCDHYYjz77LOHtECOHj0qZFkWF1xwwZC/3H/xi18IAOI3v/mNEEKId999d9htr2w/+clPBABx7NgxXeUv5n0PPPCAsFgsw1oh9913nwAgXn/9dSGEELt37xYWi0V8+tOfHtYS0X4XQuS/lZrdYkwkEqKjo0PMnTtX9Pf3p7d78sknBQBxyy23pF/TWme33377kH2ecsopYtGiRSP/EoQQfX19w177yle+MqT1JER5t1J3794tWltbxcc//vEh5wHytCqzv+6///4h5Zg+ffqwY0SjUQFA3HzzzSOWxeVyiS9+8YvDXn/qqacEAPHMM88IIYS44447BACxb9++YdsuXrxYnHHGGcX++FRF7JVKFaOqKp544glccsklw/6iBgBJkob8+9prr4XVak3/+4UXXkAikcCNN9445C/3a6+9Fh6PB0899RQAoLW1FQDw7LPPoq+vL2dZtJbTH/7wB6iqWvTPUMz7HnvsMZx00kmYPXs2AoFA+uu8884DALz88ssAgCeeeAKqquKWW24Z1hLJ/l0U4+2338bRo0fxta99DU6nM/36xRdfjNmzZ6d/P5m++tWvDvn3smXL8MEHHxQ8VlNTU/r/I5EIAoEAli1bhr6+PuzYsUN32bNFo1F8+tOfhs/nw+9+97sh58Hzzz9f1NeFF16Yfk9/f3+69ZhJ+z319/ePWJ5i36/9N9+2hY5DtYG3Uqlijh07hnA4jLlz5xa1/bRp04b8+6OPPgIAnHjiiUNel2UZ06dPT39/2rRpuOmmm3DnnXfiwQcfxLJly/CpT30K//AP/5AOzSuuuAL/+Z//iX/8x3/EzTffjPPPPx+f+cxn8NnPfnZYSGUq5n27d+/G9u3b0d7ennMfR48eBQDs2bMHFosFc+bMKer3UUi+3w8AzJ49G6+99tqQ15xO57Ay+nw+BIPBgsfaunUrvve97+Gll15COBwe8r2enh69RR/m2muvxZ49e/DGG2/A7/cP+V727dZiNDU1IR6PD3s9Foulv2/E+7X/5tu20HGoNjAYqWaV8yHy7//+7/jCF76AP/zhD3juuefw9a9/HWvWrMGbb76JiRMnoqmpCevXr8fLL7+Mp556Cs888wweeeQRnHfeeXjuueeGtFCyy1TofaqqYt68ebjzzjtz7mPSpEkl/1xGyvczFhIKhbB8+XJ4PB7cfvvtmDFjBpxOJ9555x185zvf0dUCz+WnP/0pfve73+G//uu/sHDhwmHfP3z4cFH7aW1tTZ9DnZ2dePnllyGEGNIa7+rqAjDwDHAknZ2d6W0zZb+/s7Mz/Xp2PXd1daWfaVJt461Uqpj29nZ4PB5s2bKlpPdPmTIFALBz584hrycSCezduzf9fc28efPwve99D+vXr8err76KgwcP4r777kt/32Kx4Pzzz8edd96Jbdu24Qc/+AFeeuml9K3OfAq9b8aMGTh+/DjOP/98rFixYtiX1qKbMWMGVFXFtm3bRjxesbdV8/1+tNeyfz+lWrduHbq7u7F27Vp84xvfwCc/+UmsWLECPp9v2LZ6bwm/+uqr+Na3voUbb7wRV111Vc5tOjs7i/p65JFH0u9ZuHAh+vr6sH379iH7euutt9LfH8nChQvxzjvvDAv9t956C83NzZg1a9aQ/bz99ttDtjt06BAOHDhQ8DhUGxiMVDEWiwWXXXYZ/u///m/YBwcACCFGfP+KFSsgyzJ+9rOfDdn217/+NXp6enDxxRcDAMLh8LBZRubNmweLxZK+xXX8+PFh+9c+tHLdBtMU877Pfe5zOHjwIP7jP/5j2Lb9/f3pHraXXXYZLBYLbr/99mEfuJk/n8vlQigUylsmzWmnnYaOjg7cd999Q36GP/7xj9i+fXv691MuraWZWcZEIoF77rln2LYul6voW6tdXV343Oc+h7PPPjvdszWXUp4xXnrppbDb7UPKKITAfffdhwkTJuDMM88cUo4dO3ZAUZT0a5/97Gdx5MgR/M///E/6tUAggMceewyXXHJJ+pniySefjNmzZ+NXv/oVUqlUett7770XkiThs5/9bFG/C6ou3kqlivrhD3+I5557DsuXL08PZejq6sJjjz2G1157bchwgmzt7e1YvXo1brvtNvzN3/wNPvWpT2Hnzp245557sHjxYvzDP/wDAOCll17C9ddfj8svvxyzZs1CMpnEAw88AKvVir/9278FANx+++1Yv349Lr74YkyZMgVHjx7FPffcg4kTJ47Ybb+Y91199dV49NFH8dWvfhUvv/wyzjrrLKRSKezYsQOPPvoonn32WZx22mmYOXMmvvvd7+Jf/uVfsGzZMnzmM5+Bw+HAhg0bMH78eKxZswYAsGjRItx77734f//v/2HmzJno6OhId+TJZLfb8a//+q+45pprsHz5clx55ZXp4RpTp07FP/3TP5VabUOceeaZ8Pl8WLlyJb7+9a9DkiQ88MADOf+wWbRoER555BHcdNNNWLx4MVpaWnDJJZfk3O/Xv/51HDt2DN/+9rfx8MMPD/ne/PnzMX/+fAClPWOcOHEibrzxRtxxxx1QFAWLFy/GE088gVdffRUPPvjgkNvKq1evxm9/+1vs3bsXU6dOBTAQjGeccQauueYabNu2DW1tbbjnnnuQSqVw2223DTnWHXfcgU996lO44IIL8Hd/93fYsmULfvGLX+Af//Efhw0XoRpVxR6x1KA++ugj8fnPf160t7cLh8Mhpk+fLlatWjVsgH+uIR1CDAzPmD17trDb7WLs2LHiuuuuGzLA/4MPPhBf/OIXxYwZM4TT6RRjxowR5557rnjhhRfS27z44ovi0ksvFePHjxeyLIvx48eLK6+8ctj0XtmKfV8ikRD/+q//Kk4++WThcDiEz+cTixYtErfddpvo6ekZsu1vfvMbccopp6S3W758uXj++efT3z98+LC4+OKLhdvtLmqA/yOPPJLe35gxY0Yc4J/t1ltvFcV8LLz++uvijDPOEE1NTWL8+PHi29/+tnj22WeHlae3t1f8/d//vfB6vQUH+OeaEED7KneAvxAD07r98Ic/FFOmTBGyLIuTTz5Z/Nd//dew7bShLHv37h3y+vHjx8WXvvQl4ff7RXNzs1i+fHnec/Txxx8XCxcuFA6HQ0ycOFF873vfE4lEouyfgSpDEqLA/SsiIqIGwmeMREREGRiMREREGRiMREREGRiMREREGRiMREREGRiMREREGRpqgL+qqjh06BDcbndJqxcQEVF9EkIgEolg/PjxIy4UADRYMB46dKhmJnAmosawbDbw4NeAUB9gtwCyHbjox8Cu4XOSUwXs378fEydOHHGbhgpGt9sNAPj2t789ZOWGRCKRns5KluVhrUnte21tbbDb7aaULZFIpOfD9Hq9Q1ayrxQhBI4dOwZgYD05bYmmSuvp6UnP9dne3l6V1j3rYxDrY0C++ugK9aK3X8n7vkvan0arZxPgagUg0GoL49++fTbWBT+W9z0+lwNtnuac36u3+lAUBYFAAEBp64zmI4RAIpFI77fQOdHf348f//jH6RwYSUMFo1YpTU1NaGlpATAw8bMkSbBYLOklaRwOx5CmtqqqUFUVHo/HlAsykUggGo2mLzRFUdDa2lrRi19VVXR3d8PlcsHhcCAWi8FisRR1EhkpEonAarVizJgxiMfjUBQFfr+/4K0PI7E+BrE+BoxUHz2KhISUe+J5p9SHk9y7oUCG9NffmQobFrRux5vxC6Ai99Jfze4mtLa2DHu9HutD295isRhWTlVVEY/HYbVaIUkSVFWFzWbLuUB0tmLCuaE738TjcSSTSdhsNjQ1NUGWZQghEI/Hy15TrliJRAKBQAB2ux1tbW3pVmkgEEj/NWQ27aJXFAVtbW3w+/3weDwIh8OIRCIVKQMwcNGHw2F4PB74/X60tbVBURR0d3ezPlgfdVkfJzh3oMnSj5g6eIeqX21CqzWEqY4PdJWD9TFAC0UhBGRZRlNTE2w2G5LJ5Igr4+jRsMGYGYraXxk2m62i4Zh5kml/9VksFvj9/oqdbNkXvfZXn9vtruiHceZFr7WKZFmu6MXP+hjE+hhQTH2k4v153z+36T1AACLjozYFGyySijlNfym6HKyPAdmhaLMN3PR0OByGhmNDBqOiKMNCUVOpcMx1kmkqdbLlu+g1lfowznXRayp18bM+BrE+BhRbH6lEDJbU8DL4bUcxQd6PuBh+ey8h5L+2JqMFy8H6GJAvFDVGhmNDBmOh+9HZ4Wj0AiQjnWQas0+2Qhe9xuwP45Eueo3ZFz/rYxDrY4Ce+rDKTlhTiWHhONu5FbIlkTMYY6oTTks/Zjm3j1gO1seAQqGoMSocGzIYLRZLwYe0ZrUciznJMstpxslW7EWvMevDuJiLXmPWxc/6GMT6GKC3PqyOJqSs8pBwtCCFuc3vISWsAIZ39hCwAAKY17QJA0tODsf6GFBsKGqMCMeGDMZih1xkhmMqlSr7ZNNzkmmMPtn0XvQaoz+M9Vz0GqMvftbHINbHgFLrQ7XKQ8JxsmMvvNYgYqoz73tiogmd8kG02Y4O+54S62d9QH8oasoNx4YMRj0ywzEUCpV8spVykmmMOtlKveg1Rn0Yl/IhrDHq4md9DGJ9DCi3PjLDcY7jPVilFJLI/0d4QsiwSwpOatoy9OdJJaDE+kZNfShK/jGeIyk1FDXlhCODsQhWqzX9Cy7lZCvnJNOUe/GXe9Fryv0wLudDWFPuxc/6GMT6GGBUfahWGXZ7Cic2bYeiFrozJSElrJjb9B4sSA38HKkErKkE7M7mUVMfwWBQdxnKDUVNZjjqCWgGY5EsFgt8Pp/uk82IkyyzDKVc/EZd9JpSP4yN+BDWlHrxsz4GsT4GGF0fM5r3wGmJIZaSIRXouJc5plELxZRVht3ZNOL7Cqml+tCCKZVKFfU+o0JRo4WjnnBmMOqgDWot9mQz8iTT6L34jb7oNXo/jI38ENbovfhZH4NYHwPMqI+5Te/BblHQbOuHyxKGE8PHOTqlfrRYImiy9EO2xHGy4910KKpWY86JWqkPr9cLSZKQSCSQTCZH3N7oUNRkz2ZWSENNCacRQuj660FVVQghoCgK7HY7WltbEQwGcfToUfh8vpxTDCmKgmAwCJvNBo/HU/CE0Mvj8QwpQ64ORUIIBINBJJNJ+Hw+ADC0G7XD4UBzczNCoRCSySRcLlfO7aLRKHp7e9HS0gKHw2F4V27WxwDWx6BK1oeaSkJSB1tD4ZQH++NTAAAOqR9jbMcRTzkgMnqnOq0xBJR2JIQMCIH+pBMpiw1CskJSU1CTScPqpdr1kUqlYLFYhoSe1Tp8KjxVVdPzVsuynH6PUfSELIOxCFowxuPx9O2AlpYWJBIJhMPhYROPaxXscDggy7Jh0xRla2pqSs9DqJ1IGm2CXYvFgpaWFqRSqaJvZehhtVrhcrnSJ3T2yafd23e5XLBarYjFYoaXAWB9aFgfgypVHyKpwCIG3/vM8UvS/3+6+3Usb30RACBBQBu6IQTwZvgsbInOgyRUCMkCSbJA+ut+UknF0LqpZn1oIWu325FKpaAoCoQQw+ojcztt/lMj6RmP3pDB2N7eDo/HU/T2iqIgHo/jE5/4RNVWOCCi2vT7t3bhL/sDOb/Xb98D1WJHShr6zFCVbIh6xiPUPCfn+06eNR4Xzp9qdFGroqenB08//XT6WV9mK91utw9ruZu1glE4HC5624YMRrvdrvtZQiqVQmtrK8aMGWNSqYioHtmaWpCy5Z7aTbXYAUkaMlcqAECSoFpkpGy5O9k4XO5R9Vljs9nSn7sdHR3o7u5GT08P/H4/wuEwVFVFR0eHqSum6Alcdr4hIqKKyeytqnWQMrIjmhEYjERERBnqJhi///3vQ5KkIV+zZ8+udrGIiEgHbYhMMplMtxQruZ5jMerqGePJJ5+MF154If1vo8a4EBGZxYokvNLQzjmF15AfnXKNG/X7/eju7kYgEKiZW6p1lSw2mw3jxo2rdjGIqNYkglU7tKz2oBm5J1X4SD0Bb6T+5q9DNQapwoLD6pS877Oneqr6M0H2Gb5LIUTOyRS0Z461FI51FYy7d+/G+PHj4XQ6sXTpUqxZswaTJ0+udrGIqNr2PVa1Q0/rPwjJmn8oQEB05nx9unVr3vdM6B0D7BtbdtlKNvPLhu5OG5KhqmrO4Ku1cKybZ4ynn3461q5di2eeeQb33nsv9u7di2XLlo04/VU8Hkc4HB7yRURElaVNBzdS4Jm92HE0mntITc6yGHpkE1100UW4/PLLMX/+fFx44YV4+umnEQqF8Oijj+Z9z5o1a9Da2pr+mjRpUgVLTEREwECL0efzFWwFmhWOkUhkdAZjNq/Xi1mzZuH999/Pu83q1avR09OT/tq/f3/JxzN6eiIiGv0kpODB8WFfbgQBFD9FWb2TZbnoAfZGh6M2YX6+uYNzqatnjJl6e3uxZ88eXH311Xm3cTgccDgcZR9LUZSa6kpMRFkmX161Q+/dtw3vpo7l/N5i64tYan0WFgz9wzoFK/6Q/BK2q6flfJ+nZSJOnTzD8LJWi96VOox65pi5ioyexk3dBOO3vvUtXHLJJZgyZQoOHTqEW2+9FVarFVdeeaWpx00kEggGg4YELBGZxIRelMVKWFrRh3wTfkuwSwn0iqFzLLulHghI6EPuJb8Ua2tVf6ZaUG44Zi+t1tPTU/R76yYYDxw4gCuvvBLd3d1ob2/H2WefjTfffBPt7e269xWNRouaDFxbn8xms1W9+zAR1ScBC5KQs16jYpQajuWuN1o3wfjwww8btq9oNIpIJDLiLyxz0U6Px2Pa0jhERJSf3nA0YhHuuu18Uw6XyzXiSufZK1nnWtiTiIgqo9gOOUaEItDAwejxeHKGY3Yo6n1oTERExisUjkaFItCgwQgAbrd7WDgyFImIale+cDQyFIE6esZoBu0XGA6HkUgkEI/HGYpEVJbp0lZ4pYHhG+OkfXm3m2zZnf7/o2ICDogTTC/baJD9zNHhcCAWixkWikCDByMwEI6JRAKx2EB3a4YiEZXjU7b70Wn5EOKva2iIHDfmJAGcYX0OZ1ifgwUqtqun4n7lu5Uuat3SwrGrqwuxWAxOp9OwUAQa+FaqRmspavRMG0RElG2buggCEkKiDSHRjh7hH7ZNEO3p76mwYId6ahVKWt8yP6vj8bihk7A0dDBmPlPs7OzM2yGHiKhYm9WlUIQMOe+g/0FO9CEmmrEldUYFSjZ6ZD5T7OzsNHxu1YYNxlwdbXJ1yCEi0qNLTMEhMQ1NUuG7Tw6pH7vUhYigsWe50SO7o40ZE483ZDAqipK39ynDkYjKI+Gd1McgQUBC/vk5rVAghAWb1LMqWLb6lq/3qdHh2JDBGAqFRux9ynAkonJsVZegX7jgRP5WYxOi6MEY7FIXVq5gdazQkAwjw7Ehg9FmsxXsfZoZjuyQQ0R69MKLHeqpcEj5njMK2CQFm1JnDZtHlYYrdpyiUeHYkMHo9XqLGpKhhWNvby+SyWQFSkZEo8V76lkQwgIrlGHfkxFHUsjYrJ5ZhZLVF72D940Ix4YMRj1zn7rdbrS0tEBRhp/cRET57FbnIwQ/mnLcTm2SetElJuOgmFaFktWPUme0KTccGzIY9XK5XEWvPk1EBAAp2PFuahlskoLMhaYkqJAg8I76MQCNsUCBEPoX2ip3mrfscNTTuGEwFslma/hJgohIp1xjGhtx7GIikdAVjoatkpERjqFQqPj3lXxEIiIaUa4xjY04dlEIgWAwCFXNP3xFY/SE4Fo46mncMBiJiEwzdExjo45dlGUZyWQS3d3dI4aj0aGosVgs8Hq9xW9v2JGJiGiYzDGNjTp20WKxwOfzQVGUvOFoVihq9HS6ZDASEZkoc0xjI49dtNvtaGtryxmOZoeiXgxGIiKTaWMaG33soizLw8Kx1kIR4HqMRESmGxjT2IZe4Wn4sYtaOAYCAXR1dQFATYUiwGAkIjJdCnb8b/IaxEQzGmXs4khkWYbD4UgvEO9yuapcoqEYjEREFbBdPa3aRagZkUgEsVgMTqcT8Xgc3d3dBeevrqTaKAURETWEzGeKfr8/b4ecamIwEhFRReTqaJOrQ061MRiJiMh00Wg0b+/TWgtHBiMREZkqmUyit7d3xN6nZocjJxEnIqKaoSgKWlpaCg7JMCscE4kEJxE3QynLphAR0cCsN8UOyTA6HBOJBAKBACcRN5oQoqRVoImISP+yfUaFoxaKdrudk4gbSVVVBINBthiJiCqo3HDMDEW/389JxAsp9iGsqqro7u5GMpmELDfepL9ERNVUajhmh6LeiQMaMhhDoVDBW6NaKCqKAp/PVzMzMhARNRK94VhuKAINGow2mw2BQCBvOGaGYltbG+x2e4VLSEREmmLD0YhQBBo0GL1eL+x2e85wzA5F3kIlIqq+QuFoVCgCDRqMkiTB7/cPC0eGIhFR7coXjkaGItCgwQgAFotlSDhqM7wzFImIald2OMbjcUNDEWjgYAQGwzHzmSNDkYiotmnhmDl438hlqxo6GImIiLI1dDBmjlPUWooj9VYlIqLq01qKWssxmUwaOrdqwwZjdkcbh8ORs0MOERHVjuyONg6Hw/CJxxsyGIUQOTvaZHfIYTgSEdWOfL1PjZ54vG6D8Uc/+hEkScKNN96o+72hUChv71OGIxFR7Sk0JMPIcKzLYNywYQN++ctfYv78+SW9P/OZYi7Z4ahngUsiIjJWseMUjQrHugvG3t5eXHXVVfiP//gP+Hy+kvbh9XoLDsnIDMdgMGj4atJERFSY3sH7RoRj3QXjqlWrcPHFF2PFihUl76PYuU8zxznylioRUWWVOqNNueGob/XIKnv44YfxzjvvYMOGDUVtH4/HEY/H0/8Oh8O6j2mxWODz+Up6LxGNfirXajVFudO8aeEYCATQ3d2tazGIumkx7t+/H9/4xjfw4IMPwul0FvWeNWvWoLW1Nf01adKkko4tSRJnwyGinKLxpOH7tFuthu+zmpJJfb8jo+Y+zWw5hkKhot9XN8G4ceNGHD16FKeeeipsNhtsNhteeeUV/OxnP4PNZkMqlRr2ntWrV6Onpyf9tX///pKPr2f1ZyJqHNG48Z3zXI66uplXkKIoiEajRW1r9ITgmZMAFKtufvvnn38+Nm/ePOS1a665BrNnz8Z3vvMdWHP8heVwOOBwOCpVRCJqQOYE4+haA9Zut6O3txc2mw1utzvvdkaHokaWZXi93qK3r5tgdLvdmDt37pDXXC4X/H7/sNeJiCqlz4RgbB5lwWiz2dDS0pLuq5ErHM0KRY2eZ4x1E4xERLUmpaqIKcMf45RrtLUYgYGGjM1myxmOZoeiXnUdjOvWrat2EYiogZnR8QYYncEIDIZhZjjWWigCdR6MRETVZMbzRWD0db7JlBmOiUQC8Xi8pkIRYDASEZXMjOeLEoBmeXS2GDVaSzEWiwFATYUiUEfDNYiIao0ZLUanbIPFMrqHh2ktRU2xQzkqhS1GIqISmfGMcbQ+X9RkP1OMRqMj9latBgYjEVGJOLhfn1wdbXJ1yKm20VsDREQmMyMYR9sYRo2iKOjp6cnZ0abWwpHBSERUIjM634zGW6mqqiIcDsPhcOTtaGN2OAodk70zGImISsTp4IqTSCRgs9kK9j41KxxVVdU1iTiDkYioROZ0vhl9H8uSJMHn8xU1JMPocFRVFd3d3aNzEvFq07tsChGNfnzGWBxZlnWtUGRUOGqhqCjK6JxEvJqi0SgUxZwZLoiofpnyjHEUDu4vZdm+csMxMxTb2trQ399f9HsbcoC/noewkUgEvb29umZmJ6LGYMozRic/azRutxsejwfhcBiRSKTo92WHot6F5huyxRgKheDxeAre745EIgiHw2hpacm53iMRNS6urFEZeluO5YYi0KAtxmQyie7ubqiqmncbLRQ9Hg9cLlcFS0dE9cCslTWaR2Hnm3IV23I0IhSBBg1Gr9cLRVHyhmNmKFZ7oCkR1SYzni8Co/MZoxEKhaNRoQg0aDDa7Xa0tbXlDEeGIhEVw4znixJ4K3Uk+cLRyFAEGjQYgYHuw9nhyFAkomL1mXArtRFW1ihXdjgaHYpAg3a+0WjhGAgE0NXVBQAMRSIqSq8ZYxjlhv5ILlpmh5xwOAxJkgwLRaCBW4waWZbhcDjS/2ZHGyIqBudJra7Mz2qHw2FYKAIMRkQiEcRiMTidTkiSVLC3KhERwDGM1aTdPpUkCU6nE7FYTNc4x0IaOhgznyn6/f68HXKIiLKZEozskVpQ9jNFv99f0iQAI2nYYMzV0SZXhxwiolzMmSeVzxhHkq+jTakz5OTTkMEYjUbz9j5lOBJRMSIxPmOspEK9T40Mx4YNxpF6n2aHo565VYmoMRwORQ3fJ4Mxt2KHZBgVjg0ZjC6Xq+CQjMxwDAaDDEciSov0JxDuTxi+XwbjcHrHKRoRjg0bjMXQwjGZTCKRMP4iIKL6dCjUa8p+x7Q4TdlvvSp18H654cgnvQXIsgyfz4do1PjbJkRUnw4Fzfk8mDCmxZT91qNyZ7TJXpVDDwZjEex2u6GDR4movh06bnyLsbVJHrW3UvV2YjRqmrfMcNSzWHJD3kotRaG1G4mocRwyoePN+FHcWkwkElCU4nrxGj33qXZbVc9dP37aExHpdChofItxvHf0BqMkSQgGgwX7apgxITgwEI56pvtkMBIR6dDd24+YkjJ8vxPGjN55mmVZhs1mQyAQyBuOZoWihsFIRGQSszrejPeN7hajz+eD3W7PGY5mh6JeDEYiIh3M6HgjSUCnd/S2GIGBcPT7/cPCsdZCEWAwEhHpYkbHmzZ3E2Sb1fD91hqLxTIkHOPxeM2FIsBgJCLS5aOA/nFxhUwYxbdRs2nhmPnMsZZCEWAwEhEVrTem4EhPn+H7He8b3bdR6w2DkYioSB8cDZmy39Hc8Sab9kwxmUymW4oj9VatBgYjEVGRPjjaY8p+GyUYszvaOByOnB1yqo3BSERUpD1HjA9Gh82KsZ5mw/dba4QQOTvaZHfIqYVwZDASERUhpaqmdLyZ2u6BxVL8PJ71SAiBYDCYt/dprYUjg5GIqAj7AhEoKX2TYRdjeker4fusNYlEYsgzxVzMDkfOlUpEZDCzni/OGOs1Zb+1RAgBn89XcEiGWeEYiURGZzDee++9mD9/PjweDzweD5YuXYo//vGPFTu+3mVTiGh0MSMYJTRGi1GWZdjtxS2pZXQ4RiIRhMPh0TlX6sSJE/GjH/0IGzduxNtvv43zzjsPl156KbZu3Wr6sRVFqfo9byKqHiEEdh0OGr7fcV4XmuTRvyyu3mX7jApHLRQ9Hs/oDMZLLrkEn/jEJ3DCCSdg1qxZ+MEPfoCWlha8+eabph43kUggGAzqWuSSiEaXfd0R9MaKW09QjxljR39rsVTlhmNmKGoLFhd9bF1b14hUKoWHH34Y0WgUS5cu1f3+Yu81JxIJBAIB2Gy2mpquiIgqa/vB46bsd3qH15T9jhalhmM5oQgAddWG37x5M5YuXYpYLIaWlhY8/vjjmDNnTt7t4/E44vF4+t/h8EBX62g0ikgkMuIvTAtFu90Oj8czZD9E1Fi2H+w2Zb8zGuD5Yrm0cOzu7kYgECg4r2q5oQjUWYvxxBNPxKZNm/DWW2/huuuuw8qVK7Ft27a8269Zswatra3pr0mTJgEYWLAyHA4jEonkfF9mKPr9ft5GJWpgcSVlSsebFqcdHa2jf2C/EYptORoRikCdBaMsy5g5cyYWLVqENWvWYMGCBfjpT3+ad/vVq1ejp6cn/bV//34AA8Ho8XhyhmN2KOp9aExEo8vuw0EkVWH4fmeN8xm+z9GsUDgaFYpAnd1Kzaaq6oi3OB0OBxwOR87vab847faq2+1mKBLRMNtMer540oQxpux3NMt3W9XIUATqKBhXr16Niy66CJMnT0YkEsFDDz2EdevW4dlnny15n5nhmEgkEI/HGYpENMQ2k54vMhhLkx2ODocDsVjMsFAE6igYjx49is9//vPo6upCa2sr5s+fj2effRYf//jHy9qv1lKMxWIAwFAkorTDPVFT1l/s8DTD39Jk+H4bhRaOXV1diMVicDqdhoUiUEfB+Otf/9qU/WotRU00GjX0F0xE9eu9j46Zst85bC2WLXPYXTweRyKRMGxYXUM3jTKfKXZ2dubtkENEjcmsYJzNYCxL5jPFzs5Ow+dWbdhgzNXRxu12MxyJCADQ0xfHh8eMX2bKapFwYid7pJYqu6ONGROPN2QwKoqSt/cpw5GIAOAv+47B+EEawLT2VjjtdfMUq6bk631qdDg2ZDCGQqERe58yHInovX0BU/Y7Z6LflP2OdoWGZBgZjg0ZjDabrWDv08xw1LOOFxHVv2hcwY5D5oxfXDi5zZT9jmbFjlM0KhwbMhi9Xm9RQzK0cOzt7UUymaxAyYioFrz74VGkTJjtpsPThE5fi+H7Hc30Dt43IhwbMhj1zH3qdrvR0tICRTF+yRkiqk0bPjhiyn7nT243Zb+jVakz2pQbjg0ZjHq5XK6iV58movoW6otjtwmLEgPAwimNGYxC6G99lzvNW3Y46mncMBiLZLOxFxlRI9i49whK+BwvyNMkY1qDLjOVSCR0haNhq2RkhGMoFCr+fSUfkYhoFHp7jzm3UedNaoOlQZewE0IgGAxCVdWC2xo9IbgWjnoaNwxGIqK/6gpF8WHA+EH9QOPeRgUGlgxMJpPo7u4eMRyNDkWNxWKB1+stfnvDjkxEVOfe2HXIlP26HPaGXk3DYrHA5/NBUZS84WhWKGr0dLpkMBIRAUipKv6857Ap+z51agesDb5qj91uR1tbW85wNDsU9WrsmiIi+qstB7oR7jdmEupsp00fa8p+640sy8PCsdZCEWAwEhEBAP60q8uU/XqbHZg5zmvKvutRZjh2dXXVXCgCDEYiIvT0xbF5vzlzoy6aNrZhe6PmI8syHA5H+t8ul6uKpRmOwUhEDe/VnQehmjF4EbyNmkskEkEsFoPT6YQkSQV7q1Yag5GIGlpKVfH6TnN6o47zNmNqu8eUfderzGeKfr8/b4ecamIwElFDe29fAKG+uCn7XnrCeFP2W69ydbTJ1SGn2hiMRNTQ1m8/YMp+LZKE02eMM2Xf9SgajebtaFNr4chgJKKGdSjYi51d5kwYfvJEP1qbHYU3bADJZBK9vb0j9j41Oxw5iTgRURFe3LrftH2feUKnafuuN4qioKWlpeCQDLPCMZFIcBJxM5SybAoR1a5IfwIbTJrppsVpx7zJbabsux7Z7faih2QYHY6JRAKBQICTiBtNCFHSKtBEVLvW7zgAJWXOs6wzTxjf8FPAZdK7bJ9R4aiFot1u5yTiRlJVFcFgkC1GolFESaawfsdBU/YtScCy2RNM2XcjKTccM0PR7/dzEvFCin0Iq6oquru7kUwmIcuyyaUiokp5Y3eXafOinjzBjzZ3kyn7bjSlhmN2KFp0tt4bMhhDoVDBW6NaKCqKAp/Pp/sXS0S1SVUFXtiyz7T9f+ykiabtuxHpDcdyQxFo0GC02WwIBAJ5wzEzFNva2mC32ytcQiIyy9t7jyAQ6Tdl3/4WJ06e6Ddl342s2HA0IhSBBg1Gr9cLu92eMxyzQ5G3UIlGDyEEnvvLR6bt/2MnTeSE4SYpFI5GhSLQoMEoSRL8fv+wcGQoEo1umz46hoPBXlP27bBZcfYsTgFnpnzhaGQoAg0ajABgsViGhGM8HmcoEo1iQgg8vWmvaftfOqsTzQ4+djFbdjjG43FDQxFo4GAEBsMx85kjQ5FodNr00TEcOG5Oa1GSgPPmTDJl3zScFo6Zg/eNCkWgwYORiBqD2a3F+ZPa0O5pNm3/VFkNHYyZ4xS1luJIvVWJqD5t3HvUtNYiAJw/d7Jp+6bhtJai1nJMJpOGzq3asMGY3dHG4XDk7JBDRPUtpar4v3f2mLb/GR2tOGGcz7T901DZHW0cDofhE483ZDAKIXJ2tMnukMNwJKp/b+w6hKNhc8YtAsCFC6aatm8aKl/vU6MnHm/IYAyFQnl7nzIciUaPRDKFpzZ9aNr+J/haMG8SV9GohEJDMowMx4YMxsxnirlkh6OeBS6JqHa8uGUfevripu3/wvlTTNs3DSp2nKJR4diQwej1egsOycgMx2AwaPhq0kRkrnB/HM+aOMtNh6cZi6aNNW3/NEDv4H0jwrEhg7HYuU8zxznylipRfXnynb2IJ1Om7f8TC6fCYuH0b2YqdUabcsOxIYNRD4vFAp/Pp2stLyKqrkPBXry+65Bp++/wNGPx9HGm7Z/Kn+YtOxz1rKnLYCyCJEmcDYeojjz65i6oJi4uztaiPslkUtf2Rs19mhmOoVCo6PfVTTCuWbMGixcvhtvtRkdHBy677DLs3LmzYsdni5GoPrz74VHs7Aqatv+xrWwt6qUoCqLRaFHbGj0heOYkAMWqm2B85ZVXsGrVKrz55pt4/vnnoSgKLrjggqJ/2UQ0+inJFP77z7tNPcYlp05na1Enu92O3t5eRCKREbczOhQ1sizD6/UWvb3NkKNWwDPPPDPk32vXrkVHRwc2btyIj33sY1UqFRHVkmf+8hG6e2Om7X+y341Tp3aYtv/RymazoaWlBeFwGADgdruHbWNWKGr0LDhfN8GYraenBwAwZsyYKpeEiGrB0Z4+PLfZvOEZAHDpaTP4WKVELpcLNpstZziaHYp61WUwqqqKG2+8EWeddRbmzp2bd7t4PI54fHBwr1YhRDT6PPynnUimzBtvPKvThzkT/KbtvxFoYZgZjrUWikCdBuOqVauwZcsWvPbaayNut2bNGtx2220VKhURVcuGDw5j+6Hjpu1fAvCZxTNN238jyQzHRCKBeDxeU6EI1FHnG83111+PJ598Ei+//DImTpw44rarV69GT09P+mv//v0VKiURVUo0ruCxN3eZeozFM8ZhSpvH1GM0ErfbDafTiVgsBiFETYUiUEctRiEEbrjhBjz++ONYt24dpk2bVvA9DocDDoejAqUjomr57z/vRiRm3nzGdqsFly6aYdr+G5HWUtREo9GcHXKqpW6CcdWqVXjooYfwhz/8AW63G4cPHwYAtLa2oqmpqcqlI6Jq2HHoOP60u8vUY5x38iSMaXGaeoxGkv1MMRqNjthbtRpqp+1awL333ouenh6cc8456OzsTH898sgj1S4aEVVBTEnigde2m3qM1iYZf8P1Fg2Tq6ON2+2Gx+NBOBwuOM6xUuqmxahnnjsiGv0e3/A+jps4ZhEALjttJpz2uvmYrGmKoqCnpydnR5tcvVWriTVORHVnx6HjeHXHQVOPMa3dg9Nncuo3I6iqinA4DIfDkbejjdnhaOok4itXrsT69ev1vo2IyBD9iST+v1e3wcx7SJIEfO6MEzmY3yCJRAI2m61g71OzbquqqmruJOI9PT1YsWIFTjjhBPzwhz/EwYPm/tVGRJTpkTd3IhiNF96wDGfPmoCp7RyeYRRJkuDz+YoakmF0OKqqiu7ubnMnEX/iiSdw8OBBXHfddXjkkUcwdepUXHTRRfj9738PRTGvy3S16V02hYiM986HR/HW+4dNPUaL045LT+PwDCPJsqyr9W1UOGqhqCiKrknES+qV2t7ejptuugnvvfce3nrrLcycORNXX301xo8fj3/6p3/C7t3mzm5fadFodFSHPlE9CEZjeOh1c3uhAgMz3LgcxU84TYWVcku63HDMDMW2tjZdk4iXNVyjq6sLzz//PJ5//nlYrVZ84hOfwObNmzFnzhz85Cc/KWfXptLzEDYSiaC3t1fXL5WIjKUKgbXrtyEaN/fOzcyxXpwxs9PUY1DxSg3H7FDUu9C87mBUFAX//d//jU9+8pOYMmUKHnvsMdx44404dOgQfvvb3+KFF17Ao48+ittvv13vrismFApBVQtPNhyJRBAOh9HS0gKbjR14iarlub98hF0mLj4MADarBVedPZsdbmqM3nAsNxSBEoZrdHZ2QlVVXHnllfjzn/+MhQsXDtvm3HPP1XU/t9KSySS6u7tH7CGlhaLH44HD4UAsZu54KSLK7f3DIfzfOx+YfpyLFkzFuFaX6cch/YodymFEKAIlBONPfvITXH755XA680+R5PV6sXfv3pIKVAlerxeJRCJvOGaGorYsChFVXm9MwW9e2QLV5Ak+Or0uXDh/iqnHoPIUCkejQhEo4Vbq1VdfPWIo1gO73Y62tjYoioLu7u4ht1WzQ5GIqkMIgbXrt5o+NMMiSfj8spNgraHVHSi3fLdVjQxFoI7mSjWaLMvDwpGhSFQ7/vjeh9h6oNv046yYOxlT21tNPw4ZIzscjQ5FoMGnhNPCMRAIoKtrYIZ+hiJR9W0/eBxPvmv+c8Vxrc345CmFl7Cj2pJ5WzUcDkOSJMNCEWjgFqNGluUhaza6XHz4TlRN3ZF+/HrdFpi9boBFknD1sjmw26zmHohMkflZ7XA4DAtFgMGISCSCWCwGp9MJSZKGPXMkospJJFP45UubEY2bP6HGhfOnYHoHb6HWI+32qSRJcDqdiMVihs6t2tDBmPlM0e/35+2QQ0SV8eDrO7C/2/w1+Sb53biYt1DrUvYzRb/fb/jE4w0bjLk62uTqkENElfHsXz7En/eYOw8qANitFlzzsTnshVqH8nW0MXri8YY8M6LRaN7epwxHosr7y75j+MPGPRU51mcWz0Snr6UixyLjFOp9amQ4NmwwjtT7NDsc9cytSkT6HOiO4Dfrtpre2QYA5k1qwzlzJpl/IDJUsUMyjArHhgxGl8tVcEhGZjgGg0GGI5EJevriuOeF9xBPpkw/lqdJxtVnn2T6cchYescpGhGODRuMxdDCMZlMclo4IoPFlRTuef4902e2AQBJAq5ZfjLcTcZ16SfzlTp4v9xwbOgB/sWQZRk+nw/RaLTaRSEaNVRV4NfrtmBfBXqgAsDfzJ+K2ePHVORYZIxyZ7TJnltVDwZjEex2u6GDR4ka3cN/2onN+wMVOdYJ47z45CnTK3Isyk1vJ0ajpnnLDEc9y4k15K3UUuRbnoqI9Hny3Q/w6s6DFTmWp0nGl86ZC4uFayxWUyKRgKIUN2mD0XOfardV9dz146c9EVXMqzsO4Kl3K7MknUWS8KVz5qK12VF4YzKVJEkIBoMF+2qYMSE4MBCOeqb7ZDASUUVs/OAIfvennRU73qcWTcesTl/Fjkf5ybIMm82GQCCQNxzNCkUNg5GIasq2A924f31lxioCwClT23Hh/KmVORgVJEkSfD4f7HZ7znA0OxT1YjASkal2dQVx34t/QUqtTCp2el34/LI5FTkWFU+SJPj9/mHhWGuhCDAYichEe4/24J7n34OSqszUik2yDV85fz6cdna4r0UWi2VIOMbj8ZoLRYDBSEQm+SgQxs+f21SRWW2Agc42/3jOXIxtba7I8ag0WjhmPnOspVAEGIxEZIL93RH87Jl30Z9IVuyYn148E3Mm+it2PBq9GIxEZKh9gTDu+uM76KtgKC49oRMr5k6u2PGodNozxWQymW4pjtRbtRoYjERkmI8CYdz1zLsVDcVZ47y46qzZFTselS67o43D4cjZIafaGIxEZIg9R0L4aYVvn3Z4mvDl8+dz0eE6IITI2dEmu0NOLYQjzyYiKtuOQ8fx82c3VTQUW5x2XH/BQrgc9oodk0ojhEAwGMzb+7TWwpHBSERleW/fMdzzfGXWVNTYrRZ8bcUCtHvYA7UeJBKJIc8UczE7HDlXKhFVxFvvd+FXL26u2DhFYGBYxhfPmYtpHa0VOyaVRwgBn89XcEiGWeEYiUQYjGbQu2wK0Wj34pZ9+O36bVArNc/bX/3d0hOxcEp7RY9J5ZFlGXZ7cbe8jQ7HSCSCcDjMuVKNpihK1e95E9UKIQQe3/A+fv/n3ahsJAIXnzINy2ZPqPBRqVx6l+0zKhy1UPR4PAxGIyUSCQSDQV2LXBKNVsmUivtf2YrnNn9U8WOfc9JELjjcQMoNx8xQ1BYsLvrYurYeJYq915xIJBAIBGCz2WpquiKiauiLK/j5c5uw4YMjFT/2khnj8LkzZlX8uFRdpYZjOaEINHAwRiKREbfRQtFut8Pn87HFSA0tEOnHHU+9jV1dwYofe96kNnx+2Um8BhuU3nAsNxSBBg1Gl8uFcDicNxwzQ9Hv9/OCpIa250gIP/6/DTgc6qv4sU8aPwbXnjePA/gbXLHhaEQoAnUWjOvXr8cll1yC8ePHQ5IkPPHEEyXtx+VywePx5AzH7FDU+9CYaDR56/0u3PXMu4jElIofe+ZYL766Yj7sVl6DVDgcjQpFoM6CMRqNYsGCBbj77rvL3pfb7R4WjgxFogGqEPjvP+/G2vXbkKzgGEXN9I5WrLpgAWSbteLHptqVLxyNDEUAqKvVPC+66CJcdNFFhu1P+wWGw2EkEgnE43GGIjW8aFzBb9ZtxbaD3VU5/rR2D264cCEXG6actHDs7u5GIBCAw+FALBYzLBSBOgtGM7jdbiQSCcRiMQBgKFJDO3A8gl+9uBnHIv1VOf70jlZcfwFDkUamhWNXVxdisRicTqdhoQiM8mCMx+OIx+Ppf4fD4WHbaC1FTTQaNfQXTFQv/rznMB58fTsSyerM8jSjoxXXs6VIRcocdhePx5FIJAwbVjeqm0Zr1qxBa2tr+mvSpElDvp/5TLGzszNvhxyi0SyZUvG7N3bg/le2Vi0UZ43zMhSpaJnPFDs7Ow2fW3VUB+Pq1avR09OT/tq/f3/6e7k62uTqkEM0mh0L9+OOJ9/G+h0Hq1aGkyf6sYq3T6lI2R1tzJh4fFSfiQ6HAw6HY9jriqIgGo3m7GiT2SEn899Eo83GvUfw4Os7KrqGYrZTprbji8vnwsYhGVSEfL1PszvkjLS8VTHqKhh7e3vx/vvvp/+9d+9ebNq0CWPGjMHkyZOL3k8oFEJra2vejjbZ4ZgrXInqVSKZwmNv7cJrOw9VtRxnntCJq846CRYLJ9CgwgoNyTAyHOsqGN9++22ce+656X/fdNNNAICVK1di7dq1Re/HZrMV7H2aGY7Nzc2wWjmeiurf/u4IfvPKlqrMYpNpxdzJ+NslJ1S1DFQ/ih2naFQ41lUwnnPOORAGrP3m9XqLGpKhVUAoFNK1ZAlRrVGFwItb9uF/N+5BUq30YlGDJACfXjwTH583pWploPqid/C+EeFYV8FoFD1zn7rdbiSTSa7HSHWrO9KP3766DbsPh6paDqtFwtVnn4TTZ3ZWtRxUP0qd0SZXOOrRkMGol8vlMqSlSlRpr+44iP/ZsBsxJVXVcjjtVnz5vPk4acKYqpaDqqOUz8+yl47KCkc9rUYGY5FsNv6qqH4c743hv17fju0Hj1e7KPA2O7Dq4wsw0c8e3o0qkUjA6XQWvb1hq2RkhGMoFCr6ffy0JxpFhBBYv+Mgnnj7/aq3EgFgkt+Nr62YD6+r+A9FGn2EEAgGg+jo6CjYv8PoCcG1cCx2gXqAwVi2cDKMF0IvDHlthXcFPDZPlUpEjaorFMWDr23HnqM91S4KgIEFhr94zskcuE+QZRm9vb3o7u4ecUSA0aGosVgs8Hq9RW/PM5aozinJFP743od4fvNHVe1xmunj8ybjstNmwsJFvgkDweTz+dDT05M3HM0KRY2eTpcMRqI6tvVANx75086qrYaRzWa14O/PPBFLTxhf7aJQjbHb7Whra0MgEBgWjmaHol4MRqI61N3bj9+/tRubPjpW7aKktTY78JXz5mFaR2u1i0I1SpblYeEYjUZrKhQBBiNRXUkkU3h+80d49i8fQUlVZyWMXKZ3tOLL581DazOnT6SRZYZjV1cXANRUKAIMRqK68fYHR/D4hvdxPBqrdlGG+NjsCfjcGbNg5QLfVCRZluFwONILxNfazGIMRqIa98HRHvz+rV3Ye2z4QtvVJNss+PszZ3MmG9ItEokgFovB6XQiHo8X7K1aaQxGohp1tKcPj7/9fk09R9R0eJrx5fPmYcKYlmoXhepMdkcbbW3cWgpHBiNRjQlFY3jq3b14Y3cX1BqcivC0aWNx1dmzOT6RdMvV+zRXh5xqhyPPbKIaEelP4Nm/fIT1Ow7UVMcajd1qweWnn4BlsydWuyhUh6LRKPr6+nJ2tKm1cGQwElVZb0zB85s/wivbDyCerP40brl0el340rlzMcHHW6ekXzKZRDQahdfrzdv71OxwVBSl6G0ZjERVEu5P4IUtH2H99oM1G4jAQK/Tv11yAmQbF+um0iiKgpaWloJDMswKx0QiwUnEzcBlp8go3b39eH7zPryx61BN3jLVuJ12XH32HMybrG8tO6Jsdru96CEZRoej1rlHzwpJDMYiCCG4UDGV7cDxCJ7fvA9vf3CkJjvVZJo/uQ1XnXUSPE36Vj4nykXvsn1GhaMWina7Hc3NzUW/j8FYgKqqCAaDVe8lRfVJCIHtB4/jhS37sP1Q9ddGLMRpt+Ly02fhzFmc65Sqq9xwzAxFv9+PSCRS9HsbMhiLfQirqiq6u7uRTCbR0sJOB1S8uJLCm+93Yd22/Tjc01ft4hTlpPFj8A9nn4QxLVw7kWpDqeGYHYp6GzYNGYyhUAgejweynP82kRaKiqLA5/MhlardzhFUOw6Holi/4yDefL8L/YlktYtTlCbZhr9dcgLOYiuRapDecCw3FIEGDUabzYZAIIC2trac4ZgZim1tAx0PGIyUj5JSsemjo3ht5yHs6gpWuzi6zJ/chiuXngivi61Eql3FhqMRoQg0aDB6vV4oipIzHLNDUZZldryhnA4e78Xruw7hz3sOIxovfoxULfA0yfjcGbOwaNrYaheFqCiFwtGoUAQaNBglSYLf70d3d/eQcMwVikSZIv0JbPjgCN58vwv7u4t/mF8rJABnz56AT582E01yQ17+VMfyhaORoQg0aDACgMViGRKOfr8f4XCYoUjDxJQk/rIvgA17DmPbweM1P9Qin0l+N65ceiIXEqa6lh2OHo8H3d3dhoUi0MDBCAyGYyAQQCAQAAC0t7czFAlxJYUtBwJ4Z+9RbDkQQCJZuwPxC2mSbfjUqdPxsdkTYbFI1S4OUdm0cDx27JihLUVNQwcjUaZoXMHmfQG8t+8Yth7orulZaYohScDSE8bjskUz4OZAfaKiNXQwZo5TbGtrQzgcHrG3Ko0+h3ui2LK/G5v3HcP7R3rq9jZpthkdrbj8jFmY0uapdlGIDKc9U5RlOX0r1ci5VRs2GHN1tMnVIYdGl5iSxK6uILYdPI5tB7pxLNJf7SIZyt/ixKcXz2RvUxq1cnW0MXri8YYMRiFEzt6n2R1yGI71L5lSsfdYD3Z2BbHj0HF8eCyMlDo6WoWZmmUbLlowFcvnTILdyukLaXTK1/vU6InHGzIYQ6FQ+heZHXy5wpHqR38iib1He7DnaAi7D4fw4bFw3T8rHIndasE5cybiwvlT4XLYq10cItMUGpJhZDg2ZDAmk0mMHz8+b2swOxxbW9m9vRalVBVdwSg+DITx0bEwPjjWg65QFKPkMeGILJKEM0/oxMWnTOOsNTTqFTtO0ahwbMhg9Hq9BW+RZoZjMBjkJOJVFlOSOHi8F4eCvdjf3Yv9xyM4eLx3VLcGc5EkYPH0cbj4lGno8BS/jA5RvdI7eN+IcGzIYLTbi7vlpIXj0aNHOS1cBQgh0NOfwNGePhwN9+FwqA+He6I4FOxFMBqvdvGqSpKARdPG4uKF0zDOW9yCr0T1rtQZbXKFox4NGYx6WCwW+Hw+hMPhahel7ikpFeG+OEJ9cQSjcRyPxhDsjaG7N4ZApB/dvf11PZDeDBZJwmnTx+KiBVMZiNRQyp3mLTsci20QAQ0ajElVhaJjtYyUELDZ7eiNJWDrH9pyiaTi6E8MnUA6EosD1tHTwhECEBh4pqeqAsmUiqQqkEimkEiqSCRTiCdT6E8kEUskEU0o6IsnEY0r6I0piMQSiPQn0FcnyzDVApvVgjNmjsMF86agnbdMqc4lk/qufaPmPs0Mx2g0WvT7GjIY9x7pgRwpvqIkNQWLSOHHT76NlK1pyPeS1j4c974/5LV1oWbYUvwwI/2cdis+Nnsizjt5ElqbHdUuDpEhFEVBNBotavib0ROCa+G4b9++ot/TkMFIVGt8LgfOmzMJZ504gate0Khjt9vR29sLm80Gt9uddzujQ1EjyzK8Xm/R2/MKJKqi6R2tOHfOJJwytR1Wgz4EiGqNzWZDS0tLuq9GrnA0KxQ1fMZY447Et0O2NMNrmwxJ4moHjcZmtWDRtA6cc9IkTG3nXKbUGFwuF2w2W85wNDsU9WIwVsH64E+RUHvht0/H9OaPYbJzMZxWTiIw2rW5m7DsxAk4c1YnWpycapAajxaGmeFYa6EIMBirQhUKUiKBI4kdOJLYgY2WBzHJuQjTms7COMdcWCVO7TVaWC0SFkxux9knjsfs8WN4h4AaXmY4JhIJxOPxmgpFoA6D8e6778Ydd9yBw4cPY8GCBfj5z3+OJUuWVLtYutkkBxwWN1SRgiL6sKfvFeztfw0uaxumNZ2NqU1Leau1jk3wtWDpCZ04feY4tg6JsmgtxVgsBgA1FYpAnQXjI488gptuugn33XcfTj/9dNx111248MILsXPnTnR0dFS7eGnvhh7F3t7X8n5fETFYMHASWCQrHJIbDriREglEk934S+S/sa33Sd5qrTNupx2nTR+HpSd0YpI/f887okantRQ10Wh0xN6qlVZXwXjnnXfi2muvxTXXXAMAuO+++/DUU0/hN7/5DW6++eYql25QWOlCNNUN2ZJ7flULLLBLw8c5WiUZzVYZQggkRYy3WuuAw2bFgintWDx9LE6aMIY9S4kKyH6mGI1GR+ytWg11E4yJRAIbN27E6tWr069ZLBasWLECf/rTn6pYstyskh1OS2mVLEkS7FIT7GjKe6t1WtPZ8NonGlxqKobDZsXcSX6cOm0s5k70Q7ZZq10korqQq6NNrg451VY3wRgIBJBKpTB27NCVyceOHYsdO3bkfE88Hh/SXK/H+U4zb7Um1D4ElY8QSR7Bh/2v49KOu2CR+KFcCU2yDfMmteGUKe2YwzAk0k1RFPT09OTsaFNr4Vg3wViKNWvW4Lbbbqt2McqitRgVEYNFssJnn5JuMTIUzdXmbsK8SW2YP7kNJ4zz8jYpUYlUVUU4HIbD4cjb0cbscBQ6Fmqtm2Bsa2uD1WrFkSNHhrx+5MgRjBs3Lud7Vq9ejZtuuin973A4jEmTJplaTk1KJBFXI3m/b5ea8wab9owxLgYmvZUtzZjRtJzPGE1ms1owo6MVJ0/0Y+6kNnRyNQsiQyQSCdhstoK9T80KR1VVEQqFit6+boJRlmUsWrQIL774Ii677DIAAz/siy++iOuvvz7nexwOBxyOyk/E7LGPQ7PVl/f7iohBEX1wSEMrPSUSiKtRqEjCJsnokE/EjObl7JVqovE+F2aPH4OTxo/BrE4fb5ESmUCSJPh8vqKGZBgdjqqqoru7W9cKH3UTjABw0003YeXKlTjttNOwZMkS3HXXXYhGo+leqqYSxa8TeIr3Cix25y/TI11fQkoMLHycfavUZeM4RjN1el2YOc6LWeN8mNXphaeJK1gQmU2WZV2fZUaFoxaKiqKM3knEr7jiChw7dgy33HILDh8+jIULF+KZZ54Z1iHHaJKqQNIRjMVIijiU1EDHIN4qNYfdasGUNg+md7Ri+thWzOho5WB7oioo5Q/8csMxMxTb2trQ399f9HvrKhgB4Prrr89767R4xT+EtaQSsKYUqFbjwsoi2WGV7Bhjn85bpQaxSBI6vS5MbnNjSpsHU9s9mDimhR1miOpYqeGYHYqyLI/uYDSCNRkHhAso8FfMQCgmkLLaIUnGfcAu830dDouLt0pL5HLYMd7nwgRfCyaMacHEMW5M8Llg5/NBolFHbzjmCkW9GjIYJaHCluxH0taUNxwHQ1GGkKyQRMqw449zzDFsX6OVRZIwpsWJDk8TOlqbMdbTjHFeFzq9Lq5sT9Rgig1HI0IRaNBgTNqccIwQjpmhqFplSKpxoUgD7FYLvC4HvM0O+FxOjHE5MabFiTa3E353E/wtTt4GJaK0QuFoVCgCDRqMkCxI2pywJfuHhWN2KFJ+dqtl4MtmhcNmhcNuRZPdiibZhibZjmaHDS6HHS6HHW6nHe4mGe4mGa1NDjTJjXnqEVHp8oWjkaEINGgwThvbCo/HAyWRQPD4cdjsgNfnRV9fH3ojcbSMGYOWlsEJwBVFQTwWx7UXnwavb+j4xEgqjFcifUNeW+4+A27r6FiZXZIACRIkaeD2psUiwWaxwGZla46IKi87HF0ul6GhCDRoMNosFtitVtibmmBrb0cgEEDg6FEAgLe1dVgTXaRSSFqkgdZO1vMtKelAU3xoj1VPkwMeG5+DERGZITMcw+EwJEkyLBQBoOH/7JdlecjsOC4XpwEjIqp1mZ/VDofDsFAEGIyIRCKIxWJwOp2QJAnd3d1QVWMH8xMRkXG0Z4qSJMHpdCIWiyESyT83tV4NHYyRSAThcBgejwd+vx9tbW1QFIXhSERUo7I72vj9fng8HoTDYcPCsWGDMTMUtfvVsiwzHImIalS+3qdut9vQcGzIYIxGo8NCUcNwJCKqPYWGZBgZjg0bjLlCUZMdjnoWuCQiImMVO07RqHBsyGB0uVwF59vLDMdgMMhwJCKqAr2D940Ix4YNxmJo4ZhMJpFIJEwuFRERZSp1Rptyw7EhB/jrIcsyfD4fotFotYtCRNQwyp3mLXuGHD0YjEWw2+2GDh4lImokejsxGjX3aWY46lniryFvpZbCwpUeiIhKkkgkoChKUdsaPSG4dltVz10/ftoTEZGpJElCMBgs2FfD6FDUuN1uXdN9MhiJiMhUsizDZrMhEAjkDUezQlHDYCQiopohSRJ8Ph/sdnvOcDQ7FPViMBIRkekkSYLf7x8WjrUWigCDkYiIKsRisQwJx3g8XnOhCDAYiYiogrRwzHzmWEuhCDAYiYiIhmAwEhFRxWjPFJPJZLqlOFJv1WpgMBIRUUVkd7RxOBw5O+RUG4ORiIhMJ4TI2dEmu0NOLYQjg5GIiEwlhEAwGMzb+7TWwpHBSEREpkokEkOeKeZidjhyrlQiIqoZQgj4fL6CQzLMCsdIJMJgNIPeZVOIiGiALMuw2+1FbWt0OEYiEYTDYc6VajRFUap+z5uIqF7pXbbPqHDUQtHj8TAYjZRIJBAMBnUtcklEROUpNxwzQ1FbsLjoY+vaepQo9l5zIpFAIBCAzWarqemKiIgaQanhWE4oAg0cjJFIZMRttFC02+3w+XxsMRIRVYHecCw3FIEGDUaXy4VwOJw3HDND0e/3MxSJiKqo2HA0IhQBwFbyO+uYy+WCxWJBOBwGgCG/wOxQLPTQ2GPz4DNtnzG1vEREjU4Lx+7ubgQCgWFjIo0KRaBBW4zAQBh6PJ4hLUe9oUhERJWTr+VoZCgCDdpi1Gi/wHA4jEQigXg8zlAkIqph2S1Hh8OBWCxmWCgCDdxi1LjdbjidTsRiMQghGIpERDVOC0chBGKxGJxOp2GhCDAY0y1FjZ5pg4iIqDoyP6vj8bihk7A0dDBmPlPs7Owc9syRiIhqT+Yzxc7OTsPnVq2bYPzBD36AM888E83NzfB6vWXvL1dHm1wdcoiIqHZkd7QxY+LxugnGRCKByy+/HNddd13Z+1IUJW/vU4YjEVFtytf71OhwrJteqbfddhsAYO3atWXvKxQKobW1NW9Hm8zeqgDgcDjKPiYREZWu0JCMQuMc9aibYCxFPB4f0rFGCzqbzVaw92lmODY3N8NqtZpbWCIiyqnYcYpGhWPd3EotxZo1a9Da2pr+mjRpEgDA6/UWNSRDu63a29uLZDJpdnGJiCiL3sH7RtxWrWow3nzzzZAkacSvHTt2lLz/1atXo6enJ/21f/9+ANA196nb7UZLSwsURSm5HEREpF+pM9qUG45VvZX6zW9+E1/4whdG3Gb69Okl79/hcBjyfNDlckEIUfZ+iIgaUSmfn2UvHZV1W1XPLdWqBmN7ezva29urWYSi2Wyj+nEsEZFpEokEnE5n0dsbNfdpZjiGQqGi31c3n/b79u3D8ePHsW/fPqRSKWzatAkAMHPmTLS0tFS3cERElJcQAsFgEB0dHQX7dxg9IbgWjnpmNaubYLzlllvw29/+Nv3vU045BQDw8ssv45xzzqlSqYiIqBBZltHb24vu7u4RRwQYHYoai8Wia2KYuumVunbtWgghhn0xFImIapvFYoHP54OiKOju7oaqqsO2MSsUNXo6XdZNMBIRUf2y2+1oa2vLGY5mh6JeDEYiIqoIWZaHhWOthSJQR88YjaQoiq5xLYqiIJlMoqenx8RSERGNPj09PUgmk0PGgre2tiIYDOLgwYMAgJaWFjgcDkOXjsqmZyx6QwbjsWPHdPVQUlUVQgg8/fTTOYdtaItlAoDVai15fr5yJRIJpFIpAIDT6dR1T90oqqqmp+FzOBxVWfSZ9TGI9TGI9TGg0vWRTCYRCoUgSdKQn1dRlPT4xlQqlZ6y0yx9fX1Fb9uQwZhdQcUQQsDhcMButw97PRgMIplMQpZl9Pf3w2q1wuVyGVnkgqLRKPr7+9N/dQkh4PP5KnrxK4qCcDicnle2t7cXPp9v2O/MTKyPQayPQayPAdWoD0VRYLFYhnzuJhIJqKoKSZIghICiKJBl2dQ/FPTUNYOxSKqqwm63D/nrSlXV9H3yjo4OyLKcvl9us9kqdr88Eomgr68PXq8Xbrc7vdZkOBwuOFm6URKJBHp6euBwOOD3+wEA3d3d6OnpKWuWez1YH4NYH4NYHwOqWR/aZ67FYkE8HkcqlYLNZoPD4UAymUQikYCiKKa2otkrtQK0k0xRlCEndqXXc8z14DrXA24z5Vr02YzFQ0fC+hjE+hjE+hhQK/URj8eRTCbToQgMzComyzKEEIjH46bXRzEYjCXId5JpKnWyjdSbq1IXf66LXlOpi5/1MYj1MYj1MaBW6iORSAwLRU2thSODUadCJ5nG7JOtmC7OZl/8I130GrMvftbHINbHINbHgFqpj2QyOeT2aS5mh6Oe/TEYdSj2JNOYdbLpGfdj1sVfzEWvMeviZ30MYn0MYn0MqJX6iEajUFUVVqu14GpHZoVj9nCRQhiMRVJVFaFQqOiTTGP0yVbKYFijL349F73G6Itf70WvYX0MYH0MYn0MMqM+ent7YbFYii6D0eGode7Rg8FYBCEEUqkUkslkST3IjDrZypkhwqiLv5SLXmPUxV/qRa9hfQxgfQxifQwyuj5aWlp0L9tnVDhqoShJkq7fA4OxAG1ArjbuqdRu1eWebEZMm1TuxV/ORa8p9+Iv96LXsD4GsD4GsT4GGVkfpY6RLDccM0PR4XBwuEYhxf6CM0PRZrOVPRC31JPNyLkES734jbjoNaVe/EZd9BrWxwDWxyDWx6BaqI9SwzE7FPXWR0MGozb36UgyQ9HIGRn0nmxmTLCr9+I38qLX6L34jb7oNayPAayPQayPQbVQH3rDsdxQBBo0GIHBMTW5ZIeiNoWTUYo92cycdb7Yi9+Mi15T7MVv1kWvYX0MYH0MYn0MqoX6KDYcjQhFoEGDUZZlSJKUMxyzQ1HvQ+NiFTrZKrEUS6GL38yLXlPo4jf7otewPgawPgaxPgbVQn0UCkejQhFo0GDMfBibGY6VCkVNvpOtkuuT5bv4K3HRa/Jd/JW66DWsjwGsj0Gsj0G1UB/5wtHIUAQadBJxYOBkczgciMfj6RNNWwalEqGo0U6kzCVXKr1op3bxBwIBdHd3w+PxoLu7uyIXvUa7+Lu7uxEIBOD3+xEOhyt20WtYHwNYH4NYH4NqoT60z+ZEIoF4PA673W5oKAINHIzAYDjGYrEha6RVKhQ12SdbNVay1i7+Y8eOVewv4WzaxR8IBBAIBAAA7e3tFV+/j/UxgPUxiPUxqBbqQ/uMjsfjiMfjhoYi0KC3UomIiPJp6GDMtZr2SL1VzZJ5j76SS8Bk0p6ZaH8ZJ5PJiizJk0l7ZpI5w1AlluTJxvoYwPoYxPoYVAv1oT1T1O76ATB0btWGDcZcHW1ydcgxW/aD60qvjwYM70jgcDgqul4dMLwjgbaga6XWq9OwPgawPgaxPgbVQn1kd7QxY+LxhgxG7ReY3dFG++ujUuGYrzdXJU+2fL3rKrmYa77edZVezJX1MYD1MYj1MagW6iNf71Ojw7EhgzGRSOTtfVqpcCzUxbkSJ1uhLueVuPgLdTmv1MXP+hjA+hjE+hhUC/VRaEiGkeHYkMEIYMQhGdnhmEqlDD12seN+zDzZih2HZebFX+w4LLMvftbHANbHINbHoFqoj2LHKRoVjg0ZjHa7veCQjOxwNOqE1zsY1oyTTe/gZDMufr2Dk826+FkfA1gfg1gfg2qhPvQO3jciHBsyGIsd65IZjnpXgM6l1BkijDzZSp2xw8iLv9QZO4y++FkfA1gfg1gfg2qhPkqd0abccGzIYNQjMxyDwWDJJ1u50yYZcbKVO42VERd/udNYGXXxsz4GsD4GsT4GGVkf0Wi0pDKUO81bdjgKIYp+L4OxCJIkwWq1wmazlXSyGTWXYDkXv1FzO5Zz8Rs1t2O5Fz/rYwDrYxDrY5DR9dHb26u7E6NRc59mhqOe3wODsUgWiwVer1f3yWb0BLulXPxGT3hcysVv9ITHpV78rI8BrI9BrI9BZtRHS0sLVFUtugyGTwj+13DUg8Gog96TzaxZ5/Vc/GatAqDn4jdrFQDWxyDWxyDWx4BaqQ+XywWLxYJUKpWeaSwfo0NRY7PZYLfbi96ewahTsSeb2UuxFHPxm700TjEXv9lL47A+BrE+BrE+BtRKfdhsNlitViSTybzhaFYoavTsj8FYgkInW6XWJxvp4q/UenEjXfyVWi+O9TGI9TGI9TGgVupDGzueKxzNDkW9GIwlyneyVXLRTiD3xV/JRVSB3Bd/pRdRZX0MYn0MYn0MqJX60OY2zQzHWgtFoMHXYyxX9uKh2tqOlV6fLHN9tMzFOyu5XlzmYq7aWnGZqwBUAutjEOtjEOtjQK3Uh7YaRjKZhKqqEELUVCgCDRaM2jiW/v7+kt4XDodzPsC12+0IhUKIRqNwOBxQVRU9PT3lF1inVCqF48ePAxhYwLTSS8EAg78LAPB6vejv79f9+zaqDKwP1kcm1sfQMlSqPhRFSf+MkiSlX9fmrAYG/nAweurNbFoZihnPKAk9ox7r3IEDBzBp0qRqF4OIiKpk//79mDhx4ojbNFQwqqqKQ4cOwe12D/nLxQjhcBiTJk3C/v374fF4DN13tfBnqg/8meoDf6bqEkIgEolg/PjxhedbrVCZaoLFYin4l0K5tFWtRxP+TPWBP1N94M9UPa2trUVtVxtPOomIiGoEg5GIiCgDg9EgDocDt956a7or8mjAn6k+8GeqD/yZ6kdDdb4hIiIqhC1GIiKiDAxGIiKiDAxGIiKiDAxGE/zgBz/AmWeeiebmZni93moXp2R33303pk6dCqfTidNPPx1//vOfq12kkq1fvx6XXHIJxo8fD0mS8MQTT1S7SGVbs2YNFi9eDLfbjY6ODlx22WXYuXNntYtVlnvvvRfz589Pj4tbunQp/vjHP1a7WIb50Y9+BEmScOONN1a7KGX5/ve/D0mShnzNnj272sUyDIPRBIlEApdffjmuu+66ahelZI888ghuuukm3HrrrXjnnXewYMECXHjhhTh69Gi1i1aSaDSKBQsW4O677652UQzzyiuvYNWqVXjzzTfx/PPPQ1EUXHDBBYhGo9UuWskmTpyIH/3oR9i4cSPefvttnHfeebj00kuxdevWahetbBs2bMAvf/lLzJ8/v9pFMcTJJ5+Mrq6u9Ndrr71W7SIZR5Bp7r//ftHa2lrtYpRkyZIlYtWqVel/p1IpMX78eLFmzZoqlsoYAMTjjz9e7WIY7ujRowKAeOWVV6pdFEP5fD7xn//5n9UuRlkikYg44YQTxPPPPy+WL18uvvGNb1S7SGW59dZbxYIFC6pdDNOwxUjDJBIJbNy4EStWrEi/ZrFYsGLFCvzpT3+qYsloJNoKCWPGjKlySYyRSqXw8MMPIxqNYunSpdUuTllWrVqFiy++eMg1Ve92796N8ePHY/r06bjqqquwb9++ahfJMA01VyoVJxAIIJVKYezYsUNeHzt2LHbs2FGlUtFIVFXFjTfeiLPOOgtz586tdnHKsnnzZixduhSxWAwtLS14/PHHMWfOnGoXq2QPP/ww3nnnHWzYsKHaRTHM6aefjrVr1+LEE09EV1cXbrvtNixbtgxbtmyp6NqOZmGLsUg333zzsIfN2V8MDaqWVatWYcuWLXj44YerXZSynXjiidi0aRPeeustXHfddVi5ciW2bdtW7WKVZP/+/fjGN76BBx98EE6ns9rFMcxFF12Eyy+/HPPnz8eFF16Ip59+GqFQCI8++mi1i2YIthiL9M1vfhNf+MIXRtxm+vTplSmMydra2mC1WnHkyJEhrx85cgTjxo2rUqkon+uvvx5PPvkk1q9fb/rqMZUgyzJmzpwJAFi0aBE2bNiAn/70p/jlL39Z5ZLpt3HjRhw9ehSnnnpq+rVUKoX169fjF7/4BeLxOKxWaxVLaAyv14tZs2bh/fffr3ZRDMFgLFJ7ezva29urXYyKkGUZixYtwosvvojLLrsMwMCtuhdffBHXX399dQtHaUII3HDDDXj88cexbt06TJs2rdpFMoWqqojH49UuRknOP/98bN68echr11xzDWbPno3vfOc7oyIUAaC3txd79uzB1VdfXe2iGILBaIJ9+/bh+PHj2LdvH1KpFDZt2gQAmDlzJlpaWqpbuCLddNNNWLlyJU477TQsWbIEd911F6LRKK655ppqF60kvb29Q/6a3bt3LzZt2oQxY8Zg8uTJVSxZ6VatWoWHHnoIf/jDH+B2u3H48GEAA2vONTU1Vbl0pVm9ejUuuugiTJ48GZFIBA899BDWrVuHZ599ttpFK4nb7R72zNflcsHv99f1s+BvfetbuOSSSzBlyhQcOnQIt956K6xWK6688spqF80Y1e4WOxqtXLlSABj29fLLL1e7aLr8/Oc/F5MnTxayLIslS5aIN998s9pFKtnLL7+cs05WrlxZ7aKVLNfPA0Dcf//91S5ayb74xS+KKVOmCFmWRXt7uzj//PPFc889V+1iGWo0DNe44oorRGdnp5BlWUyYMEFcccUV4v333692sQzD1TWIiIgysFcqERFRBgYjERFRBgYjERFRBgYjERFRBgYjERFRBgYjERFRBgYjERFRBgYjERFRBgYjERFRBgYjERFRBgYjERFRBgYj0Sh27NgxjBs3Dj/84Q/Tr73xxhuQZRkvvvhiFUtGVLs4iTjRKPf000/jsssuwxtvvIETTzwRCxcuxKWXXoo777yz2kUjqkkMRqIGsGrVKrzwwgs47bTTsHnzZmzYsAEOh6PaxSKqSQxGogbQ39+PuXPnYv/+/di4cSPmzZtX7SIR1Sw+YyRqAHv27MGhQ4egqio+/PDDaheHqKaxxUg0yiUSCSxZsgQLFy7EiSeeiLvuugubN29GR0dHtYtGVJMYjESj3D//8z/j97//Pd577z20tLRg+fLlaG1txZNPPlntohHVJN5KJRrF1q1bh7vuugsPPPAAPB4PLBYLHnjgAbz66qu49957q108oprEFiMREVEGthiJiIgyMBiJiIgyMBiJiIgyMBiJiIgyMBiJiIgyMBiJiIgyMBiJiIgyMBiJiIgyMBiJiIgyMBiJiIgyMBiJiIgyMBiJiIgy/P+m6EjUyWcwuAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# add a mode source that launches the fundamental te mode\n", "mode_spec = td.ModeSpec(num_modes=1, target_neff=n_si)\n", "mode_source = td.ModeSource(\n", " center=(-buffer, 0, t / 2),\n", " size=(0, 4 * w, 6 * t),\n", " source_time=td.GaussianPulse(freq0=freq0, fwidth=fwidth),\n", " direction=\"+\",\n", " mode_spec=mode_spec,\n", " mode_index=0,\n", ")\n", "\n", "# add a mode monitor to measure transmission\n", "mode_monitor = td.ModeMonitor(\n", " center=(R_eff, R_eff + buffer, t / 2),\n", " size=(4 * w, 0, 6 * t),\n", " freqs=freqs,\n", " mode_spec=mode_spec,\n", " name=\"mode\",\n", ")\n", "\n", "\n", "# add a field monitor to visualize field propagation and leakage in the bend\n", "field_monitor = td.FieldMonitor(\n", " center=(R_eff / 2, R_eff / 2, t / 2),\n", " size=(td.inf, td.inf, 0),\n", " freqs=[freq0],\n", " colocate=True,\n", " name=\"field\",\n", ")\n", "\n", "\n", "run_time = 5e-13 # simulation run time\n", "\n", "# define simulation\n", "sim = td.Simulation(\n", " center=(R_eff / 2, R_eff / 2, t / 2),\n", " size=(R_eff + 2 * w + lda0, R_eff + 2 * w + lda0, 10 * t),\n", " grid_spec=td.GridSpec.auto(min_steps_per_wvl=20, wavelength=lda0),\n", " structures=[circular_bend],\n", " sources=[mode_source],\n", " monitors=[mode_monitor, field_monitor],\n", " run_time=run_time,\n", " boundary_spec=td.BoundarySpec.all_sides(\n", " boundary=td.PML()\n", " ), # pml is applied in all boundaries\n", " medium=sio2,\n", ") # background medium is set to sio2 because of the substrate and upper cladding\n", "\n", "# visualize the circular bend structure\n", "sim.plot(z=0)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "8a311e42", "metadata": {}, "source": [ "Submit the simulation job to the server." ] }, { "cell_type": "code", "execution_count": 13, "id": "bcb827fd", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:00.617240Z", "iopub.status.busy": "2023-03-27T20:45:00.617063Z", "iopub.status.idle": "2023-03-27T20:45:34.641137Z", "shell.execute_reply": "2023-03-27T20:45:34.640514Z" } }, "outputs": [ { "data": { "text/html": [ "
[08:43:37] Created task 'circular_bend' with task_id 'fdve-a397c87a-1328-449e-bdf8-7a0341867247v1'.   webapi.py:139\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:43:37]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'circular_bend'\u001b[0m with task_id \u001b[32m'fdve-a397c87a-1328-449e-bdf8-7a0341867247v1'\u001b[0m. \u001b]8;id=613025;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=92223;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2348e5fe38dc4408ac78ee06484de0f2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:43:40] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:43:40]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=860603;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828838;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:43:42] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:43:42]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=725835;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474162;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[08:43:49] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:43:49]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=840956;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=280074;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=126321;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=184712;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=861418;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=920671;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "97bc9b980a03453086d991662614d1b0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:44:12] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:44:12]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=412212;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=706776;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=184554;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=546457;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:44:36] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:44:36]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=865885;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=218339;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2e571b9f76c44c859bedfd0a0ab2ee96",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:44:38] loading SimulationData from data/simulation_data_circular.hdf5                             webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:44:38]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data_circular.hdf5 \u001b]8;id=244519;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=166339;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "job = web.Job(simulation=sim, task_name=\"circular_bend\")\n", "sim_data_circular = job.run(path=\"data/simulation_data_circular.hdf5\")\n" ] }, { "cell_type": "markdown", "id": "246eba2a", "metadata": {}, "source": [ "After the simulation is complete, we first plot the bending loss as a function of wavelength. The circular bend exhibits a bending loss ~0.015 dB, which is already pretty low. In many applications, circular waveguide bends can meet the requirement. " ] }, { "cell_type": "code", "execution_count": 14, "id": "0220b917", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:35.229787Z", "iopub.status.busy": "2023-03-27T20:45:35.229652Z", "iopub.status.idle": "2023-03-27T20:45:35.422002Z", "shell.execute_reply": "2023-03-27T20:45:35.421506Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG6CAYAAADUAjjIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV+UlEQVR4nO3deVxU9f4/8NfMwMwAsiOrCLjigqAii5poUpimoZZLejXztqqptChlapYXra9lpklWt+V3M80yr5lZhLsQKFtqgrvgwi4gAwwwc35/oHMdAWP0wDDwej4ePJDPfOac9/GE8+pzPudzJIIgCCAiIiIi0UiNXQARERFRW8OARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJLJWEbA2bNgAb29vKJVKBAcHIzk5+a79t23bBl9fXyiVSvj5+WH37t16ry9fvhy+vr6wsrKCvb09wsPDkZSUpNenuLgY06ZNg42NDezs7DB79myUl5eLfmxERETU/hg9YG3duhVRUVFYtmwZUlNT4e/vj4iICOTn5zfYPyEhAVOnTsXs2bORlpaGyMhIREZG4sSJE7o+PXr0wPr163H8+HEcPnwY3t7eePjhh1FQUKDrM23aNJw8eRJxcXHYtWsXDh48iGeffbbZj5eIiIjaPomxH/YcHByMQYMGYf369QAArVYLT09PzJs3D4sXL67Xf/LkyVCpVNi1a5euLSQkBAEBAYiNjW1wH2VlZbC1tcXvv/+OkSNH4tSpU+jduzeOHj2KwMBAAMCePXswevRoXL58Ge7u7s1wpERERNRemBlz59XV1UhJSUF0dLSuTSqVIjw8HImJiQ2+JzExEVFRUXptERER2LFjR6P72LRpE2xtbeHv76/bhp2dnS5cAUB4eDikUimSkpIwfvz4ettRq9VQq9W6n7VaLYqLi+Ho6AiJRNLkYyYiIiLjEQQBN27cgLu7O6TS5ruQZ9SAVVhYCI1GAxcXF712FxcXZGZmNvie3NzcBvvn5ubqte3atQtTpkxBRUUF3NzcEBcXBycnJ902nJ2d9fqbmZnBwcGh3nZuiYmJwVtvvWXQ8REREVHrlJOTg06dOjXb9o0asJrTiBEjkJ6ejsLCQnz66aeYNGkSkpKS6gWrpoqOjtYbOSstLUXnzp2Rk5MDGxsbscomIiKiZlRWVgZPT09YW1s3636MGrCcnJwgk8mQl5en156XlwdXV9cG3+Pq6tqk/lZWVujWrRu6deuGkJAQdO/eHZ9//jmio6Ph6upabxJ9bW0tiouLG92vQqGAQqGo125jY8OARUREZGKae3qPUe8ilMvlGDhwIOLj43VtWq0W8fHxCA0NbfA9oaGhev0BIC4urtH+t2/31hyq0NBQlJSUICUlRff63r17odVqERwcfK+HQ0RERASgFVwijIqKwsyZMxEYGIigoCCsXbsWKpUKs2bNAgDMmDEDHh4eiImJAQDMnz8fYWFhWLNmDcaMGYMtW7bg2LFj2LRpEwBApVJh5cqVGDduHNzc3FBYWIgNGzbgypUreOKJJwAAvXr1wqhRo/DMM88gNjYWNTU1mDt3LqZMmcI7CImIiOi+GT1gTZ48GQUFBVi6dClyc3MREBCAPXv26CayZ2dn683yHzx4MDZv3owlS5bg9ddfR/fu3bFjxw707dsXACCTyZCZmYmvvvoKhYWFcHR0xKBBg3Do0CH06dNHt51vvvkGc+fOxciRIyGVSjFx4kSsW7euZQ+eiIiI2iSjr4Nlqm6trVVaWso5WERERCaipT6/jb6SOxEREVFbw4BFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIqN3IKa5okf0wYBEREVG7kFNcgQkbj7TIvhiwiIiIqM0TBAGLfvgTldXaFtkfAxYRERG1eZuTs5FwrggK85aJPgxYRERE1KZdvl6Bf/18CgCwYGT3FtknAxYRERG1WYIgIHr7caiqNQj0sse0YK8W2S8DFhEREbVZW4/m4NCZQijMpHj38X6QSiUtsl8GLCIiImqTrpRU4p2blwZfjeiJLh07tNi+GbCIiIiozbl1abBcXYsBne0wa4hPi+6fAYuIiIjanG+Tc3DwdAHkZlK8+7g/ZC10afAWBiwiIiJqU84VlGPFrpMAgFcf7oluzi13afAWBiwiIiJqM6prtViwJR1VNVoM6eaI2UNb9tLgLQxYRERE1Gas/f00jl8phZ2lOdY8EdBidw3eiQGLiIiI2oQ/zhdh44FzAICY8X5wtVUarRYGLCIiIjJ5pZU1iNqaDkEAJgV2wiN+bkathwGLiIiITJogCFiy4wSullbBy9ESy8b2MXZJDFhERERk2ranXsFPGVchk0qwdnIArBRmxi6JAYuIiIhM1/mCcrz53xMA6h7k3L+zvZErqsOARURERCZJXavBvG/TUFGtQUgXB7w4opuxS9JhwCIiIiKTtPqXLJy8WgZ7S3Osndy/xVdrvxsGLCIiIjI5ezPz8O8jFwAA//eEv1GXZGgIAxYRERGZlLyyKryy7U8AwKwh3hjZy8XIFdXHgEVEREQmQ6MVsGBLOopV1ejjboPFj/gau6QGMWARERGRyfho7xkkni+CpVyGj6b2h8JMZuySGsSARURERCbhyNlCfBh/BgDwTmRfdOnYwcgVNY4Bi4iIiFq9vLIqzN+SBkEApgzyxIQBnYxd0l0xYBEREVGrVqvRYt63aSgsr4avqzWWjzP+o3D+DgMWERERtWrvx51G8oVidFCY4eNpA6A0b53zrm7HgEVERESt1r6sfHy8/xwAYNVEv1Y97+p2DFhERETUKl0pqcTCrekAgBmhXni0n7txCzIAAxYRERG1OtW1Wsz5JhUlFTXw87DFG2N6GbskgzBgERERUavzr92nkJ5TAlsLc3w8bUCrXe+qMQxYRERE1Krs+vMqvky4CAB4f5I/PB0sjVvQPWDAIiIiolbjXEE5Fn1f95zBF4Z3bZXPGWwKBiwiIiJqFSqqa/HCf1KgqtYg2McBLz/Uw9gl3TMGLCIiIjI6QRCw5McTOJ1Xjo7WCnz0ZH+YyUw3pphu5URERNRm/PvIRWxPuwKpBPhoan84WyuNXdJ9YcAiIiIio/r1ZC7e+fkvAED0I70Q0sXRyBXdPwYsIiIiMpqMnBLdQ5yfDO6Mfz7gY+ySRMGARUREREaRU1yB2V8dQ1WNFmE9OmLFuD6QSCTGLksUDFhERETU4kora/D0l0dRWK6Gr6s11pv4pPY7tZ0jISIiIpNQo6l7DM6Z/HK42CjwxaxBsFaaG7ssUTFgERERUYsRBAHLdp7E4bOFsJTL8PnMQXCztTB2WaJrFQFrw4YN8Pb2hlKpRHBwMJKTk+/af9u2bfD19YVSqYSfnx92796te62mpgaLFi2Cn58frKys4O7ujhkzZuDq1at62/D29oZEItH7WrVqVbMcHxEREdX5KuEiNidlQ3JzOYa+HrbGLqlZGD1gbd26FVFRUVi2bBlSU1Ph7++PiIgI5OfnN9g/ISEBU6dOxezZs5GWlobIyEhERkbixIkTAICKigqkpqbizTffRGpqKrZv346srCyMGzeu3rZWrFiBa9eu6b7mzZvXrMdKRETUnh08XYAVu24tx+Brso/BaQqJIAiCMQsIDg7GoEGDsH79egCAVquFp6cn5s2bh8WLF9frP3nyZKhUKuzatUvXFhISgoCAAMTGxja4j6NHjyIoKAiXLl1C586dAdSNYC1YsAALFiy4p7rLyspga2uL0tJS2NjY3NM2iIiI2ouz+eUY//ER3KiqxeMDO+G9x/sZ5Y7Blvr8NuoIVnV1NVJSUhAeHq5rk0qlCA8PR2JiYoPvSUxM1OsPABEREY32B4DS0lJIJBLY2dnpta9atQqOjo7o378/3nvvPdTW1ja6DbVajbKyMr0vIiIi+nslFdX451dHcaOqFoFe9lg5vm+bWY6hMWbG3HlhYSE0Gg1cXPSHCF1cXJCZmdnge3Jzcxvsn5ub22D/qqoqLFq0CFOnTtVLqi+99BIGDBgABwcHJCQkIDo6GteuXcP777/f4HZiYmLw1ltvGXJ4RERE7V6NRos5m1NxsagCHnYWiP3HQCjMZMYuq9kZNWA1t5qaGkyaNAmCIGDjxo16r0VFRen+3K9fP8jlcjz33HOIiYmBQqGot63o6Gi995SVlcHT07P5iiciIjJxNRot5m9Jw5GzRbCUy/DZzEA4daj/GdsWGTVgOTk5QSaTIS8vT689Ly8Prq6uDb7H1dW1Sf1vhatLly5h7969f3udNTg4GLW1tbh48SJ69uxZ73WFQtFg8CIiIqL6ajRaLNiSjt3HcyGXSbFh2gD0cms/c5aNOgdLLpdj4MCBiI+P17VptVrEx8cjNDS0wfeEhobq9QeAuLg4vf63wtWZM2fw+++/w9Hx7x8amZ6eDqlUCmdn53s8GiIiIgKAWo0WC7am4+fj12AukyD2HwMwomf7+nw1+iXCqKgozJw5E4GBgQgKCsLatWuhUqkwa9YsAMCMGTPg4eGBmJgYAMD8+fMRFhaGNWvWYMyYMdiyZQuOHTuGTZs2AagLV48//jhSU1Oxa9cuaDQa3fwsBwcHyOVyJCYmIikpCSNGjIC1tTUSExOxcOFCTJ8+Hfb29sb5iyAiImoDdOHqz5vhavpAPOjbdpdjaIzRA9bkyZNRUFCApUuXIjc3FwEBAdizZ49uInt2djak0v8NtA0ePBibN2/GkiVL8Prrr6N79+7YsWMH+vbtCwC4cuUKdu7cCQAICAjQ29e+ffswfPhwKBQKbNmyBcuXL4darYaPjw8WLlyoN8eKiIiIDFOr0WLhdxnYdTNcbZw2sE2vdXU3Rl8Hy1RxHSwiIqL/0WoFvPJ9BranXoG5TIKPpw3EQ71bX7hqF+tgERERkekTBAFv/vcEtqdegUwqwfonB7TKcNWSGLCIiIjongmCgJU/n8I3N58v+P4kf0T0aXglgPaEAYuIiIju2Qdxp/HZ4QsAgNUT+uGxAA8jV9Q6MGARERHRPdm4/xzW7T0LAFjxWB9MGsQFuG9hwCIiIiKDfZ14Eav31D3WbvEjvpgR6m3cgloZBiwiIiIyyLZjOVj635MAgJce7Ibnw7oauaLWhwGLiIiImmz38WtY9MOfAIDZQ32w8KEeRq6odWLAIiIioibZl5mP+VvSoBWAKYM8sWRML0gkEmOX1SoxYBEREdHfSjxXhOf/k4IajYCx/u5YOd6P4eouGLCIiIjorlIuXcc/vzoKda0W4b2c8f4kf8ikDFd3Y/RnERIREVHrdexiMWb+Oxmqag2GdHPE+icHwFzG8Zm/w78hIiIialDyhWLMuBmuBnd1xGczBkFpLjN2WSaBAYuIiIjq+eN8EZ76IhkV1RoM7eaEz2cOgoWc4aqpeImQiIiI9CScLcTTXx1FVY0WD3R3wqczAjlyZSCOYBEREZHOL8ev6cJVWI+ODFf3iCNYREREBI1WwJrfsvDx/nMAgAd9nfHxtAEMV/eIAYuIiKidK62owUtb0nDgdAEA4J9DfbD4EV+Y8W7Be8aARURE1I6dulaG5/5fCrKLK6A0l2L1xH54LMDD2GWZPAYsIiKidmpfZj5e/CYVlTUadLK3wCf/GIg+7rbGLqtNYMAiIiJqh3ZmXEXU1nTUagU80N0J66b0h72V3NhltRkMWERERO3MN0mXsGTHCQgCEBngjvee8Ofq7CJjwCIiImpHNu4/h9V7MgEA/wjxwlvj+kDK5wqKjgGLiIioHRAEAe/+moWNN5dhmDOiK155uCckEoar5sCARURE1MaVVtTg1e8z8NtfeQCA6Ed88VxYVyNX1bYxYBEREbVhadnXMXdzGq6UVEIuk+LtyD6YPKizsctq8xiwiIiI2iCtVsDnhy9g9Z5M1GoFeDlaYv3UAfDrxGUYWgIDFhERURtTUlGNl7/LQHxmPgBgTD83xEzwg43S3MiVtR8MWERERG3IyauleP4/KcgproTcTIqlj/bGtODOnMzewhiwiIiI2ojtqZcRvf041LVadHawxMbpA7gyu5EwYBEREZm46lotVv78F75KvAQAGN6zIz6c3B+2lrwkaCwMWERERCbs8vUKLNiSjmOXrgMAXhrZHQtGdufioUbGgEVERGSCtFoB3yRnY9XuU1BVa2CtNMMHkwIQ3tvF2KURGLCIiIhMTnZRBRb98CcSzxcBAAK97PF/T/jD28nKyJXRLQxYREREJkKrFfBV4kW8uycLlTUaKM2leC3CFzMHe0PGS4KtCgMWERGRCcgtrcLL29Jx5GzdqFVIFwesntgPXo4ctWqNGLCIiIhauV9P5mLRD3+ipKIGFuYyvD7aF9OCvTiRvRVjwCIiImqlKqpr8fauU/g2ORsA0MfdBuum9kfXjh2MXBn9HQYsIiKiVigjpwRR36XjXIEKAPDssC54+eEeUJjJjFwZNQUDFhERUStSVaPB+3Gn8dmh89AKgLO1Au9PCsDQ7k7GLo0MwIBFRETUSiSdL8KiH/7ExaIKAMBjAe5YNrYPHKzkRq6MDMWARUREZGSllTVY81sWvr75qBsXGwVWRvpx0VATxoBFRERkJDUaLb5Nzsba38+gWFUNAJgyyBPRo3vB1oLPETRlDFj3qahcDRsbY1dBRESmRBAE7M3Mx792n9JNYu/m3AFvjeuDId0416otYMC6TxM+PoL3pw/GCF9nY5dCREQmICv3BlbsOqlbMNTBSo6FD/XA1EGeMJNJjVwdiYUB6z4VqWow68ujmBnqhejRvaA05+2zRERUX2llDdb+fhpfJ16CRitALpPi6aE+eHFEV9goeTmwrWHAuk/TQjrj27RCfJV4CQnnivDB5AD09bA1dllERNRKaLUCfki9jNV7MlFYXjfP6pG+rnh9dC94OlgauTpqLhJBEARjF2GKysrKYGtri9LSUqReq8Ir2/5EYbkaMqkETw32xsKHeqCDgvmViKg9S8u+jhW7/kJadgkAoGtHKywf1wcPdO9o3MLasds/v22acRI1A9Y9uvMEFZWr8eZ/T2D38VwAdbfYLn20D0b7uUIi4bOiiIjak5ziCrz7axZ+yrgKALCSyzA/vDueGuwDuRnnWRkTA1Yr19gJ2p+Vj2U7T+LSzUXihvXoiLcf68OnnRMRtQOllTX4eN9ZfHHkIqo1WkgkwOMDOuGViJ5wsVEauzwCA1ard7cTVFWjwcb957Bx/zlUa7SwMJcherQvpvPJ50REbVJpRQ3+k3QJnx06j+sVNQCAId0c8froXujjznm5rUlLBaxWMU65YcMGeHt7Q6lUIjg4GMnJyXftv23bNvj6+kKpVMLPzw+7d+/WvVZTU4NFixbBz88PVlZWcHd3x4wZM3D16lW9bRQXF2PatGmwsbGBnZ0dZs+ejfLyclGOR2kuw8KHeuDXhcMwuKsjKms0WPrfk5jx72RcKakUZR9ERGR810or8c6uvzB4VTze+zUL1ytq0M25A754ahD+MzuY4aodM3rA2rp1K6KiorBs2TKkpqbC398fERERyM/Pb7B/QkICpk6ditmzZyMtLQ2RkZGIjIzEiRMnAAAVFRVITU3Fm2++idTUVGzfvh1ZWVkYN26c3namTZuGkydPIi4uDrt27cLBgwfx7LPPinpsPk5W+M/sYLw1rg+U5lIcPluIUR8cxLZjOeDAIRGR6TqddwOvbMvAsHf34bPDF6Cq1sDX1RprJwdgz/wHMMLXmfNv2zmjXyIMDg7GoEGDsH79egCAVquFp6cn5s2bh8WLF9frP3nyZKhUKuzatUvXFhISgoCAAMTGxja4j6NHjyIoKAiXLl1C586dcerUKfTu3RtHjx5FYGAgAGDPnj0YPXo0Ll++DHd397+t29AhxguFKrz8XTpSb95JMqJnR6x4rC9v0SUiMhGCICD5QjE+OXgeezP/NwgQ0sUBz4d1RViPjgxVJqBdXCKsrq5GSkoKwsPDdW1SqRTh4eFITExs8D2JiYl6/QEgIiKi0f4AUFpaColEAjs7O9027OzsdOEKAMLDwyGVSpGUlNTgNtRqNcrKyvS+DOHjZIVtzw/G4kd8IZdJsS+rAA99cAAb959DjUZr0LaIiKjl1Gq0+OX4NUR+nIDJm/7A3sx8SCTAqD6u+PHFwdjybCiG9+SIFekz6kJNhYWF0Gg0cHHRf1q4i4sLMjMzG3xPbm5ug/1zc3Mb7F9VVYVFixZh6tSpuqSam5sLZ2f9R9uYmZnBwcGh0e3ExMTgrbfeatJxNUYmleD5sK4I7+WCJTuO44/zxVi9JxM/pl3GO5F+CPJxuK/tExGReM4VlGPbscv4IfUyCm6oAQByMykeH9gJzzzQBT5OvDucGtemV8KsqanBpEmTIAgCNm7ceF/bio6ORlRUlO7nsrIyeHp63tO2ujl3wLfPhODHtCtY+fMpnM4rx6RPEjHO3x1zRnRDT1fr+6qViIjuTVWNBjvTr+K7Yzk4dum6rt3BSo5pwZ0xI9QbHa0VRqyQTIVRA5aTkxNkMhny8vL02vPy8uDq6trge1xdXZvU/1a4unTpEvbu3at3ndXV1bXeJPra2loUFxc3ul+FQgGFQrxfKolEggkDOuFBX2es3pOFb5OzsTPjKnZmXEV4Lxe8OKIrBnS2F21/RETUuMpqDTYnZ+OTA+eQf3O0SioBRvR0xhOBnnjQ15kLhJJBDApYJSUl+PHHH3Ho0CFcunQJFRUV6NixI/r374+IiAgMHjzYoJ3L5XIMHDgQ8fHxiIyMBFA3yT0+Ph5z585t8D2hoaGIj4/HggULdG1xcXEIDQ3V/XwrXJ05cwb79u2Do6NjvW2UlJQgJSUFAwcOBADs3bsXWq0WwcHBBh3D/bKzlCNmgh+mBXfGx/vP4pcTufj9VB5+P5WH0C6OeGlkd4R2dfz7DRERkcEqqmvxzR/Z+OTgeRSW1wUrDzsLTA/xwoQBHlwclO5Zk+4ivHr1KpYuXYpvvvkG7u7uCAoKgru7OywsLFBcXIwTJ04gJSUFXl5eWLZsGSZPntzkArZu3YqZM2fik08+QVBQENauXYvvvvsOmZmZcHFxwYwZM+Dh4YGYmBgAdcs0hIWFYdWqVRgzZgy2bNmCf/3rX0hNTUXfvn1RU1ODxx9/HKmpqdi1a5fefC0HBwfI5XIAwCOPPIK8vDzExsaipqYGs2bNQmBgIDZv3tykupvrLoSz+eX45MA5/Jh2BbXaulMzvGdHLBrli15uzXe3AxFRe1FaWYMjZwtx8HQBfvsrD8Wqugcwd7K3wJwR3TBxQCeOVrVhrWoldxcXF8ycORNPPfUUevfu3WCfyspK7NixA+vWrcPEiRPxyiuvNLmI9evX47333kNubi4CAgKwbt063UjS8OHD4e3tjS+//FLXf9u2bViyZAkuXryI7t27491338Xo0aMBABcvXoSPj0+D+9m3bx+GDx8OoG6h0blz5+Knn36CVCrFxIkTsW7dOnTo0KFJNTf3CbpSUonY/efwbXI2arUCJBJgfH8PvPxwT3jYWYi+PyKituxsfjl+/vMaDp4pQFr2dWhv++Tr7GCJuSO6YfwAD5jLGKzaulYVsIqKiupdZhOzvylqqRN0oVCF//stCz//eQ1A3R0sTwZ1xjPDujBoERHdRWG5Gj9lXMWPaVfw5+VSvde6drTCsB4dMaxHRwzt5sRg1Y60qoBF9bXUCbolI6cEMb+cwh/niwEAZlIJxvm749mwLvB15aVDIiIAuFpSqbv0d+B0ATQ3h6rMpBIM69ERD/V2wbAeHfk/qO1Yqw1Yt49O5eTk4NNPP0VlZSXGjRuHBx54oFmKbI1aOmABdasIHz5biI37zyHhXJGufXjPjpg1xAdDuzlBxodJE1E7Ul2rxdGLxThwugD7s/JxOk//mbL+nWwxvr8Hxvq7w7EDl1egVhiwjh8/jrFjxyInJwfdu3fHli1bMGrUKKhUKkilUqhUKnz//fe6uwHbOmMErNv9ebkEnxw8j1+OX9PNJXCxUSAywAMTBnTiWlpE1GZVVmtw4HQBfj2Zi/hTeSirqtW9JpUAAZ52COvhjDH93NDNuWnzaqn9aHUB65FHHoGZmRkWL16M//f//h927dqFiIgIfPrppwCAefPmISUlBX/88UezFduaGDtg3XKpSIUvjlzEjvQrKKmo0bX3cbfBlKDOeHxAJ1jIZUarj4jofpWra3HySimOXylF8oViHDxTgKqa/z1izKmDHGE9nDG8Z918KnsruRGrpdau1QUsJycn7N27F/369UN5eTlsbGxw9OhR3TpSmZmZCAkJQUlJSbMV25q0loB1S3WtFvuy8rE99TL2ZuajRlN3Wh2s5JgZ6o0ZoV78R4eITEKxqhoHTufj0JlCHL9cirMF5bjzk6qTvQVG9XFFRF9XDOhsz+kR1GStLmBJpVK9Z/hZW1sjIyMDXbp0AVC3mrq7uzs0Gk2zFduatLaAdbvrqmrsSL+Cfx+5gJziSgCA0lyKyYGeeHqoD7wc+fwsImo9tFoBWXk3sDczH3sz8+stowAAbrZK+HnYwt/TDsN7dkRvNxs+XJnuSUt9fhu0kvud/zHzP+7Wyd5KjllDfPCPEC/8ciIXnxw8hxNXyvBV4iV8lXgJQ7o5Ysqgzni4jwsUZrx8SEQtq6SiGuk5JUjLLkFaTgnSs6/rzaMCgF5uNhjRsyMCve3R18MWztZcUZ1Mi0EB66mnntI9j6+qqgrPP/88rKzqRkPUarX41dF9MZNJMdbfHY/2c0PCuSJ8eug8DpwuwJGzRThytggOVnJM6O+ByP4e6OPO/xskIvHUarQ4W1COv66W4WJRBbKLVMgurkB2cQUKy6vr9VeaSzGkqxMe7OWMET2d4c5lFMjENfkS4axZs5q0wS+++OK+CjIVrfkS4d3kFFdg27EcfHfsMnLLqnTtHa0VeKC7E8JuLrrH25mJqKmqa7U4X1iOzGs3kHG5BMcvl+Lk1TJU1jQ+ZcTHyQr9Pe3Qv7Md+ne2R09Xay72SS2i1c3BIn2mGrBuqdVoceB0AbYezcHhs4WoqP7fP4QSCdCvkx1G+jrjQV9njm4REYC65REuFqlwoVCFc/nlyMq7gdN5N3C+QKV7durtOijM0NvdBl07WsHTwRJeDlbwcrSEp4MlbC3MjXAERAxYrZ6pB6zbqWs1SLl4HQdOF+DA6QJk5t7Qe93VRokRN8PWkG6OsJQbdGWZiExMSUU1TueV43TeDZzJu4GzBeW4UKDC1dKqRt9jrTBDT1dr9PWwhb+nLfw87NDFyQpS3t1HrUyrClgTJkxo8ga3b99+XwWZirYUsO6UV1aFfZn5iM/Mx+EzhXrD/HIzKUK7OOLBm4HL08HSiJUSkaGqa7UoqahGkaoaBTfUuFJSicvXK3DleiUuX6/EpeIKFNxofE6tjdIMXTp2QBcnK/RwtUZPF2v0dLWGm62SI91kElrVXYS2tra6PwuCgB9//BG2trYIDAwEAKSkpKCkpMSgIEatl4uNElOCOmNKUGdU1Wjwx/ki3e3Tl69X6ka6lu08CR8nKwT7OCDo5lcnewYuImMpq6pBdlEFLl+vRG5pJa6VVSGvtArXSquQf0ONwnI1btxxt15jPOws0N2lA3q4WKObcwd07WgFH6cOsLc0Z5AiagKDLxEuWrQIxcXFiI2NhUxWd4u/RqPBiy++CBsbG7z33nvNUmhr05ZHsBojCALO5JfrwlbKpeu6B6ne4mFngYFe9vDzsIVfJ1v0cbeBtZJzLYgMIQgC1LValKtroVLX3vyuwY2qGpRW1qCkogYllTUorahGYXk1cq7X3Z13+9Mc7kYqAewt5XDsIIeHnQU62VvCw94Cnezr/tzNuQM6KDgVgNqmVnWJ8HYdO3bE4cOH0bNnT732rKwsDB48GEVFRY28s21pjwHrTqWVNTh2sRjJF4qRdKEYx6+U1gtcEknd3UIDOtvjge5OGNLNCU68Q5HaEUEQUFWjRdnNcFSsqkZeWd2oUm5pFa6VVqLghlovRKmqNfV+l5rKqYMcnewt4W6nhIuNEm62dd9dbJRw6iCHg5UCdhbmnBtF7VarukR4u9raWmRmZtYLWJmZmdBqtY28i9oiWwtzjOzlgpG9XAAAKnUtUrOv48/Lpfjz5q3aV0urcL5AhfMFKnyfchkA4OtqjQe6O2Gglz26dOyAzg6WUJpzwVNqHQRBQK22bgRJXaOBSq1BQXnd5bXCcjUKb1TjekW17nV1rRbqWg2qarSoqtGgqlYDdY0WVbUaVFZrUFZZi2rNvf/baCmXwUphhg43v+wszWFrYQ47S3PYWchhbyWHp70FOjtawtPeElYceSJqFQz+TZw1axZmz56Nc+fOISgoCACQlJSEVatWNXmtLGqbrBRmeKB7RzzQvaOurbBcjeOXS/HH+SIcOlOIv66VITP3BjJzb+DTQxcA1I1yedhZwMfJCl2crODjZAWfm5No3e0s+Iwxqqe6VovKGg3UNRrUaAXUarSo0Qio1WpRffPSWnlV3aW1WyND1bVaVGtufr/5/v9daqvB9Ypq3KiqhbpWU+8xLWKQSSWwUZrBzlIO15sjS662dd87WithrawLULfClJVCBiu5GUeaiEyUwZcItVot/u///g8ffvghrl27BgBwc3PD/Pnz8fLLL+vmZbV1vER4bwrL1ThythBHzhYiK7du/Zwb6sYn3cplUnRysICnvaVufoingwVcbJSwtzSHrYUcdpbmXKCwFRIEAVoB0AoCtIIAQahbR6lIpUZheTUKy9UoKq9GaWUNajRaVGu0qKkVUKOpGwm6cTMg3aiqwY2bc5EqqutGhRpac6m5KM2lcOqg0H11tJbD3lIOC3MZFOZSKMxkUJhJoTCXQmkmg/Jmu9JcBgtzGWwtzGFjYQ4ruYyTw4lagVY7B+t2ZWVlANAuAwYDljgEQUBheTUuFKpwvqAcF4pUuFBQt5DhpaKKJl9a6aAwg72VOZw6KOBoVfchWPdhqICzdd1IgYuNAh07KGDGMAagbrHZao0W6hqt3mWu2y93VVTX6kZ5SipqUFpZN8pTqxF0oahWI0BdW3cpTVVdF4LK1bWorm3+KQMSCWAulcJMJoGZVAJzmRRyM2nd5TTl/y6rWcrNIDeTQmFW97pcJoWFXKZ3qc3O0hw2SnMob4Um87p+HEEialta7Rys2zFY0P2SSCToaF0XhIJ8HPRe02gFXC2pRHZxBS5fr7v1PKe47nthuRrXK2pQVlUDQYDuUlBOceXf7A/oIDeD7OYHskwqgZm07sPW7taHraUcdjdHHSzlMljKzW5+l0FhLoO5VAIzWd2HurlUCokEuqBxK7QIAgAJIJVIILm531t/hgSQQAKJBJAAEAAIAiBAAATUG/XRCgKqa7VQVdcFHpVaA5W6FlU1dSM5dfu+FXTqLo9VVNeiXF3Xv6pGU1ebVoBGW3cZrUYj3PMk6vtlozSDk7UCTlYKOHaoCzZymVQXjm59t1GawVpprheWLG6eBwtzGSzkMshlUo4KEVGr1KSANWrUKCxfvhwhISF37Xfjxg18/PHH6NChA+bMmSNKgdR+yaQSeDpY3nUxU41WQFll3fyZYlW13qWnwnI18m9UIa9MjfyyunWAarXCXS9JtldmUgkUZnWXtW59l5tJYSmXwd5SDtvbRnk6KMxuBqG6ESMzWd1Ij27ekKIukCrNZZBJJJBKJJBK6wLmrfBERNTWNSlgPfHEE5g4cSJsbW0xduxYBAYGwt3dHUqlEtevX8dff/2Fw4cPY/fu3RgzZky7WQuLjE8mlcDequ5Oqi4d795XqxVQpKqGSl2rN5pTqxGgqq69OdG5LqyVVFTfHAmqu/RVWVM3cqSuvTlapK27RFarESBAqAsON0dhzGR1oULArRGoukuht0apbo1KCQAg1I1uSW4b6ZJAAqlUAunNUS+pBDCTSW9Ofq4bUbOSy6CUy3SXx8xldYFHrutnBsub/RVmMpjLpDdH626O2skkUN52GYyXTYmIxNXkOVhqtRrbtm3D1q1bcfjwYZSWltZtQCJB7969ERERgdmzZ6NXr17NWnBrwTlYREREpqfVT3IvLS1FZWUlHB0dYW7e/lbqZsAiIiIyPa1+krutra3eMwqJiIiIqA4nXhARERGJjAGLiIiISGQMWEREREQiY8AiIiIiEpnBASsnJweXL1/W/ZycnIwFCxZg06ZNohZGREREZKoMDlhPPvkk9u3bBwDIzc3FQw89hOTkZLzxxhtYsWKF6AUSERERmRqDA9aJEycQFBQEAPjuu+/Qt29fJCQk4JtvvsGXX34pdn1EREREJsfggFVTUwOFQgEA+P333zFu3DgAgK+vL65duyZudUREREQmyOCA1adPH8TGxuLQoUOIi4vDqFGjAABXr16Fo6Oj6AUSERERmRqDA9bq1avxySefYPjw4Zg6dSr8/f0BADt37tRdOiQiIiJqz+7pWYQajQZlZWWwt7fXtV28eBGWlpZwdnYWtcDWis8iJCIiMj0t9flt8AhWZWUl1Gq1LlxdunQJa9euRVZWVrsJV0RERER3Y3DAeuyxx/D1118DAEpKShAcHIw1a9YgMjISGzduFL1AIiIiIlNjcMBKTU3FAw88AAD4/vvv4eLigkuXLuHrr7/GunXrRC+QiIiIyNQYHLAqKipgbW0NAPjtt98wYcIESKVShISE4NKlS6IXSERERGRqDA5Y3bp1w44dO5CTk4Nff/0VDz/8MAAgPz+fk72JiIiIcA8Ba+nSpXjllVfg7e2NoKAghIaGAqgbzerfv7/oBRIRERGZmntapiE3NxfXrl2Dv78/pNK6jJacnAwbGxv4+vqKXmRrxGUaiIiITE9LfX6b3cubXF1d4erqisuXLwMAOnXqxEVGiYiIiG4y+BKhVqvFihUrYGtrCy8vL3h5ecHOzg5vv/02tFptc9RIREREZFIMHsF644038Pnnn2PVqlUYMmQIAODw4cNYvnw5qqqqsHLlStGLJCIiIjIlBs/Bcnd3R2xsLMaNG6fX/t///hcvvvgirly5ImqBrRXnYBEREZmeVvuonOLi4gYnsvv6+qK4uFiUooiIiIhMmcEBy9/fH+vXr6/Xvn79evj7+4tSFBEREZEpM3gO1rvvvosxY8bg999/162BlZiYiJycHOzevVv0AomIiIhMjcEjWGFhYTh9+jTGjx+PkpISlJSUYMKECcjKytI9o5CIiIioPTM4YAF1E91XrlyJH374AT/88APeeecduLu731MBGzZsgLe3N5RKJYKDg5GcnHzX/tu2bYOvry+USiX8/PzqjZpt374dDz/8MBwdHSGRSJCenl5vG8OHD4dEItH7ev755++pfiIiIqI7NekS4Z9//tnkDfbr16/Jfbdu3YqoqCjExsYiODgYa9euRUREBLKysuDs7Fyvf0JCAqZOnYqYmBg8+uij2Lx5MyIjI5Gamoq+ffsCAFQqFYYOHYpJkybhmWeeaXTfzzzzDFasWKH72dLSssl1ExEREd1Nk5ZpkEqlkEgk+LuuEokEGo2myTsPDg7GoEGDdJPmtVotPD09MW/ePCxevLhe/8mTJ0OlUmHXrl26tpCQEAQEBCA2Nlav78WLF+Hj44O0tDQEBATovTZ8+HAEBARg7dq1Ta71TlymgYiIyPS0qkflXLhwQfQdV1dXIyUlBdHR0bo2qVSK8PBwJCYmNviexMREREVF6bVFRERgx44dBu//m2++wX/+8x+4urpi7NixePPNN+86iqVWq6FWq3U/l5WVGbxPIiIiah+aFLC8vLxE33FhYSE0Gg1cXFz02l1cXJCZmdnge3Jzcxvsn5uba9C+n3zySXh5ecHd3R1//vknFi1ahKysLGzfvr3R98TExOCtt94yaD9ERETUPt3Tw55N3bPPPqv7s5+fH9zc3DBy5EicO3cOXbt2bfA90dHReqNnZWVl8PT0bPZaiYiIyPQYLWA5OTlBJpMhLy9Prz0vLw+urq4NvsfV1dWg/k0VHBwMADh79myjAUuhUEChUNzXfoiIiKh9uKdlGsQgl8sxcOBAxMfH69q0Wi3i4+N1C5jeKTQ0VK8/AMTFxTXav6luLeXg5uZ2X9shIiIiAox8iTAqKgozZ85EYGAggoKCsHbtWqhUKsyaNQsAMGPGDHh4eCAmJgYAMH/+fISFhWHNmjUYM2YMtmzZgmPHjmHTpk26bRYXFyM7OxtXr14FAGRlZQGoG/1ydXXFuXPnsHnzZowePRqOjo74888/sXDhQgwbNsygJSaIiIiIGmPUgDV58mQUFBRg6dKlyM3NRUBAAPbs2aObyJ6dnQ2p9H+DbIMHD8bmzZuxZMkSvP766+jevTt27NihWwMLAHbu3KkLaAAwZcoUAMCyZcuwfPlyyOVy/P7777ow5+npiYkTJ2LJkiUtdNRERETU1jVpHazb2dvbQyKR1N+QRAKlUolu3brhqaee0gs5bRHXwSIiIjI9rWodrNstXboUK1euxCOPPIKgoCAAQHJyMvbs2YM5c+bgwoULeOGFF1BbW3vXldSJiIiI2iqDA9bhw4fxzjvv1Ht23yeffILffvsNP/zwA/r164d169YxYBEREVG7ZPBdhL/++ivCw8PrtY8cORK//vorAGD06NE4f/78/VdHREREZIIMDlgODg746aef6rX/9NNPcHBwAFD3wGVra+v7r46IiIjIBBl8ifDNN9/ECy+8gH379unmYB09ehS7d+/WPXA5Li4OYWFh4lZKREREZCIMvosQAI4cOYL169fr1pjq2bMn5s2bh8GDB4teYGvFuwiJiIhMT0t9ft9TwCIGLCIiIlPUapdpAOoeaXP27Fnk5+dDq9XqvTZs2DBRCiMiIiIyVQYHrD/++ANPPvkkLl26hDsHvyQSCTQajWjFEREREZkigwPW888/j8DAQPz8889wc3NrcFV3IiIiovbM4IB15swZfP/99+jWrVtz1ENERERk8gxeBys4OBhnz55tjlqIiIiI2gSDR7DmzZuHl19+Gbm5ufDz84O5ubne6/369ROtOCIiIiJTZPAyDVJp/UEviUQCQRDa1SR3LtNARERkelrtMg0XLlxojjqIiIiI2gyDA5aXl1dz1EFERETUZjQpYO3cuROPPPIIzM3NsXPnzrv2HTdunCiFEREREZmqJs3BkkqlyM3NhbOzc4NzsHQb4xwsIiIiasVa1Rys2x+Hc+ejcYiIiIhIn8HrYBERERHR3TVpBGvdunVN3uBLL710z8UQERERtQVNmoPl4+Oj93NBQQEqKipgZ2cHACgpKYGlpSWcnZ1x/vz5Zim0teEcLCIiItPTUp/fTbpEeOHCBd3XypUrERAQgFOnTqG4uBjFxcU4deoUBgwYgLfffrvZCiUiIiIyFQav5N61a1d8//336N+/v157SkoKHn/88XazEClHsIiIiExPqxrBut21a9dQW1tbr12j0SAvL0+UooiIiIhMmcEBa+TIkXjuueeQmpqqa0tJScELL7yA8PBwUYsjIiIiMkUGB6x///vfcHV1RWBgIBQKBRQKBYKCguDi4oLPPvusOWokIiIiMikGP4uwY8eO2L17N06fPo3MzEwAgK+vL3r06CF6cURERESmyOCAdUuPHj0YqoiIiIgaYHDA0mg0+PLLLxEfH4/8/Px6j87Zu3evaMURERERmSKDA9b8+fPx5ZdfYsyYMejbty8kEklz1EVERERksgwOWFu2bMF3332H0aNHN0c9RERERCbP4LsI5XI5unXr1hy1EBEREbUJBgesl19+GR9++CEMXACeiIiIqN0w+BLh4cOHsW/fPvzyyy/o06cPzM3N9V7fvn27aMURERERmSKDA5adnR3Gjx/fHLUQERERtQkGB6wvvviiOeogIiIiajMMnoMFALW1tfj999/xySef4MaNGwCAq1evory8XNTiiIiIiEyRwSNYly5dwqhRo5CdnQ21Wo2HHnoI1tbWWL16NdRqNWJjY5ujTiIiIiKTYfAI1vz58xEYGIjr16/DwsJC1z5+/HjEx8eLWhwRERGRKTJ4BOvQoUNISEiAXC7Xa/f29saVK1dEK4yIiIjIVBk8gqXVaqHRaOq1X758GdbW1qIURURERGTKDA5YDz/8MNauXav7WSKRoLy8HMuWLePjc4iIiIgASAQDl2S/fPkyIiIiIAgCzpw5g8DAQJw5cwZOTk44ePAgnJ2dm6vWVqWsrAy2trYoLS2FjY2NscshIiKiJmipz2+DAxZQt0zD1q1bkZGRgfLycgwYMADTpk3Tm/Te1jFgERERmZ5WHbCIAYuIiMgUtdTnt8F3ERYVFcHR0REAkJOTg08//RSVlZUYO3Yshg0bJnqBRERERKamyZPcjx8/Dm9vbzg7O8PX1xfp6ekYNGgQPvjgA2zatAkPPvggduzY0YylEhEREZmGJges1157DX5+fjh48CCGDx+ORx99FGPGjEFpaSmuX7+O5557DqtWrWrOWomIiIhMQpPnYDk5OWHv3r3o168fysvLYWNjg6NHj2LgwIEAgMzMTISEhKCkpKQ56201OAeLiIjI9LTU53eTR7CKi4vh6uoKAOjQoQOsrKxgb2+ve93e3l734GdDbNiwAd7e3lAqlQgODkZycvJd+2/btg2+vr5QKpXw8/PD7t279V7fvn07Hn74YTg6OkIikSA9Pb3eNqqqqjBnzhw4OjqiQ4cOmDhxIvLy8gyunYiIiKghBi00KpFI7vqzobZu3YqoqCgsW7YMqamp8Pf3R0REBPLz8xvsn5CQgKlTp2L27NlIS0tDZGQkIiMjceLECV0flUqFoUOHYvXq1Y3ud+HChfjpp5+wbds2HDhwAFevXsWECRPu61iIiIiIbmnyJUKpVIpHHnkECoUCAPDTTz/hwQcfhJWVFQBArVZjz549DT5GpzHBwcEYNGgQ1q9fD6DuMTyenp6YN28eFi9eXK//5MmToVKpsGvXLl1bSEgIAgICEBsbq9f34sWL8PHxQVpaGgICAnTtpaWl6NixIzZv3ozHH38cQN3lzV69eiExMREhISFNqp2XCImIiExPq7tEOHPmTDg7O8PW1ha2traYPn063N3ddT87OztjxowZTd5xdXU1UlJSEB4e/r9ipFKEh4cjMTGxwfckJibq9QeAiIiIRvs3JCUlBTU1NXrb8fX1RefOnQ3aDhEREVFjmrwO1hdffCHqjgsLC6HRaODi4qLX7uLigszMzAbfk5ub22D/3NzcJu83NzcXcrkcdnZ2Bm1HrVZDrVbrfi4rK2vyPomIiKh9Mfhhz+1VTEyMbrTO1tYWnp6exi6JiIiIWimjBSwnJyfIZLJ6d+/l5eXp7la8k6urq0H9G9tGdXV1veUk/m470dHRKC0t1X3l5OQ0eZ9ERETUvhgtYMnlcgwcOBDx8fG6Nq1Wi/j4eISGhjb4ntDQUL3+ABAXF9do/4YMHDgQ5ubmetvJyspCdnb2XbejUChgY2Oj90VERETUEIOfRSimqKgozJw5E4GBgQgKCsLatWuhUqkwa9YsAMCMGTPg4eGBmJgYAMD8+fMRFhaGNWvWYMyYMdiyZQuOHTuGTZs26bZZXFyM7OxsXL16FUBdeALqRq5cXV1ha2uL2bNnIyoqCg4ODrCxscG8efMQGhra5DsIiYiIiO7GqAFr8uTJKCgowNKlS5Gbm4uAgADs2bNHN5E9OzsbUun/BtkGDx6MzZs3Y8mSJXj99dfRvXt37NixA3379tX12blzpy6gAcCUKVMAAMuWLcPy5csBAB988AGkUikmTpwItVqNiIgIfPzxxy1wxERERNQeNHkdLNLHdbCIiIhMT6tbB4uIiIiImoYBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImsVAWvDhg3w9vaGUqlEcHAwkpOT79p/27Zt8PX1hVKphJ+fH3bv3q33uiAIWLp0Kdzc3GBhYYHw8HCcOXNGr4+3tzckEone16pVq0Q/NiIiImp/jB6wtm7diqioKCxbtgypqanw9/dHREQE8vPzG+yfkJCAqVOnYvbs2UhLS0NkZCQiIyNx4sQJXZ93330X69atQ2xsLJKSkmBlZYWIiAhUVVXpbWvFihW4du2a7mvevHnNeqxERETUPkgEQRCMWUBwcDAGDRqE9evXAwC0Wi08PT0xb948LF68uF7/yZMnQ6VSYdeuXbq2kJAQBAQEIDY2FoIgwN3dHS+//DJeeeUVAEBpaSlcXFzw5ZdfYsqUKQDqRrAWLFiABQsW3FPdZWVlsLW1RWlpKWxsbO5pG0RERNSyWurz26gjWNXV1UhJSUF4eLiuTSqVIjw8HImJiQ2+JzExUa8/AEREROj6X7hwAbm5uXp9bG1tERwcXG+bq1atgqOjI/r374/33nsPtbW1jdaqVqtRVlam90VERETUEDNj7rywsBAajQYuLi567S4uLsjMzGzwPbm5uQ32z83N1b1+q62xPgDw0ksvYcCAAXBwcEBCQgKio6Nx7do1vP/++w3uNyYmBm+99ZZhB0hERETtklEDljFFRUXp/tyvXz/I5XI899xziImJgUKhqNc/Ojpa7z1lZWXw9PRskVqJiIjItBj1EqGTkxNkMhny8vL02vPy8uDq6trge1xdXe/a/9Z3Q7YJ1M0Fq62txcWLFxt8XaFQwMbGRu+LiIiIqCFGDVhyuRwDBw5EfHy8rk2r1SI+Ph6hoaENvic0NFSvPwDExcXp+vv4+MDV1VWvT1lZGZKSkhrdJgCkp6dDKpXC2dn5fg6JiIiIyPiXCKOiojBz5kwEBgYiKCgIa9euhUqlwqxZswAAM2bMgIeHB2JiYgAA8+fPR1hYGNasWYMxY8Zgy5YtOHbsGDZt2gQAkEgkWLBgAd555x10794dPj4+ePPNN+Hu7o7IyEgAdRPlk5KSMGLECFhbWyMxMRELFy7E9OnTYW9vb5S/ByIiImo7jB6wJk+ejIKCAixduhS5ubkICAjAnj17dJPUs7OzIZX+b6Bt8ODB2Lx5M5YsWYLXX38d3bt3x44dO9C3b19dn9deew0qlQrPPvssSkpKMHToUOzZswdKpRJA3eW+LVu2YPny5VCr1fDx8cHChQv15lgRERER3Sujr4NlqrgOFhERkelpF+tgEREREbVFDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCQyBiwiIiIikTFgEREREYmMAYuIiIhIZAxYRERERCJjwCIiIiISGQMWERERkcgYsIiIiIhExoBFREREJDIGLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhJZqwhYGzZsgLe3N5RKJYKDg5GcnHzX/tu2bYOvry+USiX8/Pywe/duvdcFQcDSpUvh5uYGCwsLhIeH48yZM3p9iouLMW3aNNjY2MDOzg6zZ89GeXm56MdGRERE7Y/RA9bWrVsRFRWFZcuWITU1Ff7+/oiIiEB+fn6D/RMSEjB16lTMnj0baWlpiIyMRGRkJE6cOKHr8+6772LdunWIjY1FUlISrKysEBERgaqqKl2fadOm4eTJk4iLi8OuXbtw8OBBPPvss81+vERERNT2SQRBEIxZQHBwMAYNGoT169cDALRaLTw9PTFv3jwsXry4Xv/JkydDpVJh165duraQkBAEBAQgNjYWgiDA3d0dL7/8Ml555RUAQGlpKVxcXPDll19iypQpOHXqFHr37o2jR48iMDAQALBnzx6MHj0aly9fhru7+9/WXVZWBltbW5SWlsLGxkaMvwoiIiJqZi31+W3WbFtugurqaqSkpCA6OlrXJpVKER4ejsTExAbfk5iYiKioKL22iIgI7NixAwBw4cIF5ObmIjw8XPe6ra0tgoODkZiYiClTpiAxMRF2dna6cAUA4eHhkEqlSEpKwvjx4+vtV61WQ61W634uLS0FUHeiiIiIyDTc+txu7vElowaswsJCaDQauLi46LW7uLggMzOzwffk5uY22D83N1f3+q22u/VxdnbWe93MzAwODg66PneKiYnBW2+9Va/d09OzscMjIiKiVqqoqAi2trbNtn2jBixTEh0drTdyVlJSAi8vL2RnZzfrCaK/V1ZWBk9PT+Tk5PByrZHxXLQePBetC89H61FaWorOnTvDwcGhWfdj1IDl5OQEmUyGvLw8vfa8vDy4uro2+B5XV9e79r/1PS8vD25ubnp9AgICdH3unERfW1uL4uLiRverUCigUCjqtdva2vKXpZWwsbHhuWgleC5aD56L1oXno/WQSpv3Pj+j3kUol8sxcOBAxMfH69q0Wi3i4+MRGhra4HtCQ0P1+gNAXFycrr+Pjw9cXV31+pSVlSEpKUnXJzQ0FCUlJUhJSdH12bt3L7RaLYKDg0U7PiIiImqfjH6JMCoqCjNnzkRgYCCCgoKwdu1aqFQqzJo1CwAwY8YMeHh4ICYmBgAwf/58hIWFYc2aNRgzZgy2bNmCY8eOYdOmTQAAiUSCBQsW4J133kH37t3h4+ODN998E+7u7oiMjAQA9OrVC6NGjcIzzzyD2NhY1NTUYO7cuZgyZUqT7iAkIiIiuhujB6zJkyejoKAAS5cuRW5uLgICArBnzx7dJPXs7Gy9YbzBgwdj8+bNWLJkCV5//XV0794dO3bsQN++fXV9XnvtNahUKjz77LMoKSnB0KFDsWfPHiiVSl2fb775BnPnzsXIkSMhlUoxceJErFu3rsl1KxQKLFu2rMHLhtSyeC5aD56L1oPnonXh+Wg9WupcGH0dLCIiIqK2xugruRMRERG1NQxYRERERCJjwCIiIiISGQMWERERkcgYsAAcPHgQY8eOhbu7OyQSie65ho3Zv38/JBJJva87H7OzYcMGeHt7Q6lUIjg4GMnJyc14FG1Dc5yLmJgYDBo0CNbW1nB2dkZkZCSysrKa+UhMX3P9XtyyatUq3bIq9Pea63xcuXIF06dPh6OjIywsLODn54djx44145GYvuY4FxqNBm+++SZ8fHxgYWGBrl274u2332725+WZOkPPBVD3bOE33ngDXl5eUCgU8Pb2xr///W+9Ptu2bYOvry+USiX8/Pywe/dug2tjwAKgUqng7++PDRs2GPS+rKwsXLt2Tfd1+/MNt27diqioKCxbtgypqanw9/dHREREvRXkSV9znIsDBw5gzpw5+OOPPxAXF4eamho8/PDDUKlUYpffpjTHubjl6NGj+OSTT9CvXz+xym3zmuN8XL9+HUOGDIG5uTl++eUX/PXXX1izZg3s7e3FLr9NaY5zsXr1amzcuBHr16/HqVOnsHr1arz77rv46KOPxC6/TbmXczFp0iTEx8fj888/R1ZWFr799lv07NlT93pCQgKmTp2K2bNnIy0tDZGRkYiMjMSJEycMK04gPQCEH3/88a599u3bJwAQrl+/3mifoKAgYc6cObqfNRqN4O7uLsTExIhUadsn1rm4U35+vgBAOHDgwP0V2I6IeS5u3LghdO/eXYiLixPCwsKE+fPni1ZneyHW+Vi0aJEwdOhQcYtrZ8Q6F2PGjBGefvppvbYJEyYI06ZNE6HK9qEp5+KXX34RbG1thaKiokb7TJo0SRgzZoxeW3BwsPDcc88ZVA9HsO5DQEAA3Nzc8NBDD+HIkSO69urqaqSkpCA8PFzXJpVKER4ejsTERGOU2uY1di4aUlpaCgDN/qDP9urvzsWcOXMwZswYvd8Paj53Ox87d+5EYGAgnnjiCTg7O6N///749NNPjVRp23e3czF48GDEx8fj9OnTAICMjAwcPnwYjzzyiDFKbbNu/Tf/7rvvwsPDAz169MArr7yCyspKXZ/ExMR6/z5FREQY/Plt9JXcTZGbmxtiY2MRGBgItVqNzz77DMOHD0dSUhIGDBiAwsJCaDQa3Wr0t7i4uCAzM9NIVbdNf3cu7qTVarFgwQIMGTJEb/V/un9NORdbtmxBamoqjh49auRq276mnI/z589j48aNiIqKwuuvv46jR4/ipZdeglwux8yZM418BG1HU87F4sWLUVZWBl9fX8hkMmg0GqxcuRLTpk0zcvVty/nz53H48GEolUr8+OOPKCwsxIsvvoiioiJ88cUXAIDc3NwGP78bm0/aKIPGu9oBNGGIsSHDhg0Tpk+fLgiCIFy5ckUAICQkJOj1efXVV4WgoCAxymwXxDgXd3r++ecFLy8vIScn5z6ra1/EOBfZ2dmCs7OzkJGRoXudlwjvjVi/G+bm5kJoaKhen3nz5gkhISH3W2K7Ida5+Pbbb4VOnToJ3377rfDnn38KX3/9teDg4CB8+eWXIlbbtjXlXDz00EOCUqkUSkpKdG0//PCDIJFIhIqKCkEQ6n4vNm/erPe+DRs2CM7OzgbVw0uEIgkKCsLZs2cBAE5OTpDJZMjLy9Prk5eXB1dXV2OU167cfi5uN3fuXOzatQv79u1Dp06djFBZ+3P7uUhJSUF+fj4GDBgAMzMzmJmZ4cCBA1i3bh3MzMyg0WiMXG3bd+fvhpubG3r37q3Xp1evXsjOzm7p0tqdO8/Fq6++isWLF2PKlCnw8/PDP/7xDyxcuBAxMTFGrLLtcXNzg4eHB2xtbXVtvXr1giAIuHz5MgDA1dVVlM9vBiyRpKenw83NDQAgl8sxcOBAxMfH617XarWIj49HaGiosUpsN24/FwAgCALmzp2LH3/8EXv37oWPj48Rq2tfbj8XI0eOxPHjx5Genq77CgwMxLRp05Ceng6ZTGbkatu+O383hgwZUm/JktOnT8PLy6ulS2t37jwXFRUVkEr1P5JlMhm0Wm1Ll9amDRkyBFevXkV5ebmu7fTp05BKpbr/8Q4NDdX7/AaAuLg4gz+/OQcLQHl5ud7/SVy4cAHp6elwcHBA586dER0djStXruDrr78GAKxduxY+Pj7o06cPqqqq8Nlnn2Hv3r347bffdNuIiorCzJkzERgYiKCgIKxduxYqlQqzZs1q8eMzJc1xLubMmYPNmzfjv//9L6ytrXXX0W1tbWFhYdGyB2hCxD4X1tbW9ea9WVlZwdHRkfPhmqA5fjcWLlyIwYMH41//+hcmTZqE5ORkbNq0CZs2bWrx4zMlzXEuxo4di5UrV6Jz587o06cP0tLS8P777+Ppp59u8eMzJYaeiyeffBJvv/02Zs2ahbfeeguFhYV49dVX8fTTT+s+D+bPn4+wsDCsWbMGY8aMwZYtW3Ds2DHDfy8MuqDYRt26hfbOr5kzZwqCIAgzZ84UwsLCdP1Xr14tdO3aVVAqlYKDg4MwfPhwYe/evfW2+9FHHwmdO3cW5HK5EBQUJPzxxx8tdESmqznORUPbAyB88cUXLXdgJqi5fi9uxzlYTddc5+Onn34S+vbtKygUCsHX11fYtGlTCx2R6WqOc1FWVibMnz9f6Ny5s6BUKoUuXboIb7zxhqBWq1vwyEyPoedCEATh1KlTQnh4uGBhYSF06tRJiIqK0s2/uuW7774TevToIcjlcqFPnz7Czz//bHBtEkHgMrFEREREYuIcLCIiIiKRMWARERERiYwBi4iIiEhkDFhEREREImPAIiIiIhIZAxYRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBGRyRs+fDgWLFhg7DJ07rWeoqIiODs74+LFi6LXdKcpU6ZgzZo1zb4fovaKAYuImiQ2NhbW1taora3VtZWXl8Pc3BzDhw/X67t//35IJBKcO3euhatsWWIHu5UrV+Kxxx6Dt7e3aNtszJIlS7By5UqUlpY2+76I2iMGLCJqkhEjRqC8vBzHjh3TtR06dAiurq5ISkpCVVWVrn3fvn3o3LkzunbtaoxSTVJFRQU+//xzzJ49u0X217dvX3Tt2hX/+c9/WmR/RO0NAxYRNUnPnj3h5uaG/fv369r279+Pxx57DD4+Pvjjjz/02keMGAEA2LNnD4YOHQo7Ozs4Ojri0Ucf1RvZ2rRpE9zd3aHVavX299hjj+Hpp58GAGi1WsTExMDHxwcWFhbw9/fH999/32itTek/fPhwvPTSS3jttdfg4OAAV1dXLF++XK/PjRs3MG3aNFhZWcHNzQ0ffPCBbtTqqaeewoEDB/Dhhx9CIpFAIpHoXdrTarV33faddu/eDYVCgZCQEL32w4cPw9zcXC/AXrx4ERKJBJcuXdL9+YcffsCwYcNgYWGBQYMGITs7G4cOHUJISAgsLS0xcuRIlJSU6G177Nix2LJly13rIqJ7w4BFRE02YsQI7Nu3T/fzvn37MHz4cISFhenaKysrkZSUpAtYKpUKUVFROHbsGOLj4yGVSjF+/HhdoHriiSdQVFSkt93i4mLs2bMH06ZNAwDExMTg66+/RmxsLE6ePImFCxdi+vTpOHDgQIN1NrX/V199BSsrKyQlJeHdd9/FihUrEBcXp3s9KioKR44cwc6dOxEXF4dDhw4hNTUVAPDhhx8iNDQUzzzzDK5du4Zr167B09Ozydu+06FDhzBw4MB67enp6ejVqxeUSqWuLS0tDfb29vDy8kJGRgYAYOPGjfjXv/6FhIQE5OXlYfr06Vi1ahXWr1+Pffv2ISMjA1988YXetoOCgpCcnAy1Wt1oXUR0jwQioib69NNPBSsrK6GmpkYoKysTzMzMhPz8fGHz5s3CsGHDBEEQhPj4eAGAcOnSpQa3UVBQIAAQjh8/rmt77LHHhKefflr38yeffCK4u7sLGo1GqKqqEiwtLYWEhAS97cyePVuYOnWqIAiCEBYWJsyfP18QBKFJ/W+9Z+jQoXp9Bg0aJCxatEgQBEEoKysTzM3NhW3btuleLykpESwtLXX7un2/t/u7bTfkzr+DW/75z38KM2bM0GtbunSpMHz4cEEQBGH58uWCg4ODUFhYqHt9+vTpgre3t6BSqXRto0aNEl577TW97WRkZAgAhIsXLzZaFxHdG45gEVGTDR8+HCqVCkePHsWhQ4fQo0cPdOzYEWFhYbp5WPv370eXLl3QuXNnAMCZM2cwdepUdOnSBTY2NroJ3NnZ2brtTps2DT/88INuJOWbb77BlClTIJVKcfbsWVRUVOChhx5Chw4ddF9ff/11g5PoDenfr18/vZ/d3NyQn58PADh//jxqamoQFBSke93W1hY9e/Zs0t/V3bbdkMrKSr1RqlvS09MREBCg15aWlqZry8jIwPjx4+Ho6Kh7PTs7G5MnT4alpaVem4+Pj952LCwsANTN/yIicZkZuwAiMh3dunVDp06dsG/fPly/fh1hYWEAAHd3d3h6eiIhIQH79u3Dgw8+qHvP2LFj4eXlhU8//VQ316pv376orq7W6yMIAn7++WcMGjQIhw4dwgcffACg7k5FAPj555/h4eGhV49CoahXoyH9zc3N9X6WSCT15oLdK0O37eTkhOvXr+u1aTQanDhxAv3799drT01NxcSJEwHUBbDo6Gi91zMyMrBw4ULdz1VVVcjKyoK/v79ev+LiYgBAx44dm3hURNRUDFhEZJARI0Zg//79uH79Ol599VVd+7Bhw/DLL78gOTkZL7zwAoC6dZ2ysrLw6aef4oEHHgBQN2n7TkqlEhMmTMA333yDs2fPomfPnhgwYAAAoHfv3lAoFMjOztYFursxtH9junTpAnNzcxw9elQ3GldaWorTp09j2LBhAAC5XA6NRnPP+7hd//79693Rl5WVhaqqKri7u+vaEhMTceXKFQQEBKCsrAwXL17UC2AXLlxAaWmpXtvx48chCAL8/Pz0tn/ixAl06tQJTk5OohwDEf0PAxYRGWTEiBGYM2cOampq9AJMWFgY5s6di+rqat0Ed3t7ezg6OmLTpk1wc3NDdnY2Fi9e3OB2p02bhkcffRQnT57E9OnTde3W1tZ45ZVXsHDhQmi1WgwdOhSlpaU4cuQIbGxsMHPmTL3tGNq/MdbW1pg5cyZeffVVODg4wNnZGcuWLYNUKoVEIgEAeHt7IykpCRcvXkSHDh3g4OAAqfTeZl5EREQgOjoa169fh729PYC60SkA+Oijj/DSSy/h7NmzeOmllwAA1dXVyMjIgEwmQ9++fXXbSU9Ph4ODA7y8vPTaunbtig4dOujt89ChQ3j44YfvqV4iujvOwSIig4wYMQKVlZXo1q0bXFxcdO1hYWG4ceOGbjkHAJBKpdiyZQtSUlLQt29fLFy4EO+9916D233wwQfh4OCArKwsPPnkk3qvvf3223jzzTcRExODXr16YdSoUfj555/rzSm61/6Nef/99xEaGopHH30U4eHhGDJkiN4dfa+88gpkMhl69+6Njh076s0rM5Sfnx8GDBiA7777TteWnp6OiIgInD9/Hn5+fnjjjTfw1ltvwcbGBuvWrUNGRgZ69uypN3crIyOj3iXFjIyMepcHq6qqsGPHDjzzzDP3XDMRNU4iCIJg7CKIiEyBSqWCh4cH1qxZ0ywLgv7888949dVXceLECUilUkRERGDQoEF45513RN/Xxo0b8eOPP+K3334TfdtExEuERESNSktLQ2ZmJoKCglBaWooVK1YAqFsEtTmMGTMGZ86cwZUrV+Dp6YmMjAzdYqtiMzc3x0cffdQs2yYijmARETUqLS0N//znP5GVlQW5XI6BAwfi/fffrzdZvDnk5ubCzc0NJ0+eRO/evZt9f0QkLgYsIiIiIpFxkjsRERGRyBiwiIiIiETGgEVEREQkMgYsIiIiIpExYBERERGJjAGLiIiISGQMWEREREQiY8AiIiIiEhkDFhEREZHIGLCIiIiIRMaARURERCSy/w+Ml5GwbZp81AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# extract the transmission data from the mode monitor\n", "amp = sim_data_circular[\"mode\"].amps.sel(mode_index=0, direction=\"+\")\n", "T_circular = np.abs(amp)**2 \n", "\n", "# plot the bending loss as a function of wavelength\n", "plt.plot(ldas, -10 * np.log10(T_circular))\n", "plt.xlim(1.5, 1.6)\n", "plt.ylim(0, 0.03)\n", "plt.xlabel(\"Wavelength ($\\mu m$)\")\n", "plt.ylabel(\"Bending loss (dB)\")\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "2856507a", "metadata": {}, "source": [ "To inspect where the loss occurs in the bend, we plot the field intensity in log scale.\n", "\n", "The energy leakage manifests as field intensity outside of the waveguide. Here we can see that leakage occurs around the transition region where the straight waveguide meets the circular waveguide. This is due to the abrupt change of curvature." ] }, { "cell_type": "code", "execution_count": 15, "id": "63351ecf", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:35.423843Z", "iopub.status.busy": "2023-03-27T20:45:35.423696Z", "iopub.status.idle": "2023-03-27T20:45:35.766328Z", "shell.execute_reply": "2023-03-27T20:45:35.765829Z" }, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHWCAYAAACGxthTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADt90lEQVR4nOy9eZwsVXk+/pxzaull5g4XZA2CRAy4IQY3CAoqSghBjYQkLhGMikHUID+jQY0KiV41UdQIGFcSlaiYr/hVo4gKogb5KkriStAQI7sbXLh3prurzvn9cbb3VFf19MztWXrmPHyKqa6urq7p29P19PM+z/sypZRCRERERERERMSUga/1CURERERERERELAeRxERERERERERMJSKJiYiIiIiIiJhKRBITERERERERMZWIJCYiIiIiIiJiKhFJTERERERERMRUIpKYiIiIiIiIiKlEJDERERERERERU4lIYiIiIiIiIiKmEpHERERMIa666iowxnDVVVet9alERERErBkiiYmIWMe48MILcfHFF6/1aSwLl1xyCd7+9rev9WkAAKSUeMtb3oKDDjoIrVYLhx12GP7lX/5lrMfedttt+Ku/+is8/vGPx+zs7KLk8d///d9x9NFHo9PpYJ999sFLX/pS3HvvvRP6TSIiIigiiYmIWMdoIjGPe9zjMD8/j8c97nGrf1JjYj2RmFe/+tV45StfiSc96Un4h3/4BxxwwAF45jOfiY9+9KOLPvaGG27Am9/8Ztxyyy146EMfOnLf66+/Hk984hOxc+dOvO1tb8Pzn/98vOc978Epp5wyqV8lIiKCIFnrE4iIWAw7duxAt9td69NYV+Cco9VqrfVpTAVuueUWvPWtb8WZZ56Jd73rXQCA5z//+TjmmGPwl3/5lzjllFMghGh8/BFHHIFf/vKX2H333fGJT3xiJCF51ateha1bt+Kqq67Cli1bAAD3u9/98IIXvABf+MIX8OQnP3myv1xExCZHVGIiVhW33HILnve852G//fZDnuc46KCDcMYZZ6Df7wMALr74YjDG8JWvfAUvetGLsNdee2H//fd3j7/wwgvx4Ac/GHmeY7/99sOZZ56Ju+66K3iOG2+8ESeffDL22WcftFot7L///viTP/kT3H333W6fK664AkcffTR22203zMzM4JBDDsGrXvWqRc9/nMf1ej287nWvw8EHH4w8z3Hf+94Xr3jFK9Dr9YaO9+EPfxiPetSj0Ol0sHXrVjzucY/DF77wBQD64vf9738fX/nKV8AYA2MMxx57LIBmT8yll16KI444Au12G/e5z33w7Gc/G7fcckuwz2mnnYaZmRnccssteNrTnoaZmRnsueeeePnLX46yLBd9DT71qU/hxBNPdP+G97///fE3f/M3wWOPPfZYfPazn8VPf/pTd+73u9/9Go952mmnuf2qy+tf//pFz2mx8x0MBnjRi17ktjHGcMYZZ+Dmm2/GNddcM/Lxs7Oz2H333Rd9nu3bt+OKK67As5/9bEdgAOA5z3kOZmZm8PGPf3z5v0REREQtohITsWq49dZb8ahHPQp33XUXTj/9dBx66KG45ZZb8IlPfAI7d+5ElmVu3xe96EXYc8898drXvhY7duwAALz+9a/Hueeei+OOOw5nnHEGbrjhBlx00UX45je/ia9//etI0xT9fh/HH388er0eXvKSl2CfffbBLbfcgs985jO46667MDc3h+9///v4/d//fRx22GE477zzkOc5fvzjH+PrX//6yPMf53FSSjzlKU/B1772NZx++ul44AMfiO9+97s4//zz8V//9V+47LLL3L7nnnsuXv/61+Ooo47CeeedhyzLcO211+LLX/4ynvzkJ+Ptb387XvKSl2BmZgavfvWrAQB777134/ldfPHFeO5zn4tHPvKR2LZtG+644w684x3vwNe//nV85zvfwW677eb2LcsSxx9/PB796Efj7//+7/HFL34Rb33rW3H/+98fZ5xxxsjX4eKLL8bMzAzOPvtszMzM4Mtf/jJe+9rXYvv27fi7v/s7ALp8c/fdd+Pmm2/G+eefDwCYmZlpPOYLX/hCHHfcccG2z3/+8/jIRz6Cvfbay237xS9+MfLcLGZnZ5HnOQDgO9/5DrrdLh74wAcG+zzqUY9y9x999NFjHXcUvvvd76IoCjziEY8ItmdZhsMPPxzf+c53dvk5IiIiKlAREauE5zznOYpzrr75zW8O3SelVEop9cEPflABUEcffbQqisLdf+edd6osy9STn/xkVZal2/6ud71LAVAf+MAHlFJKfec731EA1KWXXtp4Hueff74CoH7+858v6fzHedyHPvQhxTlXX/3qV4Pt7373uxUA9fWvf10ppdSNN96oOOfqD/7gD4LfRyn/Wiil1IMf/GB1zDHHDD3PlVdeqQCoK6+8UimlVL/fV3vttZd6yEMeoubn591+n/nMZxQA9drXvtZtO/XUUxUAdd555wXHfPjDH66OOOKI0S+CUmrnzp1D2174wheqTqejFhYW3LYTTzxRHXjggYserw433nijmpubU0960pOC9wGAsZYPfvCDwXn85m/+5tBz7NixQwFQf/VXfzX2eV166aXB615339VXXz103ymnnKL22WefsZ8nIiJiPMRyUsSqQEqJyy67DCeddNLQN1VAy/sUL3jBCwKfwhe/+EX0+32cddZZ4JwH+23ZsgWf/exnAQBzc3MAgMsvvxw7d+6sPRerSHzqU5+ClHLs32Gcx1166aV44AMfiEMPPRS/+MUv3PKEJzwBAHDllVcCAC677DJIKfHa1742+H2A4ddiHHzrW9/CnXfeiRe96EWBV+bEE0/EoYce6l4fij//8z8Pbj/2sY/Ff//3fy/6XO12263fc889+MUvfoHHPvax2LlzJ370ox8t+dyr2LFjB/7gD/4AW7duxb/8y78E74MrrrhirOX44493j5mfn3eqDIV9nebn53f5nOlxmp5rUs8TERHhEctJEauCn//859i+fTse8pCHjLX/QQcdFNz+6U9/CgA45JBDgu1ZluE3f/M33f0HHXQQzj77bLztbW/DRz7yETz2sY/FU57yFDz72c92BOeP//iP8b73vQ/Pf/7z8Vd/9Vd44hOfiKc//en4wz/8wyFCQTHO42688Ub88Ic/xJ577ll7jDvvvBMA8JOf/AScczzoQQ8a6/VYDE2vDwAceuih+NrXvhZsa7VaQ+e4detW/PrXv170ub7//e/jNa95Db785S9j+/btwX3Ud7RcvOAFL8BPfvIT/Pu//zv22GOP4L5qyWkctNvtWj/SwsKCu38SsMdpeq5JPU9ERIRHJDER6xK78oH/1re+Faeddho+9alP4Qtf+AJe+tKXYtu2bfjGN76B/fffH+12G1dffTWuvPJKfPazn8XnP/95fOxjH8MTnvAEfOELX2hMqozzOCklHvrQh+Jtb3tb7THue9/7Lvv3miRGpXFG4a677sIxxxyDLVu24LzzzsP9739/tFotfPvb38YrX/nKJSlbdXjHO96Bf/mXf8GHP/xhHH744UP333777WMdZ25uzr2H9t13X1x55ZVQSgUq12233QYA2G+//XbpnC323Xff4LgUt91228SeJyIiwiOWkyJWBXvuuSe2bNmC733ve8t6/IEHHghA9+yg6Pf7uOmmm9z9Fg996EPxmte8BldffTW++tWv4pZbbsG73/1udz/nHE984hPxtre9DT/4wQ/whje8AV/+8pdduacJiz3u/ve/P371q1/hiU98Io477rihxSol97///SGlxA9+8IORzzduaanp9bHbqq/PcnHVVVfhl7/8JS6++GL8xV/8BX7/938fxx13HLZu3Tq071LLYl/96lfx8pe/HGeddRae9axn1e6z7777jrV87GMfc485/PDDsXPnTvzwhz8MjnXttde6+yeBhzzkIUiSBN/61reC7f1+H9dff/3EniciIsIjkpiIVQHnHE972tPw6U9/euhDHgCUUiMff9xxxyHLMrzzne8M9n3/+9+Pu+++GyeeeCIAHXMtiiJ47EMf+lBwzp3M/6tf/Wro+PYCU1cKsBjncX/0R3+EW265Be9973uH9p2fn3dJq6c97WngnOO8884bUi/o79ftdoci5HV4xCMegb322gvvfve7g9/hc5/7HH74wx+612dXYRUceo79fh8XXnjh0L7dbnfs8tJtt92GP/qjP8LRRx/tEk51WI4n5qlPfSrSNA3OUSmFd7/73fiN3/gNHHXUUcF5/OhHP8JgMBjrvCnm5uZw3HHH4cMf/jDuuecet/1DH/oQ7r333tjwLiJiBRDLSRGrhje+8Y34whe+gGOOOcbFj2+77TZceuml+NrXvhZEgKvYc889cc455+Dcc8/F7/7u7+IpT3kKbrjhBlx44YV45CMfiWc/+9kAgC9/+ct48YtfjFNOOQW/9Vu/haIo8KEPfQhCCJx88skAgPPOOw9XX301TjzxRBx44IG48847ceGFF2L//fcfGbUd53F/+qd/io9//OP48z//c1x55ZX4nd/5HZRliR/96Ef4+Mc/jssvvxyPeMQjcPDBB+PVr341/uZv/gaPfexj8fSnPx15nuOb3/wm9ttvP2zbtg2AbrR20UUX4W//9m9x8MEHY6+99nImYYo0TfHmN78Zz33uc3HMMcfgGc94hotY3+9+98PLXvay5f6zBTjqqKOwdetWnHrqqXjpS18Kxhg+9KEP1ZLQI444Ah/72Mdw9tln45GPfCRmZmZw0kkn1R73pS99KX7+85/jFa94xVAX3cMOOwyHHXYYgOV5Yvbff3+cddZZ+Lu/+zsMBgM88pGPxGWXXYavfvWr+MhHPhKU1s455xz80z/9E2666aagr83f/u3fAtB+IEATE+szes1rXuP2e8Mb3oCjjjrKvcdvvvlmvPWtb8WTn/xk/O7v/u6Szz0iImIRrGEyKmIT4qc//al6znOeo/bcc0+V57n6zd/8TXXmmWeqXq+nlPIR67oYtlI6Un3ooYeqNE3V3nvvrc444wz161//2t3/3//93+rP/uzP1P3vf3/VarXU7rvvrh7/+MerL37xi26fL33pS+qpT32q2m+//VSWZWq//fZTz3jGM9R//dd/jTz3cR/X7/fVm9/8ZvXgBz9Y5Xmutm7dqo444gh17rnnqrvvvjvY9wMf+IB6+MMf7vY75phj1BVXXOHuv/3229WJJ56oZmdnFQAXt65GrC0+9rGPuePtvvvu6lnPepa6+eabg31OPfVU1e12h36/173udWqcj4Svf/3r6jGPeYxqt9tqv/32U694xSvU5ZdfPnQ+9957r3rmM5+pdtttNwVgZNz6mGOOaYxLv+51r1v0nBZDWZbqjW98ozrwwANVlmXqwQ9+sPrwhz88tJ+Nn990003B9qZzq3u9vvrVr6qjjjpKtVotteeee6ozzzxTbd++fZd/h4iIiGEwpRbR8SMiIiIiIiIi1iGiJyYiIiIiIiJiKhFJTERERERERMRUIpKYiIiIiIiIiKlEJDERERERERERU4lIYiIiIiIiIiKmEpHEREREREREREwlNlWzOyklbr31VszOzi5rUnBERERExHRCKYV77rkH++2338hBrxHThU1FYm699dZ1M4AvIiIiImL18bOf/Qz777//Wp+Gg1IKJ554JNI0wac+9bXFHxARYFORmNnZWbPGAUQlJiIiYjI4+OAHoNvtTvSYt99+O+64Y7yp3RHjQAGQ5DqwPvC5z30O1177Q0gpccUVV+BJT3rSWp/SVGFTkRhfQmKIJCYiImJSEEIEM5gmAV3yiJ9Tk8Z6shKUZYlXvOJMvOav/xSDQYm//Msz8O1v/1csdy0B8ZWKiIiIiIhYA3zgA3+FhYU+/vzPn4ozz/wD3HXXvfjnf371Wp/WVGFTzU7avn075ubmAAjEbzgRERFLQZLshjzdDQDQTnfHjNgTs9gLW+Qc+r/5E+y+ZT99H59DR80ikzkypEiYVmj0p47+3FFQKAEUqgQA9DFAn/ewk92DeXk3Fopf447bf4Gtv3gI7ua/wnaly0q/WvhvAMDOhf9dvV98w0ABKHH33Xdjy5Yta30y2LFjBx7wgANx/vkvxh+eciwA4F8u+SJe9ar34oYb/gftdnttT3BKEJWYiIiIiIiIVcbfv/UluO8Be+HkPzzGbfvjP3kC9txzDue//S/W8MymC1GJiYiI2DTgvI1EzCJLZtBKd0OL62/kbb4VW+TumFFdzPIWuom2C86mHDMpw0zCMJcpzCb643JLUmIuLTGbDrAl6+OO3Q9Cp6sf0xISOS+QCIWUlxBcP4Yj/KiVYCil/hwaSIGiZOjJBAsl18sv7sF9+7diez/Dr/oZAOD2hRQA8NMd/vvnT+8t/HpvOwDgZ/wGt+0X8359cys460eJueOOO3DwwQfhM599M44++qHBfVde+R2c/PS/xk9+8j+4z33us0ZnOD2IJCYiImLqwBgHYzkS0UUiOkhEG7nQqZOczyBjM+hgDh01g47SsnyHpZhJEnQSgW7K0E0AwzvQTYDZRGEmkZhNSsymmhjMpn3MZAN02z10ZvrIZ3X5J93KILYmYFvbYLt1ILdnQEc/D8sEWJYAiQASBnBj+OXMf+woAFIBUh8PhQKKEqpfQPVLYCCBe+8Gvw+D+vVOyJ/vBAD0btb7/+rWjnst/vfXc279pnv1Ofxs3puM/3eHf91u3dF36z/DnW79DvUTt37Xwv8AABb6d7htUvZG/GtMC9YPiTnjjKfittt+hX/9P39Te/9TTjoH97//fnjnO/91lc9s+hBJTERExLoCZykY1xdjTVBayEQXCW8j5zMAgIzNoIUZtFUXLdVGh+VoM81I2olAW3B0EoZuCrSF/lvvJgrdRGFGKHSTEjNJiW5iycoAHUNW2t2BIyvJHCDmEvC5HGxrB5gz5GG3WWDrHNRuu0Ft3Qp2xz1A3tL3JSmQJFBCAEIAwjCl6keOAlAaFUUqsGIAFAVQDIBBARTzUHvvBvbrX4P94pd6v1s0sVD//XN3mN5/7XTrv/xf/brd/Gt/kf7ZTkJ4dvpA6s3+Ybh1h1dzbhvcCwC4Xdzstt1V/Myt7xz8wq33B9vdeik9W1qfpGd9kJgf/ehHePjDH4brvv1eHHLIAbX7/OAH/4NHPfKF+O53v4+DDz54lc9wuhBJTERExJqCMQ7O2xC8izTpIOVtpEL3XLGqSo4OWuiiJfVFuo0cHZ6ixQXaCUdLMLQT/TfdSYC20OpKRyh0EwkAmEkkuqLETFqgm2jS0mlpZaLdGSCbKZBuAcScAJ/T5Rs+19LEZa4L7LYFak5f/NRuuwFbt5LfooPJWwz7ZgHQ1z/Zbbfpnz/5qdtL3Xibf8R/aQJy1//mbtutv/IX7J/e6wnNz+Yzt35LQGj063V7b95tu517VeZu+N41O4tf+ucuPYkpSv/YUupzl8qrQEoNyLonUEqSfTDpS9P6IDFPferR+I3fuA/+4V1njdzvz1/49/j1r+/FJz5x1aqc17RiU/WJiYiIWD/gTPs7uOgiFTNIRBuZ6CITXeRMKy45m0VLddFWbbRUy6ktLZ4Y8sLRTpghLobECIV2AnSERFdIzBgS00lKdJMBummBTtZHt9NH3tYX02yLRDJLVJc5o6rMdfWyZRZqbosmLwAw50s4q4JMEw77/Gzrr91dbOvdbj3ZQ5OHzl2eDGzZ4VWRuZ4nLtsH/uN/e+oJ2Eym17tF6rdJ3yCuxz3jKYUnI4z5Ywjmj10YVUYSshKsS79esgW/XnqVZ6Pgq1/9Kq688jv40Q0fWnTf173+uTj0kGfjG9/4Bh7zmMeswtlNJ2I6KSIiIiIiYoWhlMLL//KFePlf/gn23nv3Rfffd9898LKz/wj/38tfgE1UMFkyIomJiIhYdTAwgCUAS8BZBs4TJDyD4DkS1nJLqnKkKkOqUqRMIONmERwpZ8gEQ8qBhDGkXCHlCgkHcq6Qmdspl0i5RMZLZEIiEyWytIRIJESqIFIFngIsZWApBzIBZIle0gRIUyBLgTzXikiWLf4LrhTs86cpWRK3sIzrJVFuSYR0i30tUi4hmCIL3MJhF+YWprhbxoE2XnNTKkz1wpL6hZOFbGfkv42ASy+9FDf/7Od42ctOGfsxL3/5n+AnP74Fl1122cqd2JQjkpiIiIg1gb3I0ds8uHTqpX6rJkIc5sLL/DARu84xvJ1DgTGycJDFHKgOtg085359LWCf355rdTFgzC9LhXSLckvJSr+ogVsUSr8o6RaKum1NoORnl36JdYZer4dzznkZzj33ueh0WmM/bmamjde97jS88pUvxWAwWPwBBBdddBEOO+wwbNmyBVu2bMGRRx6Jz33uc+7+hYUFnHnmmdhjjz0wMzODk08+GXfccceII65PRBITERGxJljSxQ186MOK8g1HUlj4ocaWYw6tXjTX+xwbqfxioFT9IhXzCwhhIYdQSkEphZIsA9Z3i8TALaUq3DIOobGgZCWkphsTF1z4/6HTyfGcU49f8mP/7HknQgiOd//jy5f0uP333x9vetObcN111+Fb3/oWnvCEJ+CpT30qvv/97wMAXvayl+HTn/40Lr30UnzlK1/Brbfeiqc//elLPr+1RjT2RkRErDoU1FhFAqvCWFh+QX/WiSecKbedsxFEhjfcx9yDxzjL6UdJXgbLhUpCQApGzLegBl2aMvL7S4xHTkeDkppJHG9tcNddd+ENf/sh/NM/v2pZQ0KTRGDbttNx+ul/j1Of8zdjJ6tOOumk4PYb3vAGXHTRRfjGN76B/fffH+9///txySWX4AlPeAIA4IMf/CAe+MAHTp2ReONS34iIiCnB8AWKQ4Aj/MCveiMov7AKDEcopIRqjS4hudtVfjINn4ZSmmVYfQEAJfXSBKVfBb0ospDtpdKkZqCkWwr0/KIW3CLVwC2BKkOUGKVKKDMjanFwsmwMvOGNZ+Dwhx+M3/3dRy37GL9/0lE49IEH4E1vPnNZjy/LEh/96EexY8cOHHnkkbjuuuswGAxw3HHHuX0OPfRQHHDAAbjmmmuWfZ5rgajERERErBHG/3bNqwTG3NbemHo0lZI4C8nMRodU9a+QDPbx66VJwhSgSoxXXIrSR7ZpPJoqMeOTljCavdFw55134oJ3fRJXf/UfwHbB28MYw1vecgae+ISX4cwXvQmzs7PB/XmeI8/zocd997vfxZFHHomFhQXMzMzgk5/8JB70oAfh+uuvR5Zl2M22DDDYe++9cfvttw8dZz1j4757IiIiIiIi1hB33nknsizBwx/+gF0+1iMfeSgYA7Zt24a5ublg2bZtW+1jDjnkEFx//fW49tprccYZZ+DUU0/FD37wg10+l/WEqSExr3/968EYC5ZDDz10rU8rIiJiQmg0gZJYr7WAAqECw0mQhVf8NqNCR0vCejf4jgFahVpsKcl/heq5RarCLWEJqVxi6WgTwZUBd3EBcPrpp+Puu+8OlnPOOaf2abMsw8EHH4wjjjgC27Ztw8Me9jC84x3vwD777IN+v4+77ror2P+OO+7APvvss9KvxkQxVeWkBz/4wfjiF7/obifJVJ1+REQERVB+WHnj5miDr9tpxc9jVSCX9nvQV8aXkzwZKeBLSCWZi0SNvU2oSx3RbYqUrYLIPaGim6f4tziyLFv22AQpJXq9Ho444gikaYovfelLOPnkkwEAN9xwA/73f/8XRx555CRPd8UxVSwgSZKpY4kRERGjMS6B4aw5pdT4mOWe1AaCavDEUGJAPTG2OeyA+mCUHwdQyHpPTLXnz7jYyJ4YB7n66apzzjkHJ5xwAg444ADcc889uOSSS3DVVVfh8ssvx9zcHJ73vOfh7LPPxu67744tW7bgJS95CY488sipSiYBU0ZibrzxRuy3335otVo48sgjsW3bNhxwQP0UUEA3GOr1/B/c9u0bbxZHRMRmR2N/utro9cqey3pHU7CdDlu0SkxJYtWDmoGOQDgDiZPLyXKJyYYlNGtAYu6880485znPwW233Ya5uTkcdthhuPzyy/GkJz0JAHD++eeDc46TTz4ZvV4Pxx9/PC688MJVP89dxdSQmEc/+tG4+OKLccghh+C2227Dueeei8c+9rH43ve+N+TUtti2bRvOPffcVT7TiIiIcVA3pXgy/UXGxwZoBrtsNKaWzD9LQfrB0BISJTEUio3+t2OsoUdKU62IEpppryetweyj97///SPvb7VauOCCC3DBBRes0hmtDKaG9p5wwgk45ZRTcNhhh+H444/Hv/3bv+Guu+7Cxz/+8cbHnHPOOYH56Wc/+9kqnnFERERERETESmJqlJgqdtttN/zWb/0WfvzjHzfu05Sdj4iIWD9QGG5RL7G0hEu1J0y1yV2w7ybqEVOFbPjV6XZpXq8SxBMTlJD8emja9ZcT+m+5YUtES8EalJM2C6b23XXvvffiJz/5Cfbdd9+1PpWIiIgVxGJliirGKRExBrCmkQObBKppMXOWSlb4RfbcotTAL3RMJOnSGwxyrEEwO4kJvwRzlDZQ994JRqwjQkyNEvPyl78cJ510Eg488EDceuuteN3rXgchBJ7xjGes9alFRERMEKrBFyPH9BWsgf1g/aBGamnyvjQeokaJoQZeRdaBxWcBWS/MplVkFCIBWUFMDYm5+eab8YxnPAO//OUvseeee+Loo4/GN77xDey5555rfWoRERETQrVRWpPRt0pUdOpmMuyFbYAI01Lb7tRFrGlJL4jB03VatlsCSaEzyeUyjxERAUwRifnoRz+61qcQERGxAlBKlyMoYamqMVYdkHWJphru0uT9iFgegrlI5N+geW7VcM8Y3lAWatq+cQiNikrMCmJqSExERMTmgFJlcHWsIy5+3zGOV3OpHfU4JZu6qWwsLJfo0U66k2hqtylMwJHErBgiiYmIiIiIiFhBsEmN1YgK4xAiiYmIiFg3qJaRFOrLGPr2aDQpDbYNv1rifKGNhqVYfwKFJJhv1LBOGtvVlYs2rOISseqIJCYiImJNUXdBkxWDryUz3nSqQGtO0QMzOdiIOifJI87oSIH68QKLrY9DXMK+M4snn6YGEysnxTd6FZHERERErAnYmM4Ta/itXgak0tvsx7onOD6pVPcYig0XxzbyylKFjjpVRiD19/OE7OsbiDYRGgpHYppISZBO2kDEhSKy7BVDJDERERHrAtbgSVNKNuZbTSctRj7q7l5qv5SNAr7EDsXcsAquPCkRfHHiQlWUpsRR3eOiuBCxK4gkJiIiYtXBwJxcwGoueKombl1NKUnTWVYqr8qEx2Buv0VhH7yJvjGzpnVzQyivxCQ8c+uCrFMywnlau90qME2Eh/5bb1ivTEwnrRgiiYmIiIiIiFhJRBKzYogkJiIiYvXBGFBJttR9C6+qMN730gytzmhfzCYSVsZCUyKJbk+MFJOCqC/EB0OVmOAYNQ3u6Hqd4lbdd5ztU4lJRawjhhBJTERExBqAN6ZWVGWCtWQSUIBSytU9lFJQUJBgemAhhitBQyZeMCjFIBVzMeslYYN9m6ZemTAerV8bofzlISGeGLouG0pBnJHSEuy/c4Npl/w7LealiYioIpKYiIiIVQUz/42K0FoiYwmMHkqgAl+MNMRGggWEJUgsgTUaeofMwRuLoziwgKzUS1NUiRFmPSH/PinruPU+3+GPp/yQyDriop9fH6eJoJQV0rrhEAdArigiiYmIiFhdMAEwWj6qLyVZSEgoS2YM86grE9lNcoySkz+4vXpPSd2Jm9dpsU51fPHfp8nYa9NJKTH2CkJQgqSSaioFDTe7aywbEbK0oUpIDmpTGcZXG5HERERErAp0IsnoMCwhZQZNYhYrJQQqDFSQTFIV/4sjMiokN9KUlBYtJylygA0Eyn2a1oX5ZxCEXCTUE8MWv2w0+WMW25eiyUMzlYhKzIohkpiIiIgVhWtqx5j+1s0SAGKsTq4SpSslKfN/wJh3oYzPxZIVM07A2IEXIyr0/sB3Wa0zTdEFqO6lbOoTw4N9yDHM65iQPVJFPDGsRR654NaaBjk2Nrmzj9sMEeuIFUMkMRERERERESuJKSLC04ZIYiIiIiaKYJwAiVLrclLiykd+Ox+7dFAVTKqjB4DQE0ONvTqVVDnGYnMJpgFLmORIjb1Nht/ElpOIKkJHEAhy2SgDP0u94rJYmVBtAvWFRRKzYogkJiIiYtkYmn9k270GxCU08DKWghsyox/CwZguL1kyQ6O7yhSUaDpJmiKE7doLeP6hVE3yqIK6xJIaRWCm7CLEqjxyEdSlkwT5t81URvalht/CrSsytHNJM5BIwmnDYsMN6Vo/iCQmIiJiyaA+Fw1ecx8P7rMERhOV4T4xiw4KJLDXBNsrxhp8LfQ2FYwjsKqM9cIoyegDxsOUkZkqqD+G6h/h2AHjiaFKDOkZkxJPjCQERC5BUQl8MFTN2UiTqyNWBZHEREREjI0m8jKKuIDMztGdeZNAdWnq1gv4i52y5l4bsWZ23RASmkIit7VSMzxDyRIYb+7dIN+UF5FdmhJJSZ0SQ44lpCcXlNBwUmYCxldUKBXcFA3uJkV+N8jbdJKIJCYiImIs2Ii0Rl25iGw35KU69M8SmLCcJMDBwSBqG6P5SdbSl5OsylLT8M7/ZC6x5I/lPTK1ze5obhuY2nbx9J+ENfSMCf0xfrt9KCUxtPFd4I8hpSV6gVWLSFv0HUP33LDppIkpeJHFVLFB3zERERERERERGx1RiYmIiFgUoQpDt/mUEdBUPqoae7lTY9x+i3wDt+MHgm01De8AU0YK9oPZzryXpjpXaZwvuOvJD8PJ67XMdFJTacn+MwdmX9r4DrSc5LcrRl8fv12q0WMFlmQCnlZMY+ptShBJTERExBJQLSNVCUiYMgqi1JbAODLjS0e0a2+TR0Ix6cYOKEtgKg3vAEpqwsqQTy81NLlrwnoiL+Mi4DiqYd3vQ2lQUuOJoY3vOBk1QOPW9CCSzEOyz7MYmdmwiLOTVhSRxERERCwdFQWmXn0ZTh8xcHCe1Jp5x+kVY70WTl2p6RWjwNwYAtsrxiLsGVMXswbG1zXWIZagyjQ9zHKXMKZNTL7kskH9MbRjb0hohp+DChPBsMgN6XBQkcSsICKJiYiIWBymaV21L0zVwEsJzHB0mioxIhgMyAgJqoOsMYrW9YoBvPpSHT0ga1NK5KeqHCB4snVyERqn6cvQQ+oNvEFpiezPa5UYQmIUGe7Y0BAv6P1ilZia59D7jjz9iIiRiCQmIiJiJIYa2gHwJKW+fERLR+44zJeRgtQSC8tLTR6JarM7ZZJJtFcM4EnNUBM8kPlKikHKMQjBlHoZmixGvMETw2pKS2EDvPpyUkLi1pJ4YlhQfqocGEBJKM2miFjHZncrhkhiIiIixkfN1bHRvNtQTrLel7rmdk6RGaPpmY9bGzJjo9PQ3/olmPPMuMco1JaRphqLmHxZwwDIUImh5EYfgyoxHFSVqS//hGTEqzKl6R9Dk95LaYy3IbBelLwNiEhiIiIiIiIiVhJTquhNAyKJiYiIWCZEo4fFgsanrRemut3et5SyglIKYNVRA8MI7q/4YxRVZaSZnVTrh6EHme5v1LxJlQnKSWxo3/B+Uk6iEWtSWiroTCWzT9ild/FRA4s1zIuIACKJiYiI2EWMjlHTspJwpSSAlI6IH6YOPpHkO/YCpmtvpVeM3k58MQinWkvFIKc7f6TBFyOP9evBIRbZTu9uilszFXqb3DGCjst2fZNGrIGpJ7/rGZHEREREjIR2ldSlkoYjsXUEhqovtCdMFe7+GkWmmk4KyEzF96JM2zv7iKqwYhUYpZifoVS9xtRddKZ0BAFF3XiB6nqdsZd6YmjcOiFJpZKQFEXIjU0wqUC1mf7XckmIJGbFEElMRETELmOpM29YJZa9HNiGd+52TaWElpBUzSylcGeMLiVNA2rkFd4wO6npYU6JocZeOiwS9YZfGr2mSSWrysiGf+cwwbZBic60vY+mCJHERERETBRVFcaSlVEqzDh+GGUKSkCoxKiKjaVqbRlJXOpQd8FZzxehurrQGBHroH9MzeGCVoaE0FBVjo4j4A2xaavK8IoHKiJiEogkJiIiIiIiYiWxkVSldYZIYiIiIhaHSQPVo/kbdmDkbfTCTGYAYN1loqqfaIWGuW6+TQMhNzNs/5gmc3ASNL6rLy3R9aYyUh1UMF9pgxiBqbt8EseKCBBJTERExPgw3ygV5EjyQQ29w/eFXX4Xg2TS+SPspGSlpGlo5xveuVOEn59E71vsu3DwZXk9l4+WiHDsQNOogeFmd6Hxlxp76bEbPDGEFUpzbFpi4mM0M4yIGAeRxERERCwKnf+RwBgXn6WafIefS0KZb+FScQimu79KJmu/idJhkCuC9VQKWCRabTGJhrhNSkzYvdevlw1KjF2n4woQGIkb+sSsp9d9VxHTSSuGSGIiIiJWDMF4ATPocRTJkZCBWVRvK83i+8TYOUqLEZdajy7qJ1gD64uvLAdsCVOseYOxt352EqtdZ4sQlwiDDaTsrTdEEhMRETEelIIyFz6typRQ4Ga9vu9LExYrJdkUEoMvX9Ht+nS0T8cOgRxh2vGPCeYoxQttHerSSXURbCD0xwzIv03QBE+FM7SAcdNJU84oHdQElZhIhqqIObeIiIiIiIiIqURUYiIiIsaCWnrHleU9jyrdt3aFUveHYRKS1HpoWclvMz9rxh/Z7cPPtfHVGNagolCE3XlHPy4oJ1FVRjX5Y5aQTqLqy7TX9ihiOWnFEElMRETEEmAuLIqZhNLkjqyU1EMd4ctIuomuJjUKEqUZLChVqn0xSjWSlojRWOyfjhKXwDPTNI5gMWPvEoV/tZFKJxuJkK0zTG056U1vehMYYzjrrLPW+lQiIjYP9OAhd4FRSk4kRVKdjaRUqRdISAw0gcHAmHslFJNmZpIK1JjgmBvoGrjS4GRhzCzwi+DMLaYXMzgYBPMLJwsjy2KQqnSLfT/p9xRdphy0jfSuLBFDmEol5pvf/Cb+8R//EYcddthan0pExKaCJS/60kRNtr6Pi1KyvqndGPFsqsYAAFeAZBylGkCwFKXSSkyBEiVKSPMRprmVJVbjy0O0b0qEhjP2NgyLFOQGl3Sf+td92Uml2IEwYgxMnRJz77334lnPehbe+973YuvWrWt9OhER6xaM/Dd5SCORl6GPYZeOaFQWJY0XxsSq1QAKpVFidNy6ZIWLWZdKmdISaWy3Ua9/Uk4s6cKZcgujC6wCQ/5jVKGh2+ni96FqjXu+mm1V2H93vfj/ph5RiVkxTB2JOfPMM3HiiSfiuOOOW3TfXq+H7du3B0tExGZAlbhMnMiYkpIvJZn+uWpYnVn8UGF7eQmJUhUoVQGpBigxQIkChVrAgPUwYD0UKFCyAqWStsJFHo/K8Ya3MXPxrqI2FT6JznHrBJSsLAbB6hdOF9CFlppIeQrjd2fekFDw5HNXl4ghTFU56aMf/Si+/e1v45vf/OZY+2/btg3nnnvuCp9VRERERERExFpgaujxz372M/zFX/wFPvKRj6DVao31mHPOOQd33323W372s5+t8FlGRKxfTFKN0RK/V1+owVeXg4a/NaoRA/2ckbeyWFWmUAsoUaBUA71g4HwxhZmjpOBbgSlodabuuysfpzxhpYaxMd1R7UBRqaotlYWqMqxhWQqUKwwOv5c2DGI5acUwNUrMddddhzvvvBO//du/7baVZYmrr74a73rXu9Dr9SBEaBzM8xx5nq/2qUZErFswMhhxl6EMkWEl4Ay2cpev55QAhRezBWcYHrAUA+QoVK4dFFKhMLsu97N+ZNWIs0V2WAkSs/RfRC3hl2/qwstHbBveXh+rXi5h3nDkxSISkBXD1JCYJz7xifjud78bbHvuc5+LQw89FK985SuHCExERATCr8UTTnsoq30o6aZLM/qNGiUk4xBLbHYW+GqMeqOUhGKlu5pycAyQY8BaKFWGksS+S8X0F9cl/C6BetB0dQfGHsA4GazNhc++Fow8f9Pk6nG8NXVG3oCoEoWuGrXfMJiUnyVyoSFMDYmZnZ3FQx7ykGBbt9vFHnvsMbQ9IiKiBowBSk1Wjakaetny1Rh6YZNqoLc5QlNAsoHbh3GBhLcwQBsDlaNUKUrbh09pgiXV4rxtqPTh8sU83DaSvKxUKam2xbD+SS+KE/iWTwmLLbdx8uKMpcoE65Q8j35u2ai8RUQsjqkhMREREROAITKTglJSd9dlXjFxPhkmA3/MqIGQ9HjVb+ZSDtxt2ycGAARLkaGNPtoolESprBKjIBUzrp3midVjIbgy8wYys4okZoIIiEugtNj76b7D9+vt4//u4YgI/28clg+bfVNTjdjzZsUw1STmqquuWutTiIiI2PSYThITsYqInpgVw9SkkyIiIsbHYuWiySaVSLt48626Np0UeF1Glw1oSkVBopR9FHIBg2IHBsUO9Msd6Ml7sYB70Wc93QZPmcZ3CihNmMMmlHR6yfYZbpqCaH/W+GDWSznJYpHeIUr6hYI2uAu31/R+CRJJZLwA6vdZyqiB5t/YJ5U2FNYgnbRt2zY88pGPxOzsLPbaay887WlPww033BDss7CwgDPPPBN77LEHZmZmcPLJJ+OOO+6Y5G++4ogkJiJis2GSUxsBY0IpAFVAqQHC2HXpOvECo2PW9YcuIWWhSUy5E4PyXgzKe9Eb3I1+sR19dS96bAF9NcBAKrNoEqPcGEmPRa8DtOd+HZmpzRCvYry6jrgEDdHGv9hRAlK7HX7ZpVN2tMT/R8mKi82rAaQs3BKxa/jKV76CM888E9/4xjdwxRVXYDAY4MlPfjJ27Njh9nnZy16GT3/607j00kvxla98Bbfeeiue/vSnr+FZLx1TXU6KiIhYCjhoZseqMbtq8nUpJQBQElIV4OCNBt+m2UrNx5dQqoCUPUOSACnnAQCJaGMhmUOPzWKgdP8o64mpfoEddW1vPB3GPXlZ1OA7STSc7AS7tgbpo2Dd/Gww7TZtXwokq/fBbDgFBgCg1qTb7uc///ng9sUXX4y99toL1113HR73uMfh7rvvxvvf/35ccskleMITngAA+OAHP4gHPvCB+MY3voHHPOYxq37Oy0FUYiIiNhXMn/zE1ZhSLy6ptPQGZgy8kdwoSKP0FI7QDIpfY37wK/TUveixHgZKYqAkCqlQKqvG0IVpw69aZEjkqCtzbWlpDXrELKHEwLjyS8PYgbChnS05kVIR/NKk4DT/JnJosTOwJMLJ1RtWiVkHze7uvvtuAMDuu+8OQPdeGwwGwQifQw89FAcccACuueaaXXqu1URUYiIiNigUFNy1KmyEgqV1URnvufRKCcbCC9NSr/EMAsz2nWGicfaOlD30B9uxkN6NnphHzySXSpUaEmOHQhovzFKuAZWykhrpi1lFElP3jX6ZFzfqi6lVYoJ9l3ZsWZPGCdQXGqcP3osbUIlRmKixt9/vD80BXKyxq5QSZ511Fn7nd37HtSS5/fbbkWUZdtttt2DfvffeG7fffvvEznelEZWYiIhNCe/vmOxwSG/Gpb4Y642pU2MYE34xagxdOE/AWAKw4e9cZXkPBuUO9Nk8Bij0InUHX2vwJcUucz3Zlcj1elFiljcUcFI+l6WgzhMjVUmWAVkKt0TU4z3veQ/m5uaCZdu2bSMfc+aZZ+J73/sePvrRj67SWa4eohITERERsUtYHyMHItYxJqjEnH766XjjG98YbBulwrz4xS/GZz7zGVx99dXYf//93fZ99tkH/X4fd911V6DG3HHHHdhnn30mdr4rjUhiIiIiJgbd/K6AUinA6uOyCmVteQjQqgyULikBgGAJFJMQPINUOZTqueexxypkTw+IZLac5D0xTcbeOjWGLVIzUc3u35GPmyjGVF7G8U03d9sd3jYOFCkhUbO4bXIngxLSgDyOmnz99o2Epcy0WuRIyLIMW7ZsWXxPpfCSl7wEn/zkJ3HVVVfhoIMOCu4/4ogjkKYpvvSlL+Hkk08GANxwww343//9Xxx55JETOt+VRyQxEREbGPZiUl8ysiZfCaZ2PaXkn7ME1ABKJbXTrZvMu9ycj2RhuSPhZso1Om5bWd5r/Df6G6iERGHi2xK6X4xyXXvtebGAvNQTGdimJ+ak+Br1iZncN/dx5htNGqHLRd8qCXEJCI2qJzQRu4YzzzwTl1xyCT71qU9hdnbW+Vzm5ubQbrcxNzeH5z3veTj77LOx++67Y8uWLXjJS16CI488cmqSSUAkMRERmwNKAUxiVdwQ5rmoL0Zv1gMhOYZj1hzhurQcwmxLhTf5AgBnmiBxniEV7eDx1lTqyEvlGq4mTjrWyBOzDLAGM28wD6nmcU2qTKhukXVybDsctG42FhCOksBG9cKswdiBiy66CABw7LHHBts/+MEP4rTTTgMAnH/++eCc4+STT0av18Pxxx+PCy+8cJXPdNcQSUxExKYH1wRnQh+0CgpQpS4NsGSoi68mMMNT5ympsZOvFbgmL0qbfIUx95aqDaVKJDxHKmaQsBYSpY9Jhw9WL7K79D1/PUywnmA6aSloeopG4kLeS4WZq1UwSlyIKkNmY01uMOk6wxqMHVBj/D23Wi1ccMEFuOCCC1bhjFYGkcRERGwCKKigpETXaclpYhcRpWPWUhVgSn/MBKMJmCc11v9SXQes+lJqb4zKIblXdQAg4TlyNoOWmkGqUgCaxDCj2Sy3GZsjLLa0tKrxamDZ5aQ1JDSqidDYclKD+hIkkTbqAMg4O2nFECPWEREREcvGOiMxERGbDFGJiYjYLBjpi5l8SYkpnVIKjL2qNCWm4YSSVWG4KSF5pOaY/ls649ofI5CihRm0VAep+ThLOAu8uYykbTi8F6Q6BFG3pK2bjWRQq8ZsbhJTl0ICgJL8WxUmNdbkiQkHg07H771kTEqJ2aAvz64gkpiIiE0OWkaaZEmJppT07cS1PGuSgC2BYRg2/TKWE2Ov3idVOXK0kascuSE+KecQpF1+7fMYAsO4sk/iwGhPfZdOajrS6pIYZi/4q2wUpdfgoGzUtD0gNCb6TtNJ1BOzUc28FLGctGKIJCYiYpOg6osZxoTVGCXBmO8TQ0cROG8MDNkhpl4G7okLNFmxpIXb/jEqgUCKTGXIVI42MmTckBjGkHIGwYCExLUZ7EwgQ2BoUse1sq0b6TxOzHoNUWP23ZWksn1oQFBq7gd0Tx6LgjxpQZQYS14a1ZeNHqtWk+wTE1FFJDEREZsJLv7Mh4y+1Z4yk1BklDH46nU6hqB+ppItI9nSkiUwAim40uUjABBIkKoMqUrRRo6MCeSGZCSGwAjGwJiCIOUkXzEaHoTI6GTDavc31kRiVjlebQnLhKci1x0tIC4NikuwTtUXRstJmrw0GXvVZlBiIlYMkcREREQAsESGA5hgQsRGrQHd/C4oKdnnaf4YqhKYFBkArcSkKkWODDkTyLlAYohHyvWiiYwvHQk7ndn8loAXgJwNxpEY7ncYqcSsg0Z3TfUddzerX2849zrRICAo5Pko+SkCf8zwsMeQuNQPg9ywiErMiiGSmIiITYTFS0pwV/RJdPG1Bl+9LodKSoBuhkZ9MpxMrWbgjsAIJBDGX5OqFBkSpEzohesSEgCknCHhQMoVEkNkAM1NLJFhTEEI5atYppzEqkoMLSfVGn5XW4mpmaFQu9/SnrGudNTYyI6sl5KSG/+kJS/IdktiPTmWG3S8QCMiiVkxRBITERERsWysAyUmYv0jkpgVQyQxERGbDcQXA6DGG2PlicmUlayao9w8pWTIK6Ob35VQigNs+GOJgSNRCRLjldG23gQpOBLOkBAlJuHaDyOYcgtgVRjTu67iiXEzk5zyQtJJzGxP6j4u14EnpsmwYjdJf47BTKPGLrxs6FB019DkWx+xLkCUGGfsbSgnbXRjb8SKIpKYiIhNhrFKSoC+eE8iqWTKCDSVZH0xAMBRuv4xAIYi2DatxMDBlL5HQEAwjoRxJCaNVOeJSblOKAEwhEbqhUtt8CXlJJaQUpK9g3OoVffE1GBMQ+9yE9jUH+PKSfTpyfEKcgf1x9DeMKrGE6MaSHHTQNANhTWYnbRZEElMRMRmhFLD11/GASVJOombzNKu+2IAgKlCjyGQhRvgqE9FQjFNcCTTBKbJ7Gmj19Y1oxUXu+h9hPG+aCLjlZjEKDFWjWFcAaZPDEsQJpOsEpMITWQaL7SrpMRY8qIWUWIQ7gZU00T1U7zrPC/lGCmk5t4wNE69QUcJLAFRbFo5RBITEbFpYT9ZSXdcQ2T87QmpMYDp0lsC8FFrwCs04xAYbkgDB4NgPCAwnsTYUpInNICmG1aFEUKCcwXTWgaMM19SYkyTF/v7j+wRs1blJDW8rbrdHq2BuITqy3DJKVBfGoy9tDdMycg8JEa785KyYQ2qnZsjIpaCSGIiIjYhaElpqLxkVAem5MTUGP1ECkoVQUkJgItbK1VCsRJA6koPdD8KxphWYxggOCA4I2UjmFRS6IlJuL/NmDJKjD0gAMHBBHfqCwDvj6n1wwxP4p4MRigxbpcG4uLSS/Sh9RHrpsSR5awByaFlI7LeNHZA1pSOaNmoaX1jQkVj7woikpiIiIiIZWGlLr6x9rDhEEnMiiGSmIiIzQr7jbpxLBDXasyESkq6Z4wMfDH6NGTgi1EoIc23c2lKTpIYgYNTZAzM+mMMp0i4Xk+YXwCjzHCtwuhSEiknUVNv1RMjkoZy0iqSGPv61/WJIeuqYp0ZhaCEFHhbWM224VOpbq/792lCWELa6EpM9MSsJCKJiYiIWASTKylRX4yN3HKVBL6YEgM3dkBBb6t7asb8uKPQE6OcFyaMWMvQEyOUT3MnDCzhmgElAhCG3Vg/jKgrHa3Exbcp9yzrfzYdZYyBjWGDOza0f/NwR7o+/nuCkfIbnVIelJYCn05ULyIWRyQxERGbFH5WkkTo76AjneHUmIl08FUSyqaUTPddqQqUSoApHaHm4N4Tw0pIlCSWPfz8Lm1kLoBVUy/tEyO4XjSB8Z4Y3yeGh2MHhAg9MgFWwhPTkOQZRV5qPTENowbGSSfZfTG8TR9D1a43KXp+CvkYnhjaFXmjxJIVJldO2iAvySQRSUxExGaHUlBMl3owZLLk+uJkGuRNpKxk5ikpZctJvvmdUkaJseZiCHA1QIkBJMtI0sUQMKZPL5gUgFCFSUyMWhOYMJnklRjuF0tcAN8jZsjYu1L9YRoUFkNeWE06STXVfez9lKzU9IOpPqyuYqXG+HdfbAYSLSFx8NrtGxaxnLRiiCQmIiJiUdhOvsx2392Vr4SEsAAwqgz3agzjblggwwCCJSjYAIUqoGx0V4V8ShMXvV71w/g+MVJ37eUSXEiwBGDmQUzYmJMIy0lJAiXqPiZX2dTr+sSo8DbdBk9owvDScKloePswuQmSRw1lKIqQpAyXjhpLSAFxpusb58qvorF3xRBJTETEJoeOWFdLSv7iohSCspLfuAvPZ0pKAMAUh1IJpBqgVL4rLwAdvmYpuBoE5aSCXOD8KAFz3m6xaozeV5eTJIRQ4AnAhDH0AkDCQ0+MVV7oeoDVJTGsND1YCvOzJGWnGiUmICWyoYTU8KzjzpgcF5bcBOrLho9VR6wWIomJiIiIWDJWqkfMxlEfIgjiP+uKIZKYiIgIAFaRGQZj3KkxVoHZ1bSSQgko3ZpeqzAFIPW39gJaEAGAEhxMLUCwBAPWQ6la5vFalQl9pfoGNyWkpDJ2wJl6nbEXLn89lEyyHXtFsopKzIhSUtUL0xwz0j8axg4EnpgGY2/lUEPr4ySSuBr2v4QppPrS0oZFrCatGCKJiYiIqJ+lRGCJDLPD/JgAyFTipT+dBDOTjq0nRkKXliDhZyBzgCmBAj0krIWC2ccoSHJ1rhp7LZHhJpEEwJl6RSLBDImh5SRPYBLiiRGrGK9uIDFFQchL3diBOk9Mw6iBpt4vdH2ZF9wms64lLE3EZTMYe6MnZuUQSUxERIT3xSg62hnwZZNSExnzkcFUATDeOA9nvOc0vg7Vg1T6ElhKaH5gDmvJDOcchVpAabYUKIeUIHupdqMFjCcmIZ6YqqmXpdUOeVqFUUZ9UbVKzCqXkpTyXpiaqLWiY6Xt3aX/Nxxv6OPo2UnxGhyxXhFJTERExBiwCRN9S4EDSu1SWckToBJS9gAOR2RsCsnGdjnroVA9DHhPP4KVkPAXXCoi2SZ4dH4SgMDUy62p19StGCEwQTlpVU29DT1iisLXh6yht0mJMVynMYXUMPQxKBctW4lhZJ2oLnXG3k2gvgSInpgVQyQxERERGrZfjPvEDdMkmnTYi5PUA64xgd4xqgTAoExJiQMoVUhiSpagYD2UGJhnH258Vy0nMdMjhhESU/XDMGu+ySoExsaqV3Xw4xI8MUV9OsmNHWhscFf7sAAuYh2VmIkhjh1YOWwyOhwRERGxq1jF6dUREREjEZWYiIgIAKPTSfanLQF5o68wj9y1vjFA6WohpZJuOKQVIAqWIuEDlDbRRFQLxpg29prbLp1kfTHG2KsHPhpTbxaWk3QpifSIsQrMkKnXdqGZNEaMGygKr7wUNfWictgTQ429ZYMnpmkAZOVQy0LQ+M42uRvrLbIBJQuFDflrrRdEEhMREUHgS0ZKSd9t1Q0ZsvtxAAPtjcGuJZXsc8GUinSZyjyfKqAU12MJRlwJGJgrG9kxBH5WkjH2cj/0kQkWkhjBgTQFshRqpCdmpVSYZhLDVF05iRh7a+LUTZ6YcpF5SdXtq46NMi+pglhOWjlEEhMREeGhyNfGmv4d9Bu2giDz+uxMo11IKykJZgY92uMxxs0iwMDd8zNwd4tOsga8mZczP2oAgPPDOFOv4NrQC4Sm3iyFSjOYB1XOcpVJTFkCRQlmDb3O2BvMFXCryjX0rU8nNakvwdRrsw+NsFOlbdI8g5LTDTu5OpKYFcPUeGIuuugiHHbYYdiyZQu2bNmCI488Ep/73OfW+rQiIjYUFPmvCk8oTNqEJdAXdQ4GYZZdK7W4ydruuRJwliDhGRKeI2UtpKyFBEI/I2NuYnV1XpJbuPSDH6mpN7MlJD5s6k2amtytMokpinCxJt/CL6pQfpH6W79SfpENiy62MROuJ4u9nyyThp1KvtjQyIiIxTA1Ssz++++PN73pTXjAAx4ApRT+6Z/+CU996lPxne98Bw9+8IPX+vQiIjYQJPlZou67jiMySCBB7Q5qF0tLEoxx54kRPEMi2kh4GzmbQabaAIBcZUgFR8IZ0mpnXuZnJtkuvQAMgSFN7hIOZDaFVPHD1Da4Y7Wvxa5jxIXcxqurqaSmiHVpVBTpz7Oks6gaykmLJZGWWmKi5ESqBoLmnnvjE5mJEcENKlTtCqaGxJx00knB7Te84Q246KKL8I1vfCOSmIiIScJ94soaD2t4EWfMlphS/xjIXbgwaY8N57qck4g2MtFFS8yhjTm0VQcA0GIZcs6RGzFFExl9BGvq9QMfTa8Z7ktJjsTYcpL1w6R6QZbVnNsqqjC0qV1RkmZ3piMvMfOqYjhi3dSlNxwfUL+uarYFp0anWzes1z+OnLOqX9+o2AS/4pphakgMRVmWuPTSS7Fjxw4ceeSRa306ERERmwIr9XE5WqmI2ACIJGbFMFUk5rvf/S6OPPJILCwsYGZmBp/85CfxoAc9qHH/Xq+HXq/nbm/fvn01TjMiYqrhfCmwCSV7T9j8DtDf8jlLIN2AgARQu+Z1EDyDMEpMJrpo8S1osS1oqS46ppzUEgK54Mg4Q8YZUq6QmrJRyrUKk3LpRg0AgEgleAqwlJh6XQqJeGJqvTDAqioxRnlhpfHCDBl766NF0pSTmmYnFWM0wavDUsshkvxO9r2ggm3D90dELAdTRWIOOeQQXH/99bj77rvxiU98Aqeeeiq+8pWvNBKZbdu24dxzz13ls4yI2BiwfWM0kRmeRGxvWyID6OupYlKPI1iGN0ZHpROkXJOVlLeRsRm01Aw6sou2eZ6WEGgJhkxo0pJxIDXXZEtoUi6RiBJJYspJVVNvJrwnpmrqHQLHyvSHUag1OliyYpNJhb+tf5JyTEnLSfocy4Y+MapmRpI9C7e9JqYdnHHAn2g5qZ6MWMLSVEKSctfi+dOAWE5aOUwVicmyDAcffDAA4IgjjsA3v/lNvOMd78A//uM/1u5/zjnn4Oyzz3a3t2/fjvve976rcq4REZMGTf6sThSVTieqnEuFzNgLGwMHY6l+nBoe0rgoTBpJ8BwAkPEZtDCDtuqgjQxtYUkMI4tCzhUyo7ikVoXhCkmip1YDAE8rpl46oTpLnS8GaTp8XmuRSgKAkqSSAEde6oY+An7wY+PQR/IUTSMI7L9Z6JlZ2r9jYOw1602emM1Qa9mg7W/WBaaKxFQhpQzKRVXkeY48z1fxjCIiVgeW0KwkmbF9W8BKKHAzU6lmiB/zpEZKO4S6BJiEMh12xwVjHIJnTonJWAe5aqOtcrR4gpYx4loVJuMKOTc/hX4tciGR8RKJKF2DOwCawKRmcnUqgDTxSkyaQCVJw9RqYOU+KmtUCNulF9DKi1TD/WFqesMA/mI5Tmde+s5Z7CLbpL6EPV4IcWHDhEWRlFJJTlruYqPEqYBcCRUvApgiEnPOOefghBNOwAEHHIB77rkHl1xyCa666ipcfvnla31qERErjqD/ijepgKkVJjJQQOCLqTs30mKeJ47IlEyCoVxi+kSA8xQJ018+UpUjVzlaLEOLC2Sm+VxuVBitwGglJjUR64RJpFwiEyXStIRITcQ6BVjGgEyQHjGkM2/WlErS57UyqPfDsLJw68HYgTJUZIBqx15TTmqKUmN8hUY1MBvaBC8oJzGqvhDPiyEvAeFR9P6Nr8RErBymhsTceeedeM5znoPbbrsNc3NzOOyww3D55ZfjSU960lqfWkRExIbGSk6tjnWGDQ8VPTEriakhMe9///vX+hQiItYWgRyiizZgbGXVGFUCTOhvyzVqTNUbA0XUGJ5DSgmlmku+VXCWQLAEnGlfSoIcucqQc4FMMOSGT+SmlNQyP1PiiclFiURI54fhqfHEZADLuFFhjKnX+l+yFEizBj/MKkeriZGXlWVw2/2kIwHIYVw6qckT01BOonB9YhpmKzVBNpWWrCeGlBZpCWmpJcdpg0L47xExWUwNiYmI2MzQSSH7QcjDn0yCKb/fxJ9XGV+MqptpVJdWcsYYKCbB2fBFrAm6W2+KBMbYqzKkSJBwhozrSDUAZDwsJWVcIjdN7WwpKRElRCIhjC0u9MMIb+QFFmlyt4p+GMBEqmk5qRyKVtc1uAP8xbLJE9Pkj1lKR176HmtKJ9EuvfbfnaaQAh/MZvDERKwYIomJiJhSeHMvBwxRWAlVRqHUvV+YrA0Zs2orfqbHEejNmdMbmFw8ds1MMkkYJSZVKVLGkXKOlOtUNAC3nhpDb861DwYAMiGRihJpKiFSBW7ElcAPkyXDSkxjl96V+hbd0B+GemCK0pt7AZJOqjf2SlmnxKB+nTxtbcSa3h/4YOgxmtSXwdA+AcmRVInZ+CQmlpNWDpHERERMIajRV6/rq7tiCmw50eZRUMokjaQjS8o0tPP9Y7xvhEH4ZmYBvylNeak5ti14BsESpMoae1OkXCBlDJnQc5IAU0JiWolJmETGdSIJABJr6E0kRK7ADDdhrRoCY5QYpNkqp5KaS0muwR2g00iknOTGDdB0EiUmklXvblRfmuATTuS4TemkBjNvqMpYJcYTG0pcNuzkaoJIYlYOkcREREwLfDMW87NmMKOSUExMlMjohFIJxnzSqCmtRMtLggkwxYlSo+ciSbmz9ts352097JG1kJpyki0l2UGPiXli3+DOJJMCJUY3uAs69AJhtJrMSgJ0OQm17RjWoJTUH2gvDOAJTBGSl1CJGW5m16TEBKWlJZSTAuJCVRnm10tGykWS+l8MidlssWqC6IlZOUQSExEx9TAGFABgfEWIDFQJpQooU+apGn39VGvr0/Edfi2JsR6aknFI2SOGTgnGcqTJHFLeRoo2UqXlE8E4EsbcgEfbCyZlYWfelEtkiVFijKFX5BLMmHkBgNFSUp6FSkxtKWmluvQCi/phgj4xknTwtWTGP6TOxFs2GHspZJNXxja7a5pyTd5TJfk9qBJT0nKSKR2Vsk+ON77ZOyJiFCKJiYiIiKhFXVJpEojR6s0GFZvdrRgiiYmImBL4wYwSvndJJamkdwjUGPrYXXlupoifhWlPDJ2r5J6elpTAwU2DOokU3IwVkLwVlJQ4z9BK5pCLLcjRQaqMsZdxU0rSaoydj5QYT0xu49VCIjHlpESUSNISPAV4xsBb1kgjgFZqOvWmPlYNrHK0ulmF0X6YSqS6LFEdN1A3L4muh+kkj0Z1pWa9OYVU3+CuJOkz2pHXrqtNFKuuYlJjByL1HUYkMRERU47aOUaMg6kCyhhuJ1Fa0imlgXmOpLZ3jIte0wZxZh+OEoolSHgOCUn8NRwJz/ScJLYFLXSRQ5OL3HTpTYwfJuHVcpL0iyDlJJNKYjnTPhgAjI4aSBOoPHeemOFy0kqmkhpIzGCgBz5Wp1YXcmh2Ut3kasAPfpTjdOal6zXkponw1PWA0evDPhi6HpaTNpPTlUVPzAoikpiIiGmDUjqFVHuncKZbhQTMfgtmYpf7cehZSvoYUhVgDUQGqHphBDnGcCpHsBScpcjZDDqYQ0u23bTqTOhodcq1H8amk7wfRiGpTKtOUgmeqrC5HaBVGOuHsYMeW62G33alPhoVGlvHFQUw6A83t6s19pIjUiXGGXv9/dQf0zyOwMOeXZMPpiDnTz0xgT+GqjKGvEQfTMRKIJKYiIhphZIkoURb4xvlgWkiA9gS1K735LDRaT0TqYBCEnwz1/cJM81agMM3xGMQpodMSG4EEiSshZaaQUfNoI0cGdf3ZVxHqzPO9HRqk4axs5ISJpHzUisxqT43kUpNYHLT3M41lxGulKTyfMTEamBNUkkFKSVRY29RDpWR6nrDAEAp9WtbKq/ONSouTdutEkPLRkGfGEpiaAlp2Myr1y2J2VwlJIqJeWJiPWkIkcREREwZdPde6ovxoKUlpXwUOlxfPpHxE4l1UknKApwlxCvj9+XQ3XcpaRFIHMnxDe1yM+ixhY5qo8NTtIT+3fSQRz1mIOFagQFsxFqXkRKhF2GUGJEq8NykkjIBlpuPuSwBWhmJVzf1hlmDUlJZgg0GnswMzH6DQg99rAx+lDWjBgBPWJp6vDQSF5o4MoSlpGoOvZ/5Jy8YJS5+vZBedfFKzGYqIYWYlCcmYhiRxEREREQEWKlUkkJjk7uIDY3oiVk5RBITETGNcL4YCVTb/htoVcbeJ6HUYCJqjH78AEolgFFhrNeFemQY406NAQCBFIKl+qdKIEwCKVMZMpUjR4YOS9HiAm2hzzsTDJkZ8mhnJQFAwrQKkwtbSiqcEqP9MEz7YVrGyAv43jCtXKeSav0wDKteSgKAfl+nkwYDrb40eGJck7uGPjF15aQmT0ygtNQoN6Wk6gwpITGaPCLqixpWX/T5RS9MxMohkpiIiCmEIu3JdMyZtv2vITUM0AqDVQKa2/+P9fxKQqnCGHwLPSsJ2i/BUcJ+tFhfDABHYFKVI0XmGtqlKkWOFC2WoCMStBOOVqJ/u5bQJaXMdOjNuffE5CZWnSWFSyQB0KWklIHlwieSADNuQHfpVXm+yrFqoJbEOO9L4dJJQ7OT+sQTY0gMLSeVdemkBmOvXIS40O0lqYFQM29BSEwBT1DqzLwAoMj6poQKfUsRk0UkMRERUwsJKGbMvfaq5glMEL1WAFjojbGPWa4qo1TpFBlr5LSqizsHcHB4JYYSmNyQmBwpMibQEgItwdESDC0bKDIEJifTqgEQAlP6Dr2ZUWIygLVMKsn2hgE0abHJpCwDeJ2CtcqlJBOlDvwwJZlaXUo9L6lvb5ujkVEDUlLVxSoxyyMuel0FP/XT+nMfNBCXgpAVqQiJiW7U6IlZQUQSExExrRhRUqprQMfAdYO6GqVmOURGqQJKCUhVgLv0UzkUu+ZGJeKKQyCBUIke7Gg+fgICk7AKiVFGjVFoCemUmIyXQSopyXQiCaikkvLUKzHW1JvnDXOSaPlt0mhI5vTNxZ6WkvpmAVwpyaeSrBJDiEsZmrmBUSWkhnVaOrIeYqLUFXSkAFViAgMvITcylpAiVgeRxERETBisIdky6W+kLqWkGIk5VzvoVskMjCozrDgsj8hoNcYqMZIVbsJ1FVqV4Y7A5Ibc5Fwg5xwZ58g4QyvR0WpAe2FaxguTcYlc2CGPWoXx06oluOEl1gvD8sQnkgAgTaFa+YhUUt38pEmhvpTEBobEVEtJtpzUN34YV07Sm8sBITGkVDEwqkzRQFaKBvVlUKfEkPfrgKSQBmqBHC/6YMZBNPauHFbqa0dExOYGY0NLE7nZJSg1RI48gQhLS9boy1hi+rikZknAmABjy/hOYwdDukWiND+rnhsOAaESJBBIwJEyoRfTCyYX2gOTcWaUF2VuK7SFLSeVToXJRIk00SMGRA7wnOmlxX0ZyZp519TQK1Hb4M4RlxKs39e3ByZePSiBQQlVSqh+CVUoqEJBDqAXydxSSu4XZRfmlkLBLSVZBlK5pSSL265Kv7C+Wwr03FJKv0jZd4v999/MsWoKpdhElqXi6quvxkknnYT99tsPjDFcdtlllfNSeO1rX4t9990X7XYbxx13HG688cYJ/darg0hiIiIiIlZUlN68Td4iTI9mxSayLBU7duzAwx72MFxwwQW197/lLW/BO9/5Trz73e/Gtddei263i+OPPx4LCwu1+69HxHJSRMSKofIdgUmtxtSoJ8uFb3xnv/GWALhJLA2fgy81Ja6Lr2kRB3exXcLQSAUFqBJS+XEESpVQKPV8JEg/fsCUkzgYUsYhjMPYDnjU3XnhkkgAAkNvS5TIbDnJlJLSrESSmzlJdtBjbkpJqSkl5bpMpPJcp5Jq/TCrXEoCtB/GlpPsqAG6ALqcVEqoftiplza4K4ixtzClpbCEtHisutbYS30wDSMFqJm33OwppHWIE044ASeccELtfUopvP3tb8drXvMaPPWpTwUA/PM//zP23ntvXHbZZfiTP/mT1TzVZSOSmIiISYMxwF246bcnoS/6TILVTApeNpSfx6MMoakae/Vp1QyKBHTHXdJM3p7R2EMjjS9GH1PHrqUsoJglQ76koEdDCgjGkRrfS8oZEkNgEsYccQGMJ0ZI5MYP0xL6YkpLSTxX4C0/rZq1El1KsuWkliEtjbOSVrpDb81r2O/ridV9Qwj6A724PjF+arUqlDP22mg1NfOWQTpJ/x4DWe+DGZDqTuCJIcbegSkB9QlxGTDvcaFmXkpoNvNYgcUwsbEDE8RNN92E22+/Hccdd5zbNjc3h0c/+tG45pprIomJiNjsCAiMnR+k9LgAZVjMZKZL+/iuVj1KKPD6fjH2dJifaaR9C7rXS3UKElAu6mtQUG7QpLQkxqgwSpUBP2CKmzNjTolJOTNTqfWQR63G6P1bXDolJuMlskT/nnlWOBVG5JVp1XmiU0kmTq2s8tJaCxWm4cI+0KSF2T4xA0Ng+prAqIHtEyOh+tIpMDZaHc5LGjbxjpNIGgTN7IYb29HxAuPMSNrVAaMbGZOMWPf7fWzfvj3Yluc58tr3djNuv/12AMDee+8dbN97773dfdOA6ImJiFhJME6GNPrbzPwHJmpVkyVDKbN4Q2UT+WCORpiFGbMvS8BZAs5zcJ6D8cwYf8c/v1HP7WcoaQLjF01gEqbJDO0LkwalJL+kaYk09yoMawmdSKqqMHnmItUqb9X0huGom0E1GTT0hpHST6y25IV25jVERpMZo8QUmiOUA6aXwMzLhpYmM+84y0BJvVAzr1pwS6l6bnGkVRVQ5L+IEJP0xLznPe/B3NxcsGzbtm2Nf8O1Q1RiIiJWBVV/jP9hG9DtUgddd+EoK2qM7d/ie8VUwcCJWlL1yliUumxUc4GqS125fjEVJHYEJGMwkwWQcOaGO2YChsiYpnamM28utAqTmUnVOpEkIdqmL0wuwNomNp77MpLKc19OWkcqDBv0fQnJbLPJJFXoRBIATWZKnUgCfH+YoiA+GEXX65QYkHXaD6Z+3XbnLUg5iXpi6L9rTB+tPk4//XS88Y1vDLYtVYUBgH322QcAcMcdd2Dfffd12++44w4cfvjhu3SOq4moxERERGxSrGSsGoippAiLSUassyzDli1bgmU5JOaggw7CPvvsgy996Utu2/bt23HttdfiyCOPnNjvvtKISkxExEohGMBYNdZ6P4puQMfMWIBd/GarFJRJKAG+6Rxj3HXStSWk8HFmH+ZLQRyAAod0ySXbKQ/QIw/sDANfMmPupy+TWfXHJpMYGIRJJAEw5SRt6E2ZKSUJa+w1XhghXRkJAJJM+t4wHQHWSf14AVpKapkyElDT4G6lRgwAuozUUFbpaxWGlaVWX4AwlTQIBz7KvvKpJJs+ombeWk8MOZMGM2+jQmNKYNQHYwd86n2p9yUqMeNgOfHoSeDee+/Fj3/8Y3f7pptuwvXXX4/dd98dBxxwAM466yz87d/+LR7wgAfgoIMOwl//9V9jv/32w9Oe9rQ1Od/lIJKYiIhJQ6mhsIu+oA97L5iZZwQGnViy9SUsL7kURq5LN2Jg1LRrf35wM5Y0EljDr2IcSnHAkSzzHK6BniYE3PhqbOmKsxSJmVYtVAIBgZRzpMYLA2g/TMqBhGtDb8YlUmN8dqUkoUtJiSExtkMva3Efqc5tOYmUktrthjISsLKlpIa4se3Sa4y9bgCkHTVgvTB2zIAhMMpEqm20ejHjbmOX3oDQ1Bt7Jez7j0yuHkNVomXF6IoJMbmOvUs7zre+9S08/vGPd7fPPvtsAMCpp56Kiy++GK94xSuwY8cOnH766bjrrrtw9NFH4/Of/zxatSm+9YlIYiIiVhF1MWc9gbrUPVUUdj25VFFjAB+9rjsHu02rQpxkrAH9ESHBXASbXAVZCUArLtx0++U8g+AZEp65qdXCKB6pSiFMfxjBtRcGsKZeZciMN/MC8CpMUrgZSQC8CtPioZkXGFZhVn3EQIOhF3Am3qBDL6B/ljqVpEwiCQBUqaBKQl6MJ6asGfqo1/V+TeMF6HYZbCeExcxGKsioASWbfDDUtO5fZ0bUmmj0XTsce+yxUCOiUYwxnHfeeTjvvPNW8awmi0hiIiImDDrTCA3JHtcAjpmhjNbcS4y1CssjMv75C/f83uSrn8+Wj4JzokTGnYBZVVpl8bcl7McHYwk41+uawOQQLEfKO8hYB7nU3+oyMy8pNzOScvM0GWfIhU8kWTMvAKfCpGnpzLwA6lUY09RuPBVmJUtJDaqFlL7BnVNirIG39ErMoHRsw6aS5FA5qWE2kuEX9LqlqELSoL7Q91idEjMO6PtJMa86siU0T9yomFTRbfO+gs2IJCYiYpVRTQhZj4pyyon/Fr9sIqNMqcd9IxaBGkPtLfTi47wzdrstdZntwX3mJyckJuVtJKKNlHeQoo1MtZEpTSQyluohj4KZRT+n7dCbuX4w2gcDIFBh0pb2wQANKowlMXkGtNsjVJgUK9fcDmgsJdFUkvO/2HSS6Q9D5iQBhsCUQFmECgxVXwpJyzg15aQGTwwlOkVAYoYvuXXbgCoRJsSF0dKpPRf6Ht5cCac4AHLlEElMRMQqgUaca3uvGHVEOnLhNi+vtKRK2AuIwoC4YpKastaILr9Kfyuvkh3Ae2ASM0JaE5g2cjaDFmaQqxZyU7ppsyRQYeyk6joVJheWxFgVRkJkOlINALzDwdqpV2HaLb0AUO32iMZ2wJrEqgFv6LW9YWxzO8A3uLPN7cxYaT3wkbtotS0rhUqLhy0XUVpQTx0qSgxdZ6ZwqOpLYnXvAwCupKifhxJxQ3zpsys2dH9ExHIQSUxERMQmwhqpMBGbGmuVTtoMiCQmImIloBQUU+Tb5+iotd8uwc2fpXL3cdgRAPrQ431zbR5HIF3c2uwYlJHqwIyXhsamfSkphTBKjFVhMtZBW3bRVi20zTf0luDIBUdLMOSCoWVi1C2u9CJkEKkG4A29ufTjBQCwXACtBOhkQDsPZyTla2XobZ6TBCBMJfUHPpEEkHEDvkMv4P0w1Wh1XYM7oCFi3dDgjhp7JS0nMWoGHx+BQhN4juhwUgwdm9HtG7S0FMtJGjfddBO++tWv4qc//Sl27tyJPffcEw9/+MNx5JFHLjsRFUlMRMQqISzZ1JMa21kXQJAI0iUl+4AlfNi7uLa9UAhIFK6sZI9X548JOrPWXND0uAKhk0i2nMRaSFkHLdVFS7XRYTnaQj9PLjhaCUMrAVpCoeU8MXBemJYo0UpK5IkZ9JgVSPMSIpPgLQRDHl0pyUyqDmYktds1L8ZKqzAj5iQBupREU0kmkQRAp5L6pevQ60hMySBLjrIMSUyTsdeSFxqllg2lp4C41HhiVEAuGkpLaCDkQWpp+P6gsBUkmTYeiVEI/w02Iz7ykY/gHe94B771rW9h7733xn777Yd2u41f/epX+MlPfoJWq4VnPetZeOUrX4kDDzxwSceOJCYiYgUQJJRgPSV1fWKaPTI2EeQmTLvUUIFRYwCq5wHAnYvCAEBqLhaFeR47P8mkk2wjvhrzZV2iiUEgYYbEIEeuOmirNnKkaHGBlpkv0BIMHQHkXKswLTOpuiUkWkKiLSRaSYlWUrhBj2kqdWO7NsDbHKxtPrLalflInbYjLqrdqZmRBKysChMash2KwikxGKnE6CZ3qq+b29kxA+WAQUoGacjLwBl760mMLVuE3hdyOg19YsKeMGaYJ+pJ7DgEOnif1L1FCZdUi+0bMdV4+MMfjizLcNppp+Ff//Vfcd/73je4v9fr4ZprrsFHP/pRPOIRj8CFF16IU045ZezjRxITEbGKUJDD6STa2ZaF2/UFQ7ruueGxxjf8um69ynwzBFzZyjXcI+c49NjKuk0jceiSkjDN7mykOlcZWixBS4QkJhcMnUSrMLac1BZKExhRoiUK3dgu0xfSNC8g2gq8pSPVrGXOuZXoMlInB9otqDz3SkzjjKS1SiRpRsIWekAvVGLsjCRVmDLSQEH1dSIJ0EbesuBuVpJVYAZBn5gaJaahTwx9r4TpJP9vbE25uxSxVnR7zc7BW3aDT79REywnTSHJe9Ob3oTjjz++8f48z3Hsscfi2GOPxRve8Ab8z//8z5KOH0lMRMRKYahzr21ANwyXWmoYFDk8mJGOAqgftlh3PoqVAZGxz6mft/7c6o4tpU+jMCYgzEdJqnKkSJGxFC0hkHGGlmnN2yZlJO2D0cdtcWnUGK3A5FmBLNckJmmb8QJGhXFDHtu56Q2T+yRSp6PvG1JhGFZehSlqNktgYQHoLejbg4oC0y90TxgA6Jc6lVQoyFInkgAdrS5LNhStXixCHRCbYNCj37euwR1dL6Uvj0lVP4JgPNSl3uj6BicxYJArSqDXN0YRmCr22GMP7LHHHks6fiQxERERGxwrSWCAmEiKWAwjmuZuWiilcOWVV2J+fh5HHXUUtm7duqzjRBITEbGCCDwpwdDHhp4s1W0mFTQ8mFE7FpzhN+ik23wueqyBV2NgjqgghlUgdzz6zVv4czDPJViChOlkQaoy5CpDznVn3pZgzsDbEt4LY30wANBJdBkpt36YrEDaIuMF2g1DHk1vGNVu6d4wtWUkjpXtzqtQq8IAQK+nS0l9b+zFYGBKSrqU5MpJA2n8MLo3TDnws5KKUrjyUZ0nZlCz3tTgLhz06NcL8m9s5ySphtSQavDKLA31TfIiNibuuusu/MVf/AW+/e1v4zGPeQze+ta34vd+7/fw7//+7wCAvfbaC1/4whdw2GGHLfnYkcREbHqwEVLvpFulNxEYdy4jxhSooJxkfDJuMKO9kI42/FaJjN5mOwUPN8DT06qlf6wxJ2sCJZ2x189HynQpiYsgTg2QUpJQ6Bgjr95emlRS4dJIiSUx7Upju7ZRVdo50NEEBu12QxoJWHkVple/2Y4Y6C2A9cw+g2K4lGRJjGlw55vbGTJi/DDVVNJinpiCkJWBbFgnZaEB92pSaUpHheyRbZ6oSUnSRDV+qSY0Jd82fjkp9ol5+ctfjmuuuQannnoqPv3pT+N3f/d3oZTCNddcA845XvGKV+DVr341Pv3pTy/52JHERGxqMN1T39yqU0IAfSGvnzMzNpSsJJSG+8f456yZaUS+8eqp0hJKcShVDH0XXszwq7TTkPSJUaZ3TNO+9Fg2pWT9MBwJy5EpTSKsCpMJBtvKxfWDIV4YqsS0RIE8LYwXRo8X4Ha8gE0k0Z4wgFZh6JDHrI6sCKzsR9wiKkyv55NIZpsz9RoVRg0MQayoMHbMQFEKlJKjKEMlhg5yHJC4tTmc+wmESsyAkIcBOfcBIWOFWS8VITGE0EhVT2LCTNRoYrJoemmDYTN7YgDgc5/7HC655BIcc8wxOO2003Df+94XX/7yl/HoRz8aAPDmN78ZT3nKU5Z17EhiIiKcqZa6DW2cWQIQujdLUBqCNsou+RPYNpwb79unIz2kf4wtLdmSEk0u2cvIOMklF5u2e1VjJCN/P2FSSbmJVetyEo1V54K5ODWAoIzUNkZeAGEZKS8h2gqiY5ramTISa6c+jQTovjBWgWlUYZrGDkwKi6gwg74ZMUAa2i1oY6/qFc7MC2BIhbFppKLgKCQn5GW42d0gIDThT71OlRhCYsiU6gHzv8ug3KmfQxJ1hqyrRhLjEb6VFiE0Gz2dFIE77rgDv/VbvwUA+I3f+A20Wq0gan3AAQfg5z//+bKOPTUkZtu2bfg//+f/4Ec/+hHa7TaOOuoovPnNb8Yhhxyy1qcWMYVwhMV82mpFpiahE3QhtR/YQisrQUdeDLv3hrKloS/GbmssIRkCQ3u46PMQUCj1jBupS0pW4teFIZ1cskQGGK0eufvGcB8y418QvIVMdJFzOyNJE4YWT9yAx5bQc5G8J0ZV4tT63KplJNEGWNsQS5tIaudmMV09TV8Y1e6MGPK4khfHMVSYBbO4ctKwCqP6ZkZSRYUpSv2iFaXAoOTEE8OCn0A4ANJuLwhx6VMSQ96vPUpc1E5yjHnz3PNumyQkpkmJCTv2RmJCsdmNvVJKCOG9T0IIMPL5yGpz+ONhakjMV77yFZx55pl45CMfiaIo8KpXvQpPfvKT8YMf/ADdbnetTy9iasEDAtM0lVcjbJuuCYzwnhEWllxGRZar/oBwqB6dBtw0rsAQCm4uJOYuKeEcLnYv/STFLvl7GBgYzyC4/lvLkhlkyRa0+Bw6chYdZkmMQCfh6Aht5G3TpnZcBnHqPDVKDCkj2aZ2vG0IXCfVZSQ3XkA/jzPz1qowKx2pBmpVGKtyVFUY29CuRoWpDnq0PWGsEjOQoRJTJTNAqMRYL0yT+tInUeke8ySlp+71+5Q79LHKBbetlH7fJuLS1GtoM3heFsNm98QAwPve9z7MzMwAAIqiwMUXX4z73Oc+AIB77rln2cedGhLz+c9/Prh98cUXY6+99sJ1112Hxz3ucWt0VhEREesPK93YrqEvTEREA9Qm98QccMABeO973+tu77PPPvjQhz40tM9yMDUkpoq7774bALD77ruv8ZlEbAxYFcaXcCx8G/662S+l+9bpvTJL+cDSJaZRnXx5naLDOCQkOFIolEHXX6k4mOIoJfVMqrG7+7qnMKZnBuFUmDydAwC0093R5XtgVu2OGdVFx8xHaifGC2Pj1EIRA68cilMDej5S1vZeGOuDAUBKST5OrZ+oSYVZ6Ug10OiFMWWjoVKSnZ1UU0qyVZpqKcmXk7QKYz0wNkJd54Oh6/2gnOR3mCclpAUMqy8AMDDrpfTbFPXEBO8hqhqC7FNXho2KzGbFUrvwLgVTSWKklDjrrLPwO7/zO3jIQx7SuF+v10Ov5/9ot2/fvhqnFzFtcIRFhCMAMKLOb4YwqkrxxpOaOsOjmU3EBCE+vKa8VLrn5jXnYSEM+ZF0ArU5HQlA8LBD67hjCvxrYMlLG4noIBNdtJLdAAAdvgdmsQdm5AxmeIZuoi9m3ZSjkwCdROmSEtc+GACBF6aVFMhzO1og9MIMdea1JKbTBkzpWLU7DYmk5U3CHR8NM5KsmRcYLiUt2D4xw6Uk2xS3Wkqi5SO9hF6YukQS4BLb6JNIUo9EqXvMl4j6NSUkABgU95pfqaGEFKgKfj0sISGCYLMPgFxJTCWJOfPMM/G9730PX/va10but23bNpx77rmrdFYRU4XKp2xz87mqT0bDEg8GGTSa86SmfhRA9Vj2OMpFsJub4DV5CyyZcftzrcRIkmCRikPKxYmMNhFr3wnnORLRQSq62sQrtqDDdVfNWbU7ZuQMZlkLs0mCbqKfqyOAtvHCtE0/GDdewHhh2i5ObUgM9cJ0E63CzJhkkfXC0KZ2wIgp1Sv9bb9ZhXH9YKoqjEsnDaswdNCjJjHCKDFVEhN6YfqExPQDf8ywJ2ZBeRVlgXuy0isJiSm8J0FKbfJtSh6F7x2/HnlLPfQU68m8OtPIhd75zneOve9LX/rSJR9/6kjMi1/8YnzmM5/B1Vdfjf3333/kvueccw7OPvtsd3v79u1DEzQjIiw0KaGEwU93DvYD18kgDPfJYNBkhJKZxVHfzVcPbaxThKiEL4LOqgIJJOPD3mLzFLqywIaMvrp0JMBYikRotUPwFvJkFqnooi22os3mMCN1OWlGdTHLW+gmCbopRzfVH9KdhKGbKHSEj1N3zETqdqLLSHla6crbVuBtNhynBsIyEi0h1c5HWulItZkeXkVlRhLr9UIVxhh761QYOiNJN7VjAWkplbntykh15SRSOjIKDC0h9ZgnMT3lyUqv9OsFWacR6sWx3I69mwub2RNz/vnnB7d//vOfY+fOndhtt90A6G6+nU4He+2118YmMUopvOQlL8EnP/lJXHXVVTjooIMWfUye58hrW5FHRGg0d+v1BIbVqDHeJ0M6lrrRAFUyM/yt1t1mvqSkmAw68zIISEgI18dm2K9jz8U+RnfileCco1QCjKgxkNykmTigOEDKDIwJMJa40hEA5MkscrEFLb4FHWxFR85iRmmCo0tICWZTboiLJTGawHSMCqM78+qLolZhBtoD0ypquvJW4tSALyPZOHVtCQlYeQIDjFRhquMFej03XsB35R1WYex4gaoKE5STFHNdeX05yT89HTFgCU1zCcmXiMIIdcPvtiiWp3zFxNLmwU033eTWL7nkElx44YV4//vf79qj3HDDDXjBC16AF77whcs6/tSQmDPPPBOXXHIJPvWpT2F2dha33347AGBubg7txmZXERERGx8JVv6jbIDpFPMj1gOiJ0bjr//6r/GJT3wi6O92yCGH4Pzzz8cf/uEf4lnPetaSjzk1JOaiiy4CABx77LHB9g9+8IM47bTTVv+EIjYQ6nuxUBWmyeBry0oAnK+lqsgAMKqML0HV9YkZ5YupoinJpNzAyHKoCzyD8cpIDgkBxqgSk4KzDGmiDbwAkIstaPOtaGMLZtQcZlQHM1wrId1EGBOvVmG6iTLbob0wiVZhOkmBli0nES9M0tY+GADgXaPCVHvCAN4L0+2O6AmzGipMw6TqonClJOeJ6fWDGUmqRz0xYSmpJJ15aSnJKy/a1GsVGOvXrUskAb7JXTAXiTa1k76pHe0Ds7QSkgdVMpvft0sYQbBBsZnLSRS33XYbimL4vVaWJe64445lHXNqSIza7C0PI1YYYWM7aqalXhm9jXhSyONsF91hMgO4EpPyRuAQPmptH2Oj081Tr4en/7puvuBg3JeTSsUdiWGMgysZlLg4T5DwFrJEG3gBoMXm0MVWzKhZdFS7JoXkCUzHnEpXSMwkEm1RopOU6CS6hATopnZ5S8epkxbAu/qFsBOqWdeUkbpt15lXdTveCzPkgwE0gVnpC0QPjSqMMfSyBVM+AsJJ1QvFyEnVlsTo+Ui6lGR9MABcKcmVkZQlM8NmXsCXk4K5SITEyICs1CeOxk2v6Rv1zSHrOvZuBrLShKjEaDzxiU/EC1/4Qrzvfe/Db//2bwMArrvuOpxxxhk47rjjlnXMqSExERGTwqip1eF+zV10ae8W6YYiWjUlJDN6n0LPXGRovB4OKTSO9Ax7YBgTtfFru7+EDPrHcJVCsgSlKqCUhCSdWxk4OE+R8raOUTNt3u1iKzpqJiAw3dSkkAiBmUmAbqJ/T+uD6YjSGXnbpjNvKx/42UgzDNwwH9ZOwbqZnlBN49SA9sJ0Zxq8MKtRRpLQpaQa9PtgvQXvf7GemIW+N/WOmFRdks68NlZdTSNZAlNUFJhgwCO5QpaG0BSV7tJ+nRqT6fvbv45KDf++oUKZknX/OE7WR3WaBuJYgs2KD3zgAzj11FPxiEc8Ammq30dFUeD444/H+973vmUdc8mfAKeeeiqe97znxS65EVOO8T5YhxNLuvkc/WAWCImHrJAZAGbGkVU/mgfoUeIzVlmJ8aG0kv5dSoAl7viSSXCVgKtCn5fKgn4wnCVIeQc5m0EbWonpqBlXQqLlIwDoJkybeG35yPSC6STSKTBWhcky09SuVSDtSCRd3w8GQEhgjAqjutpcPHq0wBqaeQFNXhZMtNqqL4A28/YG2si7yKTq0g52rKgw1MhbKoZCheWkUlHiArKub9Ayp6QGbvJe4ZyQDu5fY67q3nf1JKaZuAxv38zEJY4d0Nhzzz3xb//2b7jxxhvxwx/+EABw6KGHuuGQy8GSSczdd9+N4447DgceeCCe+9zn4tRTT8Vv/MZvLPsEIiKWCttJdlE0lSBHPra+bFNtPEcJgHs6o3wwO2G60oROKQmJAoAnF3WnQr0zCiWkOWa1fEQJDB9SjVLdNM8cXxqfjFLD3Ww5S5GwHBnroKVm0FF6vklHtdHhKdqJQDvhaAuGjvnE6CQK3QToCuXKRwC0AiMKtA2BaeUD5C1NYqwPhndNP5gZo650Mj2d2hEY4n9pnIu2GmWkhkg1YMpIC47I6MWQGBurHpRAr4BaGJ5UXTcjiRIYWjYaKK/ElJWfet3fKCxpbZD7KOlIuG8MqAQhPXL0ZSEk181+Mrc+omFj9RgbFbGaFOIBD3gAHvCAB0zkWEt+91x22WW45ZZbcMYZZ+BjH/sY7ne/++GEE07AJz7xCQwGDbJrRMSEwBgHmIAe3Cj0wlK/2G0Qer9gYeSxjAx+bHiemm3eI2Of22/j5vk5S8F5AsH8wlkKzhJwlgSPqf4JNjUYGwVuykuMCXMOHAIJEpYHS8o6yPiMW1pcx6dbbAvabA5ttcWVj2wJqSME2oKjnTC0E6At/GJj1G1R+jKS88EUjsBknRJZp0TS0T4YTvrBsHYKdFuawHRazgOjujO6jFQ7oXo1ykhA45BH1xemosIMCq/C9KwfRpeQ1EBBLlTGC7hItY9VU2OvLSWVCu62Xg8XSRZl/qPgTLhFsNQtCc/9Ilpk6SARHQjRql04z9wiyGLf39Ul+Lup6bsUsbHxpje9CfPz84vvCODaa6/FZz/72SUdf1nvpj333BNnn302/uM//gPXXnstDj74YPzpn/4p9ttvP7zsZS/DjTfeuJzDRkRERCwChpUfLQCMNPNGRCwRUrGJLNOIH/zgBzjggAPwohe9CJ/73Ofw85//3N1XFAX+8z//ExdeeCGOOuoo/PEf/zFmZ2eXdPxd+jpz22234YorrsAVV1wBIQR+7/d+D9/97nfxoAc9CG95y1vwspe9bFcOHxHh4M24nCgoNTI182oGQ0XVoB8C7jHN3wypHyYo19TMWKKPscMcFSSkMYUKJCjhvzVUDb/Babp0kqyknYxBFGEZiTERnKdWicLzSthwciQxpSWBFKnK0JJttJGjw/X2jtBlpE7CzDwk7YPR9ym0hQyi1ABMGalA26ow7RJJRz9GdBn4TALWzbQPpmuHORozr1NhukBjk8rV6Ak1wsxbN+Rxoa+VGFtO6psGd4PS+GD07y8HQNnjQ915AQyVknyk2ioycLeBejOvPfMq6HuBEz9LIupfy5KZDsOq3hw8Dhb1v9A/xU2gzGzmvsb//M//jP/4j//Au971Ljzzmc/E9u3bIYRAnufYuVNH/h/+8Ifj+c9/Pk477TS0Wkv7krJkEjMYDPB//+//xQc/+EF84QtfwGGHHYazzjoLz3zmM7FlizYEfvKTn8Sf/dmfRRITMRFQD4xeT9A0cVrfrpZl7MW/+aNk1Adp0+wimxIaPl/h/CjcTFS2fVvsSABpzL0ciSEyDXNqjC8GrPlPlYH4daBLBnobMXGaiDU3BIeDI1H6mAIJcpUhR4oWT9AR+nHthKObcFNG8vOQAJCOvN7EC8D7YHJDYLo6iQRUuvJ2W57EdNtAt71IPxgAyLA6/omF+s39Pti86bNi+8L0LIEZAD1NfGwpSS5IyJ6EbYYrBwzlgGPQFygKgX7DjKQwUq2TSNX+MNQTs1j3Cfo+SJgnh5IRokbextykk6Ss7x0jG/6OllQK3WQil5pSFWVSeNjDHob3vve9+Md//Ef853/+J376059ifn4e97nPfXD44YfjPve5z7KPvWQSs++++0JKiWc84xn4f//v/+Hwww8f2ufxj3+8m4sQETEZmIuXq6mLxpEAQDVWSgcIAcNmzWEiUkV9Ezwfc6b7VGPO7hw4AFkAPHWnIlE0fmu1io7eT4KRUQVD52d+B0tgEhUSGQaOBAm40n4ZDobUKDEpEqRMoMUFWkKgJfQTtA2B6SaMjBIgKSTjh2kJH6O2XpisXQSTqQGAdU2UeiY3De2sEmPIiyUwtf1gBDSJWWkM0Pi92aovANj8gicwpCcMAO2F6ZnGdn1AGoGm6JlEUslRlLovzNC0aueDaVJiVPCzul5n6KVpI/p+DVQZsn9pCTEPTev+GB6UuDR9SWgiPRabQYmJ0OCc4/DDD6/lDcvFkknM+eefj1NOOWWk5LPbbrsF8xIiInYJjAXlJJhIcNUYGxINWlYCQDvmNsSrF/swrUaZq1FrP9tIN5zjCnADhpW5aBgio5gtB8Gc3Qg1pnIRoA3z3Hk4JUYTGIHUERcAECpBAt38LkMCAYHUnEPKODLOkXOOXPgYtVVgOkKZda2+AHDN7FqmD4xtaNdqDdxcJNH1SSQAYDMZ2EzujbxdrbhQM299P5jV8sEojJ5SveDKSUEpaWHge8IAvjNvT6HsAWXflIwKjsFAl5L6hsBYEtOXwhGYgWRuwONAajWmmkqiSowMVBlzg5ZrKHGBJy6Cje7SS1XGptJSODuM7EMbKdaoLuUmKrAobO5y0kpjySTmT//0T1fiPCIiRoCDTnOmyZ4w7lxJ+lRGAtiPEtc5l4Aeb6kIem845cREs4kSU6oBITJ6/9Kcjy0rVVEdSWCecAjckSLh00kqgXAkRiCBQIoEgnGk4EiN4pFzTWJaCUMuGFrm19GRak1gfBM729SuREv4XjB57nvBJG3dC0ZUotSsSwlMRy8A0O0u4oNp1f/SE0dDGakogJ07gfn5cLSAW3waCYBWYXphGgkAioFOIvWLBAOTRupL/WI78iJDT8zAqDB+8KNpZkeb3dUoMVT9CMqKhJgIRT7+a9U9SlyGmzvq7fX71JEb+jcXNJIM1sfvHDxNiB17Vw6xY29ERMQ6RoZxyn27jhE9YSIidhFxdtLKIZKYiCmB/bZmkze2N0sy5FexGKrXM9LKf7E6/QgDKW3exVD1xRhFxHzzkv5BEEhRqoF+TMWmIzEAN03wxkmCaOOwKdNUDLwCqXHDJIHvJQFHyjhSJpBxjpTrD9ZMMGScoSUYWqaEBMCVkTpComuTSGaYYyepb2iXtqTvBzMjdAmpa0pEdKyA9cEA3g8zhNXywSg0qjBAOB9poee2WRVGl5O0DwaANvQuKJdGKvr636coOAYDXUYqJEe/5ERh4SiU98TYZndahQEKo7ZUvTHV9aYmdxah6kETa/49J4xXRhEvTUlMwLQ8JOm1mT513Xayjfp0oicmYlcQSUzEukd1Uq5vLpfUlpNcLd88zCaFLIGx0WWLQOZeZOaLBa8hOb7lP3fPHZAZQ2QALy8zps27THEXD68jUJS0aAk//NOlnhgODqE0gUnNfinT1CbnAilnyDhHJiiJAVpCx6hb5qR9GclOpdbdePV9YUO7tKUv4ElHhVHqduonUhMvjOp29EgBoIHArJYPBliUwMzv9KRl3uxLvDCusd2CKZv0LIFhKPqkK68hMP1SoFfxxPQkQ69k6EuGvgT65i3Zl7bUZMtI4U/Ad+kFgHKRJB7HcNQe8O9LfYyB3cHfHxAXcmwyZ2lRQkO2MbY4Ud9ImFQ5KValhhFJTMS6hiUwIVGpdAAl5KU6nBEwsWb4uHI4Xbr+A9/HqkUtYbGwfVr8uSFcJ2TGEhndx0W6/bjiAE8h5QCc+5EE1YGQ1otQdzb24sQhkBgTr1Ze9PacCW3gFRwZ196XzCgxLQHjhVFm0ce0BKablCZKXZIodaUXTNf0gpnRCgzv2m68eSVK3fHKiyUvtWmkNoKr6IphgNoykjTvCduZd37eExlAKzC0M29P94QBdBqp7AFFX/eEGRTG91IK9AvhvDB9ydFzSgwLVBg/6JGhL9XQ4McB7RODGk8MnZ3UUCaj/hh6kaW+LodARaHbyRiLRQgN/Ttr/LJA53Aslh2fImzmctLVV1+9rMfd7373wwEHHLDofpHEREwdaLTaTmAGhgczWtgBjdXhjBZVUkOfI7g91Cdm2KsxRKD8zo7IcMjww58mlhTGunYHF4QKeWLgToVJzX2WwLQMecmIgbflCAzQ4rQXjHQKTCcp0U0GPkpd7QVj+UiXh1HqmZZLIWkC0zE/m5JIgFZgVqPEMCKNZNqks/n54aZ2gFdiaFO7niEQPd/UbjAQGAz0C90vRVBG0mTGppO4UWEY+iXQNyygLxUKosxY8jIg79cBSQ7ZRnWLxZpHwTdS9BiH0Cjy91FXcqIlKxUMpdz45aTNbOw99dRTl/wYxhjOOussvPSlL11030hiItY3mO3OGza2owSmOpixjlwAOiXBYRQZNyhPDpEa/9SilhQNDWJEPblRKMNvtYbIKMbdh7ztvmvLSgCJhi/BK2A9BgkSE6DWyotNIFECY70vuVFicqHQFtBEhvsYNSUwtHwEwBCYAknHRqnNv48lMJ2sPkrd7WoC05hESrF6H0sNZSQbp7brtifM/IImLkCgwlSb2pU939TOlpAABGWknlFhaFO7nmToSaAnESgvPTlcRhpITwhK8t4tzHqYINr1brtNhIb+3QR/d4ES41XH2n3HeqaIacVKt1uJJCZiKjDUbI75ZnP2Ps7Sxrg14COgtIV/7cRp8jxN6g4tN1nYlv9unyB6TcpJxLyrY9jSlZVK0uBOkZLTUGM96oFhAsIYeLnipieMLiXllsTwYQLTMopLywxzbJk+MC0So6YKTCsfoN3SF/GsXSCd0VFq3hXDvWBm281R6saOvAJ6OvVqoI/GMtLCQqjEUBOv7cq7QMpICxJyQZeQAB2pLga6jGRLSACCMpIuE/lykiY01sirS0iAFnr6pULPNIbpGfIyIBf4PonmWyWmBC3tLLW0NH5KK3j/08naQXM8Q+QDYuPPua7r9UbDZlZiVhobX8eLiIiYAnCszlwkQNPJ/io9V0SE9sRMYplWfPzjH0e/7//mbr75ZkiiJu7cuRNvectblnXsSGIi1jnCrryg3WkZH17AjSKjZwjRhbslIespOE8g2PASlKmW2KtkVJ3fqjvDM5+8wmSHOo6OevtuvXYRSMwYAY6EM7fkwvhgiAqjhzqCjBTQzexmkhIzSYluUgQqjB0nkLULpB2rwpiGdltyvXQrHXmNkdcuzUmk1SIwwMg00vx8xQdjvDDzC2F33l4B9Aqtwpg0khxwyAFHYXwwtjNvUYlUWy/MQDIUSi8+laRVmF4J9Eo4U29fKuOP0ctAlX5hA7cU5j9lOlQvtZTUBG1GF+49Z/8bZ//R7/VqKdb/F7Fx8IxnPAN33XWXu/2gBz0I//M//+Nu33PPPTjnnHOWdexYTopYt3AfZ6yGuNQQDFp2qR0HQLrnWs+AQgkF7kpM9Z18Q6Mvr/wcPm9f6vElIW0vbmq3ziCGLjhUZg+j5IKMGxBIVOrGC6QqNX1ghOvEC8CUkkICY6PUNkLd4roPjI1Rd4gPppUPkHc0eQGAZNYQmNnU9IKxMWpCYmZndJTaEpdaAgOsXhIJ0ASmeTaSjVMzG6WuDHhUPT8fyXphVB+QPYai58cL0AGPvdKXkwbEC9Mzi76P9ISRviOvJjDSeWB6ptQzqCkhAb6M1FRCWgqpoQS66XEBya7xwVDQvxd674bvE6NiOUlVkmbV27uCSGIi1i+Iqbc6SZp6RKrb7GC7YZJha/NyiNBQMtN8OvVqDJ0gPfSYGn9LnYl4FKreHG6VIqMwJSpHqnTSxyaSctMHppX4GLVNIVkCQ4c5tkWJtpBoiyKIUVcJDE0h2ZECrJtp8gIAsx3ng1HdDtTMLDA7ax5Ud7FarSQSoLvyNswLsqMFaJwaMIbeniYwC5XRAmbAY9nzwx0B3Q+GDnikQx4tgRko5iZU6/tglBll1q2B16svAFAackCJS0F+J/s+WypxWYoPZhzUEZamRN1mQLQorxwiiYlYl9Bysu8JE9wXlI9EoJBwloL2btHHqkrW0nUjtYSGkhkLSjyGnp+oP+GxR384N11QFIZVIPtclsBYciZYaqYg5chUG5nKkBsSk7MELaE78rZIjDqvxKit+gKYYY6iJF14qzFqT2DErHmtbQmpm3kTL6AJzGxXE5iOKR/VkhdAm3hX6yNIYtEyUq8HttOUkqwSQ8tIpoQEYGjAox3uCCAY8NiXAoV5rw0UC7ryFpI5xUWXlZQb+GjJTSEVCqVcQzurwBQNJMUqMMG2CROUFQX9W98g6oUCoFQsj60UIomJWHE01berA94YGGl2Zb0htieMbbFvfC/EV+KazbkLvnD7+GP72DPAXQM8S2gombGo9tqgx6sSpaXAxroB3S/DRr7p9uB1MQTGkpiE5UhZBylrIVdtZCpHi2kS0+ICLTE8zLGT6Bi1878Y9QXAEIFpV2LUlMAEKaQuiVHP2pJRO1RgkqaPmNQsq4UGAkNTSPPzJEpt+8FUmtqZhi3VAY92uCOgm9rZAY8DSUcLhFOqC7MAunxUKqCUQCmVGyVQKr1uG9rZZnYBSSGEpil9tFJoKhHVtyyoj1iP8tZEbBxcfvnlmJubAwBIKfGlL30J3/ve9wAg8MssFZHERERErDISrF6UGhjpg4mIWAXEd99w07sXvvCFwW3GlqdWRRITsSIYUlVq1Bg/UkX5+923NauypKGplVGFJlRcrOHVKTU1JR9vuvXGXsl4oMj4feu/1Va/RdZ27mViSMaXwbdnL/srlChVYRQZ0jyMeHwEz5EwfeFPWQcZ66ClumjJNrpooW2Uqo7QSkxbMHQSoG1OrU6F6VglpqLC5LkuWbgU0myYQgLgVZjZTtjQbnbGjxSoVWEEVm8mEqDHCjT4YPp9beQFgN6CUWMWfE8YIPDCqF4JuWA8JwumlGQGPBaFn5FEE0k2jQQAheIoFFAqX0oqTJmhUEqrMEov1vcozfpigx3XGwKVskZdbMbGVGU2u7GXxqknjUhiIiYOTTh4hZjUN40DmnIpggx5TLzvhQx9pIQGsITCExj/GIHhpIX+kJWKe0LDypBcKB4Qj+q06iY/DG0cpghZAnT5SKqBIytSDVDIPqQcuAGVYQpJvwYJy5GzGQBAxjroqFlHYDo8RTvRz9lOONoJQ9sQmI75C68SmBnThRewKSQ/jTpr22GONTFqO5GaEpjZriYvgG5oNzPbMFJAYHWj1BKNYwWKQpePXDmJdOWd7+kFGIpTKzNaoOwBcuAHPNo0EgAUpJRUKjqReriUZD0x0twulYJcImnhAanW6zQFt9xGdpOC/bspV7nUtZ6wyTnMiiKSmIiJwhpyNbmwby+SLhrzmxYjxIezBJwbLwaJFg8pLuQ+wdLguXigloTRZZfooISGKDTDvyMlTSGZ4SN8MgrS/2c6lkpZQMoBStl358HNnyXjWoVJeI6MtdGCJgot1UVHdtFhOTo8QUcItBN9Dl1DYLqmB0zXzUGygxylGyPgU0ghgUlsjNoSGBejzvwwR0pgSP+XZgKzms3sAH3ZmG++2/SDYTvNPjvngZ2VXjAA1PwgHC1grDVy4Ac8liVHvyCeGOKFsUQGgFNh9GIUF3M6Vn2RSiuTTokxe3BD9e3P2mGj8OMnJKuSdnP/GhKaUMGsHwYZEbFURBITMVnYRm0sATNGVDuscZQaM3QYFiovPpmjCQ1VYXw5yZMKTXDMIDvVTKA4fAmpjtA0xaFpqWoUcaFQqtTkSA0gzcTfQvZQyAVIWQCQmvgZaUqwBClvI2czaGMOHaWjyh3VcQSmnXB0El0+AoBuqhWYbmKJix0hIB2BsQ3s2qk+h1ZlGrWPUYswRh2kkAiBmZ3R5AVYJwQG0D6Yhu+/tqGdNfICvh+MKSXRfjB2tICNUwO+jDQYCPQHwpSOfJTaLYoFxl5LXjSBYc7Aq9R4vgn7Hk4IIRjUEBpK2kPD7fogNE3YqIRGbuJ00kEHHbQsv0scABmx6vDN6TSB4U6J4Zp4VPq6jDwWUW50993Eba+qMLb+7spJTIBDBOSF1/hWNASY+QCvIzRShX1e7PEsqqUqCs58Xw9XpjJJpNIoMaXsQ8o+StkHY1x3C+bad5LwNjLuCcyM0uyiwzK0hVVgGLopcySmkyhHYNpCYsaRmFL7YKz3xagvAIYIjB3m6EtIuWliV0khGf9Ls/qiX63VbWYH6BJSw0XZNrRzRIZEqed7wHwfamcfIP1g5M4SksSpAQRlpIKkkQAMERibQLKlpdIoLoX0XgkJTWSqtIuDgTHl5hI5JUb591xCPsadp4seiLz000RoNhI2cznp4osvXtbj7ne/+421XyQxEZMDaU5nvSx6M/deliVEk6nK4spJ5th2jAAtG+n7BARScMWDb6XVyHXwPPBEpUpoLJka6qbbWKrSsFHXKsGxvWikNJ1VVYFS6mGEDAkEz5AZKaQl5tDFVnTVHGZUFzNcEwVbPmonHB0BTWQSWzYC2maEgC0fAdr3QglMnhfIW8bA2ymRdBTEDAPvcrCuUdBsJ95uTprYhQbexQlMB6tLYAZmqYFtaGd6wmjiYkmM8cEYD4yat4MeSx2n7oVdeYuBwKDQwx37pV28gdcSmJIoMU6Fkb6UZC9uchElxvrLLImhSkxJPsa5MTErcn8Q2x+D0Kw2Nqr6QrGZjb3HHHPMih5/4797IiIi1gBrQWBKNBp5IyIiNiSiEhMxMejSTuJUGFtOsqWkIQ/LIt/Aqikdvc61+mIb24FDgHhvwJ0Kw6lvhSgxnEjxkkmtukCCDpe0qoxA4n0yLPy2So9T82KYRxFlp2FX/TolSEQHrXQObbEbAGAGe2BWbcWM6mCGZ+hWEkg6Qs106cilkCS6QqKTSNPErjSP0QpMOy3Qag2QtQqkHZtCAkSXgc8IsG7qEkhsxs5BagWdeAFj4O12G1SYtSAwCo0N7Wy8c8cOb+bdOW9MvKSp3cIgMPICvqlddbRAUXA9XoD6X0w5qecGPXo1BoArJXmDr3Lf0KujZKyFgDOAKwbOrKHXKDLEY8HJ65wo/UYIWwVQ4y95WVh92ciWlmJZaXKYlM61iQWdRkQSEzER6L4wtq+LMeOaEhA3pEO4klKYDhp9XD8XCfAToAVSkkbS+wiWktKR96pYzwAtMVkIZUtOIVGRkBBITPlHmn1h7itHeGzMeatSkybfDAecSQgMIFkKzk33XbSgeAbBc+TJLDpiD8xgDwDAFrUbZtHFjEjRTbT/BQAhMLYTL5mDRAy8TXOQNIHR8WkA4F0GPpOAWwIzY4c5VqZRz87oUQLACAJjTbyrbWScxygjL0C68toykvXBAMB8z3flnddxaqDSD2Yg3GiBwcCMFSh0GakvhffE0PECSo8RAMJSkrRJpMATo9x2CsY8aalLJwnlP8YLQ0yoTybs7usxjvl3pdD8d7+8LtjrHROcdxhRQSQxEZMB8yoM5+ZnNVEEP0YACInJyENX2pXTGUkcqfvmaM28lsBUyYufPj18gZX2nIx/QMBEogmpsRBj/Nm4CdbKbdDrZiSUU3xEFwwcKe+gw7eiq3bDFrkFADDDcnRFim7K0U24U1t0IzuFjgBaxsDrvC+VCDVNIGVZGY4R6JrXY0aAdckgxxkTozbkJRjmaCdR1zayW0sC03DhnZ/3De3m53U/GNoLpme9LwXUzoFraCdJP5iyz1H0OQZ9gcFA/979IkG/EOhJ4ePUlX4wPk7tPTFehdFvh4IoMeP4JkgrSLKNKDF2vAbxwYSEwasroSI5vupCv4QsZZgp/TvfzD1jIiaLSGIidglW3tYKTOqIjOC5SxRpUpOS4YxLn6FSHehICYwtJ3FlFBpDYMJ0ktZsWKUEZEtJ9uicRAElOIRCcD/QPBgSlX0kk47wCJWixEBPnUYOJfwxBEvRUjPoyi5mVAddoX+fjhDopjo+baPTgCYuOn2kDbwtSmIMecmTsjmB1PYN7IDqHKRWGKPudqC6pBdM4yyktSIwCxgniQTAp5FoV96dNmJtG9p5Iy/gzbzUyAuEXXmtCtN36SQyI0mGk6p9xFp36KVKDIBFy0usoshU1+37m/6N0b8rFRiCaSPH+u0RkwCDnNjfxdKPc8EFF+Dv/u7vcPvtt+NhD3sY/uEf/gGPetSjJnQ+a49IYiJ2CT6BlIKzzCgwiVNfADgCI1jilBT9mPpJ0FVUyY2LWJMkkj2OIyxBOskTGLseHp+2SDd+APNxrwmM+XbrfAbmvEd5YmCb29nBfTJodmd/J6ESpDJFGzk6PEUn8Y3r2glHN/HKixvmaNSXtlBoi9Ks++67eVo470ua6Qv8UAKprfu/ABgmMNb30u3oBJIlMI3TqFe7E69FH6NGCrgkkk0g9fpAr6d/7uwBO/u+H8zOgVZg5qXzwADaB1MMtP9lMPBdeQeSo1cK53/pSdIPhpSRBspPqi6JF6Y0aST7jlJKmbSSGqv0QPtu1L0Pq8NKLSToFwj6uGEPDadJJnJOa5lkmkboKdYTPNgS8LGPfQxnn3023v3ud+PRj3403v72t+P444/HDTfcgL322mtCJ7W2iOmkiIiIXUCCtSEwA2gSExGx/iEntCwVb3vb2/CCF7wAz33uc/GgBz0I7373u9HpdPCBD3xgV3+ldYOoxEQsG5ylYKZ3ieAZONd9ThKe63UzsFAEpSQRKCR1QxpHPydNHIlAcRHQz5GoJPDACCWcAlNnjKyD9cRQni/J16lAwm86Vt23V2XPXT8+ZQI5F8i47vvSEswZeKl5t8V1+QhARYEp0UpKZ+DNEz/EMc21/wUwIwTaYQKJdewcpDw08BolJlBhapFidadRWxQYGaU2c5GCJBKgxwoYBcZ25VU7jSfGdOW1KkxJ+sHY4Y4DyVGYXjDUzNuTXBt5ZeiJKUw5KWh2Z3vEEJMvgFpD73JQN6eIel84KTPRItxy/TERq49+v4/t27cH2/I8R57nQ/tdd911OOecc9w2zjmOO+44XHPNNatyrquBSGIilgw/XTqHMCSG88wQmdQRGGGMvbQpnfWs6O1LIzCAL/3QGDUlRZTACOWNw5bAsAqZ8b9TeFsphcWESvuY0J9A7q+WrZg5BwYI89icc2SCIePMEBigZbvvCl1CaguFlikfAXAEpiW0gbdFDLxZppvYpS2JpCMhjEgiulwTmDZJINk5SO3cNbLTpMWWk2aAdpPKkplltVFi0Sg1HSsQNLRbcGZeG6VWPTOI05h5JTHyAnBmXmrkBRCYef1gRzsjibmSkjbzWnLjvTCFm1Ztxg7AExlJCjZLJTbVGUv2FavfN/pgVguTbHb3nve8BxdccEGw7XWvex1e//rXB9t+8YtfoCxL7L333sH2vffeGz/60Y8md0JrjEhiIhaFjk9bBUOA8cx5YARRYqgCI1iKxCgx1SRRdb7LyH4r7hyqhtzmCLUlMDSNJCA8kWHDpsihMxgx68P16qiQGMaG162vgDF9towBKWeOxGgCA+QCyDnTpl3TfbfFlTHxavNui+sLTYuoL3lSIM/0AkDHp1sSSUeBd8gIgbbwBt52phNIzsDbAdot4oExE6nzJpUlB4yZenUhsdhQR8BHqVlNjBq9gRsrQKPU1sxbEiMvgKArrzXyAgjMvNTIC8CZeUvz03tiFEko6d/GKjGFITjKqDSKqH52WxMWIyxL+ZKgjzc8CTti1zDJhPXpp5+ON77xjcG2qgqzmRBJTEQApx4wQXq/JLBmVtfIzpSObIw6Mes2lSSQ+og1vBIz/kyj6nkNp4rsT3q8BMIZeBPQ5zHjIVloE2ZgQ2Rk6Lkrm8chKhwMglPCAwgGCM6QMiA1J5EJIOMMmSEsLaFLR4BXYFpcqy4toS9RLZs8SgpkWYEsL5Hm+r7UqC+udNQmCaR26g287ZDEjJdAArT/ZS16eSwylXrHDrAdO/x60A/GkBibRrL9YBZKyJ7tB2PKSAPd0K4gTe1sQ7teSXrBUBWm0g/GNrUbkDg1QJNJtmcMaXZnDL2l0iqMn6k02QYjSzX5RkwGk1RisizDli1bFt3vPve5D4QQuOOOO4Ltd9xxB/bZZ5/JndAaI5KYCAAwDeqESxv5+UfcNa8DADpVmiaQrPpiS0cCCThsn5g08K9UO+kuBUHqoqb/CyUwXqnhhmDoLZrIEE9LRUHxz0UUG7K9SlbsYwRjjqxwUzLy92niIowS40gMV47A5FwZ9cUqLtKVjVpCx6YBoGXUlywrkOYl0paEaOtPSRef7pDSEQB0TAKpnXvvS9v2gxkngWQHOa5FFkAB2InRU6kbotTzPd+V16SR1EIBOV+6brwAhhraDQY+Sm2HO9oSEuDLSSUpJxVkRpIuHTEXpwaMB0ZaP4waus+WkZRSjrwoV16yZafh12DSRGelICM5WlVkWYYjjjgCX/rSl/C0pz0NACClxJe+9CW8+MUvXtuTmyAiiVkheEXDdDcLYE2eqvZDaTVhJ07bqdMs6O3ihzbaDrMc3DWus4MYgWHfiyYyvn+L3V6Nfo5TSho6Z6LC6J9+sm9iykaMKjGMIQFzqotgDKPUFH1MuPvtc9BW8AwhYQE8aREMSBggDGmx96UcSJhCylVAYix5yYVCi0tklbJRSxRoJSXy1JSMsgJZbspGLa+8AADv+Pg0a6e6dATo8lG7RQhMe0zvi3011qIHDLAUAsMMiQk68i4MgHlNYqodeeWC7wdDG9rpqdSaxBQlKSUpMqlahWMFbJkI8P1gCgkMDFkBfBmpNHFqauaVUM4jE3byHS9yvVaIxGQ8rNW/4dlnn41TTz0Vj3jEI/CoRz0Kb3/727Fjxw4897nPXZsTWgFMVcT66quvxkknnYT99tsPjDFcdtlla31KEREbHAlWfw6ShS0hreOreETEGFiriPUf//Ef4+///u/x2te+Focffjiuv/56fP7znx8y+04zpkqJ2bFjBx72sIfhz/7sz/D0pz99rU+nEYwlRInxpRjtJfDWO6UkGCSUKgHIoFX4yp6fVSh8wohz36gOgE4ZVVQX/Rgzr4jML9K/WQLaQdd2zwXCAYxUeakqKksBVV+oIkNNvMKWwOBLSFYtsY8XPCwN+dcoVFz0unluphUbMaTE2EXflxjlBdA/E65LSjlXbntuFJiMa+9LLiRapnFdS5TIktKZdzPTuC7NCyRtCZGb8lFbJ48AGPUl1fHpbq7LR4BXYTptPUKg0wU6JkrdaApcqwQS4AnMiL8J25F3xw6wHTvDFJKNUpuZSACcCmOTSKUx8gJA0eMoC46y9IMdAWAgw1LSwI0Q0AqMV1eq3hc/WoBut2Zea+S15SRFVJigfGRvK9s00bw6DV/t17K0FJvgNWOSnpil4sUvfvGGKh9VMVUk5oQTTsAJJ5yw1qfRCAamyzGmRAN4D0m96KWJi1QFlBqAme6jCuWKEBp7fozr0oElL9agmxCjLvW9VLvs0qg0jUknKjWkQiD0qvAh/4revvxv91XyAiBIIFEDr2DclZAEY4646N/He1ksYQE8aaGEhT6Glots0kivKwimiP/FnoNCyjRpSblyJaPcrOdCIuO6fJSJ0PuSpiXSrETa0ttF24wOyJkvH3XMv1s71eSlYwiM870YD4z1v7Tb69TAC4xLYIKOvPMLug8MoAkMjVLbXjCmjGSTSLLHUA4MKbFTqU0/GDtegBKYgsxBsoTGxqktmQH0BYuOFih99diZea2Rl44dsATGppT0dk1gbNlZVn7qV2t1ycM485JUnIAdsUqYKhKzVPR6PfR6vilWtUHQpGEJgh6CaPqnOHPsMIlRipKYAlIZEqMGULI/MTJjJ0cznkHwtjs3YaYnCzPryJIWAC5dZBvSWe9LtckcV6FJt9ryHwjb/lOMUmBG1dqrygur3BbM0ChHLjR5SZhXYgS5zyotgoWeGMG8IjOsuLCAtACa2Gj1BUi4Ji32vtR4X1KukDJCYgx5yUWJ3BAYG5dOkxJZXiDJvPcFAESHgeXMmXed8gJoD4w173ZajsSobgdot9e5/wVYlMD0rUl3J9hOo8DsnNcEho4XmO+7KDWcEqPTSDSJ5KLUA46iEOgXifbEGCWmkNyYd32UGvD+lsI2rlNUcWGGqIRlgKoXhvaDKaVy/hervgBwBGYxBWbasFqq83rBxvhXW5/Y0CRm27ZtOPfcc1fluXT32jYEb7nutXa7ICUlxrj7A1ZKz9HRRGYAKfWHbSn7UCyHVD0oo9LYr2ajjMC+nwsPkkZurpGJRQuuywcJz4KeLpyYca1JN1HpSLLin3s4JeRem4piMgr2w3sUwaENvWj3W1cyAkNi1Be9XasvgkSfA/WEs4C0AJqIWJMuTR3px2jiQkmL3W7NuwmDMfBagiMNidHG3dSRmBKZkMiTAllSIk11ZBoAkrQcKhsBAOsIsFyAdVJv3u3YspFRX8yiTLddbeTtAtmo8lACoLXov9HKYQwCY2LUbOcO3413qB9M3xh6tRIjaS8Y0pHXGnkBY+AtRFA+ArwSMzyRWq8r2veFKDEKWoUJTLoKQyqMcmUiFSSRJPl7lxguE9Hb4boc2kaVGvrlYLUUnGj+Xdty0kbHhiYx55xzDs4++2x3e/v27bjvfe870edw5IS3kYgOEtGC4DkSp8RoEmC9JBTS+GGkKiDVACXXJEbIDKXsQ6oMUvaNQqMvbNVvMNRvo0tACeC8LIY8mCnStJcLAAiWIGEtCNifKYSyjeOE8bk0D1O0ty2q3ULHbbLV9GFaV9+vIzDe+xISGEdUOHNkJLXrnJaASB+Xmri0Ji2ErNhSkdluiYpVXlKiuFiyoktIpSYxQrqSUcolMtPvJU0lkkxHpgGA58NlIwBgrUSTl07mlRdbNjLqi2q3jfJiRga02yPi08DaNbCzGI/A2AQS2zkPWB/MvCkfzZMotenIKxck1Lw+ZrnTd+QtBzpOXZoxAtYHU5RVEmP7wHgPDOBVGOt90eTER6yt/0Up4mPBsApDL251SSTptodlpJCYEMLClkcYFiM00e8SsV6xoUlM3TyJiIgIirXs/2KxSIw6ImKKoeAJ7iSOFRFiQ5OY1QCzQw55C6noIBVtJLztPCQJy50Z1qoWVUm3VAOtxChtQJS8QCl7KI1CI2XhvglZJYY2n7O3reIjSEM6e58tawmQcQCmn0uqcgiVIkHiSkQCycjBiXUzWsLXZXh7tZ7vTYrcvRb2eBIKXGe3ho5TnYHkjb2hCpM6tUWXkFKiyCTmml016IYlo+r9/r5AdSG+F6rApNwrMQmXyHmJxKgwmWlcl6ZegUkyCWHUFwDgLQbW5uAt7rwvgFZi0M6NEtMC8swrMaaEpNptnT4aSeLXunwE+FECIz6eiQrjuvLSEpJVYXaafjDGzOuHOpr3WTBWQBt5+wNi4DUqjPXBAAjKSLYnjN1uS0nK+F/seAEF34nXNq+zqCslAWFfGGrkHX61ho299fsRpWaJ6owcw7i7HIxjCG6e9DTdiOWklcNUkZh7770XP/7xj93tm266Cddffz123313HHDAAat+PoxxCJP0ydM55MksUt5GwlpI4Cc4V9vt0w8ViRIlBpBsgNKkk0o1gOQDQ240kakrI1nDrr3tJ0WH8edqAzpbMhJIkagEQiVIICBUUpv0sd1uAZLQWeI3CwUFMBaI0qxGJqcYJy5qu+cCcATGziZKCIlJuW/5LzhNDZH7DXHx271JN6EmXVNCGiYxmrgkTJp1UjYy5CUR0hEXAAF54TnAW8T70tJjA1z5qGXKPe3cL63cl48AXUKy/peR5aMW1v7PfxkExpp3d+wkBKYHLAzCKHWvhNwpIed1lBowBKbvCUxRcBSVpnb1nhhmItE+Rm1LSda8a9eBijeGlotqfk1KSuy+1MhrS0l1ZSR/jPrSUh1W0p+y3ETSZjD5RhKzcljrT7El4Vvf+hYe//jHu9vW73Lqqafi4osvXvXzYSxHluoZFu10d3T4bkhYSysb1iCrvK/EwX7IMW3sLVFoMsMMiWGawJTQCo3UwcvwuU3s2aotNEVUN6PI9m5JVAJhByaCGQLDISCCdvy0t0pdK/6m+Yj0G2XdNhZ8y2SQDODWZ4DwQ73+A9cqRWEaCcAQgbFKTMphbtP2//4+p6xwTVD0sbzfxfpiqOJCCYz3vUjneUm5RCJ8XDpJJNKkRJJ41QVASF5yDtaq8b60jHk3tyMEjAcmz3Vs2hIXYAz1Za3TRxYlRs5CsimkKoFxvWAIgbEeGBKlljt9Lxhpe8H0OYq+iVEPdBKpX9rxAiZaLUXQD8Z6YXyM2isxhTKjBKzPxZGQcGijrBCZOj8MEPaDsbAEZpSxt84H02TmDY8xmnTIMUhJs59t4xOTiPWBqSIxxx577LqKGCaii3a6OwBgD34gWuhCyMQNIQS8EbYOUukLtWISBYlTF6xAiUKTGK5pDv2wqMacAbiW/lwN92SxZIU2g3PbTT8V2ksFCNvxU7XD3mdRZ0TU24mkzvS3TJOb8h/ASgJg5rcLFRn7uvi0kikzKT9llzFt5A1SSIwhE5rAWCXGDlxMuJ9bRFUVGou25l2aMKpTXLyBV0ek7fbEEJgsKZAkEsLMQUqzEiKRgeoCVMhLLjxxATR5ydOwbAT45FErNwSm42PTI9WXtWxeR1EAWGi+m6aQqgRmhx0tMExg1Lz+EmCb2dleMIUjMXYuUoIBUV2AsB8MnZFEy0jU2GtLSK6/i/LJQanCLqtVhYai7uOsLo3k7/N/H/X3m3RSQwmpkXQsoeS0VIJSV0babCRn/Vy1Nh6misSsJzDG0cr2wJ7iYADAQerAQAa2vGXUJYUmDwr3/QwolETJ9JbS9I6xHzLhBGgOoSwh8R4R6hfR56p7pnDoMlDi4t6WyNgkDpkPZBQY2wTOgg5CrH4oUy+AUp6sKMX0dF6lCYsXYjig/PdBqr6UrHTlNX2fPueEAVJx02pP/y6p+X1S7glMxr3vJRdAYkpGqenfYu+jSowlLACMwjJacUm5RMIlUuF9L6kokaZGcUk1cQGAJFfgaai6AAjIC/LE/DQkppMbv4svGwHwyaNck5jRsWn9r6nLR+thysgAQK/5btPEju20UWoToablI2CYwPRKF6WW8yaFNK8JDO0FMxgk6Be6dKQX/Zr0SuFmI2nVxaeT/CBHr8RQFcaVlQjB8evjXb5oKakKGX6y1N7vjjPl5GCjlpZiOWnlEEnMMsEgsCXdF4/KHwAA2L8rcMsOiV4pXStxYPSbl/aG0Bd5vbNVJkrllQj62RZ4VUhzNjvg0BGQRVQVOoWZNn3Tv5/vVmuPP3z+HvrDmjT5UmEHU2ZvBw/SRQXGGGBfB6YpzYD1UUAbmvUwRxv95q6UJBCWjTKhyUsmGHLuiUrGmWk2B9f6PzDjVqLRgI1PhwbdpEJiElE69QXQJt0kkV5xSRV4ro8ncoBloeoCACwTgFVf8hRoZZ7EtFv6drvlCQswpmnXIgWwXhJ6PWgS03S3JzBsJxnmWPW/AEGMWvtf9FRqwBp44QiM7QVTJTBUidEEhrnBjtakWyhgoCyZCUcIFKSMZBvZAT5arcj9wLCpd6hEFBh9671i7ovBBJSTJsIz7URoPWKtB/1uZEQSExGxIbGe1BdAl4+KRfeKiIiIWAoiiVkuWGKi00YF4Ap7tBh2FAKFJH4QQsBpzdxtc0oM+fZlvtnVNb8CQgXFGXGZN6vS++19QDjMUN9GoM7ox5HnWKQkRr+vSRM5pQ2+7MyYUmnzLpfGskEeWCgGm8cojRcIAAbom9SWDEzRKTJtRGYcKddLZiJFLafEaPXFiB3IuDLqi11XzsBr1RedKPK+l6SSMgoUF6PCULMuAK3A5BI81V12eapj0gDAUhaWjjKjxOSJMe7mRIkhQxvzDKrTNiZeM7Bx0cZ168X7Aow1BwnQwxx33KtnIdlGdkAlRt0LY9R2oKNRYUoj3pQ9oJjnToUZFDaBxIOGdv1SG3kBBF6YwNhLykmDoSGPYbM7+jdPxw2MwripvFGpozqlZblm3pVEU6loo5aQKGI5aeUQScwuYGfxS1yHnwIAcnEg5jKGjgAKzsJopVsb3q6MV4TW1Etjiq1L+lTJiSVRtnRSJSbumQkhoY+vkhZreRnXC0OJGS0jSQWUzJojjX+AAYOA+ehYdKmUMygXNqGFAQo2ML1jcmdSFkogRYIWF2gJgbbgaCWWxAAZt2RGuRh1zkPyQgcwNvV1ESz0vFi/CwDneRGkdARAe14yaN9LpucbsZYhKykPfS+Z+dPLU+176eSavOSZ9r8AOnmUm/h0nk+Z9wUYK0INmCGOZhr1/IIfJQDUppAA1BIYH6UOCcxgYBNIerRATwqXRrIG3oHk6BEC42ckMQxIvHpAiLmCnVSt/woswaElI/p3vVgyyb5iVdQljRqNv4sklZqwluRmMyBymJVDJDHLhSowP/gVfiH+GwBQqgON9yJMKgDViz6C7doAiwpp8apGHahqEsSfyTZKOigx0bdZ5TYChUZvU+Bs9J8ebbXuExpmeq/ySkxhCE0hlfPwuGOAQUqOUnET99ZvyZKlgNIG5hQ5OlK3z++iha5I0REC7YSjnTAYnuDIS86VUWP0+eeGvGSOqCjkhMRUFRcALmVkFRf7E4AnL9asaywsvEUUl8yoLkZxCUy7rQxIzZ9eiySPWrn2vuSWxLSBVmtM78tajw2oYpEINQDYEQJWgaEEhhp4qYl3wfSCoROpyTwkAG4mkiUwLkZtCEwhbZyapJNUSGAKauBVDANi5AVMxFqG73Xa4K4utURj1/Y2RfCZMWZTO/248ZWY9Y9pPe8RUMOkNWJyiCRmmVAoUZQ7sWPwCwBALhhaghjzKvuHRIYF26iKoe9XblsdnNpiykPV7Z6chEeobq+Wi5rITx3s+XoDIiUx5gPexpXNB/2A6e32uH1Gnz0BJMDNxSNFCgkFoQRyZOiYfjgdkaCdcHQS5ghMS/iSXsuQl5wrR2JSppALr7jQAYzVlJEz7xrSIoT0qktqe7tIXSpKPXEBAJbp7rpITVQ692WjwLRLS0YV8qLyXJt2gTHJSwJNYNa67wtF3ywNkNKrL4Bet3OQ7DTqnjEAVwiMjVGrBQk5rydSFwt+oCMANxPJEpiBnY9kuvH2yHwkWjaiBMZGqQvpCcxAkXQS6Q9TSj8EEhhWYTy5sWSGNK+r+SPflTYSSyEvS+3kGxGxHhFJzDKhlERR7kBvoF/CbgJ0RryadSUYu92qLlXFpom927IPVUqqCkz1ktbkb9GKjnLr9HiNv4s9R6WVFLteWBIjFQoWfmstlU4AFcS7I0xqKCkZUsmRSY5CpuY5lNsn5xy50GfUEiF5aQlPVlrCk5ecJI0yLg2RIYSFkBibMkrTEglpTicceVGuVAR4rwtLGVjGXNIImSEvqfA9XmjZyJIXWjKi5KXV8v1eFgWHJi9izP1XC4sYeKX0gxytEjM/HxKY+Z4nMRUCo1yMWg5NpPZRaj1OwI4ScEqM9ImkviEwvpwUEpjCbq8QGJta0n4YFQx6VO79rshQSNKJt/J3TpvYSfdloKFMVEklLVdpicmjtcE6am+24RBJTETEVIFBm3bXU+kIGNvAGxGxyaAQ/ypWEpHE7AKUXMDAfOnsJkBXjKbbdSWmJlUDqH/jhz1e/BFpsohXZBh6s+pzqfplxrGE2vMKu5Qy96205JWeGlKhULoZXSGBwvyC1jCZC+2XKRUPSmyc+ZEBue35YhUYrpAZFaZFvC+50B6XnJh0M+J3yUS5aNkIAETq+7zwFOAZLRtpwy5LuevzAsArMKlJHOUZUWLyet+LVWDyfJHEEbC+er5QlNAKzCJfN/t9U0aa9z8B3413oe+HOS7YEQKVYY7zRokwKkyx4FUYZ+A1ZSTbE4Z25e2VRoGxHhinuPiOvLaEBAyrMF5dVD6hJL0yA4S9Y6yZFyBGftIvxqLazo7OSlp0HtIiZaFJm3Y5+ZQol3B5tkNrAZhu3RERu45IYnYBCkp/mkKTmJlkjBRA5fNIf7AZj0wlgl330dVEOpghJ01ERj92+IjuOIvsT0fJh14e6+9RKI1JubTr9gOfW3Okcv4BIIyoWvm9em6JmTjt/C089LzkJGlkiUvmCMtwc7qMGHWB+rIRoEkLT0mDuoyBZbbNrzHs5okhMUYVseQlNQSmlel1YNj30jLTo8ciL+vR92KxiP8F0E3sAN3IzhGYBb99fgHY2fNlpJ19P8zRduM1KSTz51ZLYPokhVSU1MBLYtSEvFSj1AMVemCAkMAUhrgAxsiLkMDI4H2tfBM8V05SpHwclpEs6prgLQerVTYKMpC0HE1+BfdFbRMnoKKxd+UQScwuwioRs4lCNxnvj3SUybdpm0WTObdpG9CsrrCKKrMUFYamquw5S/OBLx05Ye4xltgUgXeAuR45dQTGDl60YwEAmGSRcjFp63UB4FJGuSiHxgFkSYkkCaPRAAxxIUZd43txfheaMrK9XZziIrTSYmca2fUsdcqLMt4XpNkSVRdA+10yrD/fC6Ap9gKw2IWpauC16aNen8SoF7TyYhSYagpJVlJIQD2BCSdSc/RcV14fo9a+l7A7L4AhAjMg79FBJYUEwL2PQ8JiHxMSGKpcWh+MJTKKqDRN/WGah6EOY3pTSRsb0ROzcogkZkKYSSRmkrJW7bBQlW/S4XTb4UdKNfzN25aDWOW2Xvf7jTqPuv1HPa7uvKtES5MX5pSlguxDiU1YQguJUPXchBnCaEcCAAh6utBoNAAzeLF0PV1cJLqSMAoUF6u2ZN6oC+ik0ZDiYktDTnFJDGGxJEavqzw362ZcALCEqDSwfk27FmOUj2gCyRl4TYTaEhgbo14YAPM9TVx6hVNfADgCY/vA0Bi1JTBFwQ1xCSdSV2PUPUJg7GBHS1YK6adS0xRSlcBQFVGp0MRLy0mUwJTSEhVfRqpOrLYz1BzJaWxW58tMGwVBmWmDYlL/WpELDSOSmAlhNikxk46YC0MwNPnZfGDWlWyqaCIqjtwsUnHgi/wZVD0zVSJFfTuaeNE+McwpMgrMJTyUOY4lOPSbadPvpydraxUmoYMZuaxtRAcs7m9hQgVlIsAqLqavi/W4ADpplJumdFZxcf4WUyayBCbTJSNPXnKovKWb041NXOxvnWF9/1mOUT4qimbvywJpXrdgjtPT6gsWCqiFAnK+9CkkM42appAABASmXyTBMEftfQkHOgLwxMUqLoSsaC+MJzC+qV1IYMqAxOj7CqkVWavSWLJS9cS4bYbA1FEVS2CqqsyoWUnTor4wQsr5yC5YERHjYz1/WkZEbBJMA3kZs3wUERExhFhOWjms50/NqUI3KdCtUWKsslFXGgKIqVf9/+2de6xc1Xn2n7X3nDnY+MblYOMmkFpOjUgCpKZGTtWGNAgTRVH4x0K9pIZUpLJMlMi0ja1UGJoShzZCjggCojYYoSCoqtKqQFsc14RWkMZ15NSQwBdHQbYAGyjFx9h4Zu+91vfHuu/b7Jkz+8zt/aHDzOzrmnPxec77vJf87WlYgX2U3ufeuxvca+StwUSNlDVkk5KZic64z4F0V197TTfyZPN55GPIZMfgkAmEgUCo/hINVfJuqGYZNRoJAmU1pS0jFmaTdN3ICwAbfWmGMtfFRGIayi5q5NtGKnlXNNPJu2epKE2V2UWjIF4A2felhUrBbD2JWkdhWq1U7kvbJvC6FUjKSuJnuKpCkvdKWgBvMSQRy+0Fo20kbSEBcKIwLLcXjJ5KHTkRl5jb7ry6Ey+ATBTGrbgT8KMwOnqiozQ6CuP2j0lHYfIa4Lmk82EGFXVhBRESd6u3spwk31GJGNXB5L7z+hn2fz1HhsVTERZNdwizp/DmKKUEQxURA+SUTPdQwMKC4l9OgqfXJR/lwEfX/mLGKhIqP8aewzyRln5vprKKuc+lgGFMIAw4QiNUpGgJQylYglAgNPktHEHoCBb13e1ZRiGTgkWLFZ334ooWwBEwU7bKSNtGU1OyWd1UUz1XlUZTU0Cjyo/UqIgXQIqXDjYp56bSSOfA5CbwpgSMNweplUCc0RVIwiTw8hZD3GJmFlKiLCNdRh07AqalE3uVgGk5Ax0BWUathUqSEiWxkHOS8qqQXAGj81vcPBhrE0m0gEkPcc0TMLbjtfCsJFuWXZAbMw9l1QGz9g8XFIHrHft17se1CJ9R+Fd0JDi7GWHBgqyIcUVF0fdx+pc65+VKJHBER1rU5N13rmRmvAhm1mjLR90IjXrOWeE10mtlgYy8MJPbI8CYTMoNQmHecxByBA0gCG2Oi/63NmgCrOEk6DZS0ZZG4IsWwIqVRqCEitPXRUdgpqayEZepZg85L8NcbZSGo9LwRjf/BbDRF0/EOAm8rQjidFsm8OoKJN0DpiW78MocGJWr0g4Qt2XuizvMMeIB2rEto9bRF7nPFzBuGbUe6KijMO5AR90HJjP3yxEwZRVI6QRe9xFAroBxZyQV9YQRrHOvGHNsjujpNglYR13mkjycV3rt/q0knGReVvCcIKpAIqZPnH1WG2ctKmm3XkBez6dOfaDyfs7r/tl316Sfu+JLFIgad18aHQHSgoUFjogJ5IcWKzqqEoQywiI/GBDCWkMNBia741nRAlUS3Qj8aIse+62Fi460aKHSnJJRFp2oq0WLPqdSxEUzpT5G5R/oCsm7gLWOWi1/hECrLUcIaAFTkMCbrkAyYwTaAWJVhZTEAaIoQBQ1EDsjBPQ4AV2FFAvZyA6A3wsmZyJ1lBOJkRVLKgqT6WVkBUxeBVJeAq8rYHQVUp6AyWtq51pI6YTeYRj2WM1aIgPFhfrE1AeJmD6xcGEbzcXd/eAWRmZ6EDFAf6MvZi3pKIzfVjSz3Ts+T7ykrCspXgAo0WLeg36txYruj9NgQIP5gkULEh1p0YLFCJUG0AgdARN6YkULGOFYRsYq0hGYSjku3juDFC7dnjdIOGTybsk3IFf7dPl0qyWto5YSKrqJ3emW3Kaa1wGA0NEXJ/cFyK9ASmIlSKIQcRyaqEs7diIx3PaByQxzzJlI7QoYHYXR1UlmFlJOFZIrYNwKpHTuixY4rnhxK5DS+S95pdR5PWG66RNTF/2wlphzDeb8Q8JGIjI5N0jD1AeJmD4xvTBGuLhi7/5O/x51+o4vEyvddKzrhoyYSW3IETTpkzLiKwCYO7EyUCIFAAImj28E8jG0QoU1pHhB6DwHpEAJnahLqJN0p+Tzpurt0mj4+S3NKWCqCTRCGXEBpE3UtXABpFU0hdH70aoQfVFjAwCY6IuxjjwR05bCRee+6O67OvfldALe4hDqFJ28q3NfZPTFjhCIVcTFHSHgTaM2YsXaSZHq+6KjL0C+gEmXUucl8LoCJp28GwvfOgLyc18AdLSP8iIwxQMhhy/S4ZdQW2zH3iprHn9BQ/SXUfuXliCGEB11mcJwjgYoI4FM3h2+X4oEMS6QnVQfJGL6xNQSgXBZwWThKtm9Dr3aSXWSWVMmEtPhfbn14M5zFkBNr3Q+ABlh0a/DlGUU6EiME3UB1OvQ2kUNXYE0ZbYJHYVREReh81u0bVRpHICmASlcRvWvxwqVR4CpPmLvnZbN6gC/fPpM24nEqByYliqbdkcItJLcEQJcl09XSODVkRhpJTEvEpO4dpKweS6RYyfpSIw7TgBwt2erkNwojI7Q5EVhyhJ4AVuBBKBSFMbuc0qsO1Ql9UrgfA/ryiY396UoilLlmPz7TU5irwCJmDohEdMnGksDsKVn9eVarOw7Pm9WQN3w9OABdP9TmTdpUtZUS0spJWKMUGFMChC9vRH6YkU/d/c1pTARnp0kxYsIHcEC9GAZBbB20ahFXTRd9H3Rk6dbLaB1Ro4OAFTnXWUdeSKmbSwkN/8FgKpA8vNfACCJAsRRkMl/AYB2bJN3tXAB4IkXM0bAETFavGhhIrfbLr3uOAF/X7YKyRUwWpC4AkYm9ubPQUpbSEA2iVc+lttIwzRmoEp+TJ615L6DSRsGKar8rBE9QSKmTwRLp8CWLijYqX7ZjaocL1o3L/mHNR3RyBMxjMnjjIAJ7P5QCZdGKLdrQRIwGTnxxIz8NhZawIQy70VoodJQeTBdVxWZxUP+qDQwOhVGeQhU6rqrv65u9MUIGSVW9PiAVtuUTsvtVsC4vV8AmP4vbv4LAJMDo0cI6PwXQEVinFlIfrm0LaPW+S9ynxIqwp93pPvAdFOFlBYwsZO8WzRCoCz6kt7mRlnyBMww5r4U0U1UxkvydaMyI/3zRQwCEjF9IjhnAbB0oXxRNSTayTfqBffedVy/qhDLtBMO/CiLe4wWL2Ho7AukQGFKtJhIjIqw6G2hk6SrxAsaKqm3p8Rc8wYwHsJFU7Fsuih590wr27iulU3edcunXesIAHgk+7+41hEAYx+51lHLETFWrBRXILm2Udoa0tEbYw054qZqFVLC/cZ1VbvvpiuQqgoYb98QCJkigdJNVMb9KUqG4D3NJ6P69+soQCKmXyxdCCxb0vv5ZVGNIrrK35jDfXKvk/NT6VlFQfZ5WsSYSEzgRGJUoy0taLSYCRv23EaYFSxAj1EW7w1gvIQLUNk6imMZeWmdMSIGZ1o2+qL7vphITOQJGL9xXQLRFp51BEj7KG0dAdIykt13Xdso27hOixm93a0+0pEXwAoUN/ICOAJGiRgv4iL8EQKmHwx8AZO4EZYec1/kYzb/pWpDu7rR+TFz6frbc1RmDHNiAJqdVCckYogJJ4QVLqOa45IHhxQvk5V7QBDDyLAI1HGEREy/WHo2sHTxoFdRD91Eb1w7SKOqs4QTaTHH6AgMC3zbKAhka/JGQ0VfnAqk9HW6IoAVLqNaVVSGgBQvXXSPdjvvtlT0BbD9X9zk3VTui7GPIjd5144P4JHMfwHg9YDR/V8AmP4v7aRzAm+UqkBKnORdd4SAnY9UPgdJ7+Pm2FTExUne7WaEgPxK9BaFybOS0lVJg8yV6dVacpN92YTZSUR9kIjpF+csgVi2rPfze7V5qv4y75eN1Ik8EaOFCtTMlLSQ0UKF2ePmbg2ZG0CKFf0xTtGWNBXzXgCZ+6KHNioLiem8Fy1ijHBpe/YR4HTfjZLc7ru8bccH2O67gWxcp4Y3RnqYoxYxqbJpAGh7M5D8/Ba3+qhT7ovdLnNWXPsIKE/gdUuoE6FzV/I78AJ+Aq/7KJ+XVyFVFSduifKwJ/92msUUeNYt2UnlF+rTdcYIEjF9QixZDLF06aCXMXjS+S7utp6jJ10tAJMjWjQRpHip8C+cm/uie77o6ItbNg1Y8RLFXuQFcLrvtoWJvAAyeVdXHyVxgDhyEnij0Ks+yuu+23YiLwC85N1IALGZSC2Fhx+NsfktbtTFTcZ1p0/rR8CpNnJEiz6nagVSOoHXfZTP8/vApPfPF4FwhFDOmvJ6x6TpNSoTjKlYKWK4ZeZoQyKmX5yzDFhQUGJN1ASDFStavEwSXfR7AWTC7pkzWdvIjcCccS0jp2ldlHhDG9PJu1yPEGgHSCKGuB16kRcgf/I0ADO80bWN2jqxV7hCxu/5ohN3YyfqIq+XjboANvKSHt4IwBMv3YwQSEdfzDk5VUZA9UTeflYk9dqQrt/467DCZtyb3QG2vxDRf0jE9Amx7JxBL2HM0SIlwGQKFpcYMvJS4ReSESpnbMO6TrZRpMul/aZ1os1t47qWAG9n817c6EsUhYiS0PR8iZMALe6KGC1UrHBJT57W0ZdI2JlHgB99iQvKpQXKLaNeJk9ruqlA0pQJmGG3hPoRlXEjMpMw9JGYH0jE9It5sUrGHTUFMvMxCZZQFboQLyrnhbWUz6PsIlMyfabliJWCni/txGlaxyEiAX5G/YKObNddXTYNAHFsoy9u5AWAib7oUumWU0btipe2l8ArhYhrG8ntonRUQG60BVa8aJsoHXEBrHDR2/NKp+VxnXNfgLwxAvX/VV5FdHjHd7CWur12r9GfcY3E9KtPDMVzspCIIeYJ5nwEqeckVMrpQrwQBDF0UIl1fUykiFm48Gww1u9fmpMUHmU5z12Rkn5NAqU3IvXRhXhpt4Eosom7pgLJ6bobRbm5L2gn2cZ1bW5mHol2dmhjEgeI2iESXWmkSqfd5F0didHJuzriEgu9PZu8qxvXaQtJHp+adaQjNKlRAekoDHeiLZ1sI3tcsXXkbncf7fbiBN5B20iDzI9xk30Tp5s4WUvEXJhIEfPBD34QYdjvHxxK6iX6RRfVRoCpOAJgxUsUWeEC2ByYdpydd9SOrXhpJyZ5lxsLqVruCyArjdyhjbriCCjv+dJ2kne1fQRYCyniNvdF3sdWG9nn1k5KT5kG4AkXd1ijfPRtIzjbgax1lH3efQJvNwJG2z2drJ5O5cz9vBfQnbXkrqloRtK4zk6ivN76mEgRQxDDh4AULlH1U9xy6bY6zy2X1hEXwInAKPGihAsA2bBOiRed+wIA/IwozX2JooYdFRBbEZOeOm1GCKQETFnyrt4XC+E1s7OVRsITL3kTpt3yaPkZtsIlL9riPqZFQKeoC1At8pJ33lzp1DOm2/wYor8IkJ1UJyRiKpAxQ1wriiQ2MSc4pHjposNuWry45dLqNc4o0aJ7vrRjm7jbTlS1kSqXTs07ErpcuuWXTMdxgEiLFZXAqy0jLVTSE6dd20gm8zLTmC4veVeKHGsNxRyOiHG67wo74yhxoi56X5XeLu4jkG8VFb8ujrwUnVN07qDoZC11k+wLdBZLfpTF7ndF2Lgm9tKvifogEZMDA8BYA1Aers2fIe+W6BddJuumLSMtXtpteOXSbSVctG3kWkZOvxfdaReAzHtJlUwDQNxi3qiAOA7QjuU/GREPMiXTALx+L3b6tI24lPV80eLFL6WWURdtG8WmAkl4Deu0cAFQOpjRfexGtMht2a9VN+Kl6Bp5dNPlNu+aw9IbhiDqhkQMQcwb2jKKQcWSBDE5kJ1UHyRicmDBNIJg2vlrRv4lOa6hTqJuYshclx7yEdxqIzfvxY3AtNO2UdvaR8Yyih0biZukXQCm6kjmv8jcFwCIIx2BCW2n3ZJ5R4DMeymadxQJZnJbdPQFgOm6a3q+uIm9ph+MzX3R2/VgRhmR8ZN13aGMZb1dNN1aP91GYMqu1Q2dkm51hKboXkWWz3xbS26l0tj/fhcweVlE/xk5EXPvvffir//6r3Hs2DFcfvnluOeee7Bu3bq+XJupH6wwWADGQjDG5A+31xbbz5ChdtJEPhxSuPQQdWnrZNwWWNT2q40Am/eSto4A+TxKZO6Lto4AU3Uk2sI0reNKE0kBY4c1RlrE5DSts7ZRmBkXAOhKoyBjHQE2OdcdF+BuT5dMy33Z3BcAXuJuIrgRLnJf+UiAvOd2W/Ev6KKZR0XXqnLNTjAEZAeNAWLsldrgGCkR89hjj2Hr1q24//77cdVVV2HXrl3YsGEDXn75ZVxwwQVzvj5j8tMRBA0w1rAiRu/PKf8r+4eNmDQEbNSly+8LzmUibrttu+y2IytetHDR27V4iWKVxKv+2nXFSzuBUArCdNxt21lHJvcl1e+lHekxAX7irk7aBfR06QCtVLl026s+gl8Wncp78Xq+pPq9JEb4+LkvWiy40Ze83Bd3IGOv+S6aTj/jg7YKhj0/RkdlCkuwnagMRbuJbhkpEXP33Xfj5ptvxk033QQAuP/++/Hkk0/iu9/9LrZt2zbn62sRw1gDAQvBEPjDyXKatokx7WtAdIOOuPRgF8WxFS+RYw8BYFFkS6XTlpErXpRwkfvUqICIm4RdAOBt4dhGTFYcKbGSxEHlWUdWrOjRATqJV25vcb/XS6SqkQC/14tO2AUAt9eLjrCkG9dp66hoplE6wlJVwAxLpVAZvURjOgkbeUy5tVSYVNyltURQr+06GRkR0263ceDAAWzfvt1sC4IA11xzDZ5//vncc1qtFlr6r1cAs7OzpfdgTjWSFjCucEn/lSAEzxU2xCQw9zwX/ZxFEaBsI6YFC2D7vERRqWWkhQsAT7xo4QLofBcpXtxGdQAyOS9axKRzXlo5XXbbSrS0uM1vcUulda4LAGUL2VJp05yOA3owo8516bZcuqhUmiCGgUFH68aZkRExb731FpIkwfLly73ty5cvx0svvZR7zs6dO3HHHXfMx/KIsUdbRT1GXFy7KGpnk3S1eIliX8Ro20gLF8AXLybXRZdL214vPPLLpZM4cMqlQ8R6inQq56WlIzGpnBcdfQFUxEXAiBh1+4x46dSgDsh213UjLvIzXzxJ2n0salBXRqdEWABgSrgV2UoBWO2/pNLRkaJoSKf3M9CxA07kJ5kwoUm5k/Ux1l7I9u3bceLECfNx9OjRQS+JGCl0cu57AE4BaKEnAUMQBEHUwshEYs4//3yEYYjjx497248fP44VK1bknjM9PY3p6emu7yWEMG16BYSxjITgxlISaoAZZZ2PGwlsxGWOX9si26gdyeeASd61j7FzTpy1joBMBEZXHAGQc44iJ++lLb9fdd6LW3EUu7ZR4o4L8Gcd+daRk8ArgFYiE3bVuCUvAhNzncBrbaNICBN50dvTM43cv9HdiiP3dfp51ahCUdSkSg4Jc6If6ahMWTSmSrRn0OTlxww6IXicIDupPkZGxDSbTaxduxZ79+7F9ddfDwDgnGPv3r245ZZb+nIPIdS/xIJDMK5yXvwSa3OMgosu2sUTQwiHtYj6EGVxE3UT1xpyxIsWLIBvIUVatOiyaF1hZK0jQOW9nHHKpVWnXcCKFz3nyOS9JKrjbmKnTBeNCrAihpnk3Vgwk7QLSPtIzzhqK5tIngO0HfHijgqIOM+URuuvgHwUmbB7p5JooKyrbZFgYaXXqypo8oRMp+sOQshUeT89X5uSfDsi0D8RQ1Ioy8iIGADYunUrNm3ahCuvvBLr1q3Drl27cOrUKVOtNFeEEiRcJPJfVhaAMe79BQb41QL0F8qowWEFSx8EqM51AWy+S5zkR1zi2BEsTrTFFS9xYhvUleS9GPES2SZ1AJBEga02ikNPxMiIi4rClIwKaCW2OZ0UKTAl027uixQrwtsem226SR13pkv7PV3K5hhVpdPPX+Ak3qevH6SS8ruN0BTlynSKygxzRIaYXO688048+eSTOHjwIJrNJt55553MMUeOHMHmzZuxb98+LFq0CJs2bcLOnTvRaAxOSoyUiLnhhhvw5ptv4rbbbsOxY8dwxRVX4F//9V8zyb69YkWMKnGF/MvR6w/DApi/2AUnETP0JKmPPqCFSxxbmwgwURjWbgNJko24JIm1i9pOtCXhcrZRO5GzjdqObaSrjVzLyBEvPLIDGuUSAiRJYOYcaaFipk1zHYUp77ILyORdd7p024nERFyYaIy2jfT22IgYgUhwL+IiRcxgqonKBE21/fmCpigqM19CJi8aUimaRHbRvDEKn992u42NGzdi/fr1+Nu//dvM/iRJ8OlPfxorVqzAc889h9dffx1/+Id/iKmpKXz9618fwIolIyViAOCWW27pm32URltFnLeAgAMiSDW4yyunpgDf8OBGWTj61p3BFS2AbxU5lhGLIhWFUY+uiImTVMRF+zKxbxfF3Daoc8SLFi6AL150xZGOuOheL3nl0hEPCrvsujkvedOlWwnzyqXNPiVgdM+XSAgTfdGRl9jJa4mdCGa16qHyFgZ5DShdyqymNO56OkVp0nkuefkydeTJdOrh0g86NacjumcUcmJ0Je/u3btz9z/99NP46U9/iu9///tYvnw5rrjiCnzta1/DV77yFdx+++1oNpvzuFrLWFcnEeOKgBQqbQBnAJwG8K56bEHaRMP/lw9BEJOAHYMx1w9ARkxmZ2e9D7cfWl08//zz+MhHPuI5Hxs2bMDs7CxefPHF2u9fxMhFYuYDwVsyL4YxAEFqXpIzuAwJ1f/XCi/4mAfiWNk/bSCO/SRd9Zxpy0hHaKLY5r3oiIy2jWJuIzEx9yuNYq5sJBV5UX3603kvPNJ5L34Epqznix0TYJvW6ShMy4nE6JEA7qwjPeco4rbbrtknsvkv8pxsFCad+1I1ClNGpwhMp+NyhxxWyJ/Ji8jk5cq40Ziia+rz5b75stR6S/Il62l4+M53voN7773X27Zjxw7cfvvttd732LFjuX3a9L5BQSImBwGVH6P+zfECy1rQmPbnRG8I54MXPM4Trl2kBAlLlBCJY1+0ACoXRuW4aLECKAspdnJfUraRESuJ2a5zXhALM9tIF7yl8164Srh1y6X1Y8Y2ckYFAMgk7np2koCX+2JFDMs0rTO2Uar6KOLyJHeqtFt1lKabhFtNVeFShfS10r+Yi9aXt72TkHHPHeUy7LkyyfZUP7+uX/jCFzI5KEWtRLZt24a77rqr9Ho/+9nPcMkll/RtffMNiZgKeP/sUOQlhXAe08/LPgYE5zbKAhjhYkRLoiMnidruRFvMOU7ei8510dt1oq6qMjIRl5h7OS8m2tKWgxlFDNtlV53iihc378UVL7Lfi424uLkvMtril0t3yn2JnOTdRNjoizsuQJ5ju+4m3I4JMI85v/g5hPpFnuo+myNaqgiWTvkyeRSJiLJIQ3EUhvVVyBRdhxh9+jkouNlsYsmSJZWOvfXWW3HjjTeWHrNq1apK11qxYgV+9KMfedt037aiXm3zwUSKmEOHDqUsIuC8xVfg3KkPAAAWiiWYEk0ECBCAmaS9oPQf1lM1rXbQjKho41x+ACpiEhsBYwQLIEVLnACcg6WFirGUnKiL3qejLTG352irSEVcjHABgERVGcVCWkaJFjGAiG2DOp7IPi9yaQF4woxg0ZEYN3E3bRu5/V505AWAF31xIy/yHNvzxZt1JPwJ017jOiVg0sMXNUw1IgAYVMAHQeYwnUBa9ku9v7PJOtk7QLGgyY/C+EJG7iuvXOq8xvkXMmQX1Uv/Enu7u87MzAxmZmb6cuf169fjzjvvxBtvvIELLrgAALBnzx4sWbIEl156aV/u0QsTKWI4T5CuNDoTvYvTTA6IZAgRIVYixv5wB5lqJZcR/WU/6qTFio60cC7Fij5GR1lcwaLP0YJFCEeoxM4+JVoca8i8jl1rKLEipp1AJML0dtF2kYhlnovumSifMy/iosWKK16iJESiIidus7qYB4gdseLmvWjhoren814iszSb96KFC6DEi/BnHrkRFyEElLtUYpMA+mdNi5kQzMsl68Vaqko3AilfjOVXA/nixY+udBIhVWYt9Wov6XLrvHlKvVyPmByOHDmCt99+G0eOHEGSJDh48CAAYPXq1Vi0aBGuvfZaXHrppfjc5z6Hv/qrv8KxY8fw53/+59iyZUtPnfH7xUSKGIIgCIKYL0ZBPN5222146KGHzOuPfvSjAIB9+/bh6quvRhiGeOKJJ7B582asX78eZ599NjZt2oS/+Iu/GNSSAZCIMbTjk2g33gUABEGABjsLDAEChOavG+aMH8j0UohjYIBdC8cSHWXh3CZb6Nc62iKcSIyKsiCJAS5ski7nNqriPtfXM5EWZ7vgTqQlsXkugI22JNxWF+ntOvoSy6iLblCnLSMRy5wXXWnEY20byZwXzhniWH5vJZwhVhGYKAmQCGsZuREYt3FdLOBscy0jZiIwbv6L3GfzX2JhA07aMoq5zHHRM46AbI2YyRthAoFgKvjCwIUw9Xz6p4cDNkEefgQk7DLy0qk6sFM/mLxjiyIyvUZj8jr7zsfk62FhkhN6NaNg0e3evbuwR4zm4osvxlNPPTU/C6oI/dZVRPEJnI7fBgDwBkfIGggxBQBgTP4zrEPLebkx7NVXIS680G4Y1gRg1t8cgwyu2NC4lk96O2CFCBfZ/e4+51pGmKT3udu0ZcSFYzUpwaLPidXztFDhQokSLWa4J1YghM1xUUm6SKBeO3kuWhPF2jKSQiVRSbpJwoxllCiLKFGCJOFMihVhRQsAKWp4IB8FU6+tbSS3W+Eiz7G5L7FgSrAIb1+i81+c7VrAcCVg8r6tAzBwpn6ZKwHDnH3my6l+aYcAuPCFS9Eg1Y7/9LPOYiAtdHrt3JuXN5IWMu45aVspnR9T1VYahb/i54I7j04P1h0rGGiuVI1QszuCIAiCIEYSisQQBEEQRE3IzlcUiakLEjGKJDmFM+3/BQBwHiEIpmSBNQtMLgxD6DxPTbb+5RGw997rfCOe+mYOugyGpc+vQrf36OaaZevxrKECmwmQFpSxm1K5L/q1cPa71hMX/j5tD2kLyZxj94nYybGJud0W2/uJRKjtwuS36Mi/ZxklMM3pRKLsohjGNjIN6pLAfnBmLKNY2UeJtoG4zX2J1TbXPgJk3kri2EiJYDCOlrKS5H6/0kjmvujttueLLKG2VpL5EqScDt82AjhjCJmya9Ta4D94ZkmYY7245OaipKygPNtJ2jL5cIhMO4Wiyqi8NRTlybhVS1kbye2L09lSyru+v4Z6LKVOVUuB052833ktXExWngyJmPogO4kgCIIgiJGEIjEOUfwOAICLGAFrmiiMG3VJb9NJv+Lnr4OdPF3tRu6fuEEPibbpP5GLqHrtOiI1LnkRGfe5G5Fx97mJvm54QEdLuFBRnNQ+HVlxtwsVTeFCBm5i5xqJfBTO3Eih2saIWAZ6RMJswCeRvVwEZ5loiwwqZSMuiWAm4qKTdQGYCEwiZKRFR1/0OW7UJRuJscfoT509x36Y7U60JXHOkUm71fCrkNT5KiIjv4ROtY6ATGpMVR8Jtd2FQ5jKJPfbIGDpSIV6nUnWzf5McOQn6bqRmaKk36oRmWrnZided9vJtyrDkkCaF7mpUqEzlom9MjV+0IsYW0jEEARBEESN9MuOG9Ka14FCIoYgCIIgaoQiMfVBIsZBqAzNJJkFZ1MAdFKvTXDTVpLcbpN+o8Mn0Xi3nX/hqvZP3ZTZS73YWt2ek/485FlLTnhfcCCdZWqizY4HImzve0Co19w9VltC+pp2n7aJhJAJuUJZNtoqMpYRZ04LnABcSBuJC98yEo5txMGQOL1dEhF4ybp6e6xec8c6svvg7ZPb5VuV94Oxj/SnT+cg6/PMOcpKEuo4/ekRzqfPRX95uWAImPxnWB+bTvI1X0amLSFhvz2E/32iz/Pu5RzTaT8Az47iQoCl/CkB4TfXQ77dw5z1everYB/JZWSb4LnXKGuAV3Wm0lyTQovOH5Zk02FZBzGakIghCIIgiBoZllylcYREDEEQBEHUSP9K1Ickqj9EkIjJQQgOIVoAIMPUppohUK9dK0laTSdeaWLRe/Kc3AT7QQvxggIkVrEwqXBaQcn5edfu9Llxo/quHZTeZo7jzLumENICkhaRtYbk1GXmPQdgbCJtEQluK2QSvU3IPiTaNhLG3lHVSI79w401JB+FsiViziAAYx1pa8i1kGK1LrfnizxHrUefA2sPufaRvp6AXp/j0qnRAboqyXXq0p/3IgLmW1DaLmHMtZnkMYzZSdXWltLHZCtx/GvkVRSlqpbcXiy6gsk5gDmjDPJspXGaWzTIv/Kr3DvPbiuy4MY1d2Rc39cwQH1iCIIgCIIYSSgSQxAEQRC1ISauQ/F8QiKmAwLC9S5kEFqocDULTbO71/93Mc6PTslzUpUUxrpIV1h0IMip0nCper30dViH13kU2UlBUHytbgdmpy0N9/PIOcs9zj3G/TyL1PHGFnLsIX2O3edcQ1UWcdWcjTvWEFevtV1kC6ik/WMsJVgLRR8rp0Jby0jbR241ka404mDWNoIcDSC3222ufSTvo7cJs1bAOdaxkoqqkvJw7Zk6SH/tB233VL1/mU2QvoZbhdNrZVJVW6IfFT/9HjVQhMCYT7EG2Ul1QiKGIAiCIGpCwBdqRH+hnBiCIAiCIEYSisT0iLSZ7LCdV0+djXbiTn3N2hnyvGoeCysIZwdMdG1L6fPMtVOn582dKTrXxb2Ovoa2k9J98KpYVkWk7TkgXVmTnkScncHDBfO2u18PbQ+5toy/XZ9v72ctnbxznOc55+iqI5jXMLZVptLI2ZZ/n6x9lD5ffk78foJu4zq7RpE533yOIbzXLt7n2bmW/dy7++2LvIqoIhunm2ProtP95rKeMusp9/gCO6rjeQOsCprkvBBq6FcfJGIIgiAIokYoJ6Y+SMTMFfUn4tH3mmi5yaROEqif/FktGqP/Vu9lGkAR+lpulMe9flH0p+xarh9pojBIRX7MOcXvKe/eVaNWmuxUg3QrervNjZDo1+7XJv088zp1rj3H3tuNnujIh0kUTp3jJt0mqe8VN+pit+dHTTLXTkVJhLceP1qSvla6xwyQvp7ITQ7W17Xv3f/CdEriLepZkxfpSE+z1uu155RfJz1uoPA+ud+fvHA/99aQSs5lZed1HymZj+hLlWPnKxGYIFxIxBAEQRBEXQhATLCVVjckYgiCIAiiRignpj5IxMwBxhoIgoUAgNfeC8DFlPlW1S3ivb4csL0+AD/ZEvBtlgA2cda3fHy6SSW0to69B5CfoFv5mqk1B0zeJ2C+GRQw/Z6Ed7y7nuJ1zz2B012Nn2iq9juJu/oY134SOedZK8VPJPaSaFP3TLf89y0iax259+xkHaXHB6SnU/vvU2Tu7V6zKJnXvrdsYm6eNZU+tuga2XXmf63zbCN3nZnj867RBxspz1ap00pK308n9PY6mXpYbKHJKjkWfXy/85vMPgpQiTVBEARBECMJRWIIgiAIokbGtRPxMEAipgcYCzDVOBdLFlyE94eXAwAiDvxvmyHislV8osLVug28+1gUhrfXZ8ZOcm0loLP1UtTLw7WQ0tfzbabOFUFc5PSBUedZO8keEyprKSh4P2mby1t3zv2r9rnJG3uQ328kp68Myi0hfYy7PffYHBsrfXy6Ciht81Sxjcqqg/LWlf4+SY8p8N+n8F7LbcX3Sh9f1VYqsozKxh0U/WrIrSZKXb9qFZJcQ7mNlH8teU56xEDZsYX3KhlTUMWGyj+v3OIoukavk6sLj3V+wY/rL3vKiakPEjEEQRAEUSP9qk6ijJgslBNDEARBEMRIQpGYHmGsgalgARbyswEAb53hOJMIFdr3Kzi0bRQLuV9bTRwCXIhMuJyBIWAMAZiylJitVAIrtJSK2runz2PqYtayYrmVUHnX1e8p+/mw5zMwNALfJgqZvEfIstaWbcKXrsSyL7L2lbudecekq5mqNgz07RfmbcvaL0Xb01U6zvdC0Tk5VU3p7dmmdb6NU6XSKLMttY5i28fd1n0VUl71Udo6Sv8MdGMT5a2tyjndWEdFx3e0hkqspCoTqtPWjT6nmwZ2VaqNOtk/xWMOJqnKqHeoY299kIghCIIgiBoZ11yfYYBEDEEQBEHUyGT1xZlfSMT0ghCIk9M4ceYo/l+zBQB468wHsFAsxrSYRigaCFJVPhwCHBwJS5AgBgDELEbCYnAkXriRIUCAECEaCESgrifTlwIwMKGfB4XNtPLC3Ppc91qBNK/s87ySHqRsBAhrFWTWba/TUJ+DkMntIZMftmrJt8u0FQVoC0h41Ut2e9YS088B36JKb09fx8W3eYorcvKPL575k3du1spx92UtmzK7KGthlVtFVe+dvmb6Ou61qmx3LaSi+UZVqoq8tZVWLpVYTyXh/W6vmVsdNIemdnnWTZmN1I2FVKlqqUP1UbfXnuTp1UT9kIghCIIgiNoQZCfVCIkYgiAIgqgJAcqJqZORETF33nknnnzySRw8eBDNZhPvvPPOwNYiICBEC3FyGqejtwAAXMRohmdjii1Eg00jYCEAabHIczi4SMARGTspERG4iNRj7N2DMWnMhGwKjAUIMaW2h2DMWkIuprkWOIRIMqHnAAFYEJo1hZiS10eAhpgyNlYenCX2fTBuLDAdKtahZHNtNoWGmLL3QQMN3sAUphAK+W3XUOZTA4Fq8Mes9ZOq0LLvwVpQnaqtbLWSPTZtT+ltRRQ1DywyHIqOL6Oswil3f45VU2R7ZRq85ayvbJZR2XF5x+bZR1Wto7RlWeX+5txKzd3Kvzid9stjCqqCci2gchupaC5Spfu59lOOvTOXRnVl1616n7keSxBVGZk+Me12Gxs3bsTmzZsHvRSCIAiCqAzv039ElpGJxNxxxx0AgN27dw92IQRBEATRBf2zk6hnb5qRETHDhhAR4uSUec15jHZ4Co2giYBNIWDyU8uUrSREomweDi4iAEDM29JO4m1wHkMH2/U3PGMBgABB0HCup+p/lK3kzx1x7xFnZpIwFkgrSl0rYA0EwRRC1jBr1uvVdlX6Hhxy/fp9JMoG4zzKVioFyk5iDYTBtLLZptAIpuV2TKHBpo2VFWLK3LchGqaSKhDW7zHbnMqqhlmrtaR0RZTcnm9D2XOypIu0yiqP6iJb0VReOSTPKatCKmjuVlpVVVKpk3NikXXkXqtshlHGYiqyRXqsSpL7u/+FkmcXdbpnlUqiomZ2Rdv0+d1UCPWjUV0lu66LKqRJiyr0a+wAkWWsRUyr1UKr1TKvZ2dnB7gagiAIgiD6yUBFzLZt23DXXXeVHvOzn/0Ml1xySU/X37lzp7Gh+o2MTrQQJ+ovIxEj4WcQBU0V0VDRAefvfAEOzmP71xRvg4sYnLcAEZuGSG7kg4GpsEDgvA6QTWfigODyL2GRZJJDi2CsAcamwNgUwqAJlon4+PexUZ5YPcqokuBtCBHn3peByfsECxAGTQRBEwDQCM5CEEw50SsZFZLnhCbpWHWZMesKWCijNiIwERxARo8aoqESlUPTT6eBUF0hND1sdJQm0J9TAIETfkn3+ZkrBe13Ot6vU1Qhfyp3XsSmvM1/GVX+Zu52anRZxKWX9v6Ze1dMYK2SzNv5GiXrqBgZSV+jykiCvH351+69Z0weVSIulMTrQ5+P+hioiLn11ltx4403lh6zatWqnq+/fft2bN261byenZ3F+9///p6vRxAEQRDdQiXW9TFQETMzM4OZmZnarj89PY3p6enark8QBEEQ5VCzuzoZmZyYI0eO4O2338aRI0eQJAkOHjwIAFi9ejUWLVo0kDUJwQHRBgAkIgFnU2C8bawYAJ4dI4Rq2K8tGMGljVRgwwAq7C8ETNKv+V+/3oO8P/AeEidKLG2r0LGv9AndW1ayr04EJJF3D6DYztKWnE421p/HUG1nCBGwhumjA8hE4YBNmf432mYKRcMkDWu7SScQhyI0hhWEb+vor2FVa6nTcXkjHfLOqdr3oNM/i8WJvN1YSb1/s+VaTCW2UdmEZ6DYIiqeUt3fXxzdWgLFCbXVt2cSgZFktneykPqdlNvt56HT3KBJS/Il+svIiJjbbrsNDz30kHn90Y9+FACwb98+XH311QNaFUEQBEGUQzkx9TEyze52794NIUTmgwQMQRAEMcwIwfvyQWQZmUjMsGIsFRFLi4W1ZCUNK9CH2o4BurJk5htpGcV9t68y9ymws4B8S0vaTaGymRpeDx3d98atdgKkBdVgZ8mp4GzKVDcBkFPCYaugzIRv4VeX5Y15KLOPdGWUd7yzLX1u3rXyO9j0Rj/a8qfRa656XqVpzh3a91dpw++d20Wb/X7RyR7p+j3kWEOder90O1G6u/EBvfU8yet3QxBzhUQMQRAEQdQIRVHqg0QMQRAEQdQKiZi6IBHTR3QlkQA3FgxzbIJhtY6GlXxLS3ZgdgPatrFgCBY0EbBpBKrpIACEQRONYFpZT3LUQbqiSRpJU3b6OLMTvXVTPRd32neu7cOyFpT72rWW3PO9Y1IWU55F1StVm8EV0c1aum3ZX6VKB+i+Zf+g6WShVGlKV7USqVvbqBuLqO9VXxPQkp8iMfUxMom9BEEQBEEQLhSJIQiCIIga6V8iM0Xz05CIqRmykOpHh2oFuGyoh1NmXhOAjMUk5zfZyiV3grc7uynQ08KdqiW9Tz6m7CIWeq+LLKhABNBOka1+yrenTLUU7DlmXx/tpa5hc6+e6raiqKpdVNQgbtgp+0WXtc7ym9nl2UjCqwrK/1x0YxH14xdysYU0nrYL2Un1QSKGIAiCIGpDACMipEcRyokhCIIgCGIkoUgMMZaYeU2AtZhYoOY0TSMMmgBk87zANM2bsnYSC8yMJj0Liym7SFs8blWUuqlvOxXYS2XWlGtJpa2mTEWTspdcK6oOOtlGeY0A50I3zeDyrKKMnVRSHdXJaqr7c1uFTu+xGwup20Z7Zn+fK4iKGt+Nq+0yru9rGCARQxAEQRC1QiKmLkjEEARBEESdUCSmNkjEEBODHKLWAtDy5jQxVZkkH9VMJTWbyVpJgWMfqaollmMPsQKrKb3fWFJZi8o9J3BsrLyqpaJKKXMc648dUnj9ErulX9VTneYEpclYLTkFgr1W2PRznlUv5K07r+Koypwi1yLqVJ3U67ykwusJ92sUOc/jvt6HGH9IxBAEQRBEjVCrjfogEUNMPHaSdqvS8XKqNoMcDGAnbEtsxAYInedu9CUAUtEbHfGx+5FJKHYjP2URn7x7euuvGJ3JS9hlBdPZ0xGnovO7XQOAwv5eZcmmxQms9ZS65r3/Oun0PooSSQs/Lx2Sg7ulUyKru/52fMpu5+/1fM/hZrjtpFdeeQVf+9rX8O///u84duwYVq5ciT/4gz/AV7/6VTSbTXPc//zP/2DLli3Yv38/ZmZm8MUvfhF/9md/NsCVk4ghCIIgiInmpZdeAuccDzzwAFavXo0XXngBN998M06dOoVvfvObAIDZ2Vlce+21uOaaa3D//ffj0KFD+PznP49ly5bhC1/4wsDWTiKGIAiCIOpEDLeddN111+G6664zr1etWoWXX34Z9913nxEx3/ve99But/Hd734XzWYTH/rQh3Dw4EHcfffdJGIIYpTQ08rN/OUh+PfJTEtnejZB4E1Qt5ZXNgnZkrVEyqwplrLRivflb8u3usoTZzvtB+rpyVHlvplzekwCLrPaeunXUsUW6uZz1o/Pr7umODltnrtJvuNEP3Ni2u02ZmdnvW3T09OYnp7u2z0A4MSJEzj33HPN6+effx6//du/7dlLGzZswF133YX/+7//wznnnNPX+1eFOvYSBEEQRA2cd9556lk/RIy8xsMPP4ylS5d6Hzt37uzD9S2HDx/GPffcgz/+4z82244dO4bly5d7x+nXx44d6+v9u4FEDEEQBEHUwIUXXgjZWrsf0UEOgOEv//IvceLECe9j+/btuWds27YNjLHSj5deesk759VXX8V1112HjRs34uabb+7DuuuF7CSCGANMuNp479z/228ILC+CmETefPMNzMzMQIqQXuMGHIDA22+/3ZV1dOutt+LGG28sPWbVqlXm+WuvvYZPfOIT+NjHPobvfOc73nErVqzA8ePHvW369YoVKyqtpw5IxBAEQRBETZx//vmQ4kVGUuDmqlVCQAugbvNOZmZmlIDqzKuvvopPfOITWLt2LR588EEEgS+41q9fj69+9auIoghTU7Ip6J49e7BmzZqB5cMAZCcRBEEQRK2cPv2uetZLSFSec+bM6Q7H9c6rr76Kq6++GhdddBG++c1v4s0338SxY8e8XJff+73fQ7PZxB/90R/hxRdfxGOPPYZvfetb2Lp1a23rqgJFYgiCIAiiRhYsWICHHnoImzZtQnfRGBmFeeSRR/pefeSyZ88eHD58GIcPH8b73vc+fwXKol66dCmefvppbNmyBWvXrsX555+P2267baDl1QDAhBjyAvY+Mjs7i6VLl0KWknYb0iMIgiBGFwEgwYkTJ7BkyZJ5vzvnHGEYQhogVU0QDoAjSZKMvUNI6LNCEARBEDUTBAGefvpp6CTdzsgozL59+0jAlECRGIIgCGICGGwkRuPOVitHNjaso3njOEHyjiAIgiDmiZ/85CCkoCqLH8j9L774wrysaZShSAxBEAQxAQxHJAaoEo2hKExVKBJDEARBEPPI0aNHUByNkdtff/21+V3UiEIihiAIgiDmEVnGzCAjLq6QEWobG2gX3FGCRAxBEARBzDMnTryjnqVFDHDy5Gz6cKIAEjEEQRAEMc8sWbIE3/72t2FLrmVJ9QMPPIBFixYNdnEjBCX2EgRBEBPA8CT2aqIoQrPZhI0ncERRhEaDmulXhSIxBEEQBDEApqam8A//8A/QnXn/+Z//mQRMl0xUJObEiRNYtmwZpHajSAxBEMTkIO2ad955R0XkhwMhhOrIy8B5Asbod1M3TJTkO3nypHpGtfcEQRCTyMmTJ4dKxDDGMEGxhL4zUZEYzjlee+01LF68uO9qd3Z2Fu9///tx9OjRofFb5wq9p9FgHN8TMJ7vi97T4BBC4OTJk1i5ciXNIhojJioSEwRBZsx4v1myZMlQ/yD3Ar2n0WAc3xMwnu+L3tNgGKYIDNEfSI4SBEEQBDGSkIghCIIgCGIkIRHTJ6anp7Fjxw5MT08Peil9g97TaDCO7wkYz/dF74kg+stEJfYSBEEQBDE+UCSGIAiCIIiRhEQMQRAEQRAjCYkYgiAIgiBGEhIxNXDnnXfiYx/7GBYuXKjGHIwe9957Lz7wgQ/grLPOwlVXXYUf/ehHg17SnHj22Wfxmc98BitXrgRjDP/4j/846CXNmZ07d+I3fuM3sHjxYlxwwQW4/vrr8fLLLw96WXPivvvuw2WXXWZ6jqxfvx7/8i//Muhl9ZVvfOMbYIzhy1/+8qCXMiduv/12MMa8j0suuWTQyyImDBIxNdBut7Fx40Zs3rx50Evpicceewxbt27Fjh078OMf/xiXX345NmzYgDfeeGPQS+uZU6dO4fLLL8e999476KX0jR/84AfYsmULfvjDH2LPnj2IogjXXnstTp06Neil9cz73vc+fOMb38CBAwfw3//93/id3/kdfPazn8WLL7446KX1hf379+OBBx7AZZddNuil9IUPfehDeP31183Hf/7nfw56ScSkIYjaePDBB8XSpUsHvYyuWbdundiyZYt5nSSJWLlypdi5c+cAV9U/AIjHH3980MvoO2+88YYAIH7wgx8Meil95ZxzzhF/8zd/M+hlzJmTJ0+KD37wg2LPnj3i4x//uPjSl7406CXNiR07dojLL7980MsgJhyKxBAe7XYbBw4cwDXXXGO2BUGAa665Bs8///wAV0Z04sSJEwCAc889d8Ar6Q9JkuDRRx/FqVOnsH79+kEvZ85s2bIFn/70p72frVHn5z//OVauXIlVq1bh93//93HkyJFBL4mYMCZqdhLRmbfeegtJkmD58uXe9uXLl+Oll14a0KqITnDO8eUvfxm/+Zu/iQ9/+MODXs6cOHToENavX48zZ85g0aJFePzxx3HppZcOellz4tFHH8WPf/xj7N+/f9BL6RtXXXUVdu/ejTVr1uD111/HHXfcgd/6rd/CCy+8gMWLFw96ecSEQJGYimzbti2TxJb+oF/yxKDYsmULXnjhBTz66KODXsqcWbNmDQ4ePIj/+q//wubNm7Fp0yb89Kc/HfSyeubo0aP40pe+hO9973s466yzBr2cvvGpT30KGzduxGWXXYYNGzbgqaeewjvvvIO/+7u/G/TSiAmCIjEVufXWW3HjjTeWHrNq1ar5WUyNnH/++QjDEMePH/e2Hz9+HCtWrBjQqogybrnlFjzxxBN49tlna5/SPh80m02sXr0aALB27Vrs378f3/rWt/DAAw8MeGW9ceDAAbzxxhv49V//dbMtSRI8++yz+Pa3v41Wq4UwDAe4wv6wbNky/Nqv/RoOHz486KUQEwSJmIrMzMxgZmZm0MuonWazibVr12Lv3r24/vrrAUirYu/evbjlllsGuzjCQwiBL37xi3j88cfxzDPP4Fd/9VcHvaRa4Jyj1WoNehk988lPfhKHDh3ytt1000245JJL8JWvfGUsBAwAvPvuu/jFL36Bz33uc4NeCjFBkIipgSNHjuDtt9/GkSNHkCQJDh48CABYvXo1Fi1aNNjFVWDr1q3YtGkTrrzySqxbtw67du3CqVOncNNNNw16aT3z7rvven8h/vKXv8TBgwdx7rnn4qKLLhrgynpny5YteOSRR/BP//RPWLx4MY4dOwYAWLp0KRYsWDDg1fXG9u3b8alPfQoXXXQRTp48iUceeQTPPPMM/u3f/m3QS+uZxYsXZ/KUzj77bJx33nkjnb/0J3/yJ/jMZz6Diy++GK+99hp27NiBMAzxu7/7u4NeGjFJDLo8ahzZtGmTAJD52Ldv36CXVpl77rlHXHTRRaLZbIp169aJH/7wh4Ne0pzYt29f7tdk06ZNg15az+S9HwDiwQcfHPTSeubzn/+8uPjii0Wz2RQzMzPik5/8pHj66acHvay+Mw4l1jfccIO48MILRbPZFL/yK78ibrjhBnH48OFBL4uYMGiKNUEQBEEQIwlVJxEEQRAEMZKQiCEIgiAIYiQhEUMQBEEQxEhCIoYgCIIgiJGERAxBEARBECMJiRiCIAiCIEYSEjEEQRAEQYwkJGIIgiAIghhJSMQQBEEQBDGSkIghCIIgCGIkIRFDEARBEMRIQiKGIMaYN998EytWrMDXv/51s+25555Ds9nE3r17B7gygiCIuUMDIAlizHnqqadw/fXX47nnnsOaNWtwxRVX4LOf/SzuvvvuQS+NIAhiTpCIIYgJYMuWLfj+97+PK6+8EocOHcL+/fsxPT096GURBEHMCRIxBDEBvPfee/jwhz+Mo0eP4sCBA/jIRz4y6CURBEHMGcqJIYgJ4Be/+AVee+01cM7xyiuvDHo5BEEQfYEiMQQx5rTbbaxbtw5XXHEF1qxZg127duHQoUO44IILBr00giCIOUEihiDGnD/90z/F3//93+MnP/kJFi1ahI9//ONYunQpnnjiiUEvjSAIYk6QnUQQY8wzzzyDXbt24eGHH8aSJUsQBAEefvhh/Md//Afuu+++QS+PIAhiTlAkhiAIgiCIkYQiMQRBEARBjCQkYgiCIAiCGElIxBAEQRAEMZKQiCEIgiAIYiQhEUMQBEEQxEhCIoYgCIIgiJGERAxBEARBECMJiRiCIAiCIEYSEjEEQRAEQYwkJGIIgiAIghhJSMQQBEEQBDGSkIghCIIgCGIk+f/GtDBOBeUkFQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data_circular.plot_field(\n", " field_monitor_name=\"field\",\n", " field_name=\"E\",\n", " val=\"abs\",\n", " scale=\"dB\",\n", " vmin=-20,\n", " vmax=30,\n", ")\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "1a3567d4", "metadata": {}, "source": [ "## Loss of an Euler Bend" ] }, { "cell_type": "markdown", "id": "86b1f580", "metadata": {}, "source": [ "Next, we perform a similar simulation for the Euler waveguide bend and compare the results to the circular bend. The Euler waveguide bend structure is made by using the `line_to_structure` function we defined earlier. Since the simulation setup is the same as the previous one with the only difference being the structures, we can simply copy the previous simulation and update the structures." ] }, { "cell_type": "code", "execution_count": 16, "id": "498b1288", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:35.768329Z", "iopub.status.busy": "2023-03-27T20:45:35.768158Z", "iopub.status.idle": "2023-03-27T20:45:36.001376Z", "shell.execute_reply": "2023-03-27T20:45:36.000878Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAHWCAYAAADttCmyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhEklEQVR4nO3deZQb1YE2/Ke0lNStpSX3YrdXvGAbY2yDsVkdQ3AghBBIJgwvkxCHTMiEGBKGZBJ8kgOBeRNnwoTATFiSmQTnYyAsmRcyA4TdxiyBGIOJWcxq8NZe1JZaarmlKqnu90en1Gq11FJJVVqf3zk6YHWpdFu3Sk/fqrtIQggBIiIiAgDYal0AIiKiesJgJCIiysJgJCIiysJgJCIiysJgJCIiysJgJCIiysJgJCIiysJgJCIiysJgJCIiysJgJGpQGzduhCRJ2LhxY62LQtRUGIxEde7WW2/F+vXra12Mstx999246aabal0MAICmafjpT3+KmTNnwu12Y9GiRfjd735X8usjkQi+9rWvobu7Gx6PB6effjpeeeWVvNv+z//8D4477ji43W5Mnz4d1157LVKplFm/CllNEFFdO/roo8XKlSvHPJ9Op8XQ0JBIp9PVL1SJzjnnHDFjxoxaF0MIIcTVV18tAIhLL71U/OpXvxLnnHOOACB+97vfFX1tOp0WJ598svB4POKHP/yh+MUvfiEWLFggfD6feOedd0Zt+8gjjwhJksTpp58ufvWrX4krrrhC2Gw28fWvf92qX41MxmCkhjA4OFjrItRMoWBsBPUSjLt37xZOp1OsWbMm85ymaWLFihVi6tSpIpVKjfv6e++9VwAQ999/f+a5AwcOiEAgIC666KJR2y5YsEAsXrxYqKqaee773/++kCRJvPXWWyb9RmQlBiNV3e7du8VXvvIV0dvbK2RZFkcccYT4+te/LpLJpBBCiDvuuEMAEBs3bhSXXXaZ6O7uFoFAIPP6W265RSxYsEDIsix6e3vFN77xDREOh0e9xzvvvCM+97nPiYkTJwqXyyWmTJkiLrzwQhGJRDLbPP744+KUU04RHR0dwuPxiLlz54q1a9cWLX8pr0skEuKaa64Rs2fPFrIsi6lTp4p/+qd/EolEYsz+7rzzTrFs2TLR1tYmAoGAWLFihXjssceEEELMmDFDABj10ENyw4YNAoDYsGHDqP3dd9994rjjjhNut1t0dnaKL3zhC2L37t2jtlm9erXweDxi9+7d4rzzzhMej0d0dXWJb3/720VDQgghHnzwQfGpT30qU4ezZs0S119//ajXrly5ckzZxwvJ1atXj9lef1x77bVFyzSeW265RQAQb7zxxqjn7777bgFAPPvss+O+/oILLhATJ04c0zr/2te+Jtrb2zP1+sYbbwgA4pZbbhm13Z49ewQA8c///M8V/R5UHY4qXrUlwt69e7F8+fLM/Zr58+djz549+P3vf4/Dhw9DluXMtt/4xjfQ3d2Na665BvF4HADwwx/+ENdddx1WrVqFyy67DG+//TZuu+02bN68Gc8//zycTicURcFZZ52FZDKJK664ApMmTcKePXvw0EMPIRKJoKOjA2+88QY+/elPY9GiRbj++uvhcrnw3nvv4fnnnx+3/KW8TtM0fOYzn8Fzzz2Hr33tazjqqKOwbds2/PznP8c777yDBx98MLPtddddhx/+8Ic4+eSTcf3110OWZbz00kt4+umnceaZZ+Kmm27CFVdcAa/Xi+9///sAgIkTJxYs3/r163HJJZdg2bJlWLduHfbv34+bb74Zzz//PF599VUEAoHMtul0GmeddRZOOOEE/Ou//iuefPJJ/OxnP8Ps2bNx2WWXjfs5rF+/Hl6vF1dddRW8Xi+efvppXHPNNYhGo7jhhhsAAN///vcxMDCA3bt34+c//zkAwOv1FtznP/zDP2DVqlWjnnv00Udx1113oaenJ/NcKBQat2w6n88Hl8sFAHj11Vfh8Xhw1FFHjdpm+fLlmZ+feuqpBff16quv4rjjjoPNNrpbxvLly/GrX/0K77zzDo455hi8+uqrAIDjjz9+1HaTJ0/G1KlTMz+nOlfrZKbW8qUvfUnYbDaxefPmMT/TNE0IMdJiPPXUU0e1QA4cOCBkWRZnnnnmqL/cf/GLXwgA4je/+Y0QQohXX311zGWvXD//+c8FAHHw4EFD5S/ldXfeeaew2WxjWiG33367ACCef/55IYQQ7777rrDZbOKzn/3smJaI/lkIUfhSam6LUVEU0dPTIxYuXCiGhoYy2z300EMCgLjmmmsyz+mts+uvv37UPo899lixdOnS8T8EIcThw4fHPPcP//APo1pPQlR2KfXdd98VHR0d4hOf+MSo4wAFWpW5jzvuuGNUOWbNmjXmPeLxuAAgrr766nHL4vF4xFe+8pUxzz/88MMCgHj00UeFEELccMMNAoDYuXPnmG2XLVsmTjzxxFJ/faoh9kqlqtE0DQ8++CDOPffcMX9RA4AkSaP+femll8Jut2f+/eSTT0JRFFx55ZWj/nK/9NJL4ff78fDDDwMAOjo6AACPPfYYDh8+nLcsesvpD3/4AzRNK/l3KOV1999/P4466ijMnz8foVAo8/j4xz8OANiwYQMA4MEHH4SmabjmmmvGtERyP4tSvPzyyzhw4AC+8Y1vwO12Z54/55xzMH/+/Mznk+3rX//6qH+vWLECH3zwQdH3amtry/x/LBZDKBTCihUrcPjwYWzfvt1w2XPF43F89rOfRTAYxO9+97tRx8ETTzxR0uOss87KvGZoaCjTesymf05DQ0PjlqfU1+v/LbRtsfeh+sBLqVQ1Bw8eRDQaxcKFC0vafubMmaP+/dFHHwEA5s2bN+p5WZYxa9aszM9nzpyJq666CjfeeCPuuusurFixAp/5zGfwxS9+MROaF154If7zP/8TX/3qV3H11VfjjDPOwOc+9zl8/vOfHxNS2Up53bvvvou33noL3d3defdx4MABAMD7778Pm82GBQsWlPR5FFPo8wGA+fPn47nnnhv1nNvtHlPGYDCIcDhc9L3eeOMN/OAHP8DTTz+NaDQ66mcDAwNGiz7GpZdeivfffx8vvPACOjs7R/0s93JrKdra2pBMJsc8n0gkMj834/X6fwttW+x9qD4wGKluVfIl8rOf/Qxf/vKX8Yc//AGPP/44vvnNb2LdunV48cUXMXXqVLS1tWHTpk3YsGEDHn74YTz66KO499578fGPfxyPP/74qBZKbpmKvU7TNBxzzDG48cYb8+5j2rRpZf9eZir0OxYTiUSwcuVK+P1+XH/99Zg9ezbcbjdeeeUVfO973zPUAs/n5ptvxu9+9zv813/9F5YsWTLm5/v27StpPx0dHZljqLe3Fxs2bIAQYlRrvK+vD8DwPcDx9Pb2ZrbNlvv63t7ezPO59dzX15e5p0n1jZdSqWq6u7vh9/vx+uuvl/X6GTNmAADefvvtUc8rioIdO3Zkfq475phj8IMf/ACbNm3Cs88+iz179uD222/P/Nxms+GMM87AjTfeiDfffBM/+tGP8PTTT2cudRZS7HWzZ8/GoUOHcMYZZ2DVqlVjHnqLbvbs2dA0DW+++ea471fqZdVCn4/+XO7nU66NGzeiv78f69evx7e+9S18+tOfxqpVqxAMBsdsa/SS8LPPPovvfOc7uPLKK/GFL3wh7za9vb0lPe69997Ma5YsWYLDhw/jrbfeGrWvl156KfPz8SxZsgSvvPLKmNB/6aWX0N7ejrlz547az8svvzxqu71792L37t1F34fqA4ORqsZms+H888/H//7v/4754gAAIcS4r1+1ahVkWca//du/jdr217/+NQYGBnDOOecAAKLR6JhZRo455hjYbLbMJa5Dhw6N2b/+pZXvMpiulNf97d/+Lfbs2YP/+I//GLPt0NBQpoft+eefD5vNhuuvv37MF2727+fxeBCJRAqWSXf88cejp6cHt99++6jf4Y9//CPeeuutzOdTKb2lmV1GRVFw6623jtnW4/GUfGm1r68Pf/u3f4tTTz0107M1n3LuMZ533nlwOp2jyiiEwO23344pU6bg5JNPHlWO7du3Q1XVzHOf//znsX//fvy///f/Ms+FQiHcf//9OPfcczP3FI8++mjMnz8fv/rVr5BOpzPb3nbbbZAkCZ///OdL+iyotngplarqxz/+MR5//HGsXLkyM5Shr68P999/P5577rlRwwlydXd3Y+3atbjuuuvwyU9+Ep/5zGfw9ttv49Zbb8WyZcvwxS9+EQDw9NNP4/LLL8cFF1yAuXPnIpVK4c4774Tdbsff/M3fAACuv/56bNq0Ceeccw5mzJiBAwcO4NZbb8XUqVPH7bZfyusuvvhi3Hffffj617+ODRs24JRTTkE6ncb27dtx33334bHHHsPxxx+POXPm4Pvf/z7++Z//GStWrMDnPvc5uFwubN68GZMnT8a6desAAEuXLsVtt92G//t//y/mzJmDnp6eTEeebE6nE//yL/+CSy65BCtXrsRFF12UGa5xxBFH4B//8R/LrbZRTj75ZASDQaxevRrf/OY3IUkS7rzzzrx/2CxduhT33nsvrrrqKixbtgxerxfnnntu3v1+85vfxMGDB/Hd734X99xzz6ifLVq0CIsWLQJQ3j3GqVOn4sorr8QNN9wAVVWxbNkyPPjgg3j22Wdx1113jbqsvHbtWvz2t7/Fjh07cMQRRwAYDsYTTzwRl1xyCd588010dXXh1ltvRTqdxnXXXTfqvW644QZ85jOfwZlnnon/83/+D15//XX84he/wFe/+tUxw0WoTtWwRyy1qI8++kh86UtfEt3d3cLlcolZs2aJNWvWjBngn29IhxDDwzPmz58vnE6nmDhxorjssstGDfD/4IMPxFe+8hUxe/Zs4Xa7xYQJE8Tpp58unnzyycw2Tz31lDjvvPPE5MmThSzLYvLkyeKiiy4aM71XrlJfpyiK+Jd/+Rdx9NFHC5fLJYLBoFi6dKm47rrrxMDAwKhtf/Ob34hjjz02s93KlSvFE088kfn5vn37xDnnnCN8Pl9JA/zvvffezP4mTJgw7gD/XNdee60o5Wvh+eefFyeeeKJoa2sTkydPFt/97nfFY489NqY8g4OD4u/+7u9EIBAoOsA/34QA+qPSAf5CDE/r9uMf/1jMmDFDyLIsjj76aPFf//VfY7bTh7Ls2LFj1POHDh0Sf//3fy86OztFe3u7WLlyZcFj9IEHHhBLliwRLpdLTJ06VfzgBz8QiqJU/DtQdUhCFLl+RURE1EJ4j5GIiCgLg5GIiCgLg5GIiCgLg5GIiCgLg5GIiCgLg5GIiChLSw3w1zQNe/fuhc/nK2v1AiIiakxCCMRiMUyePHnchQKAFgvGvXv31s0EzkTUGlbMB+76BhA5DDhtgOwEzv4p8M7YOcmpCnbt2oWpU6eOu01LBaPP5wMAfPe73x21coOiKJnprGRZHtOa1H/W1dUFp9NpSdkURcnMhxkIBEatZF8tQggcPHgQwPB6cvoSTdU2MDCQmeuzu7u7Jq171scI1sewQvXRFxnE4JBa8HXndj+CDv9WwNMBQKDDEcW/fvdUbAx/rOBrgh4XuvzteX/WaPWhqipCoRCA8tYZLUQIAUVRMvstdkwMDQ3hpz/9aSYHxtNSwahXSltbG7xeL4DhiZ8lSYLNZsssSeNyuUY1tTVNg6Zp8Pv9lpyQiqIgHo9nTjRVVdHR0VHVk1/TNPT398Pj8cDlciGRSMBms5V0EJkpFovBbrdjwoQJSCaTUFUVnZ2dRS99mIn1MYL1MWy8+hhQJShS/onn3dJhHOV7FypkSH/9zDQ4sLjjLbyYPBMa8i/91e5rQ0eHd8zzjVgf+vY2m820cmqahmQyCbvdDkmSoGkaHA5H3gWic5USzi3d+SaZTCKVSsHhcKCtrQ2yLEMIgWQyWfGacqVSFAWhUAhOpxNdXV2ZVmkoFMr8NWQ1/aRXVRVdXV3o7OyE3+9HNBpFLBarShmA4ZM+Go3C7/ejs7MTXV1dUFUV/f39rA/WR0PWx5Hu7WizDSGhjVyhGtLa0GGP4AjXB4bKwfoYpoeiEAKyLKOtrQ0OhwOpVGrclXGMaNlgzA5F/a8Mh8NR1XDMPsj0v/psNhs6OzurdrDlnvT6X30+n6+qX8bZJ73eKpJluaonP+tjBOtjWCn1kU4OFXz9wrbXAAGIrK/aNBywSRoWtP2l5HKwPoblhqLDMXzR0+VymRqOLRmMqqqOCUVdtcIx30Gmq9bBVuik11XryzjfSa+r1snP+hjB+hhWan2klQRs6bFl6HQcwBR5F5Ji7OU9Rch/bU3Gi5aD9TGsUCjqzAzHlgzGYtejc8PR7AVIxjvIdFYfbMVOep3VX8bjnfQ6q09+1scI1scwI/Vhl92wp5Ux4Tjf/QZkm5I3GBOaG27bEOa63xq3HKyPYcVCUWdWOLZkMNpstqI3aa1qOZZykGWX04qDrdSTXmfVl3EpJ73OqpOf9TGC9THMaH3YXW1I2+VR4WhDGgvbX0Na2AGM7ewhYAMEcEzbVgwvOTkW62NYqaGoMyMcWzIYSx1ykR2O6XS64oPNyEGmM/tgM3rS68z+MjZy0uvMPvlZHyNYH8PKrQ/NLo8Kx+muHQjYw0ho7oKvSYg29Mp70OU4MOZnamKI9QHjoairNBxbMhiNyA7HSCRS9sFWzkGmM+tgK/ek15n1ZVzOl7DOrJOf9TGC9TGs0vrIDscFrtdgl9JIofAf4YqQ4ZRUHNX2+ujfJ61ATRxumvpQ1cJjPMdTbijqKglHBmMJ7HZ75gMu52Cr5CDTVXryV3rS6yr9Mq7kS1hX6cnP+hjB+hhmVn1odhlOZxrz2t6CqhW7MiUhLexY2PYabEgP/x5pBfa0Aqe7vWnqIxwOGy5DpaGoyw5HIwHNYCyRzWZDMBg0fLCZcZBll6Gck9+sk15X7pexGV/CunJPftbHCNbHMLPrY3b7+3DbEkikZUhFOu5lj2nUQzFtl+F0t437umLqqT70YEqn0yW9zqxQ1OnhaCScGYwG6INaSz3YzDzIdEZPfrNPep3RL2Mzv4R1Rk9+1scI1scwK+pjYdtrcNpUtDuG4LFF4cbYcY5uaQheWwxttiHItiSOdr2aCUXNbs4xUS/1EQgEIEkSFEVBKpUad3uzQ1GXO5tZMS01JZxOCGHorwdN0yCEgKqqcDqd6OjoQDgcxoEDBxAMBvNOMaSqKsLhMBwOB/x+f9EDwii/3z+qDPk6FAkhEA6HkUqlEAwGAcDUbtQulwvt7e2IRCJIpVLweDx5t4vH4xgcHITX64XL5TK9KzfrYxjrY0Q160NLpyBpI62haNqPXckZAACXNIQJjkNIpl0QWb1T3fYEQmo3FCEDQmAo5Uba5oCQ7JC0NLRUyrR6qXV9pNNp2Gy2UaFnt4+dCk/TtMy81bIsZ15jFiMhy2AsgR6MyWQycznA6/VCURREo9ExE4/rFexyuSDLsmnTFOVqa2vLzEOoH0g6fYJdm80Gr9eLdDpd8qUMI+x2OzweT+aAzj349Gv7Ho8HdrsdiUTC9DIArA8d62NEtepDpFTYxMhrHz10bub/T/A9j5UdTwEAJAjoQzeEAF6MnoLX48dAEhqEZIMk2SD9dT/plGpq3dSyPvSQdTqdSKfTUFUVQogx9ZG9nT7/qZmMjEdvyWDs7u6G3+8veXtVVZFMJvGpT32qZiscEFF9+v1L7+Avu0J5fzbkfB+azYm0NPqeoSY5EPdPRqR9Qd7XHT13Ms5adITZRa2JgYEBPPLII5l7fdmtdKfTOablbtUKRtFotORtWzIYnU6n4XsJ6XQaHR0dmDBhgkWlIqJG5GjzIu3IP7WbZnMCkjRqrlQAgCRBs8lIO/J3snF5fE31XeNwODLfuz09Pejv78fAwAA6OzsRjUahaRp6enosXTHFSOCy8w0REVVNdm9VvYOUmR3RzMBgJCIiytIwwfjDH/4QkiSNesyfP7/WxSIiIgP0ITKpVCrTUqzmeo6laKh7jEcffTSefPLJzL/NGuNCRGQVO1IISKM75xRfQ7455Rs32tnZif7+foRCobq5pNpQyeJwODBp0qRaF4OI6o0Srtlby9oA2pF/UoWPtCPxQvqTfx2qMUITNuzTZhR8nTM9UNPfCXLQ9F0KIfJOpqDfc6yncGyoYHz33XcxefJkuN1unHTSSVi3bh2mT59e62IRUa3tvL9mbz1zaA8ke+GhACHRm/f5WfY3Cr5myuAEYOfEistWtjlfM3V3+pAMTdPyBl+9hWPD3GM84YQTsH79ejz66KO47bbbsGPHDqxYsWLc6a+SySSi0eioBxERVZc+Hdx4gWf1YsfxeP4hNXnLYuo7W+jss8/GBRdcgEWLFuGss87CI488gkgkgvvuu6/ga9atW4eOjo7MY9q0aVUsMRERAcMtxmAwWLQVaFU4xmKx5gzGXIFAAHPnzsV7771XcJu1a9diYGAg89i1a1fZ72f29ERE1PwkpOHHoTEPH8IASp+irNHJslzyAHuzw1GfML/Q3MH5NNQ9xmyDg4N4//33cfHFFxfcxuVyweVyVfxeqqrWVVdiIsox/YKavfWOnW/i1fTBvD9bZn8KJ9kfgw2j/7BOw44/pP4eb2nH532d3zsVx02fbXpZa8XoSh1m3XPMXkXGSOOmYYLxO9/5Ds4991zMmDEDe/fuxbXXXgu73Y6LLrrI0vdVFAXhcNiUgCUii1jQi7JUiq0Dh1Fowm8JTknBoBg9x7JPGoCAhMPIv+SXau+o6e9UDyoNx9yl1QYGBkp+bcME4+7du3HRRRehv78f3d3dOPXUU/Hiiy+iu7vb8L7i8XhJk4Hr65M5HI6adx8mosYkYEMKcs5zVIpyw7HS9UYbJhjvuece0/YVj8cRi8XG/cCyF+30+/2WLY1DRESFGQ1HMxbhbtjON5XweDzjrnSeu5J1voU9iYioOkrtkGNGKAItHIx+vz9vOOaGotGbxkREZL5i4WhWKAItGowA4PP5xoQjQ5GIqH4VCkczQxFooHuMVtA/wGg0CkVRkEwmGYpEVJFZ0hsISMPDNyZJOwtuN932bub/D4gp2C2OtLxszSD3nqPL5UIikTAtFIEWD0ZgOBwVRUEiMdzdmqFIRJX4jOMO9No+hPjrGhoiz4U5SQAn2h/HifbHYYOGt7TjcIf6/WoXtWHp4djX14dEIgG3221aKAItfClVp7cUdUamDSIiyvWmthQCEiKiCxHRjQHROWabMLozP9Ngw3btuBqUtLFlf1cnk0lTJ2Fp6WDMvqfY29tbsEMOEVGptmknQRUy5IKD/ke4cRgJ0Y7X0ydWoWTNI/ueYm9vr+lzq7ZsMObraJOvQw4RkRF9Ygb2iplok4pffXJJQ3hHW4IYWnuWGyNyO9pYMfF4SwajqqoFe58yHImoMhJeSX8MEgQkFJ6f0w4VQtiwVTulimVrbIV6n5odji0ZjJFIZNzepwxHIqrEG9pyDAkP3CjcamxDHAOYgHe0JdUrWAMrNiTDzHBsyWB0OBxFe59mhyM75BCREYMIYLt2HFxSofuMAg5Jxdb0KWPmUaWxSh2naFY4tmQwBgKBkoZk6OE4ODiIVCpVhZIRUbN4TTsFQthghzrmZzKSSAkZ27STa1CyxmJ08L4Z4diSwWhk7lOfzwev1wtVHXtwExEV8q62CBF0oi3P5dQ2aRB9Yjr2iJk1KFnjKHdGm0rDsSWD0SiPx1Py6tNERACQhhOvplfAIanIXmhKggYJAq9oHwPQGgsUCGF8oa1Kp3nLDUcjjRsGY4kcjpafJIiIDMo3prEVxy4qimIoHE1bJSMrHCORSOmvK/sdiYhoXPnGNLbi2EUhBMLhMDSt8PAVndkTguvhaKRxw2AkIrLM6DGNrTp2UZZlpFIp9Pf3jxuOZoeizmazIRAIlL69ae9MRERjZI9pbNWxizabDcFgEKqqFgxHq0JRZ6TTJYORiMhC2WMaW3nsotPpRFdXV95wtDoUjWIwEhFZTB/T2OpjF2VZHhOO9RaKANdjJCKy3PCYxi4MCn/Lj13UwzEUCqGvrw8A6ioUAQYjEZHl0nDif1KXICHa0SpjF8cjyzJcLldmgXiPx1PjEo3GYCQiqoK3tONrXYS6EYvFkEgk4Ha7kUwm0d/fX3T+6mqqj1IQEVFLyL6n2NnZWbBDTi0xGImIqCrydbTJ1yGn1hiMRERkuXg8XrD3ab2FI4ORiIgslUqlMDg4OG7vU6vDkZOIExFR3VBVFV6vt+iQDKvCUVEUTiJuhXKWTSEiouFZb0odkmF2OCqKglAoxEnEzSaEKGsVaCIiMr5sn1nhqIei0+nkJOJm0jQN4XCYLUYioiqqNByzQ7Gzs5OTiBdT6k1YTdPQ39+PVCoFWW69SX+JiGqp3HDMDUWjEwe0ZDBGIpGil0b1UFRVFcFgsG5mZCAiaiVGw7HSUARaNBgdDgdCoVDBcMwOxa6uLjidziqXkIiIdKWGoxmhCLRoMAYCATidzrzhmBuKvIRKRFR7xcLRrFAEWjQYJUlCZ2fnmHBkKBIR1a9C4WhmKAItGowAYLPZRoWjPsM7Q5GIqH7lhmMymTQ1FIEWDkZgJByz7zkyFImI6psejtmD981ctqqlg5GIiChXSwdj9jhFvaU4Xm9VIiKqPb2lqLccU6mUqXOrtmww5na0cblceTvkEBFR/cjtaONyuUyfeLwlg1EIkbejTW6HHIYjEVH9KNT71OyJxxs2GH/yk59AkiRceeWVhl8biUQK9j5lOBIR1Z9iQzLMDMeGDMbNmzfjl7/8JRYtWlTW67PvKeaTG45GFrgkIiJzlTpO0axwbLhgHBwcxBe+8AX8x3/8B4LBYFn7CAQCRYdkZIdjOBw2fTVpIiIqzujgfTPCseGCcc2aNTjnnHOwatWqsvdR6tyn2eMceUmViKi6yp3RptJwNLZ6ZI3dc889eOWVV7B58+aStk8mk0gmk5l/R6NRw+9ps9kQDAbLei0REZWn0mne9HAMhULo7+83tBhEw7QYd+3ahW9961u466674Ha7S3rNunXr0NHRkXlMmzatrPeWJImz4RARlSmVShna3qy5T7NbjpFIpOTXNUwwbtmyBQcOHMBxxx0Hh8MBh8OBZ555Bv/2b/8Gh8OBdDo95jVr167FwMBA5rFr166y39/I6s9ERDRCVVXE4/GStjV7QvDsSQBK1TCXUs844wxs27Zt1HOXXHIJ5s+fj+9973uw2+1jXuNyueByuapVRCIiysPpdGJwcBAOhwM+n6/gdmaHok6WZQQCgZK3b5hg9Pl8WLhw4ajnPB4POjs7xzxPRNTIJDTXFSqHwwGv15vpq5EvHK0KRZ2Re4wNE4xERPVI1LoADcLj8cDhcOQNR6tD0aiGDsaNGzfWughERFQiPQyzw7HeQhFo8GAkIqLGkh2OiqIgmUzWVSgCDEYiIqoyvaWYSCQAoK5CEWig4RpERK2i2UeH6S1FXalDOaqFLUYiokqw940hufcU4/H4uL1Va4HBSERUAcFkLFm+jjb5OuTUGoORiKjONNs4RmB49puBgYG8HW3qLRwZjEREFRBWNBibLBc1TUM0GoXL5SrY0cbqcBQGKorBSERUASsupdqaLBgVRYHD4Sja+9SqcNQ0zdAk4gxGIqIKWNFibLZLqZIkIRgMljQkw+xw1DQN/f39zTmJeK0ZXTaFiFqDkUt0JWuuXIQsy4ZWKDIrHPVQVFW1OScRr6V4PA5VVWtdDCKqQ1bcYrQ12UDGcpbtqzQcs0Oxq6sLQ0NDJb+2JQf4G/kLLxaLYXBw0NDM7ETUOjQLWoxc/3WYz+eD3+9HNBpFLBYr+XW5oWh0ofmWbDFGIhH4/f6i17tjsRii0Si8Xm/e9R6JiDTN/H22ZIulAKMtx0pDEWjRzz+VSqG/vx/aOEe0Hop+vx8ej6eKpSOiRmLFPUap2bqlVqjUlqMZoQi0aDAGAgGoqlowHLNDsdYDTYmovllxKdXOS6ljFAtHs0IRaNFgdDqd6OrqyhuODEUiMoL3GKunUDiaGYpAiwYjMNx9ODccGYpEZJSmWdBi5KXUgnLD0exQBFq0841OD8dQKIS+vj4AYCgSkSFpC4Kx2YZrmC27Q040GoUkSaaFItDCLUadLMtwuVyZf7OjDREZkbbiHiNbjEVlf1e7XC7TQhFgMCIWiyGRSMDtdkOSpKK9VYmIsqUt+L5gMI5Pv3wqSRLcbjcSiYShcY7FtHQwZt9T7OzsLNghh4ioECsupdpLmFO0VeXeU+zs7CxrEoDxtOynn6+jTb4OOURE40mlzf+ecLDFmFehjjblzpBTSEsGYzweL9j7lOFIREakrGgx2lvyq3lcxXqfmhmOLfnpx+PxcXuf5oajJbPnE1FTSKXTpu/TwUupo5Q6JMOscGzJT9/j8RQdkpEdjuFwmOFIRHml0uZ/NzjZYswwOk7RjHBsyU+/1CEZejimUikoimJxqYioEalW3GNkMAIof0abSsOxpQf4l0KWZQSDQcTj8VoXhYjqTFrTLJkSji3Gyqd5y12VwwgGYwmcTqepg0eJqDlY0VoEAKejuYLRaCdGs6Z5yw5HI/PPNtenb6FiazcSUetRUuZ3vAEAuclajIqiQFXVkrY1e+5T/bKqkat+zfXpExFVkZqyqsXYXAujS5KEcDhctK+GFROCA8PhaGS6TwYjEVGZkla1GJssGGVZhsPhQCgUKhiOVoWijsFIRFQFVlxKtUlS03W+kSQJwWAQTqczbzhaHYpGNdenT0RURQnV/GCUm6zjjU6SJHR2do4Jx3oLRYDBSERUtqQFwehyNu9gAZvNNiock8lk3YUiwGAkIipbQk2Zvk+3s7nuL+bSwzH7nmM9hSLAYCQiKtuQwmBsRgxGIqIyDfFSqmH6PcVUKpVpKY7XW7UWGIxERGVKWNBibGviYMztaONyufJ2yKk1BiMRUZkOK6XN5mJEm9ycwSiEyNvRJrdDTj2EI4ORiKhMVtxjbMZgFEIgHA4X7H1ab+HIYCQiKlM8aX4wtjdhMCqKMuqeYj5WhyPnSiUiqoJ40vxLqe2u5gtGIQSCwWDRIRlWhWMsFmvOYLztttuwaNEi+P1++P1+nHTSSfjjH/9Ytfc3umwKETW/eML8YPS4nKbvs9ZkWYbTWdrvZXY4xmIxRKPR5pwrderUqfjJT36CLVu24OWXX8bHP/5xnHfeeXjjjTcsf29VVWt+zZuI6o8VLcZmDEajy/aZFY56KPr9/uYMxnPPPRef+tSncOSRR2Lu3Ln40Y9+BK/XixdffNHS91UUBeFw2NAil0TU/JRU2pLVNbzu5gvGclQajtmhqC9YXPJ7G9q6TqTTadxzzz2Ix+M46aSTDL++1GvNiqIgFArB4XDU1XRFRFR7sYQ1V5E8Ln7X6MoNx0pCEQAa6i7vtm3bcNJJJyGRSMDr9eKBBx7AggULCm6fTCaRTCYz/45GowCGgzEWi437gemh6HQ64ff7R+2HiCg2ZE0w+trYYsymh2N/fz9CoVDReVUrDUWgwVqM8+bNw9atW/HSSy/hsssuw+rVq/Hmm28W3H7dunXo6OjIPKZNmwZgeMHKaDSKWCyW93XZodjZ2cnLqEQ0RtSCYHTabXA38cw35Sq15WhGKAINFoyyLGPOnDlYunQp1q1bh8WLF+Pmm28uuP3atWsxMDCQeezatQvAcDD6/f684ZgbikZvGhNRaxg4bH4w+tp4GbWQYuFoVigCDXYpNZemaeNe4nS5XHC5XHl/pn9w+uVVn8/HUCSikg0MmX97xe9mMI6n0GVVM0MRaKBgXLt2Lc4++2xMnz4dsVgMd999NzZu3IjHHnus7H1mh6OiKEgmkwxFIirJQNz8YOxoZzAWkxuOLpcLiUTCtFAEGigYDxw4gC996Uvo6+tDR0cHFi1ahMceewyf+MQnKtqv3lJMJBIAwFAkopJErGgxtue/wkWj6eHY19eHRCIBt9ttWigCDRSMv/71ry3Zr95S1MXjcVM/YCJqTuFB84MxwGAsWfawu2QyCUVRTBtW19JNo+x7ir29vQU75BAR5YocTpi+TwZjabLvKfb29po+t2rLBmO+jjY+n4/hSERFJdSUJStrBD0MxmJyO9pYMfF4SwajqqoFe58yHImomEOD5rcWASDocVuy32ZRqPep2eHYksEYiUTG7X3KcCSi8fTHGIzVVmxIhpnh2JLB6HA4ivY+zQ5HI+t4EVHzCw0Omb5Pj8sJl9Nu+n6bQanjFM0Kx5YMxkAgUNKQDD0cBwcHkUqZfz+BiBrTwaj5wdjpZWsxH6OD980Ix5YMRiNzn/p8Pni9Xqiq+euuEVFjCsUsCEYfgzFXuTPaVBqOLRmMRnk8npJXnyai5rd/4LDp++zytZm+z3ohhDD8mkqnecsNRyONGwZjiRyOhpkLgYgslNY09Ftwj7G7iYNRURRD4WjaKhlZ4RiJREp/XdnvSETUgg7GhpDWjLeAiunytZu+z3ohhEA4HIamaUW3NXtCcD0cjTRuGIxERAZYcRkVAHo6mrfFKMsyUqkU+vv7xw1Hs0NRZ7PZEAgESt/etHcmImoBfWHzh2857bamHsNos9kQDAahqmrBcLQqFHVGOl0yGImIDNgXMT8Ye/ztsBn44m5ETqcTXV1decPR6lA0isFIRGTAnvCg6fuc2NG89xezybI8JhzrLRQBBiMRUcnSmoZ9FtxjnBTwmL7PepUdjn19fXUXigCDkYioZPsGDiOVLt6z0qjeFgpGYDgcXa6RlUQ8nvr6/RmMREQl2nPI/MuoADA5WF/BYLVYLIZEIgG32w1Jkor2Vq02BiMRUYl2hqKm79Nhk1rmHiMwuqNNZ2dnwQ45tcRgJCIq0c5+85ehmxTwwF7CogbNIF9Hm3wdcmqtNWqDiKhCmhDYGTI/GKdM8Jq+z3oUj8cLdrSpt3BkMBIRlWBfJI5kKm36fqdNqJ/emFZJpVIYHBwct/ep1eHIScSJiEz24UHz7y8CwLTO5g9GVVXh9XqLDsmwKhwVReEk4lYoZ9kUImoeOw4MmL5PCa0RjE6ns+QhGWaHo6IoCIVCnETcbEKIslaBJqLm8b4FwdjT0Y42ufmXtDO6bJ9Z4aiHotPp5CTiZtI0DeFwmC1GohYWT6qWzJE6o8tv+j6bRaXhmB2KnZ2dnES8mFJvwmqahv7+fqRSKciybHGpiKhevbsvAiv+NJ7ZzWAcT7nhmBuKNoPDYVoyGCORSNFLo3ooqqqKYDBo+IMloubx3r6wJfud2dNhyX6bidFwrDQUgRYNRofDgVAoVDAcs0Oxq6sLTqezyiUkonrydp/5wSg7bJjaImMYK1VqOJoRikCLBmMgEIDT6cwbjrmhyEuoRK1tMKFastTUEV3+lpnxxgzFwtGsUARaNBglSUJnZ+eYcGQoElGut/sOwYq+d7MnBszfaZMrFI5mhiLQosEIADabbVQ4JpNJhiIRjfHmnkOW7HfOpIAl+212ueGYTCZNDUWghYMRGAnH7HuODEUiyvbWnn7T92mTJMxix5uy6eGYPXjfrFAEWjwYiYjGsyc8iHA8afp+j+j2w+1s/oH9jaqlgzF7nKLeUhyvtyoRtZbXd4Us2e/cSUFL9tsq9Jai3nJMpVKmzq3assGY29HG5XLl7ZBDRK3rLzutCcb5UxiM5crtaONyuUyfeLwlg1EIkbejTW6HHIYjUeuKDinYcdD8+VFlhw2zegKm77cVFOp9avbE4y0ZjJFIpGDvU4YjEQHAX3YetGSYxtxJQTjtLfnVW5FiQzLMDMeWrJ3se4r55IajkQUuiag5vPrhQUv2e9SUTkv228xKHadoVji2ZDAGAoGiQzKywzEcDpu+mjQR1a94UsXbfdaMXzxmGoPRCKOD980Ix5YMxlLnPs0e58hLqkStY+tHB5HWzL+OOrGjHd3+dtP326zKndGm0nBsyWA0wmazIRgMGlrLi4ga25YP9luy32OmdVmy32ZU6TRvueFoZE1dBmMJJEnibDhELWLgcNKS1TQAYNH01gzGVCplaHuz5j7NDsdIJFLy6xomGNetW4dly5bB5/Ohp6cH559/Pt5+++2qvT9bjESt4aX390GzoDuqz+1s2YnDVVVFPB4vaVuzJwTPngSgVA0TjM888wzWrFmDF198EU888QRUVcWZZ55Z8odNRFSKl97rs2S/i6d3w9aif2A7nU4MDg4iFouNu53ZoaiTZRmBQKDk7Rtmsr5HH3101L/Xr1+Pnp4ebNmyBR/72MdqVCoiaiY7Q1HsDVvzx/axR/RYst9G4HA44PV6EY1GAQA+n2/MNlaFos7IgvMNE4y5BgaGZ6SYMGFCjUtCRM3ipff3WbJfj8uBeZNbexo4j8cDh8ORNxytDkWjGjIYNU3DlVdeiVNOOQULFy4suF0ymUQyOTIzvl4hRES51FQaL71nTTAuntEDe42/7OuBHobZ4VhvoQg0aDCuWbMGr7/+Op577rlxt1u3bh2uu+66KpWKiBrZKx8eQDxpzSxXx8+caMl+G1F2OCqKgmQyWVehCDRQ5xvd5ZdfjoceeggbNmzA1KlTx9127dq1GBgYyDx27dpVpVISUaPZtH2PJfvtaHe1/GXUXD6fD263G4lEAkKIugpFoIFajEIIXHHFFXjggQewceNGzJw5s+hrXC4XXC5XFUpHRI1s96EYPjhg/koaALB89sSW7Y1aiN5S1MXj8bwdcmqlYYJxzZo1uPvuu/GHP/wBPp8P+/YN3wvo6OhAW1tbjUtHRI1s01vWtBYB4MQ5vZbtuxHl3lOMx+Pj9lathfppuxZx2223YWBgAKeddhp6e3szj3vvvbfWRSOiBjaYUPCiRWMXp3X6MDnotWTfjShfRxufzwe/349oNFp0nGO1NEyL0cg8d0REpdq0fQ/UtDWr55w4Z5Il+21EqqpiYGAgb0ebfL1Va6lhgpGIyGxqWsMzb+22ZN92m4RlsxiMwPAQu2g0CpfLVbCjjdXhaOkk4qtXr8amTZuMvoyIqO5sfn8fokPWLCm3ZEY3fG1cfAAYvoTqcDiK9j616rKqpmnWTiI+MDCAVatW4cgjj8SPf/xj7Nlj3U1rIiKraELgsb98aNn+PzZ//OFkrUSSJASDwZKGZJgdjpqmob+/39pJxB988EHs2bMHl112Ge69914cccQROPvss/H73/8eqmrN4Nh6YHTZFCKqb1s+2I8D0SFL9j0p0I65vRy7qJNl2dAKRWaFox6KqqoamkS8rF6p3d3duOqqq/Daa6/hpZdewpw5c3DxxRdj8uTJ+Md//Ee8++675ey2bsXj8aYOfaJWI4TAoxa2FlfMY2sxWznL9lUajtmh2NXVZWgS8YqGa/T19eGJJ57AE088Abvdjk996lPYtm0bFixYgJ///OeV7NpSRm7CxmIxDA4OGvpQiai+bf3ooGWraMgOG3ujmqTccMwNRaMLzRsORlVV8d///d/49Kc/jRkzZuD+++/HlVdeib179+K3v/0tnnzySdx33324/vrrje66aiKRCDStePfsWCyGaDQKr9cLh4MdeImagSYE/veVDyzb/4lzetHu4h/SZjEajpWGIlDGcI3e3l5omoaLLroIf/7zn7FkyZIx25x++umGrudWWyqVQn9//7g9pPRQ9Pv9cLlcSCQSVS4lEVnh5Q/2oy9iTWtRkoAzjp5uyb5bWalDOcwIRaCMYPz5z3+OCy64AG63u+A2gUAAO3bsKKtA1RAIBKAoSsFwzA5FfVkUImp8aU3DQ69a11pcNK0LPR3tlu2/lRULR7NCESjjUurFF188big2AqfTia6uLqiqiv7+/lGXVXNDkYiax3Nv78VBi3qiAsAZC9latFKhy6pmhiLQQHOlmk2W5THhyFAkal5DSsrS1uKMLj+OnMQhGlbLDUezQxFo8Snh9HAMhULo6xueRJihSNScHvvLhxhMWDfs6uzFR1i2bxot+7JqNBqFJEmmhSLQwi1GnSzLo9Zs9Hg8NSwNEVmhf3AIT79h3ULlU4JeLJreZdn+aazs72qXy2VaKAIMRsRiMSQSCbjdbkiSNOaeIxE1vv/+87uWraABAGctnlHWIHYqj375VJIkuN1uJBIJU+dWbelgzL6n2NnZWbBDDhE1ru17D+HVDw9atv8efzuWzpxo2f5ptNx7ip2dnaZPPN6ywZivo02+DjlE1LjSmob7XnzH0vc459iZsLG1WBWFOtqYPfF4SwZjPB4v2PuU4UjUPJ7YttOywfwAMDnowfGz2FqshmK9T80Mx5YNxvF6n+aGo5G5VYmoPhyMDuGRrdZONHLucbPZWqyCUodkmBWOLRmMHo+n6JCM7HAMh8MMR6IGc8+ftlva4WZGlw9LZnRbtn8aZnScohnh2LLBWAo9HFOpFKeFI2ogf3p3L97cc8jS9zj/+DmW7p/Kn9Gm0nBs6QH+pZBlGcFgEPG4dfcpiMg8A4eT+P1L1q4Ju3BqJ+ZPnmDpe7S6Sme0yZ1b1QgGYwmcTqepg0eJyDp3v7Adh5WUZfu3SRI+t4ytRSOMdmI0a5q37HA0Ms60JS+llqPQ8lREVD9eeGcv/rIzZOl7nDy3F71Br6Xv0WwURYGqljYdn9lzn+qXVY1c9eO3PRE1hf7BIdz/krVjFttkBz5z3GxL36MZSZKEcDhctK+GFROCA8PhaGS6TwYjETU8TRNY/8ybSKhpS9/n08fOgq+Nt1WMkmUZDocDoVCoYDhaFYo6BiMRtZQ/vrYD7+2PWPoek4MerDxqiqXv0awkSUIwGITT6cwbjlaHolEMRiJqaO/vj+CRrR9a/j4XnjgPdvY1KJskSejs7BwTjvUWigCDkYga2GBCwa83vg7N4gk4TpgzCXN7uQhxpWw226hwTCaTdReKAIORiBqUEALrN72JcDxp6ft4XA78zbIjLX2PVqKHY/Y9x3oKRYDBSEQN6o+vfYg3dvdb/j6fXXYkO9y0GAYjETWc13eF8NCrH1j+PvN6gzj5yF7L36eV6PcUU6lUpqU4Xm/VWmAwElFDORA9jDueeQNWz+vvctjxhVOOMjRjCo0vt6ONy+XK2yGn1hiMRNQwhpQUbnvyNUunfNN9ZuksdPvbLH+fViGEyNvRJrdDTj2EI4ORiBqCJgR+88zr2Bc5bPl7HTkpgNMWTLP8fVqFEALhcLhg79N6C0cGIxE1hN+/9C5e32V9Zxu3044vrVjABYhNpCjKqHuK+VgdjpwrlYiaysY3d2HDm7uq8l5/s/xIdPl4CdVMQggEg8GiQzKsCsdYLMZgtILRZVOIyByvfXQQ91k8Obhu8fQunDqP076ZTZZlOJ3OkrY1OxxjsRii0SjnSjWbqqo1v+ZN1Io+ODCAX2983fIeqAAQaHfhi6cusP6NWpDRZfvMCkc9FP1+P4PRTIqiIBwOs8s2UZXtDQ/i1ie2Qk1bf7VGkoDVH1sAr7u0Vg1Zr9JwzA5FfcHikt/b0NZNotRrzYqiIBQKweFw1NV0RUTNrn9wCP/+2FbEk9YPywCAsxYdgfmTJ1Tlvah05YZjJaEItHAwxmKxcbfRQ9HpdCIYDLLFSFQlkcNJ3PzHVxE5bO0cqLq5kwI499hZVXkvMs5oOFYaikCLBqPH40E0Gi0Yjtmh2NnZyVAkqpLYkIKbH30FB2NDVXk/n9uJr5y2EDYbz/F6Vmo4mhGKQIMF46ZNm3Duuedi8uTJkCQJDz74YFn78Xg88Pv9ecMxNxSN3jQmovIMJhTc/OirVRnADwA2ScJXTz8GHe2uqrwfVaZYOJoVikCDBWM8HsfixYtxyy23VLwvn883JhwZikS1MZhQcNMfX8We8GDV3vOzy+ZwjcUGUygczQxFAHBUvIcqOvvss3H22Webtj/9A4xGo1AUBclkkqFIVGXRoSRu+uOr6IuUPgC7UsfPnIhVC6dX7f3IPHo49vf3IxQKweVyIZFImBaKQIO1GK3g8/ngdruRSCQghGAoElVROJ7AjY+8UtVQnNbpw8Urjqra+5H59HAUQiCRSMDtdpsWikCDtRiNSiaTSCZHerZFo9Ex2+gtRV08Hjf1Ayai/A5ED+PmR1/FocFE1d7T3ybjslWLIDvsVXtPskb2sLtkMglFUUwbVtfUTaN169aho6Mj85g2bfRs+dn3FHt7ewt2yCEic+3qj+FnD2+paig67Tb8wxmLEPS4q/aeZI3se4q9vb2mz63a1MG4du1aDAwMZB67do1MQpyvo02+DjlEZK63+w7hxke2IDpUvWkWJQCrVyzArJ6Oqr0nWSO3o40VE4839aVUl8sFl2tsV2xVVRGPx/N2tMnukJP9byKq3J/f34c7n30TKa0Kk59mOXfpbCydNbGq70nmK9T7NLdDznjLW5WioYJxcHAQ7733XubfO3bswNatWzFhwgRMn156D7NIJIKOjo6CHW1ywzFfuBKRMX987UP875b3Ud1IBE6dNxlnLz6iyu9KZis2JMPMcGyoYHz55Zdx+umnZ/591VVXAQBWr16N9evXl7wfh8NRtPdpdji2t7fDbufNeqJypNIa7np+O158r6/q733MtC5cdNL8qr8vmavUcYpmhWNDBeNpp50GYcL6M4FAoKQhGXoFRCIRQ0uWENGw6JCCXz39F7y/f6Dq7z27pwNfPZ3TvTU6o4P3zQjHhgpGsxiZ+9Tn8yGVSnE9RiKDdvXHcPuTf8GhePV6nuqmBL34xicWc1hGgyt3Rpt84WhESwajUR6Px5SWKlGrePHdPtz9wvaqrKWYq9vfhivOWoJ2F9dWrBflfH9WvHRUTjgaaTUyGEvkcPCjIipGTWv4/UvvYNP2PTV5/wkeN6785HGcGLzOKIoCt7v08aOmrZKRFY6RSKTk1/HbnohMcTA6hF9v3IaPQrUZA9zR7sK3zj4WE7wcwF9vhBAIh8Po6ekp2r/D7AnB9XAsdYF6gMFYsWgqiicjT456blVgFfwOf41KRFR9W3bsx3899xYSarom79/RJuMfzz4OPf72mrw/jU+WZQwODqK/v3/cEQFmh6LOZrMhEAiUvD2DkYjKllTTuO/Ft/HCu9UfiqHzt8m48lPHYWIHQ7Fe2Ww2BINBDAwMFAxHq0JRZ6TTJYORiMry4cEB3PHMGzgQHapZGYIeF6785HHoYSjWPafTia6uLoRCoTHhaHUoGsVgJCJD0pqGR7buwKOvfQSthr21O71ufOuTx6Hb31azMpAxsiyPCcd4PF5XoQgwGInIgF39Mfx/z76J3YcGa1qOSR3t+OYnj+VKGQ0oOxz7+oYvwddTKAIMRiIqgZrW8PCrH+CJbTtr2koEhhca/uZZS+B1m7P2HlWfLMtwuVxIJIYnf6i3mcUYjEQ0ru17D+F3L2yv6b1E3bzeIL6+ahHcTn51NbJYLIZEIgG3241kMlm0t2q18egioryiQ0n895/fw5/f31frogAAls7swZc/djQc9vr48qTy5Ha00dfGradwZDAS0ShpTcPGt3bj4Vd3YEhJ1bo4AIBVC6fjc8vmGOpyT/UnX+/TfB1yah2ODEYiynhzTz9+/9K76IuUPkuIlWyShAtOOBKnLZhW66JQheLxOA4fPpy3o029hSODkYiwNzyIBza/h9d399e6KBlupx1/f9pCLJxmbGUEqj+pVArxeByBQKBg71Orw1FV1ZK3ZTAStbBDgwk8vHUHXny3r+a9TbN1et247BOLMSXorXVRyASqqsLr9RYdkmFVOCqKwknErcBlp6iZRIeSePwvH2HT9j01WRpqPHN7g7j09GPgdXPZqGbhdDpLHpJhdjjqnXuMrJDEYCyBEIILFVNTiA4pePL1j/DMW7uhpOorEAHg9AXT8DfL58BeBz0TyTxGl+0zKxz1UHQ6nWhvL33aQAZjEZqmIRwO17yXFFElwvEEnti2E8+/s6cuA1F22PCFU47C8tmTal0UqhOVhmN2KHZ2diIWK305tJYMxlJvwmqahv7+fqRSKXi9vNdBjWdveBBPvr4Tm9/fh5RWn7cDevzt+NoZx/B+Io1RbjjmhqLRhk1LBmMkEoHf74csF55SSg9FVVURDAaRTtdmnTkio4QQeGvPITz1xk68uedQrYszrqUze/DFU4/iTDZUkNFwrDQUgRYNRofDgVAohK6urrzhmB2KXV3DXcUZjFTvhpQUXnyvD8+8tRv7Bw7XujjjctptuOCEuVgxf0qti0INoNRwNCMUgRYNxkAgAFVV84ZjbijKssyON1TXPjgwgBfe2YuXP9iPZKr+/4CbEvTi7087Gr28dEoGFAtHs0IRaNFglCQJnZ2d6O/vHxWO+UKRqB4NHE5i8/v78MK7fXUzS00xEoDTj56G84+fAyfnO6UyFApHM0MRaNFgBACbzTYqHDs7OxGNRhmKVLcSagpbPzyIzR/sw/a94boakF9M0OPCl1YswPzJE2pdFGpwueHo9/vR399vWigCLRyMwEg4hkIhhEIhAEB3dzdDkepGQk1h284QXvnwAN7Y3V93g/FLcdKRvbjghLlok1v664ZMpIfjwYMHTW0p6nikEtWZ6JCCbbtCeO2jg3hr7yGkGjAMgeFW4t+dPJ9znVLDaelgzB6n2NXVhWg0Om5vVSIraEJgZyiGN/f0Y9uuED4KRdFAV0nHkACcOm8KPrtsDluJZAn9nqIsy5lLqWbOrdqyR22+jjb5OuQQWeFA9DDe6Qtj+95D2L43jHiy9Jn/61lvwIMvnDIfsycGal0UalL5OtqYPfF4SwajECJv79PcDjkMRzKDJgT6wnG8fyCC9/ZF8N7+CMLxZK2LZSqXw46zlxyBVQunc55Tskyh3qdmTzzeksEYiUQyH2Ru8OULRyIjIvEEPgzF8NHBKHYcHMBHoSgSav2PLyzXsUd04/PL52KC113rolATKzYkw8xwbMlgTKVSmDx5csHWYG44dnR0VLmE1AhSaQ37Bw5jT3gQew4NYvehGHb1xxBLNMdl0WKmBL34/AlHcggGWa7UcYpmhWNLBmMgECh6iTQ7HMPhMCcRb2HRIQUHo4dxIDqE/QNx7B84jL5IHAejQw01ltAsPrcT5x43C6fMnQKbTap1cajJGR28b0Y4tmQwOp2lLYCqh+OBAwc4LVyT0jSBaEJBJJ7AoXgS4cEEDsUT6I8NoX8wgVBsqKkvgxohO2w44+jpOHPRDE76TVVR7ow2+cLRCB7dRdhsNgSDQUSj0VoXhUqQ1jQMKSkcTqZwWFExmFART6qIJVQMJhREhxTEEgqihxUMDCmIDSkt2eozwiZJOGXeZJyzZCY62l21Lg61iEqnecsNx1IbRECLBmNK06AaWC0jLQQcTicGEwocQ6N7E8bSSQwpo+8pxRJJwN5cvQ7zyc4T8dcnRNbzmhAQYrgXsPbXhxDDz6c18df/akhr4q8PDam0hpQmoKaH/1/960NJpaGm0kim0lBSGpJqCsmUhoSSQiKVwpCSRkJJNcQk2o3CJklYNnsizlkyE93+0lc/J8qVSqUMbW/W3KfZ4RiPlz6ncEsG4479A5BjpVeUpKVhE2n89KGXkXa0jfpZyn4YhwLvjXpuY6QdjjS/SKgx2SQJx8+aiLOXHIFJHZ5aF4eagKqqiMfjJQ1/M3tCcD0cd+7cWfJrWjIYiWgsu03CCbMn4axFR6Cng3/YkXmcTicGBwfhcDjg8/kKbmd2KOpkWUYgECh5ewYjUYtzO+04Ze4UfPzoaRyLSJZwOBzwer2Zvhr5wtGqUNTxHmOd2598C7KtHQHHdEgSu7tTbQQ9Lpx21DScOm8y2l2lf2kQlcPj8cDhcOQNR6tD0SgGYw1sCt8MRRtEp3MWZrV/DNPdy+C2cxIBqo7ZPR04bcE0HHtEN6dvo6rSwzA7HOstFAEGY01oQkVaKNivbMd+ZTu22O7CNPdSzGw7BZNcC2GX+Nc7mcvlsGPZ7In42PypmNZZ+B4PkdWyw1FRFCSTyboKRaABg/GWW27BDTfcgH379mHx4sX493//dyxfvrzWxTLMIbngsvmgiTRUcRjvH34GO4aeg8fehZltp+KItpN4qZUqNqPLj1PnTcbxsyZyUD7VDb2lmEgkAKCuQhFosGC89957cdVVV+H222/HCSecgJtuuglnnXUW3n77bfT09NS6eBmvRu7DjsHnCv5cFQnYMHwQ2CQ7XJIPLviQFgriqX78JfbfeHPwIV5qpbJ0tMlYNnsSTjqyF5ODnMqQ6o/eUtTF4/Fxe6tWW0MF44033ohLL70Ul1xyCQDg9ttvx8MPP4zf/OY3uPrqq2tcuhFRtQ/xdD9kW/4vJRtscEpju8PbJRntdhlCCKREgpdaqWRupx1LZvRg2eyJmN87gXOYUt3KvacYj8fH7a1aCw0TjIqiYMuWLVi7dm3mOZvNhlWrVuFPf/pTDUuWn11ywm0rr5IlSYJTaoMTbQUvtc5sOxUB51STS02NxOWw45jpXVg6cyKOnjIBToe91kUiGle+jjb5OuTUWsMEYygUQjqdxsSJE0c9P3HiRGzfvj3va5LJ5KjmeiPOd5p9qVXRDiOsfoRYaj8+HHoe5/XcBJvEL8NW4nU7ccy0Liye0Y0FkxmG1DhUVcXAwEDejjb1Fo4NE4zlWLduHa677rpaF6MieotRFQnYJDuCzhmZFiNDsTVMDnqwcGoXjpnWhVkTO2BjhyxqMJqmIRqNwuVyFexoY3U4CgOLBTRMMHZ1dcFut2P//v2jnt+/fz8mTZqU9zVr167FVVddlfl3NBrFtGnTLC2nLi1SSGqxgj93Su0Fg02/x5gUw5PeyrZ2zG5byXuMLcLrdmJebxBHTenEgikTEPRwNhpqbIqiwOFwFO19alU4apqGSCRS8vYNE4yyLGPp0qV46qmncP755wMY/mWfeuopXH755Xlf43K54HJVf5kcv3MS2u3Bgj9XRQKqOAyXNLrS00JBUotDQwoOSUaPPA+z21eyV2qTa5cdmD0xgHm9QcztDWLqBC+H6VBTkSQJwWCwpCEZZoejpmno7+83tMJHwwQjAFx11VVYvXo1jj/+eCxfvhw33XQT4vF4ppeqpYRW8qbHBi7EMl/hMt3b9/dIi+GFj3MvlXocHMfY7Lr9bZjZ3YHZEzswuyeAyUEP65mamizLho5xs8JRD0VVVZt3EvELL7wQBw8exDXXXIN9+/ZhyZIlePTRR8d0yDGbpKmQDARjKVIiCTU93DGIl0qbV9DjwrROH2Z0+TMPr5v1S62lnD/8Kg3H7FDs6urC0NBQya9tqGAEgMsvv7zgpdPSlX4T1pZWYE+r0OzmfZnZJCfskhMTnLN4qbRJyA4bJnZ4MCXoxZSgB1Mm+DCt0wuvu/j6c0SUX7nhmBuKsiw3dzCawZ5KAsIDFPkrZjgUFaTtTkiSedMVrQh+Ey6bh5dKG4wkAYF2F3r87cOPjnZM6mjHxA4POn1u9hYlsoDRcMwXika1ZDBKQoMjNYSUo61gOI6Eogwh2SGJtGnvP8m1wLR9kXnsNgkdbS4EPS4EPW5M8A4/Or1udPna0Olrg9NeP/M5ErWKUsPRjFAEWjQYUw43XOOEY3YoanYZkmZeKFJ1uRx2eNxOeFxOeN1O+NwyvG4n/G4ZvjYZ/jYZHe0udLS74HM72YInqlPFwtGsUARaNBgh2ZByuOFIDY0Jx9xQJPNJAGw2CTZJgt2mP2yw2yQ47DY4bDY47DY47TY4bBKcDjucdhtkhx2y3QbZaYfssMPlsMPttMPldMDttKNNdsDtdKBddqBNdqDd5eB6g0RNpFA4mhmKQIsG48yJHfD7/VAVBeFDh+BwAoFgAIcPH8ZgLAnvhAnwekcmAFdVFclEEpeeczwCwdHjE2PpKJ6JHR713ErfifDZ/VX5XaptbINKgpR5Xsr8fPi54X/bJAmSJMGW9f9EROXIDUePx2NqKAItGowOmw1Oux3OtjY4ursRCoUQOnAAABDo6BjTRBfpNFI2Cb6/XnbLJqVcaEuO7rHqb3PB76j+xAJERK0gOxyj0SgkSTItFAGg5a8zybI8anYcj8dTw9IQEVEpsr+rXS6XaaEIMBgRi8WQSCTgdrshSRL6+/uhaeYO5iciIvPo9xQlSYLb7UYikUAsVnhuaqNaOhhjsRii0Sj8fj86OzvR1dUFVVUZjkREdSq3o01nZyf8fj+i0ahp4diywZgdivr1almWGY5ERHWqUO9Tn89naji2ZDDG4/ExoahjOBIR1Z9iQzLMDMeWDcZ8oajLDUcjC1wSEZG5Sh2naFY4tmQwejyeovPtZYdjOBxmOBIR1YDRwftmhGPLBmMp9HBMpVJQFMXiUhERUbZyZ7SpNBxbcoC/EbIsIxgMIh6P17ooREQto9Jp3nJnyDGCwVgCp9Np6uBRIqJWYrQTo1lzn2aHo5GpKFvyUmo5bJyMmoioLIqiQFXVkrY1e0Jw/bKqkat+/LYnIiJLSZKEcDhctK+G2aGo8/l8hqb7ZDASEZGlZFmGw+FAKBQqGI5WhaKOwUhERHVDkiQEg0E4nc684Wh1KBrFYCQiIstJkoTOzs4x4VhvoQgwGImIqEpsNtuocEwmk3UXigCDkYiIqkgPx+x7jvUUigCDkYiIaBQGIxERVY1+TzGVSmVaiuP1Vq0FBiMREVVFbkcbl8uVt0NOrTEYiYjIckKIvB1tcjvk1EM4MhiJiMhSQgiEw+GCvU/rLRwZjEREZClFUUbdU8zH6nDkXKlERFQ3hBAIBoNFh2RYFY6xWIzBaAWjy6YQEdEwWZbhdDpL2tbscIzFYohGo5wr1Wyqqtb8mjcRUaMyumyfWeGoh6Lf72cwmklRFITDYUOLXBIRUWUqDcfsUNQXLC75vQ1t3SRKvdasKApCoRAcDkddTVdERNQKyg3HSkIRaOFgjMVi426jh6LT6UQwGGSLkYioBoyGY6WhCLRoMHo8HkSj0YLhmB2KnZ2dDEUiohoqNRzNCEUAcJT9ygbm8Xhgs9kQjUYBYNQHmBuKxW4a+x1+fK7rc5aWl4io1enh2N/fj1AoNGZMpFmhCLRoixEYDkO/3z+q5Wg0FImIqHoKtRzNDEWgRVuMOv0DjEajUBQFyWSSoUhEVMdyW44ulwuJRMK0UARauMWo8/l8cLvdSCQSEEIwFImI6pwejkIIJBIJuN1u00IRYDBmWoo6I9MGERFRbWR/VyeTSVMnYWnpYMy+p9jb2zvmniMREdWf7HuKvb29ps+t2jDB+KMf/Qgnn3wy2tvbEQgEKt5fvo42+TrkEBFR/cjtaGPFxOMNE4yKouCCCy7AZZddVvG+VFUt2PuU4UhEVJ8K9T41OxwbplfqddddBwBYv359xfuKRCLo6Ogo2NEmu7cqALhcrorfk4iIyldsSEaxcY5GNEwwliOZTI7qWKMHncPhKNr7NDsc29vbYbfbrS0sERHlVeo4RbPCsWEupZZj3bp16OjoyDymTZsGAAgEAiUNydAvqw4ODiKVSlldXCIiymF08L4Zl1VrGoxXX301JEka97F9+/ay97927VoMDAxkHrt27QIAQ3Of+nw+eL1eqKpadjmIiMi4cme0qTQca3op9dvf/ja+/OUvj7vNrFmzyt6/y+Uy5f6gx+OBEKLi/RARtaJyvj8rXjoq57KqkUuqNQ3G7u5udHd317IIJXM4mvp2LBGRZRRFgdvtLnl7s+Y+zQ7HSCRS8usa5tt+586dOHToEHbu3Il0Oo2tW7cCAObMmQOv11vbwhERUUFCCITDYfT09BTt32H2hOB6OBqZ1axhgvGaa67Bb3/728y/jz32WADAhg0bcNppp9WoVEREVIwsyxgcHER/f/+4IwLMDkWdzWYzNDFMw/RKXb9+PYQQYx4MRSKi+maz2RAMBqGqKvr7+6Fp2phtrApFnZFOlw0TjERE1LicTie6urryhqPVoWgUg5GIiKpCluUx4VhvoQg00D1GM6mqamhci6qqSKVSGBgYsLBURETNZ2BgAKlUatRY8I6ODoTDYezZswcA4PV64XK5TF06KpeRsegtGYwHDx401ENJ0zQIIfDII4/kHbahL5YJAHa7vez5+SqlKArS6TQAwO12G7qmbhZN0zLT8Llcrpos+sz6GMH6GMH6GFbt+kilUohEIpAkadTvq6pqZnxjOp3OTNlplcOHD5e8bUsGY24FlUIIAZfLBafTOeb5cDiMVCoFWZYxNDQEu90Oj8djZpGLisfjGBoayvzVJYRAMBis6smvqiqi0WhmXtnBwUEEg8Exn5mVWB8jWB8jWB/DalEfqqrCZrON+t5VFAWapkGSJAghoKoqZFm29A8FI3XNYCyRpmlwOp2j/rrSNC1znbynpweyLGeulzscjqpdL4/FYjh8+DACgQB8Pl9mrcloNFp0snSzKIqCgYEBuFwudHZ2AgD6+/sxMDBQ0Sz3RrA+RrA+RrA+htWyPvTvXJvNhmQyiXQ6DYfDAZfLhVQqBUVRoKqqpa1o9kqtAv0gU1V11IFd7fUc8924zneD20r5Fn22YvHQ8bA+RrA+RrA+htVLfSSTSaRSqUwoAsOzismyDCEEksmk5fVRCgZjGQodZLpqHWzj9eaq1smf76TXVevkZ32MYH2MYH0Mq5f6UBRlTCjq6i0cGYwGFTvIdFYfbKV0cbb65B/vpNdZffKzPkawPkawPobVS32kUqlRl0/zsTocjeyPwWhAqQeZzqqDzci4H6tO/lJOep1VJz/rYwTrYwTrY1i91Ec8HoemabDb7UVXO7IqHHOHixTDYCyRpmmIRCIlH2Q6sw+2cgbDmn3yGznpdWaf/EZPeh3rYxjrYwTrY4QV9TE4OAibzVZyGcwOR71zjxEMxhIIIZBOp5FKpcrqQWbWwVbJDBFmnfzlnPQ6s07+ck96HetjGOtjBOtjhNn14fV6DS/bZ1Y46qEoSZKhz4HBWIQ+IFcf91Rut+pKDzYzpk2q9OSv5KTXVXryV3rS61gfw1gfI1gfI8ysj3LHSFYajtmh6HK5OFyjmFI/4OxQdDgcFQ/ELfdgM3MuwXJPfjNOel25J79ZJ72O9TGM9TGC9TGiHuqj3HDMDUWj9dGSwajPfTqe7FA0c0YGowebFRPsGj35zTzpdUZPfrNPeh3rYxjrYwTrY0Q91IfRcKw0FIEWDUZgZExNPrmhqE/hZJZSDzYrZ50v9eS34qTXlXryW3XS61gfw1gfI1gfI+qhPkoNRzNCEWjRYJRlGZIk5Q3H3FA0etO4VMUOtmosxVLs5LfypNcVO/mtPul1rI9hrI8RrI8R9VAfxcLRrFAEWjQYs2/GZodjtUJRV+hgq+b6ZIVO/mqc9LpCJ3+1Tnod62MY62ME62NEPdRHoXA0MxSBFp1EHBg+2FwuF5LJZOZA05dBqUYo6vQDKXvJlWov2qmf/KFQCP39/fD7/ejv76/KSa/TT/7+/n6EQiF0dnYiGo1W7aTXsT6GsT5GsD5G1EN96N/NiqIgmUzC6XSaGopACwcjMBKOiURi1Bpp1QpFXe7BVouVrPWT/+DBg1X7SziXfvKHQiGEQiEAQHd3d9XX72N9DGN9jGB9jKiH+tC/o5PJJJLJpKmhCLTopVQiIqJCWjoY862mPV5vVatkX6Ov5hIw2fR7JvpfxqlUqipL8mTT75lkzzBUjSV5crE+hrE+RrA+RtRDfej3FPWrfgBMnVu1ZYMxX0ebfB1yrJZ747ra66MBYzsSuFyuqq5XB4ztSKAv6Fqt9ep0rI9hrI8RrI8R9VAfuR1trJh4vCWDUf8Aczva6H99VCscC/XmqubBVqh3XTUXcy3Uu67ai7myPoaxPkawPkbUQ30U6n1qdji2ZDAqilKw92m1wrFYF+dqHGzFupxX4+Qv1uW8Wic/62MY62ME62NEPdRHsSEZZoZjSwYjgHGHZOSGYzqdNvW9Sx33Y+XBVuo4LCtP/lLHYVl98rM+hrE+RrA+RtRDfZQ6TtGscGzJYHQ6nUWHZOSGo1kHvNHBsFYcbEYHJ1tx8hsdnGzVyc/6GMb6GMH6GFEP9WF08L4Z4diSwVjqWJfscDS6AnQ+5c4QYebBVu6MHWae/OXO2GH2yc/6GMb6GMH6GFEP9VHujDaVhmNLBqMR2eEYDofLPtgqnTbJjIOt0mmszDj5K53GyqyTn/UxjPUxgvUxwsz6iMfjZZWh0mnecsNRCFHyaxmMJZAkCXa7HQ6Ho6yDzay5BCs5+c2a27GSk9+suR0rPflZH8NYHyNYHyPMro/BwUHDnRjNmvs0OxyNfA4MxhLZbDYEAgHDB5vZE+yWc/KbPeFxOSe/2RMel3vysz6GsT5GsD5GWFEfXq8XmqaVXAbTJwT/azgawWA0wOjBZtWs80ZOfqtWATBy8lu1CgDrYwTrYwTrY1i91IfH44HNZkM6nc7MNFaI2aGoczgccDqdJW/PYDSo1IPN6qVYSjn5rV4ap5ST3+qlcVgfI1gfI1gfw+qlPhwOB+x2O1KpVMFwtCoUdUb2x2AsQ7GDrVrrk4138ldrvbjxTv5qrRfH+hjB+hjB+hhWL/Whjx3PF45Wh6JRDMYyFTrYqrloJ5D/5K/mIqpA/pO/2ouosj5GsD5GsD6G1Ut96HObZodjvYUi0OLrMVYqd/FQfW3Haq9Plr0+WvbindVcLy57MVd9rbjsVQCqgfUxgvUxgvUxrF7qQ18NI5VKQdM0CCHqKhSBFgtGfRzL0NBQWa+LRqN5b+A6nU5EIhHE43G4XC5omoaBgYHKC2xQOp3GoUOHAAwvYFrtpWCAkc8CAAKBAIaGhgx/3maVgfXB+sjG+hhdhmrVh6qqmd9RkqTM8/qc1cDwHw5mT72ZSy9DKeMZJWFk1GOD2717N6ZNm1brYhARUY3s2rULU6dOHXeblgpGTdOwd+9e+Hy+UX+5mCEajWLatGnYtWsX/H6/qfuuFf5OjYG/U2Pg71RbQgjEYjFMnjy5+HyrVSpTXbDZbEX/UqiUvqp1M+Hv1Bj4OzUG/k6109HRUdJ29XGnk4iIqE4wGImIiLIwGE3icrlw7bXXZroiNwP+To2Bv1Nj4O/UOFqq8w0REVExbDESERFlYTASERFlYTASERFlYTBa4Ec/+hFOPvlktLe3IxAI1Lo4ZbvllltwxBFHwO1244QTTsCf//znWhepbJs2bcK5556LyZMnQ5IkPPjgg7UuUsXWrVuHZcuWwefzoaenB+effz7efvvtWherIrfddhsWLVqUGRd30kkn4Y9//GOti2Wan/zkJ5AkCVdeeWWti1KRH/7wh5AkadRj/vz5tS6WaRiMFlAUBRdccAEuu+yyWhelbPfeey+uuuoqXHvttXjllVewePFinHXWWThw4ECti1aWeDyOxYsX45Zbbql1UUzzzDPPYM2aNXjxxRfxxBNPQFVVnHnmmYjH47UuWtmmTp2Kn/zkJ9iyZQtefvllfPzjH8d5552HN954o9ZFq9jmzZvxy1/+EosWLap1UUxx9NFHo6+vL/N47rnnal0k8wiyzB133CE6OjpqXYyyLF++XKxZsybz73Q6LSZPnizWrVtXw1KZA4B44IEHal0M0x04cEAAEM8880yti2KqYDAo/vM//7PWxahILBYTRx55pHjiiSfEypUrxbe+9a1aF6ki1157rVi8eHGti2EZthhpDEVRsGXLFqxatSrznM1mw6pVq/CnP/2phiWj8egrJEyYMKHGJTFHOp3GPffcg3g8jpNOOqnWxanImjVrcM4554w6pxrdu+++i8mTJ2PWrFn4whe+gJ07d9a6SKZpqblSqTShUAjpdBoTJ04c9fzEiROxffv2GpWKxqNpGq688kqccsopWLhwYa2LU5Ft27bhpJNOQiKRgNfrxQMPPIAFCxbUulhlu+eee/DKK69g8+bNtS6KaU444QSsX78e8+bNQ19fH6677jqsWLECr7/+elXXdrQKW4wluvrqq8fcbM59MDSoVtasWYPXX38d99xzT62LUrF58+Zh69ateOmll3DZZZdh9erVePPNN2tdrLLs2rUL3/rWt3DXXXfB7XbXujimOfvss3HBBRdg0aJFOOuss/DII48gEongvvvuq3XRTMEWY4m+/e1v48tf/vK428yaNas6hbFYV1cX7HY79u/fP+r5/fv3Y9KkSTUqFRVy+eWX46GHHsKmTZssXz2mGmRZxpw5cwAAS5cuxebNm3HzzTfjl7/8ZY1LZtyWLVtw4MABHHfccZnn0uk0Nm3ahF/84hdIJpOw2+01LKE5AoEA5s6di/fee6/WRTEFg7FE3d3d6O7urnUxqkKWZSxduhRPPfUUzj//fADDl+qeeuopXH755bUtHGUIIXDFFVfggQcewMaNGzFz5sxaF8kSmqYhmUzWuhhlOeOMM7Bt27ZRz11yySWYP38+vve97zVFKALA4OAg3n//fVx88cW1LoopGIwW2LlzJw4dOoSdO3cinU5j69atAIA5c+bA6/XWtnAluuqqq7B69Wocf/zxWL58OW666SbE43FccskltS5aWQYHB0f9Nbtjxw5s3boVEyZMwPTp02tYsvKtWbMGd999N/7whz/A5/Nh3759AIbXnGtra6tx6cqzdu1anH322Zg+fTpisRjuvvtubNy4EY899liti1YWn8835p6vx+NBZ2dnQ98L/s53voNzzz0XM2bMwN69e3HttdfCbrfjoosuqnXRzFHrbrHNaPXq1QLAmMeGDRtqXTRD/v3f/11Mnz5dyLIsli9fLl588cVaF6lsGzZsyFsnq1evrnXRypbv9wEg7rjjjloXrWxf+cpXxIwZM4Qsy6K7u1ucccYZ4vHHH691sUzVDMM1LrzwQtHb2ytkWRZTpkwRF154oXjvvfdqXSzTcHUNIiKiLOyVSkRElIXBSERElIXBSERElIXBSERElIXBSERElIXBSERElIXBSERElIXBSERElIXBSERElIXBSERElIXBSERElIXBSNTEDh48iEmTJuHHP/5x5rkXXngBsizjqaeeqmHJiOoXJxEnanKPPPIIzj//fLzwwguYN28elixZgvPOOw833nhjrYtGVJcYjEQtYM2aNXjyySdx/PHHY9u2bdi8eTNcLleti0VUlxiMRC1gaGgICxcuxK5du7BlyxYcc8wxtS4SUd3iPUaiFvD+++9j79690DQNH374Ya2LQ1TX2GIkanKKomD58uVYsmQJ5s2bh5tuugnbtm1DT09PrYtGVJcYjERN7p/+6Z/w+9//Hq+99hq8Xi9WrlyJjo4OPPTQQ7UuGlFd4qVUoia2ceNG3HTTTbjzzjvh9/ths9lw55134tlnn8Vtt91W6+IR1SW2GImIiLKwxUhERJSFwUhERJSFwUhERJSFwUhERJSFwUhERJSFwUhERJSFwUhERJSFwUhERJSFwUhERJSFwUhERJSFwUhERJSFwUhERJTl/wf+88RjKgowdAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# create the euler waveguide bend structure\n", "euler_bend = line_to_structure(x_euler, y_euler, w, t)\n", "\n", "# construct the simulation by copying the previous simulation and updating the structure\n", "sim = sim.copy(update={\"structures\": [euler_bend]})\n", "\n", "# visualize the euler bend structure\n", "sim.plot(z=0)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "890172b2", "metadata": {}, "source": [ "Submit the simulation to the server." ] }, { "cell_type": "code", "execution_count": 17, "id": "9533e5ab", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:45:36.003713Z", "iopub.status.busy": "2023-03-27T20:45:36.003531Z", "iopub.status.idle": "2023-03-27T20:46:07.772557Z", "shell.execute_reply": "2023-03-27T20:46:07.771981Z" } }, "outputs": [ { "data": { "text/html": [ "
[08:44:40] Created task 'circular_bend' with task_id 'fdve-13459ce4-fd53-4334-b553-881cbebd3c0cv1'.   webapi.py:139\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:44:40]\u001b[0m\u001b[2;36m \u001b[0mCreated task \u001b[32m'circular_bend'\u001b[0m with task_id \u001b[32m'fdve-13459ce4-fd53-4334-b553-881cbebd3c0cv1'\u001b[0m. \u001b]8;id=988169;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286980;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#139\u001b\\\u001b[2m139\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7ddfdda00201480f961c8684bfd4e939", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:44:42] status = queued                                                                            webapi.py:269\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:44:42]\u001b[0m\u001b[2;36m \u001b[0mstatus = queued \u001b]8;id=273702;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75039;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#269\u001b\\\u001b[2m269\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:44:44] status = preprocess                                                                        webapi.py:263\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:44:44]\u001b[0m\u001b[2;36m \u001b[0mstatus = preprocess \u001b]8;id=471192;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=896573;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#263\u001b\\\u001b[2m263\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
[08:44:50] Maximum FlexCredit cost: 0.025. Use 'web.real_cost(task_id)' to get the billed FlexCredit  webapi.py:286\n",
       "           cost after a simulation run.                                                                            \n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:44:50]\u001b[0m\u001b[2;36m \u001b[0mMaximum FlexCredit cost: \u001b[1;36m0.025\u001b[0m. Use \u001b[32m'web.real_cost\u001b[0m\u001b[32m(\u001b[0m\u001b[32mtask_id\u001b[0m\u001b[32m)\u001b[0m\u001b[32m'\u001b[0m to get the billed FlexCredit \u001b]8;id=310523;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=620510;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#286\u001b\\\u001b[2m286\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0mcost after a simulation run. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           starting up solver                                                                         webapi.py:290\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mstarting up solver \u001b]8;id=696996;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=838496;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#290\u001b\\\u001b[2m290\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
           running solver                                                                             webapi.py:300\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m \u001b[0m\u001b[2;36m \u001b[0mrunning solver \u001b]8;id=212154;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=936145;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#300\u001b\\\u001b[2m300\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b1222c569e99419da7c399b7e5ac6b1e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:45:09] early shutoff detected, exiting.                                                           webapi.py:314\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:45:09]\u001b[0m\u001b[2;36m \u001b[0mearly shutoff detected, exiting. \u001b]8;id=981983;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=869639;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#314\u001b\\\u001b[2m314\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:45:10] status = postprocess                                                                       webapi.py:331\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:45:10]\u001b[0m\u001b[2;36m \u001b[0mstatus = postprocess \u001b]8;id=798924;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=669396;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#331\u001b\\\u001b[2m331\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:45:28] status = success                                                                           webapi.py:338\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:45:28]\u001b[0m\u001b[2;36m \u001b[0mstatus = success \u001b]8;id=253180;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=132996;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#338\u001b\\\u001b[2m338\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "23580d60c5544221a6cdc09a1e19b6f9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Output()"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08:45:30] loading SimulationData from data/simulation_data_euler.hdf5                                webapi.py:510\n",
       "
\n" ], "text/plain": [ "\u001b[2;36m[08:45:30]\u001b[0m\u001b[2;36m \u001b[0mloading SimulationData from data/simulation_data_euler.hdf5 \u001b]8;id=139661;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py\u001b\\\u001b[2mwebapi.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205500;file://C:\\Users\\xinzhong\\anaconda3\\envs\\tidy3d_env\\lib\\site-packages\\tidy3d\\web\\webapi.py#510\u001b\\\u001b[2m510\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "job = web.Job(simulation=sim, task_name=\"circular_bend\")\n", "sim_data_euler = job.run(path=\"data/simulation_data_euler.hdf5\")\n" ] }, { "cell_type": "markdown", "id": "e4a8247d", "metadata": {}, "source": [ "After the simulation is complete, we plot the bending loss of the Euler bend against that of the circular bend. Here we see that the Euler bend has a lower loss ~0.005 dB. In terms of absolute loss, both bends are very good. However, when a large number of waveguide bends are used in an integrated photonic circuit, the advantage of the Euler bend can be quite significant." ] }, { "cell_type": "code", "execution_count": 18, "id": "67b89904", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:46:08.226192Z", "iopub.status.busy": "2023-03-27T20:46:08.225879Z", "iopub.status.idle": "2023-03-27T20:46:08.374088Z", "shell.execute_reply": "2023-03-27T20:46:08.373605Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG6CAYAAADUAjjIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzVklEQVR4nO3dd3wUdf7H8dduekIKSUiD0Ku00BKaAoqCYsEKiAciZztBiliwYT1QD+U8OBDvbL8TQSycIuJhBAWJdBCU3kJLQghJSE925/fHwMJKwAQ32ZT38/HYx+7Ofnfms5mEffOd73zHYhiGgYiIiIi4jNXdBYiIiIjUNApYIiIiIi6mgCUiIiLiYgpYIiIiIi6mgCUiIiLiYgpYIiIiIi6mgCUiIiLiYgpYIiIiIi6mgCUiIiLiYgpYIiIiIi5WJQLWrFmzaNy4Mb6+viQkJLB27dqLtl+4cCGtW7fG19eX9u3bs2TJEqfXn3vuOVq3bk1AQAB169alf//+rFmzxqlNRkYGw4cPJygoiJCQEEaPHk1OTo7LP5uIiIjUPm4PWAsWLGDixIlMmTKFjRs30rFjRwYMGEBaWlqp7VevXs2wYcMYPXo0mzZtYvDgwQwePJht27Y52rRs2ZKZM2eydetWVq1aRePGjbnmmms4fvy4o83w4cP55ZdfWLZsGYsXL+aHH37gvvvuq/DPKyIiIjWfxd0Xe05ISKBbt27MnDkTALvdTmxsLGPHjuWJJ544r/2QIUPIzc1l8eLFjmXdu3cnLi6OOXPmlLqN7OxsgoOD+fbbb7nqqqvYvn07l112GevWraNr164ALF26lOuuu47Dhw8TExNTAZ9UREREagtPd268qKiIDRs2MHnyZMcyq9VK//79SUpKKvU9SUlJTJw40WnZgAEDWLRo0QW3MXfuXIKDg+nYsaNjHSEhIY5wBdC/f3+sVitr1qzh5ptvPm89hYWFFBYWOp7b7XYyMjIICwvDYrGU+TOLiIiI+xiGwalTp4iJicFqrbgDeW4NWOnp6dhsNiIjI52WR0ZGsmPHjlLfk5KSUmr7lJQUp2WLFy9m6NCh5OXlER0dzbJlywgPD3esIyIiwqm9p6cnoaGh563njKlTp/L888+X6/OJiIhI1XTo0CEaNGhQYet3a8CqSP369WPz5s2kp6fz9ttvc8cdd7BmzZrzglVZTZ482annLCsri4YNG3Lo0CGCgoJcVbaIiIhUoOzsbGJjYwkMDKzQ7bg1YIWHh+Ph4UFqaqrT8tTUVKKiokp9T1RUVJnaBwQE0Lx5c5o3b0737t1p0aIF//73v5k8eTJRUVHnDaIvKSkhIyPjgtv18fHBx8fnvOVBQUEKWCIiItVMRQ/vcetZhN7e3nTp0oXExETHMrvdTmJiIj169Cj1PT169HBqD7Bs2bILtj93vWfGUPXo0YPMzEw2bNjgeP27777DbreTkJBwqR9HREREBKgChwgnTpzIyJEj6dq1K/Hx8cyYMYPc3FxGjRoFwIgRI6hfvz5Tp04FYNy4cfTp04fp06czaNAg5s+fz/r165k7dy4Aubm5vPzyy9x4441ER0eTnp7OrFmzOHLkCLfffjsAbdq0YeDAgdx7773MmTOH4uJixowZw9ChQ3UGoYiIiPxhbg9YQ4YM4fjx4zz77LOkpKQQFxfH0qVLHQPZk5OTnUb59+zZk3nz5vH000/z5JNP0qJFCxYtWkS7du0A8PDwYMeOHbz//vukp6cTFhZGt27dWLlyJW3btnWs58MPP2TMmDFcddVVWK1Wbr31Vt58883K/fAiIiJSI7l9Hqzq6szcWllZWRcdg2Wz2SguLq7EyqS68vLywsPDw91liIjUaGX9/v6j3N6DVVMZhkFKSgqZmZnuLkWqkZCQEKKiojS3mohINaeAVUHOhKuIiAj8/f31hSkXZRgGeXl5jrNbo6Oj3VyRiIj8EQpYFcBmsznCVVhYmLvLkWrCz88PgLS0NCIiInS4UESkGnP7xZ5rojNjrvz9/d1ciVQ3Z35nNG5PRKR6U8CqQDosKOWl3xkRkZpBAUtERETExRSwpNwsFguLFi2q0G2sWLECi8VSIWdh3n333QwePNjl6y2L5557jri4OLdsW0REKo8CljhJSUlh7NixNG3aFB8fH2JjY7nhhhucLk907Ngxrr32WjdWKSIiUrXpLEJxOHDgAL169SIkJITXXnuN9u3bU1xczDfffMNDDz3Ejh07AC54QewziouL8fLyqoySL6qoqAhvb293lyEiIlXIoYy8StmOerDE4S9/+QsWi4W1a9dy66230rJlS9q2bcvEiRP56aefHO3OPUR44MABLBYLCxYsoE+fPvj6+vLhhx8C8M4779C2bVt8fHyIjo5mzJgxTu/ZvHmzY52ZmZlYLBZWrFhRam0nTpxg2LBh1K9fH39/f9q3b89HH33k1KZv376MGTOG8ePHEx4ezoABAy76eZ9//nnq1atHUFAQDzzwAEVFRY7X7HY7U6dOpUmTJvj5+dGxY0c++eQTx+tnDmEmJibStWtX/P396dmzJzt37nTaxrRp04iMjCQwMJDRo0dTUFBw0ZpERKTiHMrI45bZP1bKttSDVQkMwyC/2OaWbft5eZTpzLSMjAyWLl3Kyy+/TEBAwHmvh4SEXPT9TzzxBNOnT6dTp074+voye/ZsJk6cyLRp07j22mvJysrixx8v/Ze6oKCALl268PjjjxMUFMRXX33Fn/70J5o1a0Z8fLyj3fvvv8+DDz74u9tKTEzE19eXFStWcODAAUaNGkVYWBgvv/wyAFOnTuU///kPc+bMoUWLFvzwww/cdddd1KtXjz59+jjW89RTTzF9+nTq1avHAw88wD333OPY9scff8xzzz3HrFmz6N27N//3f//Hm2++SdOmTS/55yAiIpfGMAwe//Rn8ovslbI9BaxKkF9s47Jnv3HLtn99YQD+3r+/m/fs2YNhGLRu3fqStjN+/HhuueUWx/OXXnqJRx55hHHjxjmWdevW7ZLWDVC/fn0mTZrkeD527Fi++eYbPv74Y6eA1aJFC1599dXfXZ+3tzfvvPMO/v7+tG3blhdeeIFHH32UF198keLiYv7617/y7bff0qNHDwCaNm3KqlWreOutt5wC1ssvv+x4/sQTTzBo0CAKCgrw9fVlxowZjB49mtGjRzt+Jt9++616sURE3GDe2mRW7z2Bj1flHLzTIUIBzGT/R3Tt2tXxOC0tjaNHj3LVVVf90bIcbDYbL774Iu3btyc0NJQ6derwzTffkJyc7NSuS5cuZVpfx44dnSaC7dGjBzk5ORw6dIg9e/aQl5fH1VdfTZ06dRy3Dz74gL179zqtp0OHDo7HZy5vc+ZyN9u3bychIcGp/ZnAJiIilefwyTz++tV2AMZf1aJStqkerErg5+XBry9cfDxQRW67LFq0aIHFYnEMZC+vcw8rnrnky4VYrWauPzfU/d7M5a+99hp///vfmTFjBu3btycgIIDx48c7jZv6bR2XKicnB4CvvvqK+vXrO73m4+Pj9PzcwfxnDsXa7ZXT/SwiIr/PMAwmf7aV3CIbXRvVZXhCI8ZUwnYVsCqBxWIp02E6dwoNDWXAgAHMmjWLhx9++LygkpmZ+bvjsM4IDAykcePGJCYm0q9fv/Ner1evHmBO99CpUycApwHvpfnxxx+56aabuOuuuwAzxOzatYvLLrusTDX91pYtW8jPz3eEwZ9++ok6deoQGxtLaGgoPj4+JCcnOx0OLK82bdqwZs0aRowY4Vh27skCIiJS8RasO8TK3en4eFp59bYOWK0agyWVbNasWfTq1Yv4+HheeOEFOnToQElJCcuWLWP27Nls3769zOt67rnneOCBB4iIiODaa6/l1KlT/Pjjj4wdOxY/Pz+6d+/OtGnTaNKkCWlpaTz99NMXXV+LFi345JNPWL16NXXr1uX1118nNTX1kgNWUVERo0eP5umnn+bAgQNMmTKFMWPGYLVaCQwMZNKkSUyYMAG73U7v3r0dg/SDgoIYOXJkmbYxbtw47r77brp27UqvXr348MMP+eWXXzTIXUSkkhzJzOel04cGHx3Qiqb16pCdnV0p21bAEoemTZuyceNGXn75ZR555BGOHTtGvXr16NKlC7Nnzy7XukaOHElBQQFvvPEGkyZNIjw8nNtuu83x+jvvvMPo0aPp0qULrVq14tVXX+Waa6654Pqefvpp9u3bx4ABA/D39+e+++5j8ODBZGVlXdJnveqqq2jRogVXXHEFhYWFDBs2jOeee87x+osvvki9evWYOnUq+/btIyQkhM6dO/Pkk0+WeRtDhgxh7969PPbYYxQUFHDrrbfy4IMP8s037jnhQUSkNjlzaDCnsITODUMY1atJpW7fYvzR0c21VHZ2NsHBwWRlZREUFOT0WkFBAfv376dJkyb4+vq6qUKpjvS7IyLiGvPWJPPk51vx9rSy5OHLaR5RB7j497cr6SxCERERqVH2Hs/hhcW/APDoNa0c4aoyKWCJiIhIjVFUYmf8/M0UFNvp1TyM0b0r99DgGQpYIiIiUmPM+HYXW49kEeLvxfTb47Baf/9qJhVBAUtERERqhJ/2nWD29+aE0FNvbk9UsPvGsipgiYiISLWXlV/MxAWbMQy4o2sDrm0f7dZ6FLBERESkWjMMg6cXbeNoVgGNwvyZckNbd5ekgCUiIiLV22cbj/DllqN4WC3MGBJHgI/7p/lUwBIREZFqa9/xHJ757zbAvJBzp4Z13VyRSQFLREREqqXCEhtjP9pEXpGN7k1D+Uu/5u4uyUEBS1xqxYoVWCwWMjMzXb7uvn37Mn78eJevtyzuvvtuBg8e7JZti4hI6V75eie/HM2mrr8XM4Z0wsNNUzKURgFLHO6++24sFst5t4EDB7q7NBERESff7UjlnR/3A/C32zu6dUqG0rh/FJhUKQMHDuTdd991Wubj41OpNRQVFeHt7V2p2xQRkeojNbuASQt/BmBUr8Zc1SbSzRWdTz1Y4sTHx4eoqCinW9265oDBAwcOYLFY2Lx5s6N9ZmYmFouFFStWXHCdq1at4vLLL8fPz4/Y2FgefvhhcnNzHa83btyYF198kREjRhAUFMR99913wXWVlJQwZswYgoODCQ8P55lnnuHc65UXFhYyadIk6tevT0BAAAkJCU61vffee4SEhPDNN9/Qpk0b6tSpw8CBAzl27Jijjc1mY+LEiYSEhBAWFsZjjz2GrokuIlI12OwG4+dvJiO3iLYxQTxxbWt3l1QqBazKYBhQlOuem5uDwd69exk4cCC33norP//8MwsWLGDVqlWMGTPGqd3f/vY3OnbsyKZNm3jmmWcuuL73338fT09P1q5dy9///ndef/11/vWvfzleHzNmDElJScyfP5+ff/6Z22+/nYEDB7J7925Hm7y8PP72t7/xf//3f/zwww8kJyczadIkx+vTp0/nvffe45133mHVqlVkZGTw+eefu/CnIiIil+of3+0mad8J/L09+MewTvh4eri7pFLpEGFlKM6Dv8a4Z9tPHgXvgDI3X7x4MXXqOF91/Mknn+TJJ5+8pM1PnTqV4cOHOwant2jRgjfffJM+ffowe/ZsfH3NY+ZXXnkljzzyyO+uLzY2ljfeeAOLxUKrVq3YunUrb7zxBvfeey/Jycm8++67JCcnExNj/rwnTZrE0qVLeffdd/nrX/8KQHFxMXPmzKFZs2aAGcpeeOEFxzZmzJjB5MmTueWWWwCYM2cO33zzzSV9fhERcZ0f96Tz90TzP8wvDW5H03p1fucd7qOAJU769evH7NmznZaFhoZe8vq2bNnCzz//zIcffuhYZhgGdrud/fv306ZNGwC6du1apvV1794di+XsWSI9evRg+vTp2Gw2tm7dis1mo2XLlk7vKSwsJCwszPHc39/fEa4AoqOjSUtLAyArK4tjx46RkJDgeN3T05OuXbvqMKGIiBulZhcwbv4mDAOGdovlls4N3F3SRSlgVQYvf7MnyV3bLoeAgACaNy99HhGr1TyifG7QKC4uvuj6cnJyuP/++3n44YfPe61hw4ZO2/2jcnJy8PDwYMOGDXh4OHcZn9sr5+Xl5fSaxWJReBIRqcJKbHbGfrSJ9JwiWkcF8tyN7r8Uzu9RwKoMFku5DtNVVfXq1QPg2LFjdOrUCcBpwHtpOnfuzK+//nrB0FZea9ascXr+008/0aJFCzw8POjUqRM2m420tDQuv/zyS1p/cHAw0dHRrFmzhiuuuAIwB9Zv2LCBzp07/+H6RUSk/F5ftou1+zOo4+PJP4d3xterao67OpcCljgpLCwkJSXFaZmnpyfh4eH4+fnRvXt3pk2bRpMmTUhLS+Ppp5++6Poef/xxunfvzpgxY/jzn/9MQEAAv/76K8uWLWPmzJnlri85OZmJEydy//33s3HjRv7xj38wffp0AFq2bMnw4cMZMWIE06dPp1OnThw/fpzExEQ6dOjAoEGDyrSNcePGMW3aNFq0aEHr1q15/fXXK2TiVBER+X3Ld6bxzxV7AZh2a/sqPe7qXApY4mTp0qVER0c7LWvVqhU7duwA4J133mH06NF06dKFVq1a8eqrr3LNNddccH0dOnTg+++/56mnnuLyyy/HMAyaNWvGkCFDLqm+ESNGkJ+fT3x8PB4eHowbN85pWod3332Xl156iUceeYQjR44QHh5O9+7duf7668u8jUceeYRjx44xcuRIrFYr99xzDzfffDNZWVmXVLOIiFyaI5n5TFiwGYARPRpxfQc3nTB2CSyGBp9ckuzsbIKDg8nKyiIoKMjptYKCAvbv30+TJk0cZ8mJlIV+d0RETEUldu54K4nNhzJpXz+YTx7s4ZIpGS72/e1KmgdLREREqpy/LtnO5kOZBPt58c/hnavsfFcXooAlIiIiVcrin4/y3uoDALx+R0diQ8t3RnxVoIAlIiIiVcbe4zk8/ol5ncEH+zarktcZLAsFLBEREakS8opKePA/G8gtspHQJJRHrm75+2+qohSwKpDOH5Dy0u+MiNRWhmHw9Ofb2JWaQ71AH/5xZyc8PapvTKm+lVdhZ2YKz8vLc3MlUt2c+Z357WzzIiI13Ts/HuCzTUewWuAfwzoREVi9z6TWPFgVwMPDg5CQEMf17fz9/Z2unyfyW4ZhkJeXR1paGiEhIedd6kdEpCb75pcUXvrqVwAmX9uG7k3DfucdVZ8CVgWJiooCcIQskbIICQlx/O6IiNQGWw5lOi7ifGdCQ/58eRN3l+QSClgVxGKxEB0dTURExO9eEFkEzMOC6rkSkdrkUEYeo99fT0GxnT4t6/HCjW1rzBEfBawK5uHhoS9NERGR38jKL+ae99aRnlNI66hAZlbzQe2/VXM+iYiIiFQLxTY7D324kd1pOUQG+fDuqG4E+task3sUsERERKTSGIbBlC9+YdWedPy9Pfj3yG5EB/u5uyyXqxIBa9asWTRu3BhfX18SEhJYu3btRdsvXLiQ1q1b4+vrS/v27VmyZInjteLiYh5//HHat29PQEAAMTExjBgxgqNHjzqto3HjxlgsFqfbtGnTKuTziYiIiOn91QeYtyYZy+npGNrVD3Z3SRXC7QFrwYIFTJw4kSlTprBx40Y6duzIgAEDLnj23erVqxk2bBijR49m06ZNDB48mMGDB7Nt2zbAnEdo48aNPPPMM2zcuJHPPvuMnTt3cuONN563rhdeeIFjx445bmPHjq3QzyoiIlKb/bDrOC8sPjMdQ+tqexmcsrAYbp46OiEhgW7dujFz5kwA7HY7sbGxjB07lieeeOK89kOGDCE3N5fFixc7lnXv3p24uDjmzJlT6jbWrVtHfHw8Bw8epGHDhoDZgzV+/HjGjx9/SXVnZ2cTHBxMVlYWQUFBl7QOERGR2mJPWg43//NHThWUcFuXBrx2Wwe3nDFYWd/fbu3BKioqYsOGDfTv39+xzGq10r9/f5KSkkp9T1JSklN7gAEDBlywPUBWVhYWi4WQkBCn5dOmTSMsLIxOnTrx2muvUVJScsF1FBYWkp2d7XQTERGR35eZV8Sf31/HqYISujaqy8s3t6sx0zFciFunaUhPT8dmsxEZ6dxFGBkZyY4dO0p9T0pKSqntU1JSSm1fUFDA448/zrBhw5yS6sMPP0znzp0JDQ1l9erVTJ48mWPHjvH666+Xup6pU6fy/PPPl+fjiYiI1HrFNjsPzdvIgRN51A/xY86fuuDjWfOnL6rR82AVFxdzxx13YBgGs2fPdnpt4sSJjscdOnTA29ub+++/n6lTp+Lj43PeuiZPnuz0nuzsbGJjYyuueBERkWqu2GZn3PxN/LjnBP7eHvxrZFfC65z/HVsTuTVghYeH4+HhQWpqqtPy1NTUC14uJCoqqkztz4SrgwcP8t133/3ucdaEhARKSko4cOAArVq1Ou91Hx+fUoOXiIiInK/YZmf8/M0s2ZqCt4eVWcM70ya69oxZdusYLG9vb7p06UJiYqJjmd1uJzExkR49epT6nh49eji1B1i2bJlT+zPhavfu3Xz77beEhf3+RSM3b96M1WolIiLiEj+NiIiIAJTY7IxfsJmvth7Dy8PCnD91pl+r2vX96vZDhBMnTmTkyJF07dqV+Ph4ZsyYQW5uLqNGjQJgxIgR1K9fn6lTpwIwbtw4+vTpw/Tp0xk0aBDz589n/fr1zJ07FzDD1W233cbGjRtZvHgxNpvNMT4rNDQUb29vkpKSWLNmDf369SMwMJCkpCQmTJjAXXfdRd26dd3zgxAREakBHOHq59Ph6q4uXNm65k7HcCFuD1hDhgzh+PHjPPvss6SkpBAXF8fSpUsdA9mTk5OxWs92tPXs2ZN58+bx9NNP8+STT9KiRQsWLVpEu3btADhy5AhffPEFAHFxcU7bWr58OX379sXHx4f58+fz3HPPUVhYSJMmTZgwYYLTGCsREREpnxKbnQkfb2Hx6XA1e3iXGj3X1cW4fR6s6krzYImIiJxltxtM+mQLn208gpeHhX8O78LVl1W9cFUr5sESERGR6s8wDJ757zY+23gED6uFmXd2rpLhqjIpYImIiMglMwyDl7/azoenry/4+h0dGdC29JkAahMFLBEREblkbyzbxb9W7QfglVs6cFNcfTdXVDUoYImIiMglmb1iL29+tweAF25qyx3dNAH3GQpYIiIiUm4fJB3glaXmZe2euLY1I3o0dm9BVYwCloiIiJTLwvWHePa/vwDw8JXNeaBPMzdXVPUoYImIiEiZLdl6jMc//RmA0b2bMOHqlm6uqGpSwBIREZEyWb4jjXHzN2E3YGi3WJ4e1AaLxeLusqokBSwRERH5XUl7T/DAfzZQbDO4oWMML9/cXuHqIhSwRERE5KI2HDzJn99fR2GJnf5tInj9jo54WBWuLsbt1yIUERGRqmv9gQxGvrOW3CIbvZqHMfPOznh5qH/m9+gnJCIiIqVauz+DEafDVc9mYfxrRDd8vTzcXVa1oIAlIiIi5/lp3wnufncteUU2ejcP598ju+HnrXBVVjpEKCIiIk5W70nnnvfXUVBs5/IW4bw9oqt6rspJPVgiIiLi8PXWY45w1adlPYWrS6QeLBEREcFmN5j+v538c8VeAK5sHcE/h3dWuLpEClgiIiK1XFZeMQ/P38T3u44D8OfeTXji2tZ46mzBS6aAJSIiUottP5bN/f+3geSMPHy9rLxyawduiqvv7rKqPQUsERGRWmr5jjT+8uFG8ottNKjrx1t/6kLbmGB3l1UjKGCJiIjUQl9sOcrEBZspsRtc3iKcN4d2om6At7vLqjEUsERERGqZD9cc5OlF2zAMGBwXw2u3d9Ts7C6mgCUiIlKLzF6xl1eW7gDgT90b8fyNbbHquoIup4AlIiJSCxiGwavf7GT26WkYHurXjEnXtMJiUbiqCApYIiIiNVxWXjGPfrKF//2aCsDka1tzf59mbq6qZlPAEhERqcE2JZ9kzLxNHMnMx9vDyouD2zKkW0N3l1XjKWCJiIjUQHa7wb9X7eeVpTsosRs0CvNn5rDOtG+gaRgqgwKWiIhIDZOZV8QjH28hcUcaAIM6RDP1lvYE+Xq5ubLaQwFLRESkBvnlaBYP/GcDhzLy8fa08uz1lzE8oaEGs1cyBSwREZEa4rONh5n82VYKS+w0DPVn9l2dNTO7myhgiYiIVHNFJXZe/upX3k86CEDfVvX4+5BOBPvrkKC7KGCJiIhUY4dP5jF+/mbWHzwJwMNXtWD8VS00eaibKWCJiIhUQ3a7wYdrk5m2ZDu5RTYCfT154444+l8W6e7SBAUsERGRaif5RB6Pf/ozSftOANC1UV3+dntHGocHuLkyOUMBS0REpJqw2w3eTzrAq0t3kl9sw9fLymMDWjOyZ2M8dEiwSlHAEhERqQZSsgp4ZOFmftxj9lp1bxrKK7d2oFGYeq2qIgUsERGRKu6bX1J4/NOfycwrxs/Lgyeva83whEYayF6FKWCJiIhUUXlFJby4eDsfrU0GoG1MEG8O60SzenXcXJn8HgUsERGRKmjLoUwmfryZvcdzAbjviqY8ck1LfDw93FyZlIUCloiISBVSUGzj9WW7+NfKfdgNiAj04fU74ujdItzdpUk5KGCJiIhUEWv2neDxT3/mwIk8AG6Ki2HKDW0JDfB2c2VSXgpYIiIibpaVX8z0/+3kg9OXuokM8uHlwe01aWg1poAlIiLiJsU2Ox+tTWbGt7vJyC0CYGi3WCZf14ZgP11HsDpTwPqDTuQUEhTk7ipERKQ6MQyD73ak8dcl2x2D2JtH1OH5G9vSq7nGWtUEClh/0C3//JHX7+pJv9YR7i5FRESqgZ0pp3hh8S+OCUNDA7yZcHVLhnWLxdPD6ubqxFUUsP6gE7nFjHpvHSN7NGLydW3w9dLpsyIicr6s/GJmfLuLD5IOYrMbeHtYuad3E/7SrxlBvjocWNMoYP1Bw7s35KNN6byfdJDVe0/wxpA42tUPdndZIiJSRdjtBp9uPMwrS3eQnmOOs7q2XRRPXteG2FB/N1cnFcViGIbh7iKqo+zsbIKDg8nKymLjsQImLfyZ9JxCPKwW7u7ZmAlXt6SOj/KriEhttin5JC8s/pVNyZkANKsXwHM3tuXyFvXcW1gtdu73d1AFDqJWwLpEv91BJ3IKeea/21iyNQUwT7F99vq2XNc+CotF14oSEalNDmXk8eo3O/lyy1EAArw9GNe/BXf3bIK3p8ZZuZMCVhV3oR20YmcaU774hYOnJ4m7omU9Xrypra52LiJSC2TlF/PP5Xt498cDFNnsWCxwW+cGTBrQisggX3eXJyhgVXkX20EFxTZmr9jL7BV7KbLZ8fPyYPJ1rblLVz4XEamRsvKK+c+ag/xr5T5O5hUD0Kt5GE9e14a2MRqXW5VUVsCqEv2Us2bNonHjxvj6+pKQkMDatWsv2n7hwoW0bt0aX19f2rdvz5IlSxyvFRcX8/jjj9O+fXsCAgKIiYlhxIgRHD161GkdGRkZDB8+nKCgIEJCQhg9ejQ5OTku+Ty+Xh5MuLol30y4gp7NwsgvtvHsf39hxDtrOZKZ75JtiIiI+x3Lyuelxb/Sc1oir32zk5N5xTSPqMO7d3fjP6MTFK5qMbcHrAULFjBx4kSmTJnCxo0b6dixIwMGDCAtLa3U9qtXr2bYsGGMHj2aTZs2MXjwYAYPHsy2bdsAyMvLY+PGjTzzzDNs3LiRzz77jJ07d3LjjTc6rWf48OH88ssvLFu2jMWLF/PDDz9w3333ufSzNQkP4D+jE3j+xrb4ellZtSedgW/8wML1h1DHoYhI9bUr9RSTFm7hileX869V+8ktstE6KpAZQ+JYOu5y+rWO0PjbWs7thwgTEhLo1q0bM2fOBMButxMbG8vYsWN54oknzms/ZMgQcnNzWbx4sWNZ9+7diYuLY86cOaVuY926dcTHx3Pw4EEaNmzI9u3bueyyy1i3bh1du3YFYOnSpVx33XUcPnyYmJiY3627vF2M+9NzeeTjzWw8fSZJv1b1eOGmdjpFV0SkmjAMg7X7M3jrh318t+NsJ0D3pqE80KcZfVrWU6iqBmrFIcKioiI2bNhA//79HcusViv9+/cnKSmp1PckJSU5tQcYMGDABdsDZGVlYbFYCAkJcawjJCTEEa4A+vfvj9VqZc2aNaWuo7CwkOzsbKdbeTQJD2DhAz154trWeHtYWb7zOFe/8T2zV+yl2GYv17pERKTylNjsfL31GIP/uZohc3/iux1pWCwwsG0Un/+lJ/Pv60HfVuqxEmdunagpPT0dm81GZKTz1cIjIyPZsWNHqe9JSUkptX1KSkqp7QsKCnj88ccZNmyYI6mmpKQQEeF8aRtPT09CQ0MvuJ6pU6fy/PPPl+lzXYiH1cIDfZrRv00kTy/ayk/7Mnhl6Q4+33SYlwa3J75J6B9av4iIuM7e4zksXH+YTzce5vipQgC8Pa3c1qUB917elCbhOjtcLqxGz4RZXFzMHXfcgWEYzJ49+w+ta/LkyUycONHxPDs7m9jY2EtaV/OIOnx0b3c+33SEl7/azq7UHO54K4kbO8bwUL/mtIoK/EO1iojIpSkotvHF5qN8vP4Q6w+edCwPDfBmeEJDRvRoTL1AHzdWKNWFWwNWeHg4Hh4epKamOi1PTU0lKiqq1PdERUWVqf2ZcHXw4EG+++47p+OsUVFR5w2iLykpISMj44Lb9fHxwcfHdX9UFouFWzo34MrWEbyydCcfrU3miy1H+WLLUfq3ieQv/ZrRuWFdl21PREQuLL/Ixry1ybz1/V7STvdWWS3Qr1UEt3eN5crWEZogVMqlXAErMzOTzz//nJUrV3Lw4EHy8vKoV68enTp1YsCAAfTs2bNcG/f29qZLly4kJiYyePBgwBzknpiYyJgxY0p9T48ePUhMTGT8+PGOZcuWLaNHjx6O52fC1e7du1m+fDlhYWHnrSMzM5MNGzbQpUsXAL777jvsdjsJCQnl+gx/VIi/N1Nvac/whIb8c8Uevt6WwrfbU/l2eyo9mobx8FUt6NEs7PdXJCIi5ZZXVMKHPyXz1g/7SM8xg1X9ED/u6t6IWzrX1+SgcsnKdBbh0aNHefbZZ/nwww+JiYkhPj6emJgY/Pz8yMjIYNu2bWzYsIFGjRoxZcoUhgwZUuYCFixYwMiRI3nrrbeIj49nxowZfPzxx+zYsYPIyEhGjBhB/fr1mTp1KmBO09CnTx+mTZvGoEGDmD9/Pn/961/ZuHEj7dq1o7i4mNtuu42NGzeyePFip/FaoaGheHt7A3DttdeSmprKnDlzKC4uZtSoUXTt2pV58+aVqe6KOgthT1oOb32/l883HaHEbu6avq3q8fjA1rSJrrizHUREaous/GJ+3JPOD7uO879fU8nINS/A3KCuHw/1a86tnRuot6oGq1IzuUdGRjJy5EjuvvtuLrvsslLb5Ofns2jRIt58801uvfVWJk2aVOYiZs6cyWuvvUZKSgpxcXG8+eabjp6kvn370rhxY9577z1H+4ULF/L0009z4MABWrRowauvvsp1110HwIEDB2jSpEmp21m+fDl9+/YFzIlGx4wZw5dffonVauXWW2/lzTffpE6dOmWquaJ30JHMfOas2MtHa5MpsRtYLHBzp/o8ck0r6of4uXx7IiI12Z60HL76+Rg/7D7OpuST2M/55msY6s+Yfs25uXN9vDwUrGq6KhWwTpw4cd5hNle2r44qawftT8/lb//byVc/HwPMM1jujG/IvVc0VdASEbmI9JxCvtxylM83HeHnw1lOrzWrF8AVLetxRct69G4ermBVi1SpgCXnq6wddMaWQ5lM/Xo7P+3LAMDTauHGjjHc16cpraN06FBEBOBoZr7j0N/3u45jO91V5Wm1cEXLelx9WSRXtKyn/6DWYlU2YJ3bO3Xo0CHefvtt8vPzufHGG7n88ssrpMiqqLIDFpizCK/ak87sFXtZvfeEY3nfVvUY1asJvZuH46GLSYtILVJUYmfdgQy+33WcFTvT2JXqfE3Zjg2CublTfW7oGENYHU2vIFUwYG3dupUbbriBQ4cO0aJFC+bPn8/AgQPJzc3FarWSm5vLJ5984jgbsKZzR8A618+HM3nrh318vfWYYyxBZJAPg+Pqc0vnBppLS0RqrPwiG9/vOs43v6SQuD2V7IISx2tWC8TFhtCnZQSDOkTTPKJs42ql9qhyAevaa6/F09OTJ554gv/7v/9j8eLFDBgwgLfffhuAsWPHsmHDBn766acKK7YqcXfAOuPgiVze/fEAizYfITOv2LG8bUwQQ+MbclvnBvh5e7itPhGRPyqnsIRfjmSx9UgWa/dn8MPu4xQUn73EWHgdb/q0jKBvK3M8Vd0AbzdWK1VdlQtY4eHhfPfdd3To0IGcnByCgoJYt26dYx6pHTt20L17dzIzMyus2KqkqgSsM4pK7CzfmcZnGw/z3Y40im3mbg0N8GZkj8aM6NFI/+iISLWQkVvE97vSWLk7na2Hs9hzPIffflM1qOvHwLZRDGgXReeGdTU8QsqsygUsq9XqdA2/wMBAtmzZQtOmTQFzNvWYmBhsNluFFVuVVLWAda6TuUUs2nyEd37cz6GMfAB8vawM6RrLPb2b0ChM188SkarDbjfYmXqK73ak8d2OtPOmUQCIDvalff1gOsaG0LdVPS6LDtLFleWSVNb3d7lmcv/tL7N+uaumugHejOrVhD91b8TX21J464e9bDuSzftJB3k/6SC9mocxtFtDrmkbiY+nDh+KSOXKzCti86FMNiVnsulQJpuTTzqNowJoEx1Ev1b16Nq4Lu3qBxMRqBnVpXopV8C6++67HdfjKygo4IEHHiAgwOwNKSwsdH118od4eli5oWMM13eIZvXeE7y9ch/f7zrOj3tO8OOeE4QGeHNLp/oM7lSftjH636CIuE6Jzc6e4zn8ejSbAyfySD6RS3JGHskZeaTnFJ3X3tfLSq9m4VzZJoJ+rSKI0TQKUs2V+RDhqFGjyrTCd9999w8VVF1U5UOEF3MoI4+F6w/x8frDpGQXOJbXC/Th8hbh9Dk96Z5OZxaRsioqsbMvPYcdx06x5XAmWw9n8cvRbPKLLzxkpEl4AJ1iQ+jUMIRODevSKipQk31KpahyY7DEWXUNWGeU2Ox8v+s4C9YdYtWedPKKzv5DaLFAhwYhXNU6gitbR6h3S0QAc3qEAydy2Z+ey960HHamnmJX6in2Hc91XDv1XHV8PLksJohm9QKIDfWnUWgAjcL8iQ31J9jPyw2fQEQBq8qr7gHrXIUlNjYcOMn3u47z/a7j7Eg55fR6VJAv/U6HrV7Nw/D3LteRZRGpZjLzitiVmsOu1FPsTj3FnuM57D+ey9Gsggu+J9DHk1ZRgbSrH0zH2GDa1w+haXgAVp3dJ1VMlQpYt9xyS5lX+Nlnn/2hgqqLmhSwfis1u4DlO9JI3JHGqt3pTt383p5WejQN48rTgSs21N+NlYpIeRWV2MnMK+JEbhHHTxVyJDOfwyfzOHIyn8Mn8zmYkcfxUxceUxvk60nTenVoGh5Ay6hAWkUG0ioqkOhgX/V0S7VQpc4iDA4Odjw2DIPPP/+c4OBgunbtCsCGDRvIzMwsVxCTqisyyJeh8Q0ZGt+QgmIbP+074Th9+vDJfEdP15QvfqFJeAAJTUKJP31rUFeBS8RdsguKST6Rx+GT+aRk5XMsu4DUrAKOZRWQdqqQ9JxCTv3mbL0LqR/iR4vIOrSMDKR5RB2a1QugSXgd6vp7KUiJlEG5DxE+/vjjZGRkMGfOHDw8zFP8bTYbf/nLXwgKCuK1116rkEKrmprcg3UhhmGwOy3HEbY2HDzpuJDqGfVD/OjSqC7t6wfTvkEwbWOCCPTVWAuR8jAMg8ISOzmFJeQWlpy+t3GqoJis/GIy84rJzC8mK6+I9JwiDp00z84792oOF2O1QF1/b8LqeFM/xI8Gdf2pX9ePBnXNx80j6lDHR0MBpGaqUocIz1WvXj1WrVpFq1atnJbv3LmTnj17cuLEiQu8s2apjQHrt7Lyi1l/IIO1+zNYsz+DrUeyzgtcFot5tlDnhnW5vEU4vZqHE64zFKUWMQyDgmI72afDUUZuEanZZq9SSlYBx7LyOX6q0ClE5RbZzvtbKqvwOt40qOtPTIgvkUG+RAeb95FBvoTX8SY0wIcQPy+NjZJaq0odIjxXSUkJO3bsOC9g7dixA7vdfoF3SU0U7OfFVW0iuapNJAC5hSVsTD7Jz4ez+Pn0qdpHswrYdzyXfcdz+WTDYQBaRwVyeYtwujSqS9N6dWgY6o+vlyY8larBMAxK7GYPUmGxjdxCG8dzzMNr6TmFpJ8q4mRekeP1whI7hSU2CortFBTbKCixUVhsp6DERn6Rjez8Eopsl/5vo7+3BwE+ntQ5fQvx9yLYz4sQfy9C/LypG+BNbF0/Gob5E1vXnwD1PIlUCeX+Sxw1ahSjR49m7969xMfHA7BmzRqmTZtW5rmypGYK8PHk8hb1uLxFPcey9JxCth7O4qd9J1i5O51fj2WzI+UUO1JO8fbK/YDZy1U/xI8m4QE0DQ+gSXgATU4Poo0J8dM1xuQ8RSV28ottFBbbKLYblNjsFNsMSux2ik4fWsspMA+tnekZKiqxU2Q7fX/6/WcPtRVzMq+IUwUlFJbYzrtMiyt4WC0E+XoS4u9N1Omepahg875eoC+BvmaAOhOmAnw8CPD2VE+TSDVV7kOEdrudv/3tb/z973/n2LFjAERHRzNu3DgeeeQRx7ismk6HCC9Nek4hP+5J58c96exMMefPOVV44UG33h5WGoT6EVvX3zE+JDbUj8ggX+r6exHs502Iv5cmKKyCDMPAboDdMLAbBoZhzqN0IreQ9Jwi0nMKOZFTRFZ+McU2O0U2O8UlBsU2syfo1OmAdKqgmFOnxyLlFZm9QqXNuVRRfL2shNfxcdzqBXpT198bPy8PfLys+Hh64ONpxcfLiq+nB76nl/t6eeDn5UGwnxdBfl4EeHtocLhIFVBlx2CdKzs7G6BWBgwFLNcwDIP0nCL2p+ey73gO+0/ksv+4OZHhwRN5ZT60UsfHk7oBXoTX8SEswPwSNL8MfYgINHsKIoN8qFfHB0+FMcCcbLbIZqew2O50mOvcw115RSWOXp7MvGKy8s1enhKb4QhFJTaDwhLzUFpukRmCcgpLKCqp+CEDFgt4Wa14eljwtFrw8rDi7Wk1D6f5nj2s5u/tibenFR9P83VvDyt+3h5Oh9pC/L0I8vXC90xo8jLbqQdJpGapsmOwzqVgIX+UxWKhXqAZhOKbhDq9ZrMbHM3MJzkjj8MnzVPPD2WY9+k5hZzMKya7oBjDwHEo6FBG/u9sD+p4e+Jx+gvZw2rB02p+2Yac+bL19ybkdK+Dv7cH/t6ep+898PHywMtqwdPD/FL3slqxWHAEjTOhxTAAC1gtFiynt3vmMRawYMFiAQtgAIYBBgYYnNfrYzcMikrs5BaZgSe30EZuYQkFxWZPjrntM0HHPDyWV1RCTqHZvqDYZtZmN7DZzcNoxTbjkgdR/1FBvp6EB/oQHuBDWB0z2Hh7WB3h6Mx9kK8ngb5eTmHJ7/R+8PPywM/bA28Pq3qFRKRKKlPAGjhwIM899xzdu3e/aLtTp07xz3/+kzp16vDQQw+5pECpvTysFmJD/S86manNbpCdb46fycgtcjr0lJ5TSNqpAlKzC0nLNucBKrEbFz0kWVt5Wi34eJqHtc7ce3ta8ff2oK6/N8Hn9PLU8fE8HYTMHiNPD7OnxzFuyMcMpL5eHnhYLFgtFqxWM2CeCU8iIjVdmQLW7bffzq233kpwcDA33HADXbt2JSYmBl9fX06ePMmvv/7KqlWrWLJkCYMGDao1c2GJ+3lYLdQNMM+kalrv4m3tdoMTuUXkFpY49eaU2Axyi0pOD3Q2w1pmXtHpniDz0Fd+sdlzVFhyurfIbh4iK7EZGBhmcDjdC+PpYYYKgzM9UOah0DO9VGd6pQwAw+zdspzT02XBgtVqwXq618tqAU8P6+nBz2aPWoC3B77eHo7DY14eZuDxdrTzxP90ex9PD7w8rKd760732nlY8D3nMJgOm4qIuFaZx2AVFhaycOFCFixYwKpVq8jKyjJXYLFw2WWXMWDAAEaPHk2bNm0qtOCqQmOwREREqp8qP8g9KyuL/Px8wsLC8PKqfTN1K2CJiIhUP1V+kHtwcLDTNQpFRERExKSBFyIiIiIupoAlIiIi4mIKWCIiIiIupoAlIiIi4mLlDliHDh3i8OHDjudr165l/PjxzJ0716WFiYiIiFRX5Q5Yd955J8uXLwcgJSWFq6++mrVr1/LUU0/xwgsvuLxAERERkeqm3AFr27ZtxMfHA/Dxxx/Trl07Vq9ezYcffsh7773n6vpEREREqp1yB6zi4mJ8fHwA+Pbbb7nxxhsBaN26NceOHXNtdSIiIiLVULkDVtu2bZkzZw4rV65k2bJlDBw4EICjR48SFhbm8gJFREREqptyB6xXXnmFt956i759+zJs2DA6duwIwBdffOE4dCgiIiJSm13StQhtNhvZ2dnUrVvXsezAgQP4+/sTERHh0gKrKl2LUEREpPqprO/vcvdg5efnU1hY6AhXBw8eZMaMGezcubPWhCsRERGRiyl3wLrpppv44IMPAMjMzCQhIYHp06czePBgZs+e7fICRURERKqbcgesjRs3cvnllwPwySefEBkZycGDB/nggw948803XV6giIiISHVT7oCVl5dHYGAgAP/73/+45ZZbsFqtdO/enYMHD7q8QBEREZHqptwBq3nz5ixatIhDhw7xzTffcM011wCQlpamwd4iIiIiXELAevbZZ5k0aRKNGzcmPj6eHj16AGZvVqdOnVxeoIiIiEh1c0nTNKSkpHDs2DE6duyI1WpmtLVr1xIUFETr1q1dXmRVpGkaREREqp/K+v72vJQ3RUVFERUVxeHDhwFo0KCBJhkVEREROa3chwjtdjsvvPACwcHBNGrUiEaNGhESEsKLL76I3W6viBpFREREqpVy92A99dRT/Pvf/2batGn06tULgFWrVvHcc89RUFDAyy+/7PIiRURERKqTco/BiomJYc6cOdx4441Oy//73//yl7/8hSNHjri0wKpKY7BERESqnyp7qZyMjIxSB7K3bt2ajIwMlxQlIiIiUp2VO2B17NiRmTNnnrd85syZdOzY0SVFiYiIiFRn5R6D9eqrrzJo0CC+/fZbxxxYSUlJHDp0iCVLlri8QBEREZHqptw9WH369GHXrl3cfPPNZGZmkpmZyS233MLOnTsd1ygUERERqc3KHbDAHOj+8ssv8+mnn/Lpp5/y0ksvERMTc0kFzJo1i8aNG+Pr60tCQgJr1669aPuFCxfSunVrfH19ad++/Xm9Zp999hnXXHMNYWFhWCwWNm/efN46+vbti8Vicbo98MADl1S/iIiIyG+V6RDhzz//XOYVdujQocxtFyxYwMSJE5kzZw4JCQnMmDGDAQMGsHPnTiIiIs5rv3r1aoYNG8bUqVO5/vrrmTdvHoMHD2bjxo20a9cOgNzcXHr37s0dd9zBvffee8Ft33vvvbzwwguO5/7+/mWuW0RERORiyjRNg9VqxWKx8HtNLRYLNputzBtPSEigW7dujkHzdrud2NhYxo4dyxNPPHFe+yFDhpCbm8vixYsdy7p3705cXBxz5sxxanvgwAGaNGnCpk2biIuLc3qtb9++xMXFMWPGjDLX+luapkFERKT6qVKXytm/f7/LN1xUVMSGDRuYPHmyY5nVaqV///4kJSWV+p6kpCQmTpzotGzAgAEsWrSo3Nv/8MMP+c9//kNUVBQ33HADzzzzzEV7sQoLCyksLHQ8z87OLvc2RUREpHYoU8Bq1KiRyzecnp6OzWYjMjLSaXlkZCQ7duwo9T0pKSmltk9JSSnXtu+8804aNWpETEwMP//8M48//jg7d+7ks88+u+B7pk6dyvPPP1+u7YiIiEjtdEkXe67u7rvvPsfj9u3bEx0dzVVXXcXevXtp1qxZqe+ZPHmyU+9ZdnY2sbGxFV6riIiIVD9uC1jh4eF4eHiQmprqtDw1NZWoqKhS3xMVFVWu9mWVkJAAwJ49ey4YsHx8fPDx8flD2xERERE3O7KpUjZzSdM0uIK3tzddunQhMTHRscxut5OYmOiYwPS3evTo4dQeYNmyZRdsX1ZnpnKIjo7+Q+sRERGRKixtO/zfzZWyKbceIpw4cSIjR46ka9euxMfHM2PGDHJzcxk1ahQAI0aMoH79+kydOhWAcePG0adPH6ZPn86gQYOYP38+69evZ+7cuY51ZmRkkJyczNGjRwHYuXMnYPZ+RUVFsXfvXubNm8d1111HWFgYP//8MxMmTOCKK64o1xQTIiIiUo3YbfDFWDBKKmVzbg1YQ4YM4fjx4zz77LOkpKQQFxfH0qVLHQPZk5OTsVrPdrL17NmTefPm8fTTT/Pkk0/SokULFi1a5JgDC+CLL75wBDSAoUOHAjBlyhSee+45vL29+fbbbx1hLjY2lltvvZWnn366kj61iIiIVLp1/4bD68CrDnCqwjdXpnmwzlW3bl0sFsv5K7JY8PX1pXnz5tx9991OIacm0jxYIiIi1UTWYZiVAEU5ZF/xIsFXjavw7+9yj8F69tlnsVqtDBo0iOeff57nn3+eQYMGYbVaeeihh2jZsiUPPvggb7/9dkXUKyIiIlJ2hgFfPQJFORCbAJ1HVMpmy32IcNWqVbz00kvnXbvvrbfe4n//+x+ffvopHTp04M0337zopWpEREREKtwvn8OupWD1ghveBGvlnN9X7q1888039O/f/7zlV111Fd988w0A1113Hfv27fvj1YmIiIhcqrwM+Pox8/EVkyCidaVtutwBKzQ0lC+//PK85V9++SWhoaGAecHlwMDAP16diIiIyKVa9gzkHofwVtB7QqVuutyHCJ955hkefPBBli9fTnx8PADr1q1jyZIljgsuL1u2jD59+ri2UhEREZGy2rcCNv3HfHzjm+BZuZOFl/ssQoAff/yRmTNnOuaYatWqFWPHjqVnz54uL7Cq0lmEIiIiVVThKfhnT8hKhm73wqC/OV6qrO/vS5oHq1evXvTq1cvVtYiIiIj8cf97xgxXIY2g/3NuKeGSApbdbmfPnj2kpaVht9udXrviiitcUpiIiIhIue1dDhveNR/fNAt86riljHIHrJ9++ok777yTgwcP8tujixaLBZvN5rLiRERERMqs8BR88bD5uNu90ORyt5VS7oD1wAMP0LVrV7766iuio6NLndVdREREpNJVgUODZ5Q7YO3evZtPPvmE5s2bV0Q9IiIiIuVXRQ4NnlHuebASEhLYs2dPRdQiIiIiUn5V6NDgGeXuwRo7diyPPPIIKSkptG/fHi8vL6fXO3To4LLiRERERH7XN09VmUODZ5R7HixrKdfwsVgsGIZRqwa5ax4sERGRKmD3t/Dhrebju7+Cxr0v2rzKzoO1f//+iqhDREREpHzyT8IXY8zH3f/yu+GqMpU7YDVq1Kgi6hAREREpn68fh1PHIKw5XPWsu6txUqaA9cUXX3Dttdfi5eXFF198cdG2N954o0sKExEREbmg7V/CzwvAYoXBc8DLz90VOSlTwBo8eDApKSlEREQwePDgC7arTWOwRERExE1y0+HL8ebjXuMhtps7qylVmQLWuZfD+e2lcUREREQqjWHA4gmQlw4RbaHvE+6uqFTlngdLRERExG22fATbvwCrJ9w8Gzx93F1RqcrUg/Xmm2+WeYUPP/zwJRcjIiIickHpu+GrSebjvk9AdEf31nMRZZoHq0mTJk7Pjx8/Tl5eHiEhIQBkZmbi7+9PREQE+/btq5BCqxrNgyUiIlKJigvgX/0hdSs0uQL+tAisHuVeTWV9f5fpEOH+/fsdt5dffpm4uDi2b99ORkYGGRkZbN++nc6dO/Piiy9WWKEiIiJSiy17xgxX/uFw89xLCleVqdwzuTdr1oxPPvmETp06OS3fsGEDt912W62ZiFQ9WCIiIpVk+2JYMNx8PPwTaHH1Ja+qSvVgnevYsWOUlJSct9xms5GamuqSokREREQAyDwE/33IfNxz7B8KV5Wp3AHrqquu4v7772fjxo2OZRs2bODBBx+kf//+Li1OREREajFbCXz6ZyjIhJjOcGXVmq39YsodsN555x2ioqLo2rUrPj4++Pj4EB8fT2RkJP/6178qokYRERGpjVZMhUM/gU8Q3PYOeHq7u6IyK/e1COvVq8eSJUvYtWsXO3bsAKB169a0bNnS5cWJiIhILbV3Oaycbj6+YQaENrlo86qm3AHrjJYtWypUiYiIiOudSoXP7gMM6HI3tLvV3RWVW7kDls1m47333iMxMZG0tLTzLp3z3Xffuaw4ERERqWXsNvjsXshNg4jLYOA0d1d0ScodsMaNG8d7773HoEGDaNeuHRaLpSLqEhERkdpo1euw/3vw8ofb3wMvP3dXdEnKHbDmz5/Pxx9/zHXXXVcR9YiIiEhtdXA1LP+r+XjQdKjXyr31/AHlPovQ29ub5s2bV0QtIiIiUlvlnjCnZDDs0GEoxN3p7or+kHIHrEceeYS///3vlHMCeBEREZHS2Yrh4xGQfQTCmpu9V9VcuQ8Rrlq1iuXLl/P111/Ttm1bvLy8nF7/7LPPXFaciIiI1AJfPw4HV4F3IAz5EHzquLuiP6zcASskJISbb765ImoRERGR2mbdv2D9vwEL3PoviGjt7opcotwB6913362IOkRERKS22b/S7L0C6D8FWg10bz0uVO4xWAAlJSV8++23vPXWW5w6dQqAo0ePkpOT49LiREREpIY6ecAcd2Uvgfa3Q6/x7q7Ipcrdg3Xw4EEGDhxIcnIyhYWFXH311QQGBvLKK69QWFjInDlzKqJOERERqSkKT8FHwyA/A2I6wY3/gBo2r2a5e7DGjRtH165dOXnyJH5+Zyf/uvnmm0lMTHRpcSIiIlLD2Epg4ShI+xXqRMLQedV2MtGLKXcP1sqVK1m9ejXe3s5XtG7cuDFHjhxxWWEiIiJSwxgGfP0o7FkGnn4w7CMIinF3VRWi3D1Ydrsdm8123vLDhw8TGBjokqJERESkBlr9Jqx/B7DAbf+G+l3cXVGFKXfAuuaaa5gxY4bjucViIScnhylTpujyOSIiIlK6bZ/BsmfNxwOnQetB7q2nglmMck7JfvjwYQYMGIBhGOzevZuuXbuye/duwsPD+eGHH4iIiKioWquU7OxsgoODycrKIigoyN3liIiIVF3JP8H7N4KtEBIehGunua2Uyvr+LnfAAnOahgULFrBlyxZycnLo3Lkzw4cPdxr0XtMpYImIiJRB+m749zXmGYOtBsGQ/wOrh9vKqdIBSxSwREREftfJA/DOtXDqKMR0hrsXg3eAW0uqrO/vcp9FeOLECcLCwgA4dOgQb7/9Nvn5+dxwww1cccUVLi9QREREqqGsI/D+DWa4qtcahn/i9nBVmco8yH3r1q00btyYiIgIWrduzebNm+nWrRtvvPEGc+fO5corr2TRokUVWKqIiIhUCzlp8MGNkJkMoU1hxH8hIMzdVVWqMgesxx57jPbt2/PDDz/Qt29frr/+egYNGkRWVhYnT57k/vvvZ9o09w1aExERkSogLwM+GAwn9kBwLIz4AgKj3F1VpSvzGKzw8HC+++47OnToQE5ODkFBQaxbt44uXcw5LHbs2EH37t3JzMysyHqrDI3BEhER+Y2CbPjgJji6EepEwaglENbM3VU5qazv7zL3YGVkZBAVZSbQOnXqEBAQQN26dR2v161b13Hh5/KYNWsWjRs3xtfXl4SEBNauXXvR9gsXLqR169b4+vrSvn17lixZ4vT6Z599xjXXXENYWBgWi4XNmzeft46CggIeeughwsLCqFOnDrfeeiupqanlrl1EREROKzwFH95mhiu/UPOwYBULV5WpXBONWn5zIcbfPi+vBQsWMHHiRKZMmcLGjRvp2LEjAwYMIC0trdT2q1evZtiwYYwePZpNmzYxePBgBg8ezLZt2xxtcnNz6d27N6+88soFtzthwgS+/PJLFi5cyPfff8/Ro0e55ZZb/tBnERERqbWKcmHeEDi0BnyDYcQiiGjt7qrcqsyHCK1WK9deey0+Pj4AfPnll1x55ZUEBJhnBBQWFrJ06dJSL6NzIQkJCXTr1o2ZM2cC5mV4YmNjGTt2LE888cR57YcMGUJubi6LFy92LOvevTtxcXHMmTPHqe2BAwdo0qQJmzZtIi4uzrE8KyuLevXqMW/ePG677TbAPLzZpk0bkpKS6N69e5lq1yFCERERoDjfDFf7vwefIDNcVeFL4FS5Q4QjR44kIiKC4OBggoODueuuu4iJiXE8j4iIYMSIEWXecFFRERs2bKB///5ni7Fa6d+/P0lJSaW+Jykpyak9wIABAy7YvjQbNmyguLjYaT2tW7emYcOG5VqPiIhIrVdcAPOHm+HKuw7c9WmVDleVqczzYL377rsu3XB6ejo2m43IyEin5ZGRkezYsaPU96SkpJTaPiUlpczbTUlJwdvbm5CQkHKtp7CwkMLCQsfz7OzsMm9TRESkxikpgoUjYW8iePnDnR9DbLy7q6oyyn2x59pq6tSpjt664OBgYmNj3V2SiIiIe5QUwsd/gl1LwdMXhs2Hxr3cXVWV4raAFR4ejoeHx3ln76WmpjrOVvytqKiocrW/0DqKiorOm07i99YzefJksrKyHLdDhw6VeZsiIiI1RnE+zL/zbLgaOg+a9nF3VVWO2wKWt7c3Xbp0ITEx0bHMbreTmJhIjx49Sn1Pjx49nNoDLFu27ILtS9OlSxe8vLyc1rNz506Sk5Mvuh4fHx+CgoKcbiIiIrVKUR58NBT2fHv2sGDzq9xdVZVU7msRutLEiRMZOXIkXbt2JT4+nhkzZpCbm8uoUaMAGDFiBPXr12fq1KkAjBs3jj59+jB9+nQGDRrE/PnzWb9+PXPnznWsMyMjg+TkZI4ePQqY4QnMnquoqCiCg4MZPXo0EydOJDQ0lKCgIMaOHUuPHj3KfAahiIhIrVOYY4arAyvBKwCGL9RhwYtwa8AaMmQIx48f59lnnyUlJYW4uDiWLl3qGMienJyM1Xq2k61nz57MmzePp59+mieffJIWLVqwaNEi2rVr52jzxRdfOAIawNChQwGYMmUKzz33HABvvPEGVquVW2+9lcLCQgYMGMA///nPSvjEIiIi1VBBtjkVQ/Jq8A6Euz6BhuqUuJgyz4MlzjQPloiI1ArZx+DD2yF1K/gEw58+gwZd3V3VJaus72+39mCJiIhIFZa2w7z8TdYhCIgwDwvGxLm7qmpBAUtERETOd3C1OeaqIAvCmpuTiNZt7O6qqg0FLBEREXH2yyL47D6wFUKDeHOeq4Awd1dVrShgiYiIiMkw4Me/w7fPAQa0vh5u/Rd4+bm7smpHAUtERETM6wp+OQ5+nm8+73YvXPsKWD3cW1c1pYAlIiJS251KhQXD4fA6sHiYwSr+XndXVa0pYImIiNRmx7bAR3dC9mHwDYbb34dm/dxdVbWngCUiIlJbbfsM/vsQFOdBWAu4cwGENXN3VTWCApaIiEhtYyuBxOdg9T/M582uhNveBb8Qd1ZVoyhgiYiI1Ca5J+CTUbD/e/N5r/Fw1bMazO5iClgiIiK1xdFNsOBP5szsXgEw+J/QdrC7q6qRFLBERERqOrsd1swx57eyFUJoMxj6IUS0cXdlNZYCloiISE12Yi/8dwwkrzaftxwIN7+l8VYVTAFLRESkJrLbYd3bZq9VcR5414FrXoQuo8BicXd1NZ4CloiISE2TsR++GAsHVprPG18ON82Cuo3cW1ctooAlIiJSU9jtsPYtSHzB7LXy8oerX4Cuo8FqdXd1tYoCloiISE2Qvtsca3XoJ/N548vhxn9AaBP31lVLKWCJiIhUZ7Zi+OmfsPyvUFJgjrW6+gVzrJV6rdxGAUtERKS62vMtLH0S0neaz5tdCTe8CSGx7q1LFLBERESqnfTd8M1TsPsb87lfqNlr1ekunSFYRShgiYiIVBf5J+H718yB7PYSsHpC/P3Q5zHNa1XFKGCJiIhUdSWFsPZt+OE1KMg0l7UYAANehvAWbi1NSqeAJSIiUlXZ7fDLZ5D4PGQmm8siLjMnDG3e3721yUUpYImIiFQ1hgH7lpvzWR3dZC4LjIZ+T0HcnWD1cG998rsUsERERKqSAz/C8pfh4I/mc+9A6D0Ouj8E3v7urU3KTAFLRESkKji8AZa/BHu/M597+EC30dB7ItSp597apNwUsERERNzFVgw7voK1c8/2WFk9ofNIuPwRCK7v3vrkkilgiYiIVLac47DxPVj3Dpw6ai6zeEDHoeaUC3Ubu7M6cQEFLBERkcpgGGYv1Yb34Nf/gq3IXO4fDl1HQdd7ICjGrSWK6yhgiYiIVKS8DNg8zwxWJ3afXR7TGRLuh7Y3g6eP28qTiqGAJSIi4mq2EnOahc0fwo4lYCs0l3sFQPvboMvdUL+zW0uUiqWAJSIi4ippO2DLPNiyAHJSzi6P6mAeBmx/O/gEuq8+qTQKWCIiIpfKMODYZti+2Dwb8Pj2s6/5hUKHO6DjMIiJc1eF4iYKWCIiIuWRmw7JSbD/B/PwX/bhs69ZPaHFNeZs6y0GgKe3++oUt1LAEhERuZjso7B/pXkGYHISpO9yft3L37wuYJsboMXV4FfXPXVKlaKA9UclzYJrngCLxd2ViIiIK+RnwoFVsP972Lfi/EAFUK8NNOph9lY17QtefpVcpFR1Clh/1IqpkHcQbvi7TrMVEaluDANO7odDa8/e0n4Bw362jcUK0XHQuBc07AkNu4N/qNtKlupBAesP84AtH0HGfhjyH10vSqSmMQwoKYDifPNWUgD2EvM/VJ6+59x81JNdlRXnQ8Y+OLEXMvaevt8Hx3dCXvr57cNaQNM+Zu9U49467CflpoD1Rw35AL5+CA79BG9fCcPmQVR7d1clUnvYSqAkH0oKzfBTlGsOQs47YX5x5p6AgkxzeXHe2fvifHMm7ZIi895WaF4XzlZ0+r4Y7MVnZ9suM4vZ42GxmAOevfzMMTpe/qcf+5nLLVawepiXR/HwOqed328eB4D36fd7B5hhzsvvdMA73dY7wDz138OrIn7CVZ/dDvknITcNclLNy9CcOnY6UO0x77OPXPj9Ht5mD1VsvHlrEA9B0ZVWvtRMFsMwDHcXUR1lZ2cTHBxMVlYWQYUp8NEQ84/YwweueQni79X/ZkUula3EnEMo+6j5xZh91LzlHj/7BZqTan6pGrbKq8t6OghZPcxgVpLvfCjJ3Tx8ToetOuBdx3zsHWA+9vI3z2jz8DEDhae3GdYcbQLPvtcr4JzlAWdD4ZlgWBH/thmGGX4LMs39mn8SCrLO9hwW55s/76JcyDkTpFLhVKoZrOwlv78N32AIbQZhzc7ehzWDiLbg5ev6zyRVktP3d1BQhW1HAesSnbeD8jLgs/tgzzKzQYtr4KZ/6pChSGnyT5qH1TP2QdahswEq+6jZ85CTemnBxcPbDAP+4eAfBgHh5lgZv7pnQ4a3vxkgzvQCeXidDR0eXqfvf/PYy9fsLfL4Tae/YZhf7Gd6wwy7uQzDfHzmteI8KMo7+9iwgd12uo3N7CkrLjjbs1acd857ck/fn+59Kyk822N3JnicmSW8slisZthy/KxOBzar1+lev3N6Au0lp3vpTgc0q5cZUO0l5/QSlpifoSwh6WL86kKdSKgTYd7XbewcqPxD9R9fUcCq6krdQYYBa96CZc+a/1gE1IPBs83TdkVqk+J8M0BlHYLMZPOWdQhOHjRDVUHm76/D6gmBMebFb4NiIDAaAiPPfoEGRJghyuv0GCgPH7BaK/yjVUm2YijKgcIcM4QV5Zy+5Z7zPPecQ6KnD4eeCXOFp862K8w5G+qKcs0wV5msXmZQ8qtr9jidOTx65tCol7/5b6vjd+Gc3wfNOSVloIBVxV10B6X+Ap+MPjujb/e/QP/n9ccvNU9xgRme0ndB2q+Qug1SfzUHEf9eD1SdSKjbBOo2Oh2i6psh6kygCoiovYGpKrHbzCB2ptfNbjv9uMQ5sJUUmb1Rv+39s3qcfl/J2R4tu81cfqbtmd4wvxAzQKmXSSqQAlYV97s7qDgflk2BtW+Zz+t3hdvfg5DYSq1TxCUKsuHYFvOSIGk74OQB89T27KPABf4J8QmGug0hpBEEx0JIQ/MW2sQ8dOMdUHn1i4icpoBVxZV5B+1YAoseMAdr+tWFm9+ClgMqr1CR8jAMcwxU6uneqJSf4ehms0fqQrzrQGhTiGwLEZdB5GXmoOHAKPVEiEiVo4BVxZVrB508CAtHwtFN5vPeE6Df0+cPmBWpTIZhjoc6stH83Uz52QxV+SdLbx8ca16wNrK9GajqNjZ7o/zDFKREpNpQwKriyr2DSgrhf8+cPWTYIB4G/xPCW1RsoSJghqnMg2Zv1LHNZqA6usnsWf0ti9WcZDGyrXmLiYPoThAQVslFi4i4ngJWFXfJO+iXz+G/Y6HolHlWzJVPm4PgrR4VV6zUPqdS4ch6OLwejm40x0+V1jPl4WNOjFu/sznRYmRbqNdacwKJSI2lgFXF/aEdlHkIvnwY9n5nPm/QzZwzq15L1xcqNV9xvhmgDq8/Hao2QFby+e2sXub4qOg4s1cqprM5Zkpnt4pILaKAVcX94R1kGLDp/+Cbp6Aw2+xJ6D0Buj9onqosUhrDMM/gS/4JDq81Q1Xar6VM0GiBiDZQv4t5i+lkPtcFyUWkllPAquJctoOyDsOX42DPt+Zz70DzMjs9HjJnoZbazW6DlK1moEpOMu9zUs5vVyfSnAqkfmezRzSmE/hW3D8cIiLVVWUFrCoxi9+sWbNo3Lgxvr6+JCQksHbt2ou2X7hwIa1bt8bX15f27duzZMkSp9cNw+DZZ58lOjoaPz8/+vfvz+7du53aNG7cGIvF4nSbNm2ayz/b7wpuAMM/gdveNQ/XFJ2CVa/DG+1g6WTIPlb5NYn7lBSaIWrldPjPbfBKY5jbB5Y+Dr8uMsOV1cs8SaLHGHNutfHb4JGd5oXGr5gETfsoXImIuJnbe7AWLFjAiBEjmDNnDgkJCcyYMYOFCxeyc+dOIiIizmu/evVqrrjiCqZOncr111/PvHnzeOWVV9i4cSPt2rUD4JVXXmHq1Km8//77NGnShGeeeYatW7fy66+/4utrDt5t3Lgxo0eP5t5773WsOzAwkICAsk1+WCEJ2G6HXV/DD6+dndLB0xe6/Rl6T9RZXDVR1mE4dPpQ3+G15lgqW5FzG59gaJgADbtDwx5m75SXn3vqFRGp5mrNIcKEhAS6devGzJkzAbDb7cTGxjJ27FieeOKJ89oPGTKE3NxcFi9e7FjWvXt34uLimDNnDoZhEBMTwyOPPMKkSZMAyMrKIjIykvfee4+hQ4cCZsAaP34848ePv6S6K3QHGQbsTYTvX4VDa8xl3nXMsw17jjGvzyXVT3HB6cHoa8+GqlNHz28XUA8a9YSGPc37yLY6y1RExEUqK2C5dabLoqIiNmzYwOTJkx3LrFYr/fv3JykpqdT3JCUlMXHiRKdlAwYMYNGiRQDs37+flJQU+vfv73g9ODiYhIQEkpKSHAELYNq0abz44os0bNiQO++8kwkTJuDpWfqPpLCwkMLCs1esz87OLvfnLTOLBZr3h2ZXmWOzvnvR/GL+4VVYO9cMWl3uNi92KlWTYZgXNz68zgxSh9aaE3n+tnfK4mEGqNh487BfbDfz+nyauFNEpFpza8BKT0/HZrMRGekcFCIjI9mxY0ep70lJSSm1fUpKiuP1M8su1Abg4YcfpnPnzoSGhrJ69WomT57MsWPHeP3110vd7tSpU3n++efL9wH/KIsFWlxthq3tX8B3L0P6TljxV/Mw4mU3Qrd7zUNH+kJ2L7vNvMj3wdVw8EczUJU2GN0//HSY6mbex3TSNflERGqgWnutlnN7wTp06IC3tzf3338/U6dOxcfn/FPZJ0+e7PSe7OxsYmMr6cLNFgtcdhO0vt6cqHTNW+Zhpm2fmrfI9tDpLmhzvTloXipe4SlznNzh9afP8PsJCn8zK7rVEyLbnQ1UDbqqd0pEpJZwa8AKDw/Hw8OD1NRUp+WpqalERUWV+p6oqKiLtj9zn5qaSnR0tFObuLi4C9aSkJBASUkJBw4coFWrVue97uPjU2rwqlRWD2h/m3k7tgXWvg1bF0LqVvMss6WPm5NHtrnBvOkyPK5hK4a07eaM6IfXw5ENcHwHGHbndt51zN7ERj3NwejRceDt75aSRUTEvdwasLy9venSpQuJiYkMHjwYMAe5JyYmMmbMmFLf06NHDxITE50Gpy9btowePXoA0KRJE6KiokhMTHQEquzsbNasWcODDz54wVo2b96M1Wot9czFKim6I9w0E65+AbbMh1//aw6IP7rRvCU+DxFtof2t0O42qNvI3RVXD3YbpO82A+zRTWaYSvkZSgrObxvUABp0McdONe5l9iTqAt4iIkIVOEQ4ceJERo4cSdeuXYmPj2fGjBnk5uYyatQoAEaMGEH9+vWZOnUqAOPGjaNPnz5Mnz6dQYMGMX/+fNavX8/cuXMBsFgsjB8/npdeeokWLVo4pmmIiYlxhLikpCTWrFlDv379CAwMJCkpiQkTJnDXXXdRt25dt/wcLpl/KPT4i3k7lQo7l8D2L2H/D5D2CyT+AokvQGwCtL8d2tyowfFn2ErMnqgz1+o7tgVStkFJ/vltfYLMy8vU72JO6NmgKwSW3ssqIiLi9oA1ZMgQjh8/zrPPPktKSgpxcXEsXbrUMUg9OTkZq/XsfKg9e/Zk3rx5PP300zz55JO0aNGCRYsWOebAAnjsscfIzc3lvvvuIzMzk969e7N06VLHHFg+Pj7Mnz+f5557jsLCQpo0acKECRPOOzux2gmMhK6jzFt+phm0tn4M+1eavVuH1sCSSeahq5YDoMU15iFFa5WYb7ZiFeZA+i7zduznsz1TxXnnt/UKMC+AHN3xdKDqDKHNasfPSUREXMLt82BVV5U1j4ZLZB+DXz6DrZ+YvTXnOnNWW1hzc8xWWAvz3j+seg3Gttsh97g5NUJmsnmfdRhO7IHjuyD7cOnv8w48feHjTmagiu6oMCUiUoPVmolGq6tqFbDOdSrVnFtr9zewd7l5oenS+AabQSOs2dn7uk3MsVwB9dwXvux2c/qD9F2Q+qt5oeO0XyFtBxTnXvy9AfUgvBVEXmb23NXvYgZLhSkRkVpDAauKq7YB61y2YnMizNRfzIHdJ3ZD+h6z94eL/Fp4+kFIQzNs1YkA3xAzkPkEmffeAeDpc/rme/rezzyjzuvMzQ/sJeahzIJMKMgyHxdmQ1EuFOWcvuVCTto5vVJHwF5cel0WKwRGQ3AshMSa93UbQ71WEN7SHK8mIiK1Wq2YyV3czMPLnFKgUU/n5cX5kLEfMvbCib2n7/fByQOQfcQcBJ6+07xdMgsXDXEXfauHGe4iLjNvkafvQ5uan0lERMTNFLDkfF5+ZmiJvOz810qKzPFMJw9C5kHIO2H2Pp17K8oDWyGUFJrTG5QUmqGtOO+c6Q7OCVfegeAXcronLMicT8o7wLz5BJo9T8ENz/ZKBUZrOgQREanS9C0l5ePpbfYUhTa9tPfbbWbQKsozZzr3DVZYEhGRGkffbFK5rB5mr5RPoLsrERERqTA6fUpERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExRSwRERERFxMAUtERETExapEwJo1axaNGzfG19eXhIQE1q5de9H2CxcupHXr1vj6+tK+fXuWLFni9LphGDz77LNER0fj5+dH//792b17t1ObjIwMhg8fTlBQECEhIYwePZqcnByXfzYRERGpfdwesBYsWMDEiROZMmUKGzdupGPHjgwYMIC0tLRS269evZphw4YxevRoNm3axODBgxk8eDDbtm1ztHn11Vd58803mTNnDmvWrCEgIIABAwZQUFDgaDN8+HB++eUXli1bxuLFi/nhhx+47777KvzzioiISM1nMQzDcGcBCQkJdOvWjZkzZwJgt9uJjY1l7NixPPHEE+e1HzJkCLm5uSxevNixrHv37sTFxTFnzhwMwyAmJoZHHnmESZMmAZCVlUVkZCTvvfceQ4cOZfv27Vx22WWsW7eOrl27ArB06VKuu+46Dh8+TExMzO/WnZ2dTXBwMFlZWQQFBbniRyEiIiIVrLK+vz0rbM1lUFRUxIYNG5g8ebJjmdVqpX///iQlJZX6nqSkJCZOnOi0bMCAASxatAiA/fv3k5KSQv/+/R2vBwcHk5CQQFJSEkOHDiUpKYmQkBBHuALo378/VquVNWvWcPPNN5+33cLCQgoLCx3Ps7KyAHNHiYiISPVw5nu7ovuX3Bqw0tPTsdlsREZGOi2PjIxkx44dpb4nJSWl1PYpKSmO188su1ibiIgIp9c9PT0JDQ11tPmtqVOn8vzzz5+3PDY29kIfT0RERKqoEydOEBwcXGHrd2vAqk4mT57s1HOWmZlJo0aNSE5OrtAdJL8vOzub2NhYDh06pMO1bqZ9UXVoX1Qt2h9VR1ZWFg0bNiQ0NLRCt+PWgBUeHo6HhwepqalOy1NTU4mKiir1PVFRURdtf+Y+NTWV6OhopzZxcXGONr8dRF9SUkJGRsYFt+vj44OPj895y4ODg/XHUkUEBQVpX1QR2hdVh/ZF1aL9UXVYrRV7np9bzyL09vamS5cuJCYmOpbZ7XYSExPp0aNHqe/p0aOHU3uAZcuWOdo3adKEqKgopzbZ2dmsWbPG0aZHjx5kZmayYcMGR5vvvvsOu91OQkKCyz6fiIiI1E5uP0Q4ceJERo4cSdeuXYmPj2fGjBnk5uYyatQoAEaMGEH9+vWZOnUqAOPGjaNPnz5Mnz6dQYMGMX/+fNavX8/cuXMBsFgsjB8/npdeeokWLVrQpEkTnnnmGWJiYhg8eDAAbdq0YeDAgdx7773MmTOH4uJixowZw9ChQ8t0BqGIiIjIxbg9YA0ZMoTjx4/z7LPPkpKSQlxcHEuXLnUMUk9OTnbqxuvZsyfz5s3j6aef5sknn6RFixYsWrSIdu3aOdo89thj5Obmct9995GZmUnv3r1ZunQpvr6+jjYffvghY8aM4aqrrsJqtXLrrbfy5ptvlrluHx8fpkyZUuphQ6lc2hdVh/ZF1aF9UbVof1QdlbUv3D4PloiIiEhN4/aZ3EVERERqGgUsERERERdTwBIRERFxMQUsERERERdTwAJ++OEHbrjhBmJiYrBYLI7rGl7IihUrsFgs591+e5mdWbNm0bhxY3x9fUlISGDt2rUV+ClqhorYF1OnTqVbt24EBgYSERHB4MGD2blzZwV/kuqvov4uzpg2bZpjWhX5fRW1P44cOcJdd91FWFgYfn5+tG/fnvXr11fgJ6n+KmJf2Gw2nnnmGZo0aYKfnx/NmjXjxRdfrPDr5VV35d0XYF5b+KmnnqJRo0b4+PjQuHFj3nnnHac2CxcupHXr1vj6+tK+fXuWLFlS7toUsIDc3Fw6duzIrFmzyvW+nTt3cuzYMcft3OsbLliwgIkTJzJlyhQ2btxIx44dGTBgwHkzyIuzitgX33//PQ899BA//fQTy5Yto7i4mGuuuYbc3FxXl1+jVMS+OGPdunW89dZbdOjQwVXl1ngVsT9OnjxJr1698PLy4uuvv+bXX39l+vTp1K1b19Xl1ygVsS9eeeUVZs+ezcyZM9m+fTuvvPIKr776Kv/4xz9cXX6Ncin74o477iAxMZF///vf7Ny5k48++ohWrVo5Xl+9ejXDhg1j9OjRbNq0icGDBzN48GC2bdtWvuIMcQIYn3/++UXbLF++3ACMkydPXrBNfHy88dBDDzme22w2IyYmxpg6daqLKq35XLUvfistLc0AjO+///6PFViLuHJfnDp1ymjRooWxbNkyo0+fPsa4ceNcVmdt4ar98fjjjxu9e/d2bXG1jKv2xaBBg4x77rnHadktt9xiDB8+3AVV1g5l2Rdff/21ERwcbJw4ceKCbe644w5j0KBBTssSEhKM+++/v1z1qAfrD4iLiyM6Opqrr76aH3/80bG8qKiIDRs20L9/f8cyq9VK//79SUpKckepNd6F9kVpsrKyACr8Qp+11e/ti4ceeohBgwY5/X1IxbnY/vjiiy/o2rUrt99+OxEREXTq1Im3337bTZXWfBfbFz179iQxMZFdu3YBsGXLFlatWsW1117rjlJrrDO/86+++ir169enZcuWTJo0ifz8fEebpKSk8/59GjBgQLm/v90+k3t1FB0dzZw5c+jatSuFhYX861//om/fvqxZs4bOnTuTnp6OzWZzzEZ/RmRkJDt27HBT1TXT7+2L37Lb7YwfP55evXo5zf4vf1xZ9sX8+fPZuHEj69atc3O1NV9Z9se+ffuYPXs2EydO5Mknn2TdunU8/PDDeHt7M3LkSDd/gpqjLPviiSeeIDs7m9atW+Ph4YHNZuPll19m+PDhbq6+Ztm3bx+rVq3C19eXzz//nPT0dP7yl79w4sQJ3n33XQBSUlJK/f6+0HjSCypXf1ctQBm6GEtzxRVXGHfddZdhGIZx5MgRAzBWr17t1ObRRx814uPjXVFmreCKffFbDzzwgNGoUSPj0KFDf7C62sUV+yI5OdmIiIgwtmzZ4nhdhwgvjav+Nry8vIwePXo4tRk7dqzRvXv3P1pireGqffHRRx8ZDRo0MD766CPj559/Nj744AMjNDTUeO+991xYbc1Wln1x9dVXG76+vkZmZqZj2aeffmpYLBYjLy/PMAzz72LevHlO75s1a5YRERFRrnp0iNBF4uPj2bNnDwDh4eF4eHiQmprq1CY1NZWoqCh3lFernLsvzjVmzBgWL17M8uXLadCggRsqq33O3RcbNmwgLS2Nzp074+npiaenJ99//z1vvvkmnp6e2Gw2N1db8/32byM6OprLLrvMqU2bNm1ITk6u7NJqnd/ui0cffZQnnniCoUOH0r59e/70pz8xYcIEpk6d6sYqa57o6Gjq169PcHCwY1mbNm0wDIPDhw8DEBUV5ZLvbwUsF9m8eTPR0dEAeHt706VLFxITEx2v2+12EhMT6dGjh7tKrDXO3RcAhmEwZswYPv/8c7777juaNGnixupql3P3xVVXXcXWrVvZvHmz49a1a1eGDx/O5s2b8fDwcHO1Nd9v/zZ69ep13pQlu3btolGjRpVdWq3z232Rl5eH1er8lezh4YHdbq/s0mq0Xr16cfToUXJychzLdu3ahdVqdfzHu0ePHk7f3wDLli0r9/e3xmABOTk5Tv+T2L9/P5s3byY0NJSGDRsyefJkjhw5wgcffADAjBkzaNKkCW3btqWgoIB//etffPfdd/zvf/9zrGPixImMHDmSrl27Eh8fz4wZM8jNzWXUqFGV/vmqk4rYFw899BDz5s3jv//9L4GBgY7j6MHBwfj5+VXuB6xGXL0vAgMDzxv3FhAQQFhYmMbDlUFF/G1MmDCBnj178te//pU77riDtWvXMnfuXObOnVvpn686qYh9ccMNN/Dyyy/TsGFD2rZty6ZNm3j99de55557Kv3zVSfl3Rd33nknL774IqNGjeL5558nPT2dRx99lHvuucfxfTBu3Dj69OnD9OnTGTRoEPPnz2f9+vXl/7so1wHFGurMKbS/vY0cOdIwDMMYOXKk0adPH0f7V155xWjWrJnh6+trhIaGGn379jW+++6789b7j3/8w2jYsKHh7e1txMfHGz/99FMlfaLqqyL2RWnrA4x333238j5YNVRRfxfn0hissquo/fHll18a7dq1M3x8fIzWrVsbc+fOraRPVH1VxL7Izs42xo0bZzRs2NDw9fU1mjZtajz11FNGYWFhJX6y6qe8+8IwDGP79u1G//79DT8/P6NBgwbGxIkTHeOvzvj444+Nli1bGt7e3kbbtm2Nr776qty1WQxD08SKiIiIuJLGYImIiIi4mAKWiIiIiIspYImIiIi4mAKWiIiIiIspYImIiIi4mAKWiIiIiIspYImIiIi4mAKWiIiIiIspYImIiIi4mAKWiFR7ffv2Zfz48e4uw+FS6zlx4gQREREcOHDA5TX91tChQ5k+fXqFb0ektlLAEpEymTNnDoGBgZSUlDiW5eTk4OXlRd++fZ3arlixAovFwt69eyu5ysrl6mD38ssvc9NNN9G4cWOXrfNCnn76aV5++WWysrIqfFsitZECloiUSb9+/cjJyWH9+vWOZStXriQqKoo1a9ZQUFDgWL58+XIaNmxIs2bN3FFqtZSXl8e///1vRo8eXSnba9euHc2aNeM///lPpWxPpLZRwBKRMmnVqhXR0dGsWLHCsWzFihXcdNNNNGnShJ9++slpeb9+/QBYunQpvXv3JiQkhLCwMK6//nqnnq25c+cSExOD3W532t5NN93EPffcA4Ddbmfq1Kk0adIEPz8/OnbsyCeffHLBWsvSvm/fvjz88MM89thjhIaGEhUVxXPPPefU5tSpUwwfPpyAgACio6N54403HL1Wd999N99//z1///vfsVgsWCwWp0N7drv9ouv+rSVLluDj40P37t2dlq9atQovLy+nAHvgwAEsFgsHDx50PP7000+54oor8PPzo1u3biQnJ7Ny5Uq6d++Ov78/V111FZmZmU7rvuGGG5g/f/5F6xKRS6OAJSJl1q9fP5YvX+54vnz5cvr27UufPn0cy/Pz81mzZo0jYOXm5jJx4kTWr19PYmIiVquVm2++2RGobr/9dk6cOOG03oyMDJYuXcrw4cMBmDp1Kh988AFz5szhl19+YcKECdx11118//33pdZZ1vbvv/8+AQEBrFmzhldffZUXXniBZcuWOV6fOHEiP/74I1988QXLli1j5cqVbNy4EYC///3v9OjRg3vvvZdjx45x7NgxYmNjy7zu31q5ciVdunQ5b/nmzZtp06YNvr6+jmWbNm2ibt26NGrUiC1btgAwe/Zs/vrXv7J69WpSU1O56667mDZtGjNnzmT58uVs2bKFd99912nd8fHxrF27lsLCwgvWJSKXyBARKaO3337bCAgIMIqLi43s7GzD09PTSEtLM+bNm2dcccUVhmEYRmJiogEYBw8eLHUdx48fNwBj69atjmU33XSTcc899ziev/XWW0ZMTIxhs9mMgoICw9/f31i9erXTekaPHm0MGzbMMAzD6NOnjzFu3DjDMIwytT/znt69ezu16datm/H4448bhmEY2dnZhpeXl7Fw4ULH65mZmYa/v79jW+du91y/t+7S/PZncMaf//xnY8SIEU7Lnn32WaNv376GYRjGc889Z4SGhhrp6emO1++66y6jcePGRm5urmPZwIEDjccee8xpPVu2bDEA48CBAxesS0QujXqwRKTM+vbtS25uLuvWrWPlypW0bNmSevXq0adPH8c4rBUrVtC0aVMaNmwIwO7duxk2bBhNmzYlKCjIMYA7OTnZsd7hw4fz6aefOnpSPvzwQ4YOHYrVamXPnj3k5eVx9dVXU6dOHcftgw8+KHUQfXnad+jQwel5dHQ0aWlpAOzbt4/i4mLi4+MdrwcHB9OqVasy/awutu7S5OfnO/VSnbF582bi4uKclm3atMmxbMuWLdx8882EhYU5Xk9OTmbIkCH4+/s7LWvSpInTevz8/ABz/JeIuJanuwsQkeqjefPmNGjQgOXLl3Py5En69OkDQExMDLGxsaxevZrly5dz5ZVXOt5zww030KhRI95++23HWKt27dpRVFTk1MYwDL766iu6devGypUreeONNwDzTEWAr776ivr16zvV4+Pjc16N5Wnv5eXl9NxisZw3FuxSlXfd4eHhnDx50mmZzWZj27ZtdOrUyWn5xo0bufXWWwEzgE2ePNnp9S1btjBhwgTH84KCAnbu3EnHjh2d2mVkZABQr169Mn4qESkrBSwRKZd+/fqxYsUKTp48yaOPPupYfsUVV/D111+zdu1aHnzwQcCc12nnzp28/fbbXH755YA5aPu3fH19ueWWW/jwww/Zs2cPrVq1onPnzgBcdtll+Pj4kJyc7Ah0F1Pe9hfStGlTvLy8WLdunaM3Lisri127dnHFFVcA4O3tjc1mu+RtnKtTp07nndG3c+dOCgoKiImJcSxLSkriyJEjxMXFkZ2dzYEDB5wC2P79+8nKynJatnXrVgzDoH379k7r37ZtGw0aNCA8PNwln0FEzlLAEpFy6devHw899BDFxcVOAaZPnz6MGTOGoqIixwD3unXrEhYWxty5c4mOjiY5OZknnnii1PUOHz6c66+/nl9++YW77rrLsTwwMJBJkyYxYcIE7HY7vXv3Jisrix9//JGgoCBGjhzptJ7ytr+QwMBARo4cyaOPPkpoaCgRERFMmTIFq9WKxWIBoHHjxqxZs4YDBw5Qp04dQkNDsVovbeTFgAEDmDx5MidPnqRu3bqA2TsF8I9//IOHH36YPXv28PDDDwNQVFTEli1b8PDwoF27do71bN68mdDQUBo1auS0rFmzZtSpU8dpmytXruSaa665pHpF5OI0BktEyqVfv37k5+fTvHlzIiMjHcv79OnDqVOnHNM5AFitVubPn8+GDRto164dEyZM4LXXXit1vVdeeSWhoaHs3LmTO++80+m1F198kWeeeYapU6fSpk0bBg4cyFdffXXemKJLbX8hr7/+Oj169OD666+nf//+9OrVy+mMvkmTJuHh4cFll11GvXr1nMaVlVf79u3p3LkzH3/8sWPZ5s2bGTBgAPv27aN9+/Y89dRTPP/88wQFBfHmm2+yZcsWWrVq5TR2a8uWLecdUtyyZct5hwcLCgpYtGgR99577yXXLCIXZjEMw3B3ESIi1UFubi7169dn+vTpFTIh6FdffcWjjz7Ktm3bsFqtDBgwgG7duvHSSy+5fFuzZ8/m888/53//+5/L1y0iOkQoInJBmzZtYseOHcTHx5OVlcULL7wAmJOgVoRBgwaxe/dujhw5QmxsLFu2bHFMtupqXl5e/OMf/6iQdYuIerBERC5o06ZN/PnPf2bnzp14e3vTpUsXXn/99fMGi1eElJQUoqOj+eWXX7jssssqfHsi4loKWCIiIiIupkHuIiIiIi6mgCUiIiLiYgpYIiIiIi6mgCUiIiLiYgpYIiIiIi6mgCUiIiLiYgpYIiIiIi6mgCUiIiLiYgpYIiIiIi6mgCUiIiLiYgpYIiIiIi72/2jD9DvHKPlIAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# extract the transmission data from the mode monitor\n", "amp = sim_data_euler[\"mode\"].amps.sel(mode_index=0, direction=\"+\")\n", "T_euler = np.abs(amp)**2 \n", "\n", "# plotting the losses\n", "plt.plot(ldas, -10 * np.log10(T_circular), label=\"Circular bend\")\n", "plt.plot(ldas, -10 * np.log10(T_euler), label=\"Euler bend\")\n", "plt.xlim(1.5, 1.6)\n", "plt.ylim(0, 0.03)\n", "plt.xlabel(\"Wavelength ($\\mu m$)\")\n", "plt.ylabel(\"Bending loss (dB)\")\n", "plt.legend()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "id": "7e82a59f", "metadata": {}, "source": [ "Similarly, we plot the field intensity in log scale. From the plot, we can see that the leakage around the transition regions is indeed reduced. This is due to the fact that the curvature of the Euler curve varies smoothly." ] }, { "cell_type": "code", "execution_count": 19, "id": "ba05d415", "metadata": { "execution": { "iopub.execute_input": "2023-03-27T20:46:08.376038Z", "iopub.status.busy": "2023-03-27T20:46:08.375896Z", "iopub.status.idle": "2023-03-27T20:46:08.648901Z", "shell.execute_reply": "2023-03-27T20:46:08.648393Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHWCAYAAACGxthTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIA0lEQVR4nOy9e5wkVX33/zmnbn2Zyy6wy4LIRTEgKkIQcQ0KKoqEoERCvLMQIwZXDfIYFTUoJLhqomgeucQriUpUfH7iE40CIogXREV5giIEDVFAWPACC7sz3V11zu+Pc06dc6qruntmu2e6Z75vXsVUV1dXV/fMdn36870xKaUEQRAEQRDEhMGX+wQIgiAIgiAWA4kYgiAIgiAmEhIxBEEQBEFMJCRiCIIgCIKYSEjEEARBEAQxkZCIIQiCIAhiIiERQxAEQRDEREIihiAIgiCIiYREDEEQBEEQEwmJGIKYQK677jowxnDdddct96kQBEEsGyRiCGKMueiii3DppZcu92ksissuuwwf/OAHl/s0AABCCLzvfe/Dfvvth1qthoMPPhj/9m//NtBj7733Xrz1rW/Fs571LExPT/cVj9/97ndx5JFHotFoYMOGDXjDG96ARx55ZEivhCAIFxIxBDHGVImYZz7zmZibm8Mzn/nMpT+pARknEfP2t78db3nLW/Dc5z4X//t//2/svffeeNnLXobPfvazfR97++23473vfS/uuecePOlJT+q5780334znPOc52LFjBz7wgQ/gL//yL/GRj3wEJ5988rBeCkEQDuFynwBB9GP79u1oNpvLfRpjBecctVptuU9jIrjnnnvw/ve/H5s3b8aHP/xhAMBf/uVf4qijjsLf/M3f4OSTT0YQBJWPP+yww/Db3/4Wu+yyC77whS/0FCRve9vbsHbtWlx33XWYmZkBAOy777549atfjauuugrPe97zhvviCGKVQ04MsaTcc889eNWrXoU999wTSZJgv/32wxlnnIF2uw0AuPTSS8EYwze/+U289rWvxfr167HXXnvlj7/ooovwhCc8AUmSYM8998TmzZvx4IMPes9xxx134KSTTsKGDRtQq9Ww11574SUveQkeeuihfJ+rr74aRx55JNasWYOpqSkccMABeNvb3tb3/Ad5XKvVwjvf+U7sv//+SJIEj370o/HmN78ZrVar63if/vSn8dSnPhWNRgNr167FM5/5TFx11VUA1MXvpz/9Kb75zW+CMQbGGI4++mgA1Tkxl19+OQ477DDU63XstttueMUrXoF77rnH2+fUU0/F1NQU7rnnHpx44omYmprCunXr8KY3vQlZlvV9D770pS/h+OOPz3+Hj33sY/F3f/d33mOPPvpofOUrX8Evf/nL/Nz33XffymOeeuqp+X7F5V3velffc+p3vp1OB6997WvzbYwxnHHGGbj77rtxww039Hz89PQ0dtlll77Ps23bNlx99dV4xStekQsYADjllFMwNTWFz3/+84t/EQRBlEJODLFk/PrXv8ZTn/pUPPjggzj99NNx4IEH4p577sEXvvAF7NixA3Ec5/u+9rWvxbp163DOOedg+/btAIB3vetdOPfcc3HMMcfgjDPOwO23346LL74YP/jBD/Cd73wHURSh3W7j2GOPRavVwutf/3ps2LAB99xzD7785S/jwQcfxOzsLH7605/iT/7kT3DwwQfjvPPOQ5Ik+PnPf47vfOc7Pc9/kMcJIfCCF7wA3/72t3H66afj8Y9/PG655RZccMEF+K//+i9cccUV+b7nnnsu3vWud+HpT386zjvvPMRxjBtvvBHf+MY38LznPQ8f/OAH8frXvx5TU1N4+9vfDgDYfffdK8/v0ksvxWmnnYbDDz8cW7ZswdatW/GhD30I3/nOd/DjH/8Ya9asyffNsgzHHnssjjjiCPzjP/4jvv71r+P9738/HvvYx+KMM87o+T5ceumlmJqawllnnYWpqSl84xvfwDnnnINt27bhH/7hHwCo8M1DDz2Eu+++GxdccAEAYGpqqvKYr3nNa3DMMcd42772ta/hM5/5DNavX59v+81vftPz3AzT09NIkgQA8OMf/xjNZhOPf/zjvX2e+tSn5vcfeeSRAx23F7fccgvSNMVTnvIUb3scxzjkkEPw4x//eKefgyCIApIglohTTjlFcs7lD37wg677hBBSSik/+clPSgDyyCOPlGma5vfff//9Mo5j+bznPU9mWZZv//CHPywByE984hNSSil//OMfSwDy8ssvrzyPCy64QAKQDzzwwILOf5DHfepTn5Kcc/mtb33L237JJZdIAPI73/mOlFLKO+64Q3LO5Z/+6Z96r0dK+15IKeUTnvAEedRRR3U9z7XXXisByGuvvVZKKWW73Zbr16+XT3ziE+Xc3Fy+35e//GUJQJ5zzjn5tk2bNkkA8rzzzvOOeeihh8rDDjus95sgpdyxY0fXtte85jWy0WjI+fn5fNvxxx8v99lnn77HK+OOO+6Qs7Oz8rnPfa73dwBgoOWTn/ykdx6Pecxjup5j+/btEoB861vfOvB5XX755d77Xnbf9ddf33XfySefLDds2DDw8xAEMRgUTiKWBCEErrjiCpxwwgld31QBZe+7vPrVr/byFL7+9a+j3W7jzDPPBOfc229mZgZf+cpXAACzs7MAgCuvvBI7duwoPRfjSHzpS1+CEGLg1zDI4y6//HI8/vGPx4EHHojf/OY3+fLsZz8bAHDttdcCAK644goIIXDOOed4rwfofi8G4Yc//CHuv/9+vPa1r/VyZY4//ngceOCB+fvj8ld/9Vfe7Wc84xn47//+777PVa/X8/WHH34Yv/nNb/CMZzwDO3bswG233bbgcy+yfft2/Omf/inWrl2Lf/u3f/P+Dq6++uqBlmOPPTZ/zNzcXO7KuJj3aW5ubqfP2T1O1XMN63kIgrBQOIlYEh544AFs27YNT3ziEwfaf7/99vNu//KXvwQAHHDAAd72OI7xmMc8Jr9/v/32w1lnnYUPfOAD+MxnPoNnPOMZeMELXoBXvOIVucB58YtfjI997GP4y7/8S7z1rW/Fc57zHLzoRS/Cn/3Zn3UJCpdBHnfHHXfgZz/7GdatW1d6jPvvvx8A8Itf/AKccxx00EEDvR/9qHp/AODAAw/Et7/9bW9brVbrOse1a9fi97//fd/n+ulPf4p3vOMd+MY3voFt27Z597l5R4vl1a9+NX7xi1/gu9/9LnbddVfvvmLIaRDq9XppPtL8/Hx+/zAwx6l6rmE9D0EQFhIxxFiyMx/473//+3HqqafiS1/6Eq666iq84Q1vwJYtW/C9730Pe+21F+r1Oq6//npce+21+MpXvoKvfe1r+NznPodnP/vZuOqqqyorVQZ5nBACT3rSk/CBD3yg9BiPfvSjF/26hkmvapxePPjggzjqqKMwMzOD8847D4997GNRq9Xwox/9CG95y1sW5GyV8aEPfQj/9m//hk9/+tM45JBDuu6/7777BjrO7Oxs/je0xx574Nprr4WU0nO57r33XgDAnnvuuVPnbNhjjz2847rce++9Q3segiAsFE4iloR169ZhZmYGP/nJTxb1+H322QeA6tnh0m63ceedd+b3G570pCfhHe94B66//np861vfwj333INLLrkkv59zjuc85zn4wAc+gFtvvRXnn38+vvGNb+Thnir6Pe6xj30sfve73+E5z3kOjjnmmK7FOCWPfexjIYTArbfe2vP5Bg0tVb0/Zlvx/Vks1113HX7729/i0ksvxV//9V/jT/7kT3DMMcdg7dq1XfsuNCz2rW99C29605tw5pln4uUvf3npPnvsscdAy+c+97n8MYcccgh27NiBn/3sZ96xbrzxxvz+YfDEJz4RYRjihz/8obe93W7j5ptvHtrzEARhIRFDLAmcc5x44on493//964PeQCQUvZ8/DHHHIM4jvFP//RP3r4f//jH8dBDD+H4448HoMpc0zT1HvukJz0JnPPc5v/d737XdXxzgSkLBRgGedyf//mf45577sFHP/rRrn3n5ubySqsTTzwRnHOcd955Xe6F+/qazWZXCXkZT3nKU7B+/Xpccskl3mv46le/ip/97Gf5+7OzGAfHPcd2u42LLrqoa99mszlweOnee+/Fn//5n+PII4/MK5zKWExOzAtf+EJEUeSdo5QSl1xyCR71qEfh6U9/uncet912GzqdzkDn7TI7O4tjjjkGn/70p/Hwww/n2z/1qU/hkUceoYZ3BDECKJxELBnvfve7cdVVV+Goo47Ky4/vvfdeXH755fj2t7/tlQAXWbduHc4++2yce+65eP7zn48XvOAFuP3223HRRRfh8MMPxyte8QoAwDe+8Q287nWvw8knn4w/+IM/QJqm+NSnPoUgCHDSSScBAM477zxcf/31OP7447HPPvvg/vvvx0UXXYS99tqrZ6ntII975Stfic9//vP4q7/6K1x77bX4oz/6I2RZhttuuw2f//znceWVV+IpT3kK9t9/f7z97W/H3/3d3+EZz3gGXvSiFyFJEvzgBz/AnnvuiS1btgBQjdYuvvhi/P3f/z32339/rF+/Pk8SdomiCO9973tx2mmn4aijjsJLX/rSvMR63333xRvf+MbF/to8nv70p2Pt2rXYtGkT3vCGN4Axhk996lOlIvSwww7D5z73OZx11lk4/PDDMTU1hRNOOKH0uG94wxvwwAMP4M1vfnNXF92DDz4YBx98MIDF5cTstddeOPPMM/EP//AP6HQ6OPzww3HFFVfgW9/6Fj7zmc94obWzzz4b//Iv/4I777zT62vz93//9wBUPhCghInJM3rHO96R73f++efj6U9/ev43fvfdd+P9738/nve85+H5z3/+gs+dIIg+LGNlFLEK+eUvfylPOeUUuW7dOpkkiXzMYx4jN2/eLFutlpTSlliXlWFLqUqqDzzwQBlFkdx9993lGWecIX//+9/n9//3f/+3/Iu/+Av52Mc+VtZqNbnLLrvIZz3rWfLrX/96vs8111wjX/jCF8o999xTxnEs99xzT/nSl75U/td//VfPcx/0ce12W773ve+VT3jCE2SSJHLt2rXysMMOk+eee6586KGHvH0/8YlPyEMPPTTf76ijjpJXX311fv99990njz/+eDk9PS0B5OXWxRJrw+c+97n8eLvssot8+ctfLu+++25vn02bNslms9n1+t75znfKQT4SvvOd78inPe1psl6vyz333FO++c1vlldeeWXX+TzyyCPyZS97mVyzZo0E0LPc+qijjqosl37nO9/Z95z6kWWZfPe73y332WcfGcexfMITniA//elPd+1nys/vvPNOb3vVuZW9X9/61rfk05/+dFmr1eS6devk5s2b5bZt23b6NRAE0Q2Tso+PTxAEQRAEMYZQTgxBEARBEBMJiRiCIAiCICYSEjEEQRAEQUwkJGIIgiAIgphISMQQBEEQBDGRkIghCIIgCGIiWVXN7oQQ+PWvf43p6elFTQomCIIgJhMpJR5++GHsueeePQe9EpPFqhIxv/71r8dmAB9BEASx9Nx1113Ya6+9lvs0cqSUOP74jYiiEF/60rf7P4DwWFUiZnp6Wq9xAOTEEAQxHPbf/3FoNptDPeZ9992HrVsHm9pNDIIEIJzrwHjw1a9+FTfe+DMIIXD11Vfjuc997nKf0kSxqkSMDSExkIghCGJYBEHgzWAaBirkQZ9Tw2acUgmyLMOb37wZ7/jbV6LTyfA3f3MGfvSj/6Jw1wKgd4ogCIIgloFPfOKtmJ9v46/+6oXYvPlP8eCDj+Bf//Xty31aE8Wqmp20bds2zM7OAghA33AIglgInCeIo10BAI14VzTD9ZjGOsyKXZA+5k7sMrMnAKDOZ9GQ04hFghgRQqYcGvWpoz53JCQyAKnMAABtdNDmLexgD2NOPIT59PfYet9vsO43T8aD/EE8iF8DAH4/fycA4JG5/17CV75SkAAyPPTQQ5iZmVnuk8H27dvxuMftgwsueB3+7OSjAQD/dtnX8ba3fRS33/4/qNfry3uCEwI5MQRBEASxxPzj+1+PR++9Hif92VH5the/5NlYt24WF3zwr5fxzCYLcmIIglhVMDAE4SySaA3q0S4AgEawK6awK2bkGkyjiekgAgDMRCGmI4apiGE2kpiJ1MflbCQwE6WYjTqYidvYust+mGoqxyUOJBKeIgwkIp4h4OoxHP5HrQBDJtTnUEcESDOGlgjRzhjmRYD53zyMR7V+jUc6MX7XigEA986r8/rVDvv981ePZHZ9/mEAwC/57fm2++d+lq/vmP/Vzr59E8z4ODFbt27F/vvvhy9/5b048sgnefdde+2PcdKL/ha/+MX/YLfddlumM5wcSMQQBLEi4FzZ73G0FrVwFvVoFzT5bmjKNQCAGTGDaVbDdBShGXJMRQzTkfocmA4lpiKJ6VBgOswwEylhMBV1MJO0MFVro9FsI5lOAQDRWiBYG4GvrYGtbUA8nIA1G+pEkgAsDIAwAEIOmCTNoPCZk0lAaAGSSiDNINMMaGWQ7Qx45CHwdRzywR0QD+wAALTuVs//+3tsqOFXv5vN13+5XW3/1Q5bs3HXDvuUd29v28fJ+/P1e8Vt+fpvtysB1El/1+vtnkDGR8ScccYLce+9v8P/+f/+rvT+F5xwNh772D3xT//0f5b4zCYPEjEEQUwMnCknIgxnEYczqEe7oB6sxRR2xZRUF/MZ2UQziDAdhmhqFwUApiOGZigxHVqx0gxTfV8HU0kbU7U26g0rVuI1QDAbgM8mYGvrwNopdSIzU8DaGcg1ayDXrgV7YDtQ0yImjICAQ4aREjJMi5jiR44EkKnngZBgaQfIBNBpAZ0USOcg99gF7Pe/B/vNb9V+96iSa/nfD+SHaf3X9nz997+qqd1+Zy/Sd+1oOOuRs25P5e7t1s25u71NHYPfkW97YN46Ozvm77YvQaaYHMZDxNx222049NAn46YffRQHHLB36T633vo/eOrhr8Ett/wU+++//xKf4WRBIoYgiLGFgYEHDYTBNJJoFrVwDQCgwdeggbWYkrOeaAGQC5dmyDAdSTQD9RE3HQpMRxmmwgxTUQfTcRvNmnIm6rUOalMdRDMS4SwHX6vCN3y2Bsw2gNmmFi1KKMk1a4DZWeuyoIHhpxi29QIgVWKB3XOP+nmnDQvJO+7N1zs/V+Gkh/4nzrfd+1vbF+Wu7baXzV07YmfdnvuvdyhBc8/cnL0/sM/3m87P8/WHHUHTSR+051Qibhhz3x+7zpzPYumE3IYvkMZDxLzwhUfiUY/aDf/7w2f23O+vXvOP+P3vH8EXvnDdkpzXpLKq+sQQBDEZcJ4AAMJgGlE4hVq4BkkwgwZfCwBoyjWYEtOYYTU0wwjNiGMqUhfGZghMR9Cui0AzEACQC5jpqI2puINmvYVavQMASKZTRDPGdYmVeAGUgFk7DcxMQa5dA2kufmvXLuG7AUALNLmLyuFhv38wv4utfShfD9Yq4VH/XSffNrO9la/Ptq1w2RbZj/+HYysktqfqfXy4Y/ddm9ncjLnQPl8W22PvcIRJJua7XoIrYpgrYpztwhEuWbYtX5dSdB1vEvnWt76Fa6/9MW67/VN9933nu07DgQe8At/73vfwtKc9bQnObjKh6iSCIAiCGDFSSrzpb16DN/3NS7D77rv03X+PPXbFG8/6c/yvN70aqyhgsmDIiSEIYqzgLMqTdANeQ8TrCHiCmNURS7U9kTUkiBCxABFnelGPjzhDxKRegEhXB0VMIuYZQi4QBhnCUCAI1Td8HgE8ZmAxB4sDINYfjbUIiEIgjoAoAuIYy4p5/tjmtsBxVJh+E3hiHY0wtC5GxN116ayjaz1xusZGqX2+mNscm0A7ZgAQBrWKkzbPWe6+eGEm4bgysB2QJSbfibn88stx910P4I1vPHngx7zpTS/BRz/y77jiiivwp3/6pyM8u8mFnBiCIMYLxsFZCM5CMMbBGEfAQjAE4PnCwMHAGNQC9WHmNuo33eU5U4vBXWfcLmD6p3mA9yBuf45DS3hzHpz751s8bwCMSWeB857JfOn7dPr95ipLKV/M78n9XRUX85uput89nvc475cz2bRaLZx99htx7rmnodGoEnvdTE3V8c53noq3vOUN6HQ6/R/gcPHFF+Pggw/GzMwMZmZmsHHjRnz1q1/N75+fn8fmzZux6667YmpqCieddBK2bt26oOcYByb/r4MgiBUD8+SIeyH08ygWA2dkyY+SKjHST7isBi686H+h0UhwyqZjF/zYv3jV8QgCjkv++U0Letxee+2F97znPbjpppvwwx/+EM9+9rPxwhe+ED/96U8BAG984xvx7//+77j88svxzW9+E7/+9a/xohe9aMHnt9xQOIkgiPGBsa4EUIYATIcWqi56BfMhd2FYhXAhQeNT9q66cxLd9507YR7Gytc5s5eWslAQq3BX/N/vyhA4Dz74IM7/+0/hX/71bYsaEhqGAbZsOR2nn/6P2HTK3w1cWXXCCSd4t88//3xcfPHF+N73voe99toLH//4x3HZZZfh2c9+NgDgk5/8JB7/+MdPXCLxyvgrIQhihcABBM63dvfC6FwwJQdj9vs8sXRwye3i/NfXfRlgWYmc/+4zcMih++P5z3/qoo/xJyc8HQc+fm+8572bF/X4LMvw2c9+Ftu3b8fGjRtx0003odPp4Jhjjsn3OfDAA7H33nvjhhtuWPR5LgfkxBAEMTYwsK4LGmPqIgkg/9mLoitDjA739+T+boT7e1rFv4/7778fF374i7j+W/8bjC3+jWCM4X3vOwPPefYbsfm178H09LR3f5IkSJKk63G33HILNm7ciPn5eUxNTeGLX/wiDjroINx8882I4xhr1qzx9t99991x3333Lfo8l4OVKX0JgiAIYpm5//77EcchDj30cTt9rMMPPxCMAVu2bMHs7Ky3bNmypfQxBxxwAG6++WbceOONOOOMM7Bp0ybceuutO30u48TEiJh3vetdYIx5y4EHHrjcp0UQxDApq1aBCiv5eRkT89E1cZQUOHl4vx+dr8S8EKD+fZkFfFHLikKI4SwATj/9dDz00EPecvbZZ5c+bRzH2H///XHYYYdhy5YtePKTn4wPfehD2LBhA9rtNh588EFv/61bt2LDhg2jfjeGykSFk57whCfg61//en47DCfq9AmC6IGtTLL0EivFXJiiW7/CLoPLyiB5R5W9XzRSZs79Qel2oj9xHC96bIIQAq1WC4cddhiiKMI111yDk046CQBw++2341e/+hU2btw4zNMdOROlAsIwnDiVSBDEgGgV0p0To77Nq/4wvOshaqm+yLp9UKgqaedxq5Pc3wer2J7p6iS/kqmiOmmFJvcaF2UpOfvss3Hcccdh7733xsMPP4zLLrsM1113Ha688krMzs7iVa96Fc466yzssssumJmZwetf/3ps3LhxoiqTgAkTMXfccQf23HNP1Go1bNy4EVu2bMHee5dPAQVUg6FWy8722LZtW+W+BEEsP8WLWNVFrZ8zMEhyb1X5NTE4VcKkak5S+TFWqHBxWQYRc//99+OUU07Bvffei9nZWRx88MG48sor8dznPhcAcMEFF4BzjpNOOgmtVgvHHnssLrrooiU/z51lYkTMEUccgUsvvRQHHHAA7r33Xpx77rl4xjOegZ/85CddmdqGLVu24Nxzz13iMyUIYnHw/Gex6oXDlvUW9x79aU32RVbKxVXFuELRXfeGN1atu78/2fv9EytgpEBflmH20cc//vGe99dqNVx44YW48MILl+iMRsPE/Os87rjjcPLJJ+Pggw/Gsccei//4j//Agw8+iM9//vOVjzn77LO95Ke77rprCc+YIAiCIIhRMjFOTJE1a9bgD/7gD/Dzn/+8cp+q2nmCIMYVv6Npv1ADB8tDR8WfRDfDNgS8nBivGaEbZup2WqS023iFg7OiwkzLEE5aLUzsX8kjjzyCX/ziF9hjjz2W+1QIghgi7mwdc7tIMSem6oNsYj/gxhi3S+8g28u68a70Lr1dDLHEmvCZGCfmTW96E0444QTss88++PWvf413vvOdCIIAL33pS5f71AiCGDGqFwkv5GAszHLhJfOUFnQNnfDcmF70uzxWVX8x9E/szYvDVqtDJkECZIRMjIi5++678dKXvhS//e1vsW7dOhx55JH43ve+h3Xr1i33qREEMQTKRAlD74F5vUJHqzKsJEafQMorE3uD0u1mAKR7v0R5b5gV1+SOGDkTI2I++9nPLvcpEASxRHj5FSVCpujI+BOX5ar90j8u+L8/JWLcPBhf0Kx0l0KSEzNCJkbEEASxeilrdscLIY4q4bIqHZkR4pW586B8u+fE6HXn9+AJmtWQF0MiZmSQiCEIgiCIEcLkkEQM9WfsgkQMQRBjxSi/mTPm/yxuJ8oZbHaSE/brc7F1f8c0O4nYGUjEEAQxFsgF5LKYi2qvmUkAhZJ60e/dHkTYVSXi+mMHAvOEznOX58esWIYWTiIrpgiJGIIgxgq5QOu9SqisaP3S76I4whQMV7jwiookfxikOpnMqUgqq14CCm7OSmIJqsZWKyRiCIIYW4qhpap5Phx+x15yYJaeYpO7Iq5AoRASMSxIxBAEMbb4Zbk7lyvD+lnxZYdfDZUzA8C99f7DHb3qJPMeDiu5dRKh6qSRQSKGIAiCIEYJiZiRQSKGIIgxQQAVnVyrWIxPwvXYAapIGi59uys7vy3hNSdcBRf41exCjRgSMQRBjB39ciYGKfm1+xJLjT/RWnfsXQ1ihVhySMQQBDEeSKl/DKc6CRggD6brARNozyxx5YsrIP2KpH6Jve5QyFUkaGgA5EghEUMQxFggIRcsYAyMuQMk1UWds524uFN500jxQkvLeB5Lg6QS6xFCIoYgiDFCABADhR6qTBOG6hASH8SZIQEzMLwiD8bvJaPWswXmO60oyIkZGSRiCIIYW+RqvvCNEWyAHCS+gLED/rEpa4lYPCRiCIIgCGKUkBMzMkjEEAQxPkix6LyYxcB2Jm9mlcLcBncLiLy5JdirrVKJkYgZGSRiCIIYGyS6K5RGEVJinMTLKFldibsDIOnvbVRQMJIgiDHCT+r1xczOXQ4pX5cgVh7kxBAEMT5IVWZdDCmttvADscIYVjiJDJ0uSMQQBDE2qHBSlouWXNCQizIUhBzuGzlIZVHevXc1NbgrMrScGFIxRSicRBAEQRDEREJODEEQBEGMEurYOzJIxBAEMVa4OTFC/1e+32DHozLq0TFIrlK/YZ4rHpqdNFJIxBAEMWaUJfZmEMggdE6AoNwAYmKQJGJGCIkYgiDGC1leYk2sTKjyjNgZSMQQBDFWqAolV8hklSElYumRrP/vgn5fBajZ3cggEUMQxJhhw0luPsViv7HLIZcVr0bkAOE70Sf3ZVUP86Rw0sggEUMQBEEQo4Sqk0YGiRiCIMYLKW2zu8IYAhOmoMTe8UCsZneFGAtIxBAEMVaUhS7KQkmCUkIXDB9CufkgArJMeK5qKJw0MkjEEAQxdticGKdnDBOlXdeFpLzJ5cIb1rkAsVLd+2eFOjskYkYGiRiCIMYQ/2ImZQaw3hdK4+BU6RlKSxgM8z65wtB91ysFiPM78xOyM72tSrisggs8/fGNDBIxBEGMLVKK/CLo5l9ICIge9ku/y6IUTB/fVC5N8EWGL1/1lXDLrSf4LSQmFxIxBEEQBDFKVoPbtEyQiCEIYuzIc2LyaiQnL0bdoffr4cYstj8MWf9duMm8ftJu5qyXJ/O6c7DstkFyX4LFnOr4ITG8vyn60+yCRAxBEGNNv5wJIavDRxK+kBEYUNiMu5DhfORPUVWF5IaQqhJ7V3VjO2JJIRFDEMQY0j0A0ncAZFcp9lB0B5U5leI6Xq6Icbv0esm8styVWbVQddLIIBFDEMTY4pZYA90XxDLhUty2U5cPymUA4LsyosJ96SdWqkZIrArXZtydvQmGRAxBEBOB+63fz9GQQDFs1OOaYXJlukyXlaRXFhhtct8vWVpiXZ4T45VVV+THrNjeLwMjh+jEkBgqMvrAKkEQBEEQxAggJ4YgiPGjEMaRUhTNFs84kbL7O2r3bZpmvViqKpIypHYfWe6+0HAIUDhphJCIIQhibJFSVJbuqttlc5YYjIQZ6rVjEpIzh9j4rrriq1ysZLJTuk/pMVZbrtFqe71LyMSGk97znveAMYYzzzxzuU+FIIgloCqJtKzE2tUuQna30i/mw1BRUjdSynxJIezCOvmSwS5m4riEyBOyq5ZVh/kj3NmF6GIinZgf/OAH+Od//mccfPDBy30qBEEsAUa0dJVZu8mnxaqkYX3mT4IDM0TKXm1VRVImbThJOE5MGayieV2VqGFsYr9jE0vIxP2VPPLII3j5y1+Oj370o1i7du1ynw5BEKOAcbVUIN2Gaz3EiyjZLp1OvlJMmNPPmFqWANcAkEzkSyY7+SJl5iy9XRfV6ydbHSXVRciJGRkTJ2I2b96M448/Hsccc0zffVutFrZt2+YtBEFMFnYEQXGytSxdBwb7vJeLHUuwShB+gChf3BBSJlvOkuZLvxDSqhI0EsrNG8ZCdDFR4aTPfvaz+NGPfoQf/OAHA+2/ZcsWnHvuuSM+K4IgCIIgloOJcWLuuusu/PVf/zU+85nPoFarDfSYs88+Gw899FC+3HXXXSM+S4IgRolAVhg66LoxxQZtejtYXl696KGQEwxjMl8GoSxykSHNFyE7dhFpvriui/vfqk3mdaFw0siYGCfmpptuwv33348//MM/zLdlWYbrr78eH/7wh9FqtRAEfuJYkiRIkmSpT5UgiCFT7PpqQhv5uiNOBvmsX41iZqF4gpC5ybwdZ708sZcjsg+mBF0SICNkYkTMc57zHNxyyy3ettNOOw0HHngg3vKWt3QJGIIgJpnuC1/ZbJ4y58XdLj1x00e4SJXky1bhBcd9xea9q5qXVCVchLDbmTNlW2gRwxw3ZpDKIzY5gYL+DCufZfX9afZlYkTM9PQ0nvjEJ3rbms0mdt11167tBEGsTEx5rz+bp7iPv32Q0uvVHu0ow31f3c68mWg56+3yx1KXXmKJmBgRQxAE4eIPJRyM4uiBSvHSpXxW30XZd2KcPKQq92WRYSP3cYytUEeduimOjIkWMdddd91ynwJBEARB9GYVhiiXihUUdCQIYqXR79u9cAIXbgFHvs3Zt3gZEYKSe8sQ6O7am7HULl4/GHehEQOVLEN10pYtW3D44Ydjenoa69evx4knnojbb7/d22d+fh6bN2/GrrvuiqmpKZx00knYunXrMF/5yCERQxDEWMHAwBjvEjASAoKpRXrypdClNxcy1SKFGt31R0hpF13aLpAhE618ETLNFyt/qscI5AuCfCFGwze/+U1s3rwZ3/ve93D11Vej0+ngec97HrZv357v88Y3vhH//u//jssvvxzf/OY38etf/xovetGLlvGsF85Eh5MIglgdVCWKCq9rr7vdfWwhD2YhAmYSwgC8+7voMKqapeNdeROqPXdldB13V87sJLksOVVf+9rXvNuXXnop1q9fj5tuugnPfOYz8dBDD+HjH/84LrvsMjz72c8GAHzyk5/E4x//eHzve9/D0572tCU/58WwUv5KCIJYKSxwNlBx5IDLyIZCTihm9FLxLfbmJMmyii/rfrnuS1XYyHVdzH+V5+S4Mu7jVhRj0OzuoYceAgDssssuAFTvtU6n443wOfDAA7H33nvjhhtu2KnnWkrIiSEIYmIwVTKCCc+F8Z0XdaN7MCSFkBZClXew2DwXN3TkipQVnzcjMVT13G63u+YA9mvsKoTAmWeeiT/6oz/KW5Lcd999iOMYa9as8fbdfffdcd999w3tfEfNCpO7BEGsVIpdewElWNxkXjtqwNLrS6yUTIWXBCBXu03Tg6qBjb5zYhfmLivRWVlGPvKRj2B2dtZbtmzZ0vMxmzdvxk9+8hN89rOfXaKzXDrIiSEIgiCIUTJEgXz66afj3e9+t7etlwvzute9Dl/+8pdx/fXXY6+99sq3b9iwAe12Gw8++KDnxmzduhUbNmwY2vmOGhIxBEGMGRxYYNWKCiF1h4uqLh1CsvL+Y5PuxvDRh8x8V8X+njgPnX26Q0deUzs3COCccq/cmUlmeC6fRBzHmJmZ6b+nlHj961+PL37xi7juuuuw3377efcfdthhiKII11xzDU466SQAwO23345f/epX2Lhx45DOd/SQiCEIYuwxeRPu2AFRUbPU73rRq/SaKMfLZ3GERsDj0u2+YAm67idGz+bNm3HZZZfhS1/6Eqanp/M8l9nZWdTrdczOzuJVr3oVzjrrLOyyyy6YmZnB61//emzcuHFiKpMAEjEEQYw5JhembACk2l6RyFu27yDJvZPuxowYV7gIZxik68QEzHVlSkrAHaemOrF3BYmeZRg7cPHFFwMAjj76aG/7Jz/5SZx66qkAgAsuuACcc5x00klotVo49thjcdFFFy3xme4cJGIIgpg4hP4vvz1AKfWia2C8TnorvJKmgoBF+Trndj2QVtBwZ5+y0FHVXKRV4dAsgzDu1XrAUKvVcOGFF+LCCy9cgjMaDSRiCIKYGEShQkmUZL10jReYWGNleU/clRau0AgdJ8Z1UdztvqAJ9PHKxUrmVDyt2Cqmyf0jHHtW6F8MQRDEUkJ5NgSxHJATQxDERCOdPjFFqMHdYLhFTaabL3OEWSidEBKz5byS23fdc1+c78cc3dVJroNTFWZaUQzLiSFDpwsSMQRBjD1ljdb6QQ7+zsGd2QQBrEAJuSNiHOnoVS1V5MeUblvpHXsB+mMcISRiCIIYW6oqVyQEJBN58mL3rB8G+tq6OHj+0xUx9lIRslq+Lln1xOp8vU/PH+4KoZWYEyOpG/QoIRFDEMRY437br5pmPVLcWEvJxOiVijskMhI2aTd0w0nMumNutVi/pnVV5fIEsVBIxBAEMdEUK5RWzpfe0b4Q5hzfzRwy4iVwVEzouCmeiHFCfBlsz5h+cLdqfeBHTTAr549y7CARQxAEsdOMSQLxEC6WxnjywknSXioiaUVMhk7/U4LfbbnIigwhFSERMzJIxBAEQRDEKCERMzJIxBAEMZEUw0i2Q+lOuiJLMERxqAyhi7CX9qN/Bs7GyLlURLBOTIe17AOlu+rmx+jThHt//0qzVeHQEDsNiRiCICYOscBy68mk5Nv7EszgsTkxdlvoduyV5YLG1Y6Z7A4zuZJEur1hSvZdcSzD7KTVAokYgiAIQ9GFyRNEJtcVYMxeQLkjjMrcF3e7lxPjuCJuubXbP8ZN7HVLr00kZSD3pU859qSyGlrhLBckYgiCmDj4Cr3YLRduObVZDRxlE3hJvva95664cRwav9xJ/fC69A5Qk1Q93ZogLCRiCIIYWxjjlVOO+ZArgphnTZQcu9KNGVUOTY8QxAinaZuX7o0dYG44ySm3doRLxqwTs5By65XqvlgkJfaOEBIxBEEQBDFKSMSMDBIxBEEQvVJeXAem1I2ZsGomjdvsjnuN79RrDJ2OdG64KXCcEzc/xhv6KO26oCojyokZISRiCIIYe0zIoSq0BACMLVxMuEmvOd5IZ/18y5LYW3JuZWGkkm/5C71ospJImvtu+t173QnV7nYntFTSBK/X744gFguJGIIgJgI3d4JVXEiBwdu8lGmenqYB5+UPmlAnpup9YiX3u++xKxaZdH8PzrpTQm2SsAfp7rsikRheOImiUl2QiCEIYiJhki/KfQEAXubA+Ds461XiZdT0SuytuK/PxbLqdZeVWLvvrdv4jmfO+iLdlcU+bmKhcNLIIBFDEMSYIYCKniL5N/zCtbioMRhkpdPAq8RBqQVRWF/unJgRVSWVvWRP2Djrbrm159A4e5Xlx7jujFgNDe4cJCX2jgwSMQRBjBcV3U29cIV7wSy56Ob7MeldlKuciN5hpDEMF7liZpEXyOqCcXU8r3eMJ3IcESPLXZlV57QQywaJGIIgiJ1iFCKHvrmvKCicNDJIxBAEMXaYbq29urZy8J1ueNflwDDm/zTnw7kKJS33+IERhZPK3kU/nFT+PlPF0YCQJh0ZJGIIghgrJOSCpYlXFT3oY3jhymKux17sxAoXyapEzBI6MTspYvwQUUXYrkTHeW9JRU7M8IXOyrEvKCdmdJCIIQhiDBGFn4riBZHDXjyLvU56XTqrLuCV9HRgliGcNGRHxs0VMuMGKkuwq7a75dbU4I5YIkjEEAQxdkiZ6Z8CsuQb+aChJAan2kYn+ZYJmPzCXJxaPVBS7zIn/rqCpiIpemep6hmzkHDeqg49rRxTaewgEUMQxBiic2IgtJDJIFAuaAB/WOFCiolcw8AMgGTFAzC2DPkwowknLQT31bKqUJFryzin7I4dWG6NNw7Q2IHRsYqlMUEQxDCg6iSCWC7IiSEIYuyw1Ukd5cQUvsqKPv58P1nBmeydF7Og3jDLIGKGEDbynRZne5+XU5UTU9UbhjvjIhZCr8q0iUKCwkkjhEQMQRBji5QphExtSEnaTr6icKEvq5bmzGnehu5OvrmQMQ8uXsHdMFJlOGllxksGmbSw2BJ3tkhhM6msFD02jpCIIQhibJEyU0LG5MYwdTXo58QMQtdF2hUyXWKm18V66ZwYVnY1HFEyr0tVYq+3T58RBIt1ZFYEJGJGxsTkxFx88cU4+OCDMTMzg5mZGWzcuBFf/epXl/u0CIIYIcaJEaKDTHYgkelF6P8WDmOye9ZSpRNTNS9p1AxQYm0W91FCf+t3lwXCMfiFgXsLy5eFPZ/9jyAWysQ4MXvttRfe85734HGPexyklPiXf/kXvPCFL8SPf/xjPOEJT1ju0yMIYkRI2VFCRjsyACCQQTJTryQhISGqHAKvxNrph8Kl37HX7tgtXCqrk0YVShqvxN6qmZiV+w9BkFRVok0iQzPLxuvPYiyYGBFzwgkneLfPP/98XHzxxfje975HIoYgVjBCtJCJNoTs5NOPjYCRfa4OVUMhmenWy21ODOO6vNpLmuE6sWZMRExZiXWfbrBSlp9jP4kwiFhhFSEkv5eMDifJ7hDTaoFyYkbHxIgYlyzLcPnll2P79u3YuHHjcp8OQRCrltXhxBA7CYmYkTFRIuaWW27Bxo0bMT8/j6mpKXzxi1/EQQcdVLl/q9VCq9XKb2/btm0pTpMgiCEiZQoh2shkigzKiUlZB0IaN6avGZFTNTuoKyemGFpa8sqkfjkxVU6N2l71zX+xYQ33VboN7nhFszsXynUhRslE/XUdcMABuPnmm3HjjTfijDPOwKZNm3DrrbdW7r9lyxbMzs7my6Mf/eglPFuCIIaFkC1koqWEjEyRyQ4yltqcGIl8qbq++3kduuyaFUYO5KKFdQuYJQ0nVSD0C3QTe/Ntw3VvmLO4uMm8/nab2Mskzxd7PLvHasMkXO/sQnQzUX9NcRxj//33x2GHHYYtW7bgyU9+Mj70oQ9V7n/22WfjoYceype77rprCc+WIIhhYfJiMqHEjEAHKVJkyJBJmQ8kMJ/zvS7nzBEwORy++8K4nwfDORCUlQiP4iO0x9mXVCT59ysx44o6KVm+DIIn7DS5pmP2fsZ84eIvzn+S+2MIAHAW5AtzFu9d0E0OV0LTO//3sfiF6GaiwklFhBBeuKhIkiRIkmQJz4ggiFGQh5SE+veeyhYy1lHiRZqLtg6l9HBHuGl8Z4SMvrYyL3xUTO51XJkuRuHE9BIpwv9ZXB8i/ltQNTupYp+SC+4gfWIksr77TCRiZTZEHAcmRsScffbZOO6447D33nvj4YcfxmWXXYbrrrsOV1555XKfGkEQS0Cm82IAIIMKJ2Us1eXVNppiIitS9s6nZFx6Rgozbox7MeYM0oSUlkzElCiAolBxQ0fOej/TQlS4Mf0qkbxK9AGmWFc1viOIYTMxIub+++/HKaecgnvvvRezs7M4+OCDceWVV+K5z33ucp8aQRCrFhr+SPRBUj7LKJkYEfPxj398uU+BIIhlRDp9YkylUooMqe4XM+ilnwPdwx8ZCg6MkwvDOSSrchOWKCfGODGDXg2d8EWV+1KFcWWYJ9CcSq5CpC1/3AIE3WDuzMoILUlU9+ohdp6JETEEQRB2urUaBikhIKX0inOkNHkxvWUNY07HXp5vtNVJ3u2lDImUNbQr5MK4YqYitLSzFNOCyrZ7+3vr3c3uKKxEjAISMQRBTAy5iNH1SIIJCF2dZFi0c8+Z7djrOTFVSb2juij3qk6S/s+qI+xE+KJMo1T7UOQwDAKFk0YHiRiCICYCxiKwyrDOAI+Hmp1kBkAybh0G5lYludVJPZN6RyViekyq7jd2YJEXy4WkLLthJs+tGXIy70oorTasoJcydpCIIQhi7GEsBNcLAHAWDXyhZAVngzMJboY/uuEk14UxYmlc5iZ1VSfZ27KvK1NVQVROWbhokHASUQ3lxIwOEjEEQYw1jHFwnoDzGJxHAFSeBWcBuOB5gzUDhxUuxSHVxXYn7riBLjcGWAYnpt+4AZMbU76fETTDuGguVKwMMoKgH777QvYF0R8SMQRBEItiGUQMMZFUuWHEzkMihiCIsYWBgbEInCUIeIyQxwCAkCUIECFACMaYZ56YBruqNb50SoYlOExOjOweAOnNTfJLrLssHH3E4VPhPmgHhpXlxAyhH31XyXmBKlemqpPvQpByZZRS92JYIwNI4nZDIoYgiLHDJIkyFoIxFUoKeALOdDiJRQhkiEAGCBkDYwyBO/oIasSAl/aihQt3E3tD2Aflw4Gc8JFRRGHZR+UonJjeIqZngm+Phy+Efq9qGDkxcpATXTHZsIPPrSIWDokYgiDGDzMM0EnoDViIkKlZaAEiREgQIkDAOAIGBNoVCLTusD91fozj0PBAgAXSVTil1UmSc8ggLMmJWcKkXqC7T0yf3jDDuP4PO4F3EOGykiqSiKWBRAxBEGOFV6rLeL5wHuZOTMAihCJEgAABYwgYyyM+6rbMBQw3wx4hEXCBIBDWidFXam9ukjuxOiwTMMCSllcD3c5LVbO7Eg20VNOPxSKfSKyCBN6h5cRQPKkLEjEEQYwVsmQONWMcDEHe/TWAKrEOwXMRE+QixiwyXwAg4E4+DJcqlGQGKwccLOBAGKglz4lZ6kZ35d16mezhxJRQZWiIBThIVU/haaYK4eK6LmUiRVTkwbj7Dj5IYvxZKiG5GiERQxAEsWCWoVsvMbFQTszoIBFDEMQYYmYk+d/imc6V4ZLn+TAhYwg5EOZOjERYkhMTMqHCS1yCBya518kGdpdQWzRBOB5Jvb0cGGebbXzX/6LpPpt7kR1VcEdUDHSUK2TQI7E8kIghCGL8yP33FFIKtRQudkxyncaiQkmBEwFyQ0lu6bXJieGBDidp5cNCDqWEApUP45ZYm/wYj7JtO0svEVOoSqpK7M2LmBY/xbr0FKqezkvHcedXOcLKCFIvVDSIVFohuTISENQnZmSQiCEIYuywF8QMQrYgZE2LGSVkzAwlpocPsEJODGPQboxEwITeLmx5dahEDDP2jStgwtBJ7A2WsDKp4qItZUl1UvnYgbJcGFfQSFm+3TuLwWZMdj9uYbuXslKrkygnZnSQiCEIYmyRUkCKNoRQjowo+VbPmBk1YEqsVTiJQSIsJPbyQKryatVIxhkv4IeTpA4hydJw0jJUJmWpWpclCqO0xLpKoFRs73NmcgDHxT+es48WkeanOl7mrPcQbwTRBxIxBEGMNUJ2IGQbqWh1hZQ4U3OTTE86tU0LGa48k4AbESMQcBtKYgEDy+0bHTYqhpNK82FGEUoCKqVEmlrnJdWvv284yb27v3Apq9KWg+zrPbUrbnpXJ1WxUrv3UmLv6BjVVwqCIIihIcQchLT5Me63euPEmNJqBi1emETIpe7cK72kXh7oUJLOhfFyYsKwu9TaYxmcGCH1IkoWmS9SqJCSlKx8gV2ch0HCLu52swyClDJfyl9d5izl/3nHc/6bdCp/HwtcFsr111+PE044AXvuuScYY7jiiisK5yVxzjnnYI899kC9XscxxxyDO+64Y0ivemkgEUMQBLEgljCpl5h4lDBkQ1kWyvbt2/HkJz8ZF154Yen973vf+/BP//RPuOSSS3DjjTei2Wzi2GOPxfz8/E6+6qWDwkkEQYw9UmZeTgwAcHBwqOGPAbfhpFAn9TLtvphwEmeyqzKJhSZs5Cb2Bqq0GigJJxmfZ9j0Ka9OU3sbADJnf1kSTnJyYqrDRr1fh+uAyAFCSN5j2eLCScRwOe6443DccceV3ielxAc/+EG84x3vwAtf+EIAwL/+679i9913xxVXXIGXvOQlS3mqi4acGIIgJgBRWpbLmFOhZAIlenq1FTJCLVx0VyYVS6tNZVLo5Md4jOojsyIXJE3BshRMCDXBuiTWk4eQhBIY3YsNR/jf7N3D2O3mcd79cBeZL+7zuNsJHynYUJZhcuedd+K+++7DMccck2+bnZ3FEUccgRtuuGGozzVKyIkhCGLsYSzKh0ACQCBDhNqJCbnuAdPV7E7lxOROjFOZxEJmRQygrBwtXGQYqqokoMSJWeKkXqMmjP2RmcTe8tlJMi9iKu8TU+W+VCXx2tNYGmEyWP+YyWOYb1+73ca2bdu8bUmSIEmSBR3nvvvuAwDsvvvu3vbdd989v28SICeGIIixhoEh4E3EQRMhqyFkNURIECBAxFme0Bs6i212J/KqJLcySZctgRVnJuUuTFWn3lGJmGonxltKknnLXBkhWL74ToybzFue5FuW7Oviui9VkCvjM8ycmI985COYnZ31li1btizzK1w+yIkhCGJsYYwjCGYQRzOIgiYSNgUASEQNCQsQcjX8MeLMllJrARNyfwCkV5kUO6EkoDsfplTAAEue1CuMKin0h0mdnitpd+6KX2Jt110npqQyW+9Tcn+FFvHLqkmwLAWnn3463v3ud3vbFurCAMCGDRsAAFu3bsUee+yRb9+6dSsOOeSQnTrHpYScGIIgiIFY4tJqYsUwzBLrOI4xMzPjLYsRMfvttx82bNiAa665Jt+2bds23Hjjjdi4cePQXvuoISeGIIixg5ncl2AKcTiDWrgG9WAtalI7MTJGHKhwUsiBiAORM3YgDydxiYDrsQOmMik2OTHcDnr0esSEJQm9wJKGkvLmdqlqcGeqk3SzO1llo+jkT3/UQIX7QsbJkjGM+VWL4ZFHHsHPf/7z/Padd96Jm2++Gbvssgv23ntvnHnmmfj7v/97PO5xj8N+++2Hv/3bv8Wee+6JE088cVnOdzGQiCEIYqzgLEIQTAMAonAKtWgW9WAN6mwWDaFETI3FSDhHzBmSAAh1+AgAIiYRcZUPE3HhJ/ZGprya++EkHUqSJqQUxyVntoQiRosWluk8mDxO1N2St2x2kj+Vun+Sb1X4iRgOw+vYu7Dj/PCHP8SznvWs/PZZZ50FANi0aRMuvfRSvPnNb8b27dtx+umn48EHH8SRRx6Jr33ta6jVakM639FDIoYgiLGBMQ7G6wiDBgAgCaeRBDOo8Vk05DQasg4AaAQhkoAjDhhizhBxmTsxal1qASMQhkokBKHwxw2YUQOAzYmJI8ioTMAAS1qZ5MxIYsaNAWwuTOpWJ7kPY/ph5QKl+gy6L44LrajhzjH4SHrpEAvl6KOP7llZxhjDeeedh/POO28Jz2q4kIghCGJsYCxCwGuIwiYAIAqmkLAp1OQUaqKOug4zJZwjCRgSDsRcIuFKvABaxHDlwoRcgHtOjE7qjQOwOABi/REYRUAc9UjqVZ1ohk+PqiTzs3SKdcmwIzhOTEVPEa+UmhyXJWNYWU/0K+uGRAxBEGMDYwnCoIaIK8clZnUkbBo10UAdCWpci5hAi5iAIeFSCxn1ER87AiYKMoShzomJbJO7PB/GrU4KQyVkoqjkzJahtBpQqqTMifF6w7jhJJMTYw8lZHk4aRgM4rjwBSREV060nnBoAOToIBFDEMRYwMDAWaia2nFVbRGxBmJZRyITJCxAHKgLonFhEq1DlPvi5sQIRIFAGAoEWsTwSILHDCzmQBwAUWAFSxxBRpFqclfqxIzqo7IiH8adWi2ktVj0dumWWPcJJ5WFitR293HOer7/cL/385EJQWI1QyKGIAiiL0vsxBAriuWqTloNkIghCGI8YAyMcYQ8yccLhCxBLGIkiBDzALGe8hhzhlhXJZlwUqxLqZPAhpOCQCCIjBMDsIgBUQAW6XyYYk7MklYlVQ99ZJmTE+OGk5yE37LDyNIS677PSIwYCicp7rzzTnzrW9/CL3/5S+zYsQPr1q3DoYceio0bNy66IopEDEEQYwNjoRIyTH2gRTJBhAgRC5BwjsiImAAIGUMSSMRch5CYSewViAObDxNEajuLVVJvntDrDng0nXpL82FG9TGZlm/Osly0MCHU7WKn3pKyasDVOP0vmsO+sPbLjxEVrpOUmbO+8mSWBCVRf+Yzn8GHPvQh/PCHP8Tuu++OPffcE/V6Hb/73e/wi1/8ArVaDS9/+cvxlre8Bfvss8+Cjk0ihiCIMYGDMQ7OIj2XGggQIZIRIs4RcoZI54hGHEgCVVYdcanWtRMTcoEwyBBFGYJQgGsR050PoxN5AUjjxCx3PgygnBfjxBgBkxYGP1bYK0aYVA6AHKEjMIyxAyt1AORq5tBDD0Ucxzj11FPxf/7P/8GjH/1o7/5Wq4UbbrgBn/3sZ/GUpzwFF110EU4++eSBj08ihiCIsYCp1F41LwlKXIQIESBAwNSMpFA7MSFjiJgKIxkXxoST8vLqUCBMBLg2V7pDSVEhsTcGeLGSZlSl1UBlp16vGkl36zUORWoSe7vnJQE2nOTPQnKTfNF3fdiIkqO7YmXFCxc5RPE4gY7Oe97zHhx77LGV9ydJgqOPPhpHH300zj//fPzP//zPgo5PIoYgiPGAheA8VB17mRIXgQgRgiNiKpTkOjFuVZIRLgAQBxnCQGgXRoDrULsXSopDz4lBFFfkwyy9C5N36dW3VXipEEbySqztw8v6mi00lJE/hbNtGNfOQcTKSgwnAayyQmw10EvAFNl1112x6667Luj4JGIIgiAqWeJ8GGJFstDux6sBKSWuvfZazM3N4elPfzrWrl27qOOQiCEIYizgPNEuTOiEkwJEjCPgDAGD48TIfOijam5nc2IiLhBFqXZidBgJ6O4PU0tULgxQ0eSOYXSTqyucGJ3Uy9LUu50PfsxKwknCfbg630zY8xYDDIBciFvjh6Fk33XjwAgvgbc8mXdlOjHEgw8+iL/+67/Gj370IzztaU/D+9//fvzxH/8xvvvd7wIA1q9fj6uuugoHH3zwgo89qn+hBEEQA8P1vKQoqCFkNVWVJBMEMkTAOCLGEGkhEzAlXsygx4hLhHrYY6STek1VkhkzwGIGJKFfWq2FjBIzZfkwZZVKw0CiMgul3VZJvVlmk3pNYm+qw0qpUA/Xi5RlC7MLqhaULuYpqxYXIWW+eNu9/7KuyiT3XoksX7wXtoIQkg1lmVTe9KY34YYbbsBLXvIS3HLLLXj+85+PLMtwww034MYbb8TjH/94vP3tb1/UscmJIQhiyWFgAFPlzZwnCHgTUdBEyBuIUEcElZ+SIELEVGVSyFVCLwCE3AqYiEkkOg8GQN6lN4gFeKwdGKCQD6OrkcywxyQpOcslDiWZfBjHecmTfAv9YTwnJu2uPhrEcalyaMpMGe/+ithIVbJu7sSg42yzokYI+34IuTLDbKs5JwYAvvrVr+Kyyy7DUUcdhVNPPRWPfvSj8Y1vfANHHHEEAOC9730vXvCCFyzq2CRiCIIYOkqkmA9uXtjOwVgIzpRw4DxGFDTUxGo+hQQNJNKMHQjyhN7IG/Ko3BjXgYkDdWEMA11aHQMsYWB5DCoAkigXMDKKnHBSMamXY3RGdZ/+MKbBndnmJPbm4wY8UWEvkCaM5DW7Q9W6ewy7bgSLP4pAdt3ftd1dZ6JrXTihoswRK271EoWTViZbt27FH/zBHwAAHvWoR6FWq3ml1nvvvTceeOCBRR17YsJJW7ZsweGHH47p6WmsX78eJ554Im6//fblPi2CIAoYAcMQgLEoXzhPwHgdAW8iDKYRhVOIwikk0SyScAYx1xOr0URN1lCTNTUvSTe5i7mel8T9UJI77DEKMkSRG0riYLVQLcaJSWK1mA69S1qVBFTmw7Tb2o3JHPFSXFQ4SaYyX0SKfJGCQQqGTNqlX3hISD+II/V/mUS++PvKfEm9JcuXsnCSdB8ps3wRopMvUtplJVEe8lv4MqkIIRAEtvN1EARgzApqd32hTIwT881vfhObN2/G4YcfjjRN8ba3vQ3Pe97zcOutt6LZbC736REE4cEBptwMpsulOQuVA8NDBDzOJ1WHQR0xn0KNzaAuZ1ATdSR67EAt4KiFasRApPNyAeRjBpK8O6+w06pDgSCR4DWnuR0A1CJbVh1FKoRUGkYCRpcPU+HCmP4wWQq0O2oB/DwYAMgTe52HZva7aGb6xLjuTMW6l6Bb4sRUDYjMnBtuaEk67kvmvM5MC5LMESZu2MgvvV6ZTswk57MMi4997GOYmpoCAKRpiksvvRS77bYbAODhhx9e9HEnRsR87Wtf825feumlWL9+PW666SY885nPXKazIghi5RFgdA3uVmbOB9EbucpzYvbee2989KMfzW9v2LABn/rUp7r2WQwTI2KKPPTQQwCAXXbZZZnPhCCIKhiLwLWrwphyYAIeIwrqCLUTE/EGamwGDcyiLhtoooYaV+5JEnDEnKEWALVAdehVj/HDSbEeMwAg79LLIgaW6A69gHJhaiqUJONYVSSVjhkYlQsDVIqYTkcl9bY7tsEdAHTUerG0uqrBncmF8RyXigTeTFbkx+THqiiZ9iYeVJVYOyXUeYm168Q4605ir1t6TawcFtqFdyFMpIgRQuDMM8/EH/3RH+GJT3xi5X6tVgutViu/vW3btqU4PYIgAJiUO8bUT85VKCnkCQKeIOINANB5MFOoyQYaso4aD1ELjIhRAibmDDFXE6sBoB5IFUriWS5gQi1iTJdeVuMqD6amRYkbTkoSoHJq7jI0uEuVgGFuLgzQHU4y1UmukPDCSVzv1j+cJCsETaafI/Pud07VTdB1xIoXQmLd4aSqBF6vImmFipjVPgBylEykiNm8eTN+8pOf4Nvf/nbP/bZs2YJzzz13ic6KIAhAJYaykl4fDGq4I+chQpYg1NVJMWsgkXXUZQ0JC1HjAWqBuqgmAdNCRgkY48TEXKicmECLmFBVJAFAkDhVSUmoKpIA2+AuUUv5xOpRujAlyapmvIDpD5MWS6yFFTIod2KE6BYplbkvznpakgfj7lNVVu1WJKXOEVNXuKDbdXHdF7c6SXr5MSvvaq967wwnnDSJ784//dM/DbzvG97whgUff+JEzOte9zp8+ctfxvXXX4+99tqr575nn302zjrrrPz2tm3buiZoEgQxfKQUSsgw/5u1mVLNWYQQuoxaJkhkggSRFjA8FzG1AEgC5OGkeqA+xhMuUAsyxIFAHGaI4gxhou7jCcBrtioJsf6YK1YldTW3A0YrYkpcho66sDM3obfTseGkLINsZ3lptRExwjlUlnWHjqqdGPs494LouS4mh9gRLqm77oWNRPm6dB2abhEjKpJ8VyqrOSfmggsu8G4/8MAD2LFjB9asWQNAdfNtNBpYv379yhYxUkq8/vWvxxe/+EVcd9112G+//fo+JkkSJJXVBwRBjBIpU0Dy/CLF9UWOgSNgESKmwjmJqCGRMWIWIOEcsXZfAKAWMNS0A1PjdlJ1LVAuTBKmiKIUYZSB5yJGVyXVtAtjnJharByYyqqkAKPrOlFRMmz6wRRDSW29PRVKVeTVSepHWYM7wFYnVVYkefvC2Q5n/7Jt5RVJGesWK0ChsZ0OHXlN7bw8mJVZkUQo7rzzznz9sssuw0UXXYSPf/zjOOCAAwAAt99+O1796lfjNa95zaKOPzEiZvPmzbjsssvwpS99CdPT07jvvvsAALOzs6jX68t8dgRBTD5LHEoiVg2UE6P427/9W3zhC1/IBQwAHHDAAbjgggvwZ3/2Z3j5y1++4GNOjIi5+OKLAQBHH320t/2Tn/wkTj311KU/IYIgeiIhAdmBlOpjRkqRf+tm4Aj09gAhIoRIeKCqkQKGxLR2CaQKJXGJJJCoaScm5hmSMFOhpEggTCQCba6wGgerR2CJrkaqOaMF4ggyqZVUJTGM7uOwYhZQmqpcGMD2h3Gb2gH5usz8cQNlybwAkEk9ALKyIsk/K7tddm333RfntCtCSG4yr9+dtySx10vyXfkCbzWHk1zuvfdepGl3+DDLMmzdunVRx5wYEVM1r4MgiPFFSgEp1IVa8jQvoeXg+aTqSKr5SBFneTVSwtWHfqxDSXUtYBI9H6kWmqqkFFGSgicSvK4ew2s6lFTToSQTOkpiIKlVhJKWoaw6y8B0TkxeWt3p5GXVAGw+TJ4To3YXbh5M1l1xVJUT4wsXu+6PICipgCqZSg0UhIs7D8kRJnmJtSgvq16pDe5cyIlRPOc5z8FrXvMafOxjH8Mf/uEfAgBuuukmnHHGGTjmmGMWdcyJETEEQUwm5oKWiXZ+QWMIEOqPnxAckR4vEHKGmAOJTuC1/WFUNVItUBe/OMiQxCniRCX0BnXlwABQ06pNVZLuCwMAUlcmlY8ZKNs2LCqcBj1mAICfD+M6MZkdMwCUixjXiUn7OjEV24W7j74f7janCqnCiZGVSb6drvu9o1NOzKrhE5/4BDZt2oSnPOUpiHR1YJqmOPbYY/Gxj31sUcdcsIjZtGkTXvWqV1GXXIIgFoSUrTycFLAIgVAfPxFCPaVaCRjV3M5UIanS6lpgq5EAoBamiELVGyaoS/CEKQcGAGtEyoWp6wTeuu4Hk9SA0vy5UVcklXwNT1OwTjuvTsork9qpEjCFxN5iVZKsTNbV1UnOU1WND3BDHF6junwAZHeISa33r0iSVfOhVik0dkCxbt06/Md//AfuuOMO/OxnPwMAHHjggflwyMWwYBHz0EMP4ZhjjsE+++yD0047DZs2bcKjHvWoRZ8AQRCrAzXwT4CxAAEihFCJLxHjSDhHosupk0Ai1uZCrAVMwgVqYYZaqC7uUZQhTlKEdQGe2DwYAF0ujKyp8NFYuTAdk/9ixEpqhz5mbkm1FjB5VZL66TkxJROrFzsvyV0XFeEkF1nhxHj7aOHqViGttookiib5PO5xj8PjHve4oRxrwfWEV1xxBe655x6cccYZ+NznPod9990Xxx13HL7whS+g01n5CVoEQSwe0+gukKHKhZERYh4gDsyUah1OMg5MHkbKkHBVUp2EKZI4RRgLBAnA6wy8Hug8mBCox74Lk9R6uDAhRjcnSaIyH6bdBjptsE5H5cV0Uu3C6PLqTHihpHzJGGTGkGXcLsIuqWBIxYCTq53Fm5as/3OnVXuviol8qXzlOom7SqwwxvOFWNm85z3vwdzc3ED73njjjfjKV76yoOMv6i9o3bp1OOuss/D//t//w4033oj9998fr3zlK7HnnnvijW98I+64447FHJYgCGKJGWUfKfpSRyiEZENZJpFbb70Ve++9N1772tfiq1/9Kh544IH8vjRN8Z//+Z+46KKL8PSnPx0vfvGLMT09vaDj75QMvvfee3H11Vfj6quvRhAE+OM//mPccsstOOigg7q69BEEsbrhPEHE64hZHXXZRI3FqLFYNbjjTPWmc0qqTVl1PRCIA4EkShFHGWI9JymsCQR1pztvPVIhJVNWXa+pZN56HbJeLwkljdKFAXol9LJO28mD6dhxAyYnxiyZAFIJmapQksiYWoRdpHQWlC3ouwhnMXjujJT54iKQ5QtRjRjSMon867/+K77+9a+j0+ngZS97GTZs2IA4jjE9PY0kSXDooYfiE5/4BE455RTcdtttC863XXBOTKfTwf/9v/8Xn/zkJ3HVVVfh4IMPxplnnomXvexlmJmZAQB88YtfxF/8xV/gjW9840IPTxDECoNpoRCHa1EL16COWdRkHXWuPn4SPWYg0Qm9NZ0HAwA1HUqqBSlqYYo41jkxNRNK4mD1EKg7nXnrJowUqxBSZdfuUebCpKjMhND5MKw4rbqT6iRe4Y0ZkFrEAICpTC7r0gvYPJZBplhXlf32Kweuzo/pLWQqQ0fu9hWaPCIn1EUZFk9+8pPx0Y9+FP/8z/+M//zP/8Qvf/lLzM3NYbfddsMhhxyC3XbbbdHHXrCI2WOPPSCEwEtf+lJ8//vfxyGHHNK1z7Oe9ax8LgJBEKsXBoYoWgcAaMS7ocF3RVPOosES1EOV2NsIlQvjChg7XsAIGDWpOkrUhTKsCfCGTuithWCNGGi4/WASyEZdNbYrTeYNMboRAwDQLt9sGtyZyqS22ydGl1d3MqBt+sSoRnfFqqTMaXYn0J3E6w1vdJ7er04qb2aX95rxZiT1VxdMJ2p3bS8VL7xinVjJcM5xyCGHlOqGxbJgEXPBBRfg5JNPRq1yjD2wZs0ab14CQRCrD8ZCxNFumEo2AACmw90xjV0xJZuYCiLUA3XxqocMdT2p2gx5bARWxCRhpkJJcYYw1iXadevCMOPC1LWIadQg67qpXeVIklHmwvQw/00irzvsEVCOTCdV4qXQodeEkgBbleS6L74T0y1iyiZU99o+KpgjVlxhs9KTe024jhgNCxYxr3zlK0dxHgRBrCA4ryOJdkUj3g3T4e4AgGmsxxoxixmeYCoK0IzUBbceMDQCmS8mhAQgL6uOY9WZN6jrIY91Bt4IVE+YRqwW3dQOdVWJJOuNkvECgOoLM0p7v8KFEcKrSkJH58EAeS6M1OEkd+CjbANSixczbsDrE1PixEhvm3MKFQ6Nd5ro7ti7UFa6MFko1LF3dFDHXoIgVhmjzIXpUVZNrFpodtLoIBFDEMRQCYIZ1OJd0Ih2QzPYFdNYDwBYI9Zgmte0C8PR1J8+zVCiHgKNQKIeZGiEGWqhcijqUUePF1CN7QIdHcqHPNYj3RemlnfmlYmqSCoPJcVYFhcG0KGkQlWS6czb1n1i2ionxo4ZUPkwJowkhAknuQMgu5vZpV6oyG2G52z38mB6WwV+fkxFU7u+ib2Bs+46NeW5NAQxCCRiCIIYGmG4Bkm0Bo1oN0wF6zGFXbFGrAEATLMapsMQ01rAGBHTCIFmINAIBeqBQD1I0dCdefNQUk0grMEOeWzqiiTT2K5eAxpatNTrQK0G8GJIg2H0LkyP3jBtJWBUKKljhz0CXlWSTCVk285KkqmtSspMTkxFR948nOR28a2YneSNFeiT2Fv9inc+22M1hJ6GFU6iqFQ3JGIIgtgpGBiCcBYAugTMjJjFNFMOyXQUYSriaIZML+ojuakTeetBhnqgXJh6pMRAkqSIaynChkAwxcCn1EcWa0S2Ikm7MNI4MZUuzCiTeYFKF6bVAgCw1rxaz3vDZL4To6uSTEUSAIiOyofJUnWhF9qB8ZwY6VQq6auc68SkAyT5eg5Nvm/55OpBhEu/sQJslVUkreZw0vXXX7+ox+27777Ye++9++5HIoYgiEXDWIggmEISrQEA1KNd0Ax2RRNrMSNmMcNqmNLJtdMRRzNiaGgB09BDHhvahWkEGRphmoeQAHhhJGZ6wgBOGCmx1Uh1x4npIsBoP+56uDBtLW6MC9Nq2b4w2omR7UwtHePE6KOmQNZheUJvmhoR03tKtVdW7axXVS2ljuYwDo2sKLEWzrgBb32VzUNaCKs5sXfTpk0LfgxjDGeeeSbe8IY39N2XRAxBEHlDujJkiYmt5t4kCIMm4nAGNS1iGsGumMJumBazmGI1NIMIU5HtB9MMGaZCiWYo0QzVRa8ZZpgKjYBRS5JoEVPPEDaAoMnB67oaCVDVSHXrwuTVSEBFX5hRuzB9uvMCti+Mmw9jnJhOZuckdZzmdh3boRewDky/cJK3zdEWmSxfd3/HqRYx/uTq8pwYt1Ov9LaToCEUo263QiKGIFY5DAxgzDYrY34jMnM5VLkLap+Axwh4DVHYRBJMox6sBQBMYVdMyWlMsTqaQagTeNURTAjJJPGaXjANnQfTjJQLU6t1ENfVVTxsSgQNBtYIwKZisKYWI/UkDyXlYwUqe8JEGG1DNYmeoaR5E05q2TwYsxgLJBXKhWkLlQOjNZHQoSTrwKifHSec1PFCS+q9rgonZW6IyN3uOTFmX7sxY7biSlSElqTMKtZF97ZVJnJWsxMzalZXYJIgiFUGw7LlwhCEpnym1cKXSeXzn/882m377+Tuu++GEFbI7tixA+973/sWdWwSMQSx2jEuDAvBeB1cLwFvIgyaCINpROEsonAWSbRGL2tRj9eiEaocmCmoZUauwZRsYIpHaIYBmiFHPYRyX0KJRqAqkaZCoXJhAoFGmOa5MLWkg7iWImoIRA094LHJwZtuOXUMNGtAs5GHktBoqGqkroqkUQuY3rkwzIwXMKGk+ZYXSpKdTC0mobej8mFEh0F0mM6HYcgERyY4OnrJpLuwfEmlcl7cbZlExSLzRcAuZdu8+9Gxi7SLcP7zHiH14mwjVhcvfelL8eCDD+a3DzroIPzP//xPfvvhhx/G2WefvahjUziJIFYpJg/GCBjOE3AWgjGdPMs4OAvVwiMELARnKicl4nVEvIGETaEuZ9CUTQDAlGxgOoiVgIk4mhGcfjBAU4uXepChqcuoTS5MLekgqaWIGlneD4Y3OVgzUuXUzUSJF8BWJDWbkM1mxZDHEKP/iOvhwuhQEtPVSV2hpLYzI6kQSsr7wmQMqRdO0uEiJ7HXDRd1TO5MRVm1G06qyo9Jdfgnc/JdMqeBn1+plJWvy+78GHdbv+qlFYWkcFKxD1G/vkQLgUQMQaxWmL64MQ7GIi1WYgRcJcZypoRLoMVNyBOEulw6Qh0JGqjJJhqiiQZTImIqUA7MVGx6wdhSajNWYMqpRAKQC5g4zvJEXt60/WBYIwKbsjkwAIBmA7LZ6JELsxRhJIGBXBgz5LHMhXEHPTouTNbRYiTlENqFAWw5deqUVbvrRrB0qpJ5ne0d58racaz9TCfxth3hkjo5MR3Wco6dlq4Lad8XmxNT0SRvFQialf8Klw8SMQSxalEXP5a7LUrARFyJgoAnCHiCkOkFCSItYmJZR102UJcJGixGPVAfJbkD4wgYU0rd1A5Mw6lEAmDDSPU0T+T1+sE0TQiprhbAllQ3myUhJEAJmFHnELR63OW4MGbIY4kLI7XaKLowpi+McWHSQkKv58SUCJasIpm3StC4+3R0Am7GrLPSgStcOqXrZcLF3e4nAbuX9d6dficdCb/5IDFcSMQQxCrFllUHnoAJdSwnZAki3kCIBDFrIJZ1JEKJmEQmqCNGjYdoBAHqoZlI7QuYemBLqRuhwFSYeZVIAFCv2zyYoGlzYAAoAdOsWQFjuvI2m5DNqYpy6qUII2WovPi2Wn5jO12dVObCyLYWMQUXxo4Z4Hk+DGDDSZ2KEutOiRPTqXJfZJUTo15Xh9lQmVud5AqXVFpxIzxx44SfSp0Y8iZWG1deeSVmZ1VTTCEErrnmGvzkJz8BAC9fZqGQiCEIYgWxFGEkoKcLQxAFSLJ1N717zWte491mbHFuFYkYghgj3KZzZU3mhvtk6tu9Sd414SMTTopYwzowso5EJqhJ7cSwEDUeoBEESAKOhukFEwH1gOlmdhJTTj+YphdKUiEkAAUXJgBr6hASoJJ564lyYeo1yKZqaCebzR6jBUZt3XdQelkybsb8fHd3XkD9bHUg59M8lJQ7MW0/lJQ64SRTkQTYcFKZ+6K2o+v+6nCSs935WzO5MKmTE9OR8/l6lfuSinbpdqFdmarE3lWRE7PKE3vdcuphQyKGIMaEYtdcBjYyIcPAnCqkEAGPEepwUsSUUIhZAzU5hZpseOEjAIg5RyMIUAsZ6gFDPR/myHQISQkY041X3ZeiGXbQiDt5JRIARI0MYVN35W2GYFOx6sgLAFMmlNRQlUgNVQVVLmAijP4jrUdjO537wjpt2+Su7Sb2dvIZSW5JNaCHPDqhJHdGklr8TrxZiXBx191t1eEk4aw7+S9MnW/quE3euiNiMuEIGuEIF5F2rUtZXuG0GnyKVa5hRgqJGGJZMd1ic0rmtqxmRiZkWACmy6U5NyXUKoE31iLGCJi6rKHGYtRZiFqgLq7GfUkChkYI1HWz30Yo9UBHK2BMKXVTjxSoawGTNNWF01Qj8SmnK68ppda5MLLZUH1hmlrEhMWPLo6lCSO1UXpJEkI5MIDOidEJva020LKJvd6MpLbIZyQVXRjjxHQER5p1OzEdJ7HXXzc/q0qpZel6x3FdTP6LW4XkCZSK3BdRsW7ES2Vi7ypwYojRQSKGWDZY3t7eqS4xVb8QgJSrU8wURN0ohAxjAbh2YowLE/JEhZCkcjmMgGmwBDUeoBYEqGsRUwsZGgG0iJFWxOhE3kYgcgHTdKqQGrU2avUOkkaKsKFeU9BU1UisGetEXlfEaPFSr/dI5AWA2lDfn3J6lFS3nH4wxoGZb/vzkYqTqgszklwXJnOdGN20DlicE5M6giatcGJSuJVIbX2M8gRe133xnJgS4QJY8bKaKpKKiFVcnbTffvstKt+FBkASY4sNm3C7bgRN/kEXQDIJpjt+rloYG7qQMcMbue4HE/AEIW8gYg3UMIW6blznChhTgVQL1O+rHgK1QIWOGnoWEgDU8268SsCY/BcAaCQdJEmqesE0JYIp3QtmKlAdeacTpxJJD3M0YaTKHBhACZilaD4+X745TZUL01L3M+PAuM3tgFIXpmxGksmDAZC7MKY/TNlspPIBkK5wcU7Vc2Lc2UhuY7vucFJW5b6UhI2AoqAxz1PeDG81fFFZ+a+wmksvvXRRj9t3330H2o9EDLGkqPBR4KwX3Jj8tlDyRjLlzqyCMJOEEiv5BD7mrA8JlQsTafdFN67jdcSsjoRNIZZ11IwTw2JPwNRDFToCgISzfIxA3R3mGAqdwGvLqBs6gbde6yBppgidUmoAKpE3FzA1vx+MFjF5GKmLpSinBiqTeYHchWHzBSem1VZuzLwJJ/kujOgoBwZAlwvjTqvOJM9DRmnutJR37DWCxRvoiPIQUuq8nsxrbKf7uggrOrxQkRNaqsptKXNdVvOXkdWc2HvUUUeN9Pg0O4kgiAmFY2nCSBJUUk0Q4wk5McTSwlghhMSd3BgXrr65MYBJQGq7m8mV7cZ4ON+ah/GaGRgYj/VgxwYi3dQuDpqI2RRqcgp1WUcdKsxUZ2GXC1PX4aRGINVQx0Co9UBXIAUCU1GKemhdmHpNl1LXlQsTTgPBdAA2rccbTCc2D8ZUIk1PqdfdaFZ05WUAqsJLw6YijAQoF2Zuh6pGauks3VZbLaYSqWNGC5hQkmpsJ1N44wXcUFKa2fECqSjLibGn0C8nxnNlnO2ui5KWNLPL4DouWenjVlup9GIZ1juzSj75FgSJGGLJYFq0uCEktS1w7ldIKcBYANXBQoDpf72SSTCZrVghM/QE3lwwBjqMVEcYNBAHTSTBDAAgYVM6F6aBhqyjwVXVUj3sFjD5CAHdjVdNoVY5MADQCDPUwxRN3QemXlPjBAAgmlICpqsXzFTil1JPT9nwUbNZUokEKAdmKZIlU1QmoZqKpFZhvIARMS3ToVc/vpV2hZLcQY9uKCnPfdHraY/EXl+YqBteMMcNIXmDGaWz7uaorPKBjSNgyFFhwoFEDLEksNx1CWBn9igBY8QLc6KbjHFICEipU0P0nyqTKSQLVrSQGQYm94iZ/COWIOA1hEENSTiNJJhBjSsR08BaTMnZXMDUQ/WYemAFTFP3f7EJvFbAmFECgJ1I3ai1kSRpngMDIBcwfFrlwLAZHQqargNTTWC6qQVMQ1UiARXVSAmM8B0tEj1dmLk5JV7mnQXwxwu0Un/IY1tCtAHRVi5McUaScWHMUMdUMJ3Y64sXLw+mxIlxpwS78kN6wmVp//0Uv6QQxDCgnBhiZDDzX0HAqOoYK2AYODgL8+1mMZ1kGYvyBSzs7i1DeKj3LwTnCQLeRMCbiMIpxOEUatEsauEa1PlaNLDWEzBTPEYzDJV4CTiaUbeAyTvxhkIvZhZSB81INbIrCphwukTATHUn8krdB0Y2p4AkUUsXkV6Wgh4Cpt3W85HmlZDJ3RftwLideVt6aUvPhck6HFmqljQL0MmC3IVJBc9dGHdJpRIt/nbki9CLu01KmS8uwvlPOks/GLhdWP9FCU5/8fZx/luZMIghLYtxHy+88ELsu+++qNVqOOKII/D9739/+C9xGSEnhhg6VmRw57ab/2LDRyzfVq6nGYP6Qpz/243UTb2NvtH5qEtBoHNf6ghMBVLYRBw0UeMziNkUGpjFlJwGgFzA1MMATR0+AoBmqDrw2tCRM0IgzNDQVUh1ZyJ1o9ZGUlNl1NGUqkIKpvXvu+kImOk6MG3LqJELmF6l1AGWpqEdoKqRSsJIpn363JyaUj03r4WLkxMz7+TDzKfekEcxr8qqjQtjmtqJTIsU7cKYKdWdyj4x9pSkc2EzoSO3GsZbX8A74Don/rp1wZj375aXby+57np6ys2JW4HmqppiPcSDLYDPfe5zOOuss3DJJZfgiCOOwAc/+EEce+yxuP3227F+/fohndTyQk4MQRATAMfSJfJSNRIxXMSQloXygQ98AK9+9atx2mmn4aCDDsIll1yCRqOBT3ziEzv7ksYGcmKWmKJlOsl5HX5Yp6RxHYrf5Gz4yG5z18vi5hzQZioACKRYbjdmSYc0LhTGchfGJPACQBzOIOFTqLEZNOQMGqKJKaZEQSNQVUjNiKvhjTpaUw/8MQKNUORVSFM6gbc4zLFW79hmdtqFYfqAngvjNrSbakJOT0NOT1f0g1nKSiQAmOtxl7pPhZDcfBi/H4xspcqFcYY8inkTSuK5C2P6wXSyAGkW5KEk13lJpdP/Rf+5ue6K28xOlNwvFpgHk//7hOu4OOvOv1HO7SXEDUW58/7Mv13v36nXlJq+Sy+EdruNbdu2eduSJEFSCL+2223cdNNNOPvss/NtnHMcc8wxuOGGG5bkXJcCEjFLRFXIZNI60uYJo2AAs38+9oOt/MNOPbY7dGTj5kVr2ib3AtaO5SyE1LUUuZDB6BvhdefhmHMGvO9Iy9yUz61AMgm8AFDjM6hjFg0xjYZsoMESNAP1+1Nl1Az1kKEZqiZ2gBIxU6FEPRC6lFqgoYc5NsOOmoMU+cMcVRhJdePlTQ42HedVSF4YqdlQybyAEjCVDe2MgFmqfIk2Kr/zmjwYQOXCzM35eTBmWvV8B5g3gx4FZEuHePJcGBVKyjJnWrWw06rdqdVKxPB8UnVHdIeTytYH+fuTzL7O4r89AODONu78Ww+cdeGUYbv7uIcznXy9fz7O6ZW3WFhZDLPZ3Uc+8hFceOGF3rZ3vvOdeNe73uVt+81vfoMsy7D77rt723fffXfcdtttwzuhZYZEzBKg3IcgzwuxiLwj7bgLGTvxONLCI3JEiaH/h1Exzs7Q7cB4SC1mmPttLtWP45BwcmxGWbFUzPEBHMfJrZQxv0dZuI3SwPiwzpfrYY6mB0wtmlUVSGwWANDEWjTklKpAYhGmwhD1UJ1/PeSq867Of2nol1Msoa7rHBgAaMYd1CM1RiCppYgbZpijRDCthznqMuq8CqlZ8wSM1KJFNpvA9HTFK6tj6aLeGSonVAuR58EA6M6FcZwYU5Ek5pWAEWbIY9vPhUl1Qi8AdDI1qdrkwOSiRTKkojsXxs+JcfoJlTgxXgm2e6NCF3KT8+IJjSonxiZZS8d+YdLdJ9TPXTG52ukGvFIZ5qfS6aefjne/+93etqILs5ogETNirIAJvaRWg0RHX5A7YylkcsHC1D8SVS3kVBJ1hYwGF2RlIST3eBJCCRgp7KcAA4BQB5nMjlrgjKBNv3e+lU36nN+pacqHsg/t7nkxnpOzyIGXnEUIAiUC4mgGtXANkmAGDb4WTbkGANAQTTRRQzOIvAZ2ALweMKaBHQA0HQFj+r+YOUj1KEWt1kFcSxE1MoQ6MhQ0GfhMqGYhNWPVA2Zah4KaupS62bDuCzAmAmaAcuq5uTyc1BVG0iEkACqM1FIujGhLmBmJWZvnFUmmGimfkeS5MH4ib0dXIJnb6qc9tbIp1ZlXYr24fxOucOHS/TfqbHf/vTKnaqzEiakSTeTELIw4jjEzM9N3v9122w1BEGDr1q3e9q1bt2LDhg3DO6FlhkTMiDAXPFMpUuZcSCkgGYeUHX0hHq/5QGZQYMDruRMT8Bich/q1lH87MxdvKcu7fOaP8QRQd98P82EpkXlOjEAKKZWAklog6juhxiSOomFcsUlfVCnizHmCVXU3zZxBl4AVN+ZvYDBRY8qow2AacaiEQBJOox6sRYOtxZSYRUMqdTHFEtSD0AsdmTlIJvelWIFkwkf1IM37v+S5L4kRMAJhE+BNM8wxBJ92plFP1fKwkW1mN93HfQFUM7ul6AVjmEfl92WnK28+qbpQTp2HkABdlaRdmJY/HyntcHQ6gXJhnM68xVBSR9jwUSZZ1+wkcxsAMucKaVZlhRMzSH6MzYkp/9t2w0aSO/OVFuDECGdWU1koi9h54jjGYYcdhmuuuQYnnngiAPU7uuaaa/C6171ueU9uiJCIGRF5+IXH4Czx3AuDlCofRoJDcEDmn0DLb6/aPiN1cB4j0BOPOYsQeE5M94VGIuvq9imq8gw0vOKDTLhuDFQMniMEuHL4lSNjPkgDJRpG5sYY5yjK+9q4jkzZN8rurqcl3VCdbfpyV7jtY54/CGoIeQ1xaLvv1tisCh2JKUzJRt59txEEaIQBGiFD3TgvOvfFDHGsObkvgO2+a5J3kzhFkpjcFyVggiYQNDn4lCmjjruHOU6bsJEuo65M4DXUsLQfTW1UduVNU2CHI2Dy0QJ+GMkk8gJQYaSO39QOQFcYqZNxtIQOJwme5750HNHSEWrdhJeKCb5AebO7Qbr09sP9N+kn9jrr0q4HlTkxHXMQ53HlAmmlslwde8866yxs2rQJT3nKU/DUpz4VH/zgB7F9+3acdtppy3NCI2Ci/nquv/56nHDCCdhzzz3BGMMVV1yx3KdEEMRQWWoB0yMPhiCGxHKVWL/4xS/GP/7jP+Kcc87BIYccgptvvhlf+9rXupJ9J5mJcmK2b9+OJz/5yfiLv/gLvOhFL1ru06mEMZ6HODhLwHnsdaQ1GCdGSK5zfE0YYfEJqmXuiIQc+JgmQZQHTQS8hoDHCHiC0HFi1GsJeronUmaewxDADpFzXYh+38KYeY/0tziOqODGCDDdwdUtyR42tvOwCbOFeVfhohNTzOvJ12W1C1Pcnj+vc0xjy3MWIeQxQl5HxBv57CMAaEhbfdQIbPJuI1Tl03XdwK5qhECNizx514SQkjDNK5Diuk7g1SXUvBmA1wOwGZUzpcJIbideO8wxb2ZX6cIstYCRqCyndprasbk5sB1zwI45YIfOm9nRUiGkVscrpwYAOS9UOXVL5cGkbR0yagd5Lkw7C/KuvADyEFLReelItRiHpVPmtDh/NmZ7WjE81CuDLpmXVIVXqeSsi4p8NjeHBtoNzB0Z+KXZpsx8JTPMnJiF8rrXvW5FhY+KTJSIOe6443Dcccct92n0xZS5AshDMebC3y1istxaNR8kQqYqT2ZBz2nyNFSbfhf1PB01d6gQ6rGPD73zNqGKKKgj4ImtfmEhAkS5pVx2wZYyg2DCEy1G2AB+aad3DmXHgsotYfr9yN8jdMCkFhP69TDGAclGk1HkJGVzFoLz0BmLYDsQ88qp3HBCYoNfMJRQUvk3YZ5cHSFmdUSsgUQ2kMhanvtSYzHqPFTDGwOOhk7erenqo3og0QilnjytzqOup1A3ggw1pwKpHqVI3ATemkDYUO9uXkLdjMCmYrCmro5oJvkYATUDqQGYidTNqR7deJdawAAD9YOZm7OhI7MAeT6MN1pgXv/NeqMF7HykLNP5MDrvpeUk9nYER8uElIQfTlLzk9TTZnmptf0rdwWN2e6GL1LnX0S6AOEyCKwy5GSPzU2U3M17W2Ul1sTomCgRs1BarRZaJhEP6GoQNAo4i8B1HgkAhEENAU9sHonzD90IilTXYObf1HkHLEsX5JwwXkfA49whcMlzb2QKIe1UXulc/JWAqeW5L2FQR8SVgAlZgsCIGIQqWRnclmI6CKmScCWy/GItmegSNu7z90Lox5rXJGTHGi1clXXmr1caYcWGm9yry6tNQqNx1szv1XyrZF3N/EryhWRF7oXe3xVBDAECFiFACI4IEdMjBGSCCDESkSCRMWosRi1Qz5VwjnrIUQsYksBP3q0FRrzIXLio+0RePl0Ls7wCqZZ0EMcZ4nqKsNadwMvqocqBMXOQAO3ANPQspCYwPWWHOVaWgdaxtEm8gErkrfj7a7VsP5i8Kmm+IGJ0Mq9xYeYziJZpagdkLSBtMaTtAJ2Oem1mwGM7DboTeKXvwqROiXVHIhcxxZ/FdevYCGdbufsimLu9dxK+i19N6DbE6913piqB1z/eGDeS3AlWzisZP1a0iNmyZQvOPffcJXs+xrgWE2paMIBcCJSFYIw7UQwzAUpwSNFCL8yAP0A5J8rxiSpEjArvCJF6YR5z3sWwUcASRLyBgEUI4YqYCFxXBnHpX3gE9HMwka8D3cIm/5AsZK0WL/ACAhyAZBkynezMwMF4ACY5Uh2CM84OYykk40P/xFDiJMqFKWchwqCuXCnHpeJQrgnvIWK6j83zxxbFYYAIgQwRIUEkY0RCPU+MEDGLEIEjCQLUAo44MI6LEi+1QK3XApu8W9PuixEw1omx4qUWOsm7iQofBXWpBQwHbzgJvKYCqaHdF8BzYOSUTuAtnURtWA4B0wZQkTzfbqtEXq8zr+4HMzdvu/I6ybz5cEfTD6bQlTdN1etrp6EKJ+kwknJd1O+/XQwnOWKlI2BFjXZaykJIgK1UyiqSeTPmVBMtwJXx/pYrXOIqV8b8O3dDTMJN8vXmLHmtfHue0ySxnOGklc6KFjFnn302zjrrrPz2tm3b8OhHP3pkz8d1p9QoaCAK1Id6yOsIeeKFYAzGnWAy6M5jMaGHEiGjKocaCINGLpaMAOG6lLuIhICQndyVAYxI4HnIwrguABCyJBcvkUxywaJcAe7HvB0EExBSIEOaf7srChtRVXrtfn7pxxrRw3RnUCVoAkAAAROQzCm/ZqFeOkP7AGQwbfx9lyrkMQKW5L9bALmA4YhyIVL8XfDC7zkXhEbAgCMU6p9llIuYEBELEGlxmvAAEWeIuRIvsRYtABBzK15qgURNe/lqXeQVSG7YqBZmSMIU9aSDOE4R6+67YV0gbABBQ4eO6iHYlO6+24yBegJ3CjUALWCc3Jew6iPGdOJd6lBCin4N7fIcGEDlwbj9YFpOQzstYMS8gGhJZKYfTIshbXGknQCdNPDKqNuZCSVxP/dFr5scGLcayQgZc1vt3x1CAqwD44aQMpQLl0pXpodbCBT7xDiOj/M8ftg869qGyry4QjNQgujDihYxZfMkCIJYbhiABiq7n42MDD0b2hHECJCAN2l8Z49F+KxoEbOUuE3H4qCJSCfIhky5G+63c4NABoEOAhYhdXJZ8nBEFiJj85DSujGq+ZwKV8VBEwFXIs24KFw3oSsmyUppQjndib2McQSI8vMEgIjVEMkEgQwRyhCB/lPhYGCSl1YmGdfE/T8ApCyFkGZr1mVdi5JEX3e/THbyHhQZUuXKuF/q8rBVqJsKtoeStAjAGaZYy4cphkE9/72671nAIoQyykNtxlkxuA6WG0Yy72mIABwMkX6vA8YRcY6IcUScIeTqgzDmHEkAhJwh4UCsQ0fqPuXAxFy5MPXAODFCOzE2eTeJjBOTIo7V+ACVvKveu6AO8Drrzn8BgHpsHZh6TSXwAn4FEi9zWTiWdhaSoU9HXkC5MGawo5vAO9fym9oBqrFdK1WzkToqlGSKb4qjBdp6tECadc9H6uoHU0jkVfkwLHdbbIKvPe3Uc2XMvxn7999hNvyTMRtGy5y5R6KkT44XburjzgB+yMmrQDTOjfMrr3JyVyoUThodEyViHnnkEfz85z/Pb9955524+eabscsuu2DvvfdelnMyTe2icC2SaBZJMI2ETzlhGSUGeuWQdFgLAUIEuhSxzSJwHqLDE2Si5n0gBDxGyJP8QhpxdfEwyZ8Bi7pCFgAgmBPK0R8mKkyjcjBM/oUJjYQyRCRjBDLIL66ALvVVmSmF16KH3EmZS5hUfzBGiHx5wwqWtnTWYc/NvEcZi/IPWa4FDQdHWnKRlFKoxGhRXoW1EFR4cBpRqKZBh1qYRryRh9uM2AOAQKrzMj+NOAGsWFGzvnn+/nEwMMYQMgYGhpDxXKxEnCNgSrREHIiMiAlU2EiFlCQSjjz3JeZKwNQDiViHjwCVvKsETIokzFTuS6xzX3QIKawLhDVVeQQArM5V+fRUDFaPbP4LkIuXPIFXi5jeFUghVBXSUiMB7EDP77Fzc6orr5vIC9iE3rlWngcDqNEC+WwkncibtfQIgU6ATkflwpimdoDtylva1E4n83Yn8jKkUtowUt6xtzyclOnX2HFyflJHoKTOdlny7624vliq2gzk9xdmqNnHuYm9KwcSMaNjokTMD3/4QzzrWc/Kb5t8l02bNuHSSy9dlnOKwjUAgGayDrVgLRI2hZg1vAtbKMOub+WAumhnLEUoE6RI0OHKcQllgjZLEPJWnseSuzQssi6Avoia5wkQIZTaMfGS6GwOTFl5L5c8d1sCLbRCBAi0NGKMIcxFDANn3d+ihTO9WUB9EzSOgitsBCREPuuoPPnQnGueS6NzbAD17TFlHZ1sq6qBOm5MPUSes2nyieSAHZBV/ot6P0PdJycKlasWB01ErKGfIkGCBkIkudgD4Am+QP9kzIoV7rx/gbM9YAycAQFTbou5zwiXkKv1WIuYJABCJpEEEjEHEi1cALVeCwRiLpBo5wWAEjBhhjjIkETKeYnz7rsqeTd3XvLk3QisEWkBU9M5MFqgNGq2hLpeH6ACKdbLcjCHXiMFAHQLGCNiWu28J4zbldeUVLv9YLKOLqXWHXlNFZLfC6a8H0wmbe6Ln8hr7wOs65JWlVhrx8QVLq774vWJqciDkU4u2zCw1YN227COTRATJWKOPvpofwrrMhMEM2jE6wAAu0SPQU1OIUKMSMS5GODgSgiUfDNRF3SJjKXoIEYKdYHooIWIN5DJDsyoe2PJMnAb6kGISOhkUwR5SEI9rxUaRmDkbonzAeI6BAECBHlIS9XKhIyDMXs8d93FHFtKtZ5J3iVsBCSklFawSF+8+I24rOCRTOQfyhlLkcoUKSJ0dPmx52CJEJxFSLMYmVAXoky0VUhOCtjBi2aYo+mPE4PzGKEWMaY/TsRVPxZXmIZIEMsYESJEMkIAI/w4Asa9980VK5wBjDEEznsYcHUuIQcCBi1i1KlFjniJuETEtNsSQDswEhGDEiwmbMQFkkAg5hniQKAW2OTdODTiJUOUZAhrNmwUNJh1Xhq6bL8ZAw0ngbdes45LvaZCR/V6nwReYHl6wBjm0LOUevsjerc5NZnaLPM6nFRsaNfSF/i27OoHk2oRk48W0LOROl0ihufzkIozkjLd2M6OF5C5kAH87YaOI0Cy/N9JeTKvG0Jy16ua4JUhS0JPO8NqmJ00PletlcdEiZhxgjGORrI71iUHAgAeIx7rXZB5fvHyLVIXCYkUEpmMkCHOZ5x0WA2ZTFUuif5AMS5OKEPluuhv/e4F1HVMyqj6aDLnaC68gHYFmHISOGzloytmAL8ISIkUPcZQyrxrqBE2UgJgfujJfS+K52hETyqd/BopctHXRrWDlQUtZNqJyWTqdRB2h1cGeeO6KHe5AHSFiyIZ545LJKO8YihkLBd+gXZYQv0zYMx7PzmDdlysuGH6dsighQxDpD/TIy1SQi4RacdFnZsSMIkOGSVcOS8AHAGTIdZhIwCIogxxnCFKUoSJzJ0XAOB1DtYIVN6LcV4A6740klzAyLpThVRv9JmBtFwVSIZ5VM5EKpZSux1553X4CADm2sp9MTkw87pqriW8fjAmBwaAaminw0hGtADoCiNlFf1gTAgJUOIlEzZkVNaRt6yZXQY398Wu93NfXNw8mH7CZqFUNrjzKpiG+pTLCoWTRgeJmEXCeR1rkr3xR/ETAAB7NDh+vSNDO5Pet6QyzB+0ubBn+kJt4tmZjJFCt9vX29yclOI3fgD5t/4yl8R77sIng+sQuGLFXHQZ7MVXPX85EoCQDEJq50UyxIXXacRN8X1wz6tMFKWOg2JEXwcRYpmgw2ro6JLZDlpI+DQ6ch6Cd/IPb5PUbF+zI2J08z7VVC6yYUCEOlTklzkDQMgYIhZowWHDPwFjCLgRM8hDROo+9d6GzAqX/DFawIRMqiUXMUDEJCIdLjJOTBKo9dhxXRIdNooDoQVMmgsXAAjjDGEs/LBRTf/tuOLFOC+AdV/0Io3zAgzQ/yWAcmCWOoHX0EJlL5g07S6lNg6Mm8gLeA3tTA4MAC8PJkt5PlIAADpOLxhXxFi3xea+mOGNRqwYJyZzt3u3fTEDFP5NGZe3opFdVVO7hfSMWSi50+K1gBmumzPurKTGfeMGiRiCIIbMcua/AErALGxsB0EQkwmJmEXCdbjBOBS1QGLXhGNHppLuPJfBS2jznYhMGjeGe+GXzM0dgR/GMY5L4ORPqCRS65j0wpyPdVes22IeblwEG0ZC/vwuMndb7G0BpnJf8tQX5dAYl6bsXOxjZeE2IJ33JpNSL4F2ZRJ0dOJuigwZy5DBD8W5CcTmW2EImwDNwBHKQCVh6/tNflAIhoBz5bqYsJF+360Tg8J2N2yk78uTd4GAyXx7yKR2b5TrEjAVRgKASK8rJ0Y4ToxAyASSILPOi3FiwgxRlCKKRO6+AFAOTKIcGFbzc1+QhGCNWJVN190KpIZyYOp1nbzbtJVHpeXTDMp9WeoOvC59BIzT0A7FKqS5lnVh5rub2plEXgBeMm/aCfK5SACQClVW7ea/AP6QR+PIZE5ibyqht0lkJvdF6M8Cx5lRP7tDSID9W69yVvz13m7IzoSQ/HLr1eW6lEHhpNFBImaRSAg8kt2PH8z/EgAQsH2wNmFoMvVBlF/Auy7yTsItVJtwCZWwl+eFyO4LupdYy2wyqCs6TEhooahkXXgiyL3t6hZXJPniDN5rFmCF2+a9YF0fjX6IiXnHs+Epdb8SMDbnRt2O9H0CqZNHY8/N5sKo18ac91PlEan3szsnyOS2mDCRus8XLGEuYmy+ixUyUj9Gevvb7VbYmORdE04KmUDEJRIutJhRryPmGSIuEOtqoyjKEIU6bBQq8RLVBHiihAsA8JpO3K1xFTaqhTb3pZ6oMFIS2/ARYCuP6nWg0ehReQQsf/gIUJ14+wiY7dvBtm/3E3kBP5S0ow05p0XMjg7kXFraldck86YpR7vjDHN0cmHc0QJGpOT9YNwwUSGUZP56M2m/7AD234qbT+a9xJLk/UG68frT1EvyY4aczOsyyHiOSYc0zOggEbNIhJjD9vb92Jqof4AS+yDmdoKydSFk4bZzDKlETSrthR9Aaf6ILdW1oiPg3Q7JIE6MiyeCtCNjtvOSY7ozot0ulFZwOK/NFWXOdhcjbIBCUq903wcrfIqiz3xTNY83DlCeSOy+Vse1yl+nUy3kVRN5jooWLPrN9p0Wx4nRQsV1V9z7OHzBAlhB44oYI3AiLpRYCUS+DgBxkCEMMsSREjBBKBBGWsQkMhcvRrgAUPkvic59SULlutR0yKee6KUGNOqq8gjQAkYJmXLnxbDc4SNACZge4wQAz4Fh23dY4QJo8VJeSi3mBcScKqUWLe2cdNRwxzTleSKvyYlpZ4GTD2PLqM2EaiNeUsFs1ZHjwgidHwPoLzrS+TJUcjVcSGXRuFAcs7KikeTEjBISMYtEijba6TZsN/NsZhgaoey+SDvr6mJefuEvv+h3KxIjLozgcEXIIGLDP5bMH2tuu04M0FscedVFzrdH9zUVz6H4/hTdHHe7cWB8l4dpB8uErRwRU/K8Rcx75oqYojA0rz/QTpcbCgK0ICkNDanbJoHXvS9g0hMsVqioZN5cxHCBUIuVkKn1OFTOS6gb10VRqhyXSCCIBIJEWMclAXiiQ0ZauAAAM85LLQKSyIoWQIkZN2xkQkb1ep/kXQ7lvix3iWyfEJKpQNq+XTkxbi8Y48TMd1Ql0lxHuS+mlNo0tGvZSiTANrTrdMI8kbddaGpX2pVX2lLq1BEruQNTcGJcUQ44CfD03Z4gAJCIWTQSElm2DfM6bNEM1aTgIkV3wf34cd0G162w+1qK1UFcf7MvExndeqP3B14xhJRvh+zKgek6ch4u810koOg+dQs89/HqGM56Ubw4Ish82FuR4wukquIw970qc6AYkIdyjKBTLo30KopshZH0QkMMvrOiSqbdcJIVLK7bEjCJQAsYJVay/DGRDheFoUAQ6vyWUKhKo0SCRwCvASzRDlKNg8UF1wWw4iWJVc5LYkWMrNeAWuI7L32JAIzDXLI+AsaEj4DuZnZz88AO68R4+S87ukupMz3UEUBejdROA7SzIM+BAeA5MG5XXuPAdHLXxa1OYv7fdr59YYKlbByI2/jSHX0inGnUfh8rymEZNmPU3mzFQSKGIIgFwKHEyziEA+ZRWUZNEGOCRHWPLmLnIRGzE0gpkGXbACgnphmWDDJ0EnmLeSHdFT3O4wrH6QrvFFwSc//ic2K6A1jF0JJL0W3xHSZW6iqV/UP2XzPr2m5dKidk1HVf93OVUZrvA4Dp8FBxuwkNmVwWnrsq9n4TWgJct8W9zzoxrusS6mTLgEmEgUCQuzACgQ4bBYHIHZgwEeCRbnwYAUECsBjgCQercTDdIY/VQpW0m4TWfQF8B0Yn8MqaGeaoHZgk6dN5dxxyXwwDCBgniRfQ4aSiC6Ob2pkwkmloJ1q6ymeH48K0VU8YAOikgcqFcbryek3tCpVIALzbHVnWD0blcRVDpO7f/KDf6MscmSJ+XopTwWfcmrIhjiCnhhgvSMQMCRVOkmAl1m8xDyZfh61WEoVwi3uUXsKCMbvnQjMTynJo3G39BFFZGbl6rbLrdRrc6qzu+7vfA7dayX0eW+1ULn6KFMWf+15ZAWNzWHJxA1tl5IoVBqnDSipEZLbbfBkrWACV35ILmCCzYSauhQq3goXrxwSRQBBJ8MiGjQCARQwsZmC1ACwJwOLAy31BEqk8F/MTsOKllqjwUVKzuS9JMkDjugTLn/timENlJ16DV4VUaGinE3jR6uQJvKYjr9iRQcypEBKgBUxbCRiVB6PLqPV06nYaoCUCtDOOttChJh1KMom8NrGX5XOQbDWSThTWVXcm5JT/nff4AlBGWbNLN1RUVb/oip6s0CVcPX//M1jo/qsJSuwdHSRihsR0KDEdVn+wdufGlORyVIidXmKjTDQt1I1xP9YWIorKxEm3Q1OdWNydBN39+qveK79kfbBPCPPajDABbO6LEjKyezuQOyrm7EKuRIzZbgWJBIcSKgET6ie3jkvA1bYwzKxQCbRwCaQWLAJcf+nlkXZbYqaEi+mwG3EgDlSybhT4jkvsihgtXABfvCTJAEm76l1Qzks00Ps7eiR6zkJyq5BcAbN9h96uBcxcSyXx7mgDppR6ruNNpRamlLrNkbasgGl3bAWSKaVOCwm8rYIL4+bEdNykXmmrk4zbklfk5a+4u8puEFxB4U61d9er8mDMdnJchgflxIwOEjFDYioUaIa97e2yCp2i01Dczln3X38xBIT89uDna4/liBZWfV+RojCpEhv2/uqTkxX7VfXWKT7nIBTDR/l2IBconHWLGAaZixY3NGTEC3PcFrNNiRUtTLSI4VwiCNQ2ziUCExoKlNPCQi1aQiVaAMdxiTkQaccFUEm7ceAIlgiInLCRI2DykJERL7Van34vhnFJ3DUI9JxGrZvYAegWMKYCqUTAGCdGzAvIOWcqtalCanGvF0zblFGbhF4RoJVxtAvjBeyUapXIC9iSaiVimB7sqO50XZjMaZZp2wXo8FJepWQpc1fcZN6q1j3ca0jnTy0DCv1bZLlwdGcgyYp9iOHlxJAW6oZEzJCYDjM0o/5JhkVFbkVMuSgoEya+8Fj4n3VZxRFHURD1Pm5RlLjVSVX7FKl6zcXH99uvH0Uny31t1oExYSYrSMztgEudN2NFjLltxIp5DOcCgRYqPHDuCyR4IMFCCR4owQIo0cJCR7CEWrQAVrjEgXJc4jDfjloMRKHz04iVWImVOLLCBRjQeQHGL3QEqNDRXPXdpoldHjaa8/Nfdphhjo6AMfOQ5nQptRYw2ZwSMGlb57d0VB8Y0wumnVonpi0Cr5S65ZRStwXXAx0ZUrNdmgGPqs+RmVANuI3uVPaXbW6n3ZkBc2KYES/e37zjyjjiJqsSN3r/zLn0+qEiy0LcGt/5IcFDDAcSMQRBYLyqjlw6UGXUBDG5UDhpdJCIGRLNMEUz6lQ6GGWuRJ5HUvIQN4TCBggbFfdZCO45D3qcYoKuV4VVlrzb57Bdx+uTrFvl8pSG35ykXnVb+u6MyXnRibzFbQGXYNw6MZwL5dJw67iY5+GBAA+V8wIu/fwW47qELNcKLObKfYk4EPLceQFg3RfzM3didL+XOMpdmNxxiSMgSSCT2gAJu4D6yp5gPD8KBhjk6Eykhu4H4/WCMSEkwHdhdnQg5tQ8JADKhWlZFyZt6yRdkwuThnknXsA2tMtDSU7ui5lQbXvFQD/GLAzuiAHAJvoKqVwad9K9gA0jDZOqhF/jrlDvmOFBvtPoGMdProlkOupgKqloe16gKqRk7/dvlwmLxYSR7PEqtvOFHVOK4nnb9X6hJP9xZaKntyjqRbfok952EyrK9+dWsLB8XyVSGNNhIOcxjOtt3IoVAOCBFikBwLgjWAAgQB4qUiJGJ+nGgeqwFwVgIbeiBbDCJYrsT0CLFyVkZKzzX2J1Xy5eepZKA+OXtOsioUqo+1w4221/lEBZFZIOIQHwBEw+0HFO56TokQJGwHQ6Wqw4AqadcbRMTozOhTEN7VqZrUJq5/kwLK9EAmw1ksp/0SMz3PuEzJvbubkymZBOJZ6fG6Perd6XSF4hVqqw5dR06R0ONqdpGMcifEjEDIlm3EG93u7Z4bbs77j0Al4QB7xCXOyM++Ifp2K787xFwZJvL1YYLUBwFF9n2fH6HbfqPfB66HBfxDDmvzYjUBh3RAzXC1NihWnRog6oBAuMUDFpCNphYZwBoc5vcadDGqcl5GBmvkEcAGGgHJVcxDiVRkGQuyu5UIki67hEsUrWNY/pOeMIGG/xAvRN4DW0284IgZJhjvNtPwcG8ASM2OEPdBQthrTFcgHT6aiPxk7m5714ybtS574IvzOvK2BSAceJ0du0gOkI68R0tIAxE6xtXxip3RgtXgqDIHcGt1LJnfSelSToDpLk2w/KgyFGAYmYIdGstVGbWlj30OJnQa/PBtbn2tTv/kFYiCgqiop+n2uDfu4t1HVxcc+/+H7kQoNJ/z5uBAyUKMn3c27nYiUvXVLihJufuprIOCycKVfFLIASLSHXgkULF8AKmDjU61EuVoyAsaJFjwmIIhUmMj8He3cw3uIFUM3r5nvv0tKqY8eObgHjiZiOFz4C0CVg3IGOaYsh7ZiBjqGfwOu4MO3iaAFnSU1Tu4KAseKmW8B4jou0A03N9tRpgAeUjyDwXBk2eqHg95ShMNMgUJ+Y0UEiZkg0Gm3E04N9gFS6DTshYhZDv7lI+WdV6XnZ6onSexf7WbqQx5W8J+775L0+7tzPC/tzLVCYux/LG8owDuWeuG2TQ0esGHFjHBbOrGAxjkuohUvIlfgwIsY4LY6AkcZVCQMgivW22JZGDyxczAuPMf7/1AfIf5mbA5vbYdd3FOYgmYnUO9qqkZ0TPgLQJWCyOeYPdGwH6KQB0oznuS9uN17TiRcAWsJvZmdKpgF0CRhbgeQLGOO+uPcZAZM61Unqts7d0W/FKHJkipQ1wBsFUjpCaIWWaZOGGR3j/sk2MdSmUgSzA7gIvf6N9vpLX7xB0ZvFiqPFvo4BkT2+urDuhjY+vGS/wlwG5t42QoVZV8VuZ/m6nQ7piJcwsI8JuArn5AKm4LiY23Gk1s32KIIMQ53rEjsiJrSOS98wUZEQynUZt2qjIgLKfenxB6V7wLC5HbYXzNw8sGNOCZe5eRU6mtciaK6l+r/oPjBmIrUnYFrWfQGQC5iO7gVjnBjTjdcd6gjAEzBGqJj7TM8Xm8CrXZUSAZM7MQUBIx1xk0qROzBZLmbsv4+qdbttZQoDggBIxBDECoJBCZcIo1O9w2SA8BFBrAAonDQ6SMQMiXBKIpgxHcwqLiB9kvGWOpzkP8ECLno9XsdSusFd74mXzVuybpyVwjY7d6Bwf75o18WEhnjBhXFdFbM9CJST4oaNQrVNeuEk5cDIIFxEnoshgBIuk/TPecAJ1G4JdbECaV5XH7XaqhKpZUcIYN42s8vLqF0XZo7nISTADnTsCJ6PEwCQjxRoF0YLFLvyZsVwUj4nSSLV2/OOvNJP4gV8FyZznBjjwqSFqiQ3F8V1Wsy6GEJuzCgdnNVUsi1BImaUTNKn3lgTznKw2Zrd4F5EB/wLzh9R3H8x8wQWwyDP0+e1sKX419prSiUz4aJyEZP/NOEZR8Dk4sTdJ7+fW+Fh7guMaNH/jIx44TacJL37QkfE6O1xbAXPwt4E2JDRJLguhgxKwPT5O3ETeFstR8ho52Zeh5FanTyUJJ0EXrRSNUpgXoWQAHh5MGknQJZyZJkWK6kWK3qcQKfQD6ZT6AWj5iDp0FEuZPQrlLYjrwktAX6XXjcHRj3GFzAmB8YImO6xA+XJvKYCyBUgsmJdLFJIUHhq4ZQlZBPDgUTMkOCzEdhs3dlQuLBMghTvJWIWcv7Dfq1l5+V3q3O28+77ze2icAGUOPEEi7OPd58jYozg0c6KeX5pnBfOtWAJlMMCaFdGl08vWLDkLxRWuIzTWIBBaeulD4UEXsy3bAVSLm60A9PqADvakHqMAIB8GrUa5lhSRq0FTHGgYzsNHOelOJHa5LhYJyaT9j7TrM7cl+ZuiytufAemWIVkbgspkTliJZOiy4FxhUTqujKsW8QMIlaEHA9nhC72xEIhETMk+No6sGZqsJ3HLQN/IbGq5T5391xz16RkW9V2VhQrzm1WsV3fl7sqRsAwrgSJPrbUTovaxhfpsHS9YKh/piHGP0m3igGSdwE/dNRSjgvLw0bzNokXUEm8BQFjEnjlvC9gimXUnXaALPMHOqa6G28r7wtjxArXosRP7DXhIzvQ0ZZS5+JF+OLGODRC+uEjdZ8vYISTyCsgHfGitzMrOmRJOKnSfSlxbYqUhXrkACLHc39k9/m5AyK99VXg7EzCd9hJhUTMsJhtALMDipgiYhH/iAepVqk67oIrXRZw7FFQPN+i21K8n5WJG9eF4fY2Y5DmthdO0k1iHBdGMkfglAmVYbyv6kCwwmUSHReXAd2XVssPHRnHxYiYVtuvQHJLqLWAsbkvAmIe+TTqrFNSRp1yNUbAdODNrIBxS6mV08Kt8+IMczTdd4uOi4SaQu1OpQZ88SL0bdvUDp6AcauQMmSOeNFTtyuESZ4TU+LOdG0vERruMQYROcOfXL0yBQ3NThodJGIIYiwwTkuIycpxqSKD6v2yMi9KBLEQlqKvz2qFRMywmG0Cs9PLfRbLT5lDMwyHwj2GyUFxQz9l+5WFllx3xezDuXJZvO3ObZOsOzSnBVCCxV1WEgM0rgPs38rcHFhr3s9/MU6Mm8A73y6tQJKtTCXxmgTeeUB0uoc5pin3qpBMDgxgE3hTyfOZSGo70/1dism7fi5MJlkeMvDdGZvlYZJ2pTRzktycGOG5MG4OjIB0HBjfkQGA1KnykiUuiuu+LDaENEgyb1kISW0351Qekhq+m0OsJkjEDIu1M5Br1iz8cTsTlim7qC70eIu5MC9VKKns3IphIcCGeYqPKQ0n2RwX7/ZQBUoR0wp4pYoWQwolYAb41qmHNwLwQ0hu/gughYufwAtAJfE6FUiyIyF0ukzWArI2R9riOoHXdN/tFjBmoGNRwBTnIKVO+EhtV/kt7navcZ0wISLkJdZCmkRdOw/JiBJZEDBuDoyAK2q6w0muYMi0eKzKfekXQiput9vKQ0iLrVSqFC4rNO5C8x9HB4mYnYRp61+umYWcnV3ms1mB9Mp3KXNixgI9HTIXLCshPNQLASVeBqhwEQJotVT10bx2W1otnczb9vNfAJvAq0uoTQWSyoHRCbxt2/8FALIWR9bhSDs8n4UEqBEC7SxAx/x0BjoWBYzNfbFzkcq68hbLqc27IWBdGOPFSL2/yYUxeTDmMWbYo3REi4BAxrKu/i9V1Ufm/sxxwqqEi6xwaIyjMgz3xX2eKuGyGpyYlf8Klw8SMTsJ47ox2ewMUK/33plYYTBYweIuqwUJlbQ7QOgIUO5LLljmwXIR07bl0yZkNG8mT3dy18WvQBIQLQHZRl6BlCfwtrkzzDFAJ7Nl1O4spLYI/Cok6Tawc8JJeSUSg1tplEl3tID9tm1CTMaFEbm4kd5UaiVYbCm1K2Dy5Fom8i1qvz7VR8bBGUC4ZG4YqiR0NGz3xaXqGCu1xHoYU8eJckjE7ASMheBcCRe5Zu0ynw0xGhhsOGi1ipUyOlDuSx+08wLAui+tlg0dATpc1LbTp1sdoG0cl7Qr90VtlxBtvwLJzEEyPWDSlKOdhrnbYtyX1Om+61YhuQLGNrWzAkYNdFSnbPJg3L4vqSNwpOPC+BVIvgtjLuVG3ABa7OSOi95WcGBc9yVlVkSW5cQsRLi4+1cJl4W4L+721VxiTYwOEjE7AecJAl4zN5b3ZIhFYgRK1U/CZwF5L60WMD9vy6WN+9JqW9cFsCKmEDoCdO5LJ+vqvmscmKzNlYBpK9ECoKuE2u2+286qOvDyXMSkUokX9RhfwLgN7dwRAip8pO4z5dPGhbHixNxvXZhi1YrrwqjbNisGqBIp3TkvroioEiBlwkXt0x2yWqxwqTqey6oIJw3JiCE/pxsSMcQKwrgm7nrVQgJlYVDJNEEsFiqxHh2rUsQ0Gk2whQw8LIGzCGE4gyg0De5WasXJMCl7z4vbWMn6oD+J4ZNB5b0soC19muqQ0XwePgJgQ0i58+I6MY4D0878BN62yDvwCh05yVq9E3jdCiTPidF5MMaJcccIlA5zzAc52hwYoDjI0VYjAaZ82oaSbDip23kxdCf02v3KmtVVDXgsm50kpJPk28d9cfcZhvviH6/c2SGInWFVipjHPe5xCIJhiw5K6iVWEgsUL6bs3g0hleW+tDt++AjIc2Dy6qNWCtnWF2OnfFq0AGGSd1sMWWoTeNNUzT4C1OTpdmqrj9wKJFfAFKuQjEjpFEqpi0m8gDvI0e0VY8qldRhJmvCQfotK8mGKgx0B9B3oqG5Xdd7NvMcVHztIsq6U3cdYrHCpourYKxXK6x0dq1LEEARRxSKcFy1cAO22mNyXTseWTQNaxKSe8wIAsp1p4ZLZ0um2vri3pK1A6qjmdYBO3tUzkIoJvGnG0RKBl8ALlFcgeU6M48J0ixgjcnS/FtktYMxjbMm19MYOuP1hTD6M57g4+TDFvBhDeQ+Xfi7K4MLFPd6whItN7K0aV7CyRYwEhZNGCYkYgiCgEnbbWNAFpdUC2m0VNso77LbAOh0bNur45dJKxFjnBdDJu0bAtGVeOg0Y8QKIjm1eBwCdDldDGysSeFUjO5vAq7bbOUhmYGNZAq9baZRKpkWJL1TKBIxpamcEjJQlVUclLgxQFCLdoaSieKnuvNs7iXYhybrDEC7u81Q6O+TEEDsBiRiCWNV0oMTLgJ+ybSNIdM5Lu6PWOzo0ZMSLCRt1rOOCTqryXhznBXDyXtzQkX6I6LA8dGRKpwEgTYOeuS/9KpA6hfBQMfcl88SNzEWLW0ZtXBYJ676o+6RubKemVLsl1qkUcKuS3J9uafVCyo6r2vnn91fkoiykOV21g1MlYno7O/75r3wRQ4wOEjEEseoQUOJlwCZ1BEHsFBROGh0kYghi1ZBCCZdFVIaYbrsdM9NI5bywVit3Y9R+HT/3xYSPAB0y0g6MDh8BgGxL7cCo6iPRVv1fACDrsK78FwDoZMGCEngBm7RrHJiOU4VUdGHsdr8Cye0FY6qQMikhpOvEqFBR6jgy6jEmF8aGmcryWbqTeJ19KqqSDLJPnxh/3945L8NwX6qOt6oSe6UdL0EMn4lrlnHhhRdi3333Ra1WwxFHHIHvf//7y31KBDHGCKj+LtsBzGPBAqbdBh5+GOyRh8Eefhh4+BHg4UfAHnkE7OFHgO071Lbtc2p5eAewfV4vLWB7C3Kuo5btbcgdHci5FGJ7CrFDqGVOINshkc0B2RxDOq/yX9IWR6cVoN0K0EkDtDsB2mmolkxVI7VEgHa+cLR1LkxLcLQEQytj6qcjYDoSaAtmhzgKPdAxT/oFUi1CzH1W4Kh8l1RIG2oSQCqkF2JyBYwJFanhjsiHPBYX9dsqNr8zwibrqkgyy0Jwn9HbLkXX4v7nbvcfl9nFfTUlx6u6fzUgh/Qf0c1EOTGf+9zncNZZZ+GSSy7BEUccgQ9+8IM49thjcfvtt2P9+vXLfXoEMUaYcNEiLhJu3kunbV2XdttOl+50HNelo/JdAJX/0klt4m47y3Nf8s67bZX7YpJ3XffFOC8mgdeUT5v8l9SZOr2YEQKpBFJhE3g7eY4L68p/UY/x81/cEmvjvkjHjcnv00m8JgcGQJeAKQ56dPNhqqZQl7HoSdKLceQwYF5Nn7ECvnihnjHE4pkoEfOBD3wAr371q3HaaacBAC655BJ85StfwSc+8Qm89a1vHdrzMBaAgUEio8FdxASROssCEUILE11tBGhx4ogXI1wAW3WkBYsrYmQ7AzpZddiorQSMm7ybdRiyjhIvacqRZVbEmNBRJ1OiBSgk71Yk8JZVIPVqXtcRfujIbHerj/JeMLnLosSNES3qMdpvkOrbcwrzGOkJmBTOOAHmD36sDi0NdsGvTOYdYJJ0v+Z0wxEuqyichJVeRL68TIyIabfbuOmmm3D22Wfn2zjnOOaYY3DDDTeUPqbVaqFlYvUAtm3b1vM5TBdfxtTbwiQARkKGGGd2Qrik+jFGvHTaXn4LM6LF/WnKpV3x0laOCwDITmZLpjvaddE9X5SAMSXTqmwagOe+uM4LgNx96QiOzHVbBO/KfVlI9928pLqQ++I2twMGz3tR4SLtqkib+2ImV0OvZ8icoIrwBj3mMoZ1C5dRVPD0EzQLFS79nqd635V/iafE3tExMSLmN7/5DbIsw+677+5t33333XHbbbeVPmbLli0499xzF/As6gPSiBgJK2QAkJghxoSdEC6AChdp4QJosaIFDCu6LcWQUdsIHyteZCezIsYTL+Vho9x5SW3jujS1fV8y4TgumQ0ZZdIto2Z6G+vqvmsHNtoEXvUYN4HXho8AnRtTCB2pY9m8F5MPAyAXNFVhIyNe3HwXK1OsgPHCSVrAmP/MY8qo2r7Y0NJiH+fSX+hUiJ9V4MTQtWN0TFxi70I4++yz8dBDD+XLXXfdtdynRBCLwJREzwF4BCpBd5EChiAIYgUxMU7MbrvthiAIsHXrVm/71q1bsWHDhtLHJEmCJEkGfg4GE06ygwUl2MB9wAhieKRQCY8phvIHmKbdYaNMCyHXgfGcmNR3YFwnxnFgjPsCoMuBER1A6oeU5b4AQJapHBg3edc4LiaElLsuTvJu5jgwxpEBfAfGOC9AuQtjuuwaF8ZUGZV13zXN6wA3J0blvmSu41LIffEb2nU7MAC6XBjbeTfzQkxL2RhuobkvC8ltWW0N7iicNDomRsTEcYzDDjsM11xzDU488UQAgBAC11xzDV73utcN9bnI+iOWHiNYMgwlR8BJ1AWghEua+WGj1IoYK1g6aj+gNO9FdvR9puooK8t7sQLGCBcAEJmf+5IJpwLJyXtxu++aEFIuVPJeMCqBNxVwer+YYY7+DCRfxLA8RGRCSOY+V8C43XdNeMnNe3FDSKkTOgL8idRusm6//BdXwAhnkKMSN9UJveMoCMqSeKs79q7sz1uJ4YmYlf1OLY6JETEAcNZZZ2HTpk14ylOegqc+9an44Ac/iO3bt+fVSjuL+cfE4OTAmIUghoaEEitmGZJoAbQISbXj0vGSd1m7DWRZiVjRM43SrDvvJc26XBcAnngxwgWAEi+ZTdzNOgwi07kqTu6LyBg6mZ06nTmVRm4CrxEuxnnJPLeF5VVIpnxaHY/lzoo/zLFbwHizkBwB4ybwquReX8S47ospm7buSXfirt3ui5diFZIRMPmxikm+Jc3s+uG5JQM8Ti6w98xiWA0VSZPG+eefj6985Su4+eabEccxHnzwwa59fvWrX+GMM87Atddei6mpKWzatAlbtmxBGC6flJgoEfPiF78YDzzwAM455xzcd999OOSQQ/C1r32tK9l3seTdLiU3G1SZ9VCOTqxOjGARzs8h/UWlqRIlWrQAAMtSGypqd8Ay45w4wqXdsWIGcMRKqmqLtYgxTosXMkpN2EiJF5naiiPAhI+YV3FkyqVNx10jWEzPl8xN0s0TeJ0kXcE95wWAI2pcceI4MY5IccuoiwLGrUIqTp82210Bk0kjOrp7vqSOICm6LgC6xEtxOnXRfTG4oqaf62JEyjASdb3jDhBCWnwJ9coXNOPolhVpt9s4+eSTsXHjRnz84x/vuj/LMhx//PHYsGEDvvvd7+Lee+/FKaecgiiK8O53v3sZzlgxUSIGAF73utcNPXxURIoOwBiFlYgFIuCLlSEKFsAviU5TIE190QJY4dLuWJGjtyvh4jgubtgoVeJFdjJHqKh1U22EVAkXAJ54McIFsOXSQgsWIRjSVDsumStguOOq2Moj6664Isa6MLYXjK1CMmLGCg8bUjITqNWxdLioogpJQsKar24eixUw5lJkBEyxZBrwe75UhYwAX7jkt3ORU9hecEeqplEvhKV2Q/wL+epqcDcJOTGmkvfSSy8tvf+qq67Crbfeiq9//evYfffdccghh+Dv/u7v8Ja3vAXvete7EMfxEp6tZUVXJxHE8DHOSgeqnf8cVEv/RwDsgKocMvOJxv+DiyCIUdM9YmKxC6Ack23btnmL2w9tVNxwww140pOe5EU+jj32WGzbtg0//elPR/78VUycE7MUSIDyYFYtKg2v++eQXZVBcMNFxnUBlINiqo3SVDkvbpJulmm3xcl7aad2eyFspNwW7bq0HSemIyBTqVyYDCphN680UlVHJnFXZLbni3JfVNO6TDAbNpIMncxxXYTrxPh9X7KCE5M6jovdrt2WYmio4MKYiiI3xFQ2RsDtBZM6ib1SqhwYE0ICuhvXZSx1Enur817cqiPAuhNFB8Z1LYR0w0nd9xOri4985CO48MILvW3vfOc78a53vWukz3vfffeV9mkz9y0XJGKIFY50frqLKNm2jMLVCBYhrCAxwiXNVLhIC5I8QdeIGbMOWOFSDBmlwt52RIu5z6s0Sm3ISOW9+Am76j4rXoxwUaesm9U5TetMFZKbtOtWGrkCppj7YsJIxeRdN4TkihP/vv5zkNzmdUZiCCeX361Ccr8Nu9+OjYDpVy6tHleetNslagrdcnvlugwyYXqsWQVfGIeZo3T66ad35aBUtRJ561vfive+9709j/ezn/0MBx544NDOb6khEUMsM8UPMFmyXtxW3F7ctsyCpBdGpJgPbtdlEcIKFiAXKbnTYgRJmYBx72vrHJfMESrtFDIVNlHXjG8GIDNpc168vBfjtigBY4QLAE+8FMulMyNIsqC00iiTNvcFsNOjjWApy33JxYd0t8PbboWPdlBgBY7dbgWM0Iu6zy+l9sullbRwy6idjBcv/wVAl4Dp5boUHRVbfeRXFBU7+PbLgxlGhdFECqIxRbLhvZdxHGNmZmagff/X//pfOPXUU3vu85jHPGagY23YsAHf//73vW2mb1tVr7alYFWKmFtuucVpaAcwxrF26gmYDfcCAMSsAa4rlNweDZnsQKCjPp5kB6lsI5P6qym2L+lrWF7GVCCME6kWJa5Y0QJGCRZnuxS+YDHl0r2EirmdrwvnPnW8vLoIUG6LFi6myqjUcUkBc/0TbUBmqkRapMgTdgF44sUtl3bFiytaABs2SkV3yKhX2MhMnnbdFukl6FrnBTAjAaxLY5NxfQFTLKWWThWS+bWZMJJbhYT8tiidPF0UML3ES9Fxset2e1/3pU+S7ELmGxGjYXiJvQs7zrp167Bu3bqhPPPGjRtx/vnn4/7778f69esBAFdffTVmZmZw0EEHDeU5FsOqFDFCZACYsyVDqzOHeTyibjEBpnOei1auhFBiRnb0T9P+nS7sqwoh7JJf8YQVK0JUixUhwEzISErrsggBLzTk3jaCBchFiroSW9ECOGXRjmgBoEJFxmnROS5WxGjHJfMrjYQRMKZJXWbDRm7IKJPMOjGZCQupUFLqNqEz+xbyXlIBZ5sVLkB52EhtV/dZwSK7BI507gPg7WtEjA0b2WGOJoQEIA8juS4MYC9KbhipmPtS7LbrlVBXOC72+O723pVIZROoqyCxQlTxq1/9Cr/73e/wq1/9ClmW4eabbwYA7L///piamsLznvc8HHTQQXjlK1+J973vfbjvvvvwjne8A5s3b15QZ/xhsypFDEEQBEEsFcPu2zMKzjnnHPzLv/xLfvvQQw8FAFx77bU4+uijEQQBvvzlL+OMM87Axo0b0Ww2sWnTJpx33nnLdcoASMTkdNLtaAXKiQEHGFP2uJRuPDqDlCIPJwnZgRA2CRPL2LWQ2ElcZwXw3ZXifUKASWFzWPLHmP2Uu8K6wknS5sO4bkuaOSGlzEnUcG6nbmjIbBOQ2nXJ81tMyEi3n3VDRm6FkcxgK410vovrvKjtvCtsZBwX48CYaqNMuKEh7oWObBM6m/Ni3Be73a00csNJxaoi27jOhoSs+2J+dZnUHXuEbWqfCuWsqBCTeZy617gw+WTq3GmxYSZ/DpKZgdTdC6bowpQl7Rarjcwx3f3y48myfcpDSLLE4SGWn0n4fVx66aWVPWIM++yzD/7jP/5jaU5oQOiqq2mn2zAf1AEAIkjBmG2h43erVEJGSoFMpvmHBrvnHsg99hj/THvG/NuLPd/icRbDQp5biO714s/COita5/n+svsxRoDk26QNCxkxUnyMETCe4LGPU9VGsrC/1ILFOffU7G8EUJafQ56Mq0ULoIWKkF6IyFzBpZB5qMiEiQAjVPwcFze/RWQsDxcZoWJEixsycsVKqsWLES6AHQeQSj9RF7BhI7dJHVCSvNsnbGS2F8NGee6LFi5GtLjJu9IRNypMpN8fnQsjpBIwqUngNXkyTjk1AH+Io5PIa3AFTFm5dLHaqCpkVCVaqkJINvG3f87MJLgDKwKGrvERxPCgZncEQRAEQUwk5MQQBEEQxIiQINdrlJCI0WTZNrQ6avZDJlrgrPutca1aKbW5rG1b9otfgs3NjebkxCL+AfAVYLJVvW43RFO2fzFMVQwTudvcEJMs7GfCQ2Y/sy5N2Ki4j7ThJfd+QIeMpAr3SOmEk6QNG5kQkTmNVK+nMg8TqafXnXOFrSoyn5E2v0XlsEgd/ikLGeXTpXXISOTrJmTkh4tUSMf2fEmd3i5+NRFzQkAVlUbe9u5+L24nXZPHYkJH9jEyDzMJiTyPxeS8mNBRPgfJzXmRurJI32eKp4uVSH4oqXuwo2p05ze1E1XhGyeUVGyCZ0JIZeGjstCRrCrNlr0fX1WdVHW8fix+6OPqgkTM6FgBVzqCIAiCIFYj5MQ4pOlDAAAh01Inpoj3DecX94FtH5ETo05q8H35EJJuF0M/92cxjlLXMYouSw/XpcuRkf5Pd3+3fauzT+6cFB9vHJTiY8wipXZR9DdjYe7XxzSmUWa2IXdW8t4lzm2ZMkidCCu1qyIFgxD2JwBkmdrPOC1COm6LtPdlTtVQKrlOjvX7ukj4bouAWx3kOy1mu9mWVweVVBoJWNcFQO68SJ1c6yb2ur1ejOuijiXz8QCZtB111euxTov5qc7Ndt8FrOti1osVSHa78CZTq/eme7SA1wfGSep1e8IUXZgqB6Yycbesv0xJEm+V+7KQEQX+cRfvskxCZc5okfQejBASMQRBEAQxQqpCjAtlzGtflwUSMQRBEAQxQsiJGR0kYhyEnoMks0cgWICqlCG3h4yh8/OHET7SLjvoME9xYexsWKns3Psds9f9w3wvyo5VCB+Vut4lIaV8Py80ZO6T9rZzt8xDQ/Aek4eFpF03zyElAMH0endoSLW8LyTjOttN/xazbyY4hAkR5eEchkzYbUL6TehMcq4JB5n7Un0cNzSkwkn6p9OvxTxGwu3TwvK3yTais+vmMW6/Fz8RV/10m9TBO5ZtRpc/j9PrJXOTcZ2wUVXIyL1tf31+4q7Zpt4LUZg6XT4fCUBXKMltbFcMJRVnIJlQTVkIyZyH2lbeByZP7B0ghNQvOXjYULIvMQpIxBAEQRDECKFmd6ODRAxBEARBjJBh5cRQVkw3JGJKkDKFlCkYCqER3WpfSq7uc8JKD/1PjOb2VvkBl0OEl0TCSqJgOTvr9PY69rAZ6Fwr9ik+No9ACdZ1vwr5sHybf58f2nEf44aGTNWQeS6pwzYmzGMqiMw2qauAzLHycJFgEGD5cYRUt01VkY2SMR3qsdVD7nZTMeTfZ/u7mHCQfYytMvLmE8GGjNyqIfu8tneLPZ60253HmNCQhD/fSN3nhIu8cFL3mICqSqPivCO7T3f1jZ04XdKbxdvmVyJ1bStUJOXPv8hQUjGM1K8PzM6EkOxz9L7fvBPl2wkXyokZHdQnhiAIgiCIiYScGIIgCIIYGTJ35ojhQyKmB6Z6wm7IYw8AVKiBIQAA3Pvbaeza3uHs2l2lI0q2lcGZUzEx4GOqHg8AzLnNCve5lJ1z2bZex+l1/EGfc2eOOcjxBvndmAohKSvud8I07rayUJB9DrMP845rbgsnDGTuM7e7t5vHIq8qAtC1vxsyckNJEsVwEiDAvGoiCb85nTkuYMI+TuVQ/hplHnaybf/1fbBhI+E9j+waFWCqk4rVR2ZMgGngL6VEmgeH3HBS7wZ1aj/RZfO7ISFvO+u9nyiEaYpTqvPt0g0t+SGhXiMFimGkfs3sFhtCKnvO4vog9Kt2Wm2hJwonjQ4SMQRBEAQxIiT8HCZiuFBODEEQBEEQEwk5MYtEQvvlOlpw1/Ym2lmQV5Dk+5WEI2RhH7aAsrniY4uYY3EvhKR+8sLzmH3KQlbu6yiOICoe1zvmIksAi+/bzhyvGE7req6KkFPZObivvep3KEr2MffbkIkT1pH2Ny6KIajCY9zQUHG7KH2MG26Cc2zYsBX8JnR5+AfoCkGpsJO063mYx1YZuRVN0tk3HyOVN6Ez+9uw0f/f3r3HWFEdfgD/npn7ANxlEVjBrWK7oV1SLdhiMdi0aiWCaYz8Q0xfWbSxDVmNBvqAmEhNa9HEGIwaStMUDJFg05Q2tTaFUpA2arvFrF1o8dc1NcuPZQF/lN1lC3vv3jm/P+Z1Zu7Mfey9s7Oz9/shG/bOnceZu69zz/c81GPUtY7s131cutPTqRPXqRGSu6K0dxSQuraR+dp4J6azJ6VTFcVIdhQjgyMB9R120GgnNcoptz5S0LpI9n7+Y8pNZjfRVakrUzqG8m93qa+1etzEfmckCVexjg4rMURERBFin5josBJTK+ud4enLGeQNUeYdeGWn9M/cH3ac2hqgtuZownsOAek89u9X6jr+e6m23GEtTOVakyoVdv5SKx8E5aelfr1U8toH7Rv02qkdYz2rGShT9tutGOY+aotNcKuKepx5XbfFQ703tXVEncvFfa6y1hZnLpaQ1hZ/B12zvO4xQa0tYcsF2McGrTAd1Hm3IMat54KXBChaWVppXQlrUTGfC+qYWtzHofg4XyuPbw4X/zlKLSngb9moZjXqoDIUXyeoNaf8fDCVLVcQfA9E9cBKDBERUVRkcKWX6oOVGCIiogixT0x0WImpkRDmSzhwWcO4TIc29fub+YvPU7zNjkWKYp4y8Y6w4iT7lJowYxQhzI6y6rXUeEX9MXPL750vpZxynX3DOvBWev5S17KvU7xd+bw+SVbZiM3/K8vTQRjC97g4DlKP8cdMcB6rc8e4x7vPS1/EZX8PSu81nU7C9v/hkZF/OQB7fzceqywuUreHrTKtbnMiGN+yAeU68Kqdd9VVpf0rSpvlCJrbJTgS8gv7IxUWGQWdK2wpAfVx0DwwQderZj6Y8H1q+cMbdC/K+RoqWpJF30e1nIu8OMSaiIiIEoktMURERBFip+bosBIzQUKkMGvGdVg0YwUAIGdI/N+YQN4QGJfuyr3OtO2Gd3SJ91zm/1rANps/fvCfw1COFwLQlRFKGgBdM+MlTQjoysnD0hV/LAHP43BB59N8NxMUxcgSzwHu/RZFRZ5RWEIZhSU8+wjf/mGxUjVz9lQrfG4Z+3n/CCcZ/pxUYxrvdqD4e8Q/J4s/mvKMUCqKhtzj3Ago+HP/CCN7dJFbDjcuUkcamf+7kZH3GCUmUqb/949Ccl83o3gkkrVdjZHUlaT9o4CCVpK2zxEkNN4JiREqnYq/aMRThfPAVBIhVaOyEUlhcVjQ/DqNFYuwT0x0WIkhIiKKUL1GJzVW1a8y7BNDREREicSWmCoJoUHTmjAruwDzsu1YYLQBAC7mgDPjBvKGu+ouED7Bl/ec5v+aFTf4H6tN69J3PiPghCmhWZGSsB6bEZIuhBUrWdu14pjFP5rFuQcn1pCeUS3Br1Hw9iD+ESxhEUgYoVzMHYElnBFagBszBcVK/uMruY+wmn/5+y6+j+D79W5TRwupZ/KPTDK3e6M//3W8EZD6vHeEkbuP93P7+y1oKQD7WHViOn8spEZFQdP0G6I4zlEfe0cuBS8hoK4s7V9RulSMFDb1v38Faf/2sMd+pSKFUsdONDoKOiZ8VFNx/FNthFRWmYhpOuOMvdFhJYaIiChC7NgbHVZiiIiIIlS/eWLIj5WYKgnoEELDeOEyhvL/i/9JXQYAnBttw0x5FXSknBgIKJ6Uy9zm1so1aNAMzTq35m7zjfNRm+AlDIyLcRQwDsNauddeNwYANKkhJbNISfPLm5YZpGUaaaSQggZdmNfRIZzoyX899ZqlRp/YgiIfEZKv+PctN8lZWARhv1bu5wJCakhBNz+3nktBgxACKQgrWhKe6M6On+xzOOdTRz757kUdCebdLgK3+8/nuf+A2Md5rkT8E3S8P3ost119To2KzO3u8+qEdM42ZZSR5/szYEI6oDgqCouI/NvUY8P2MwIil7AJ7QwrYrIjJPU5M27yTnYXvJaQfwRTUMwTMjKpgmih3Dv38NFQ1cdNpkr2KS10RJITx5X4RieaIFZiiIiIIiMZJ0WIlRgiIqKISLBPTJQSU4l56qmn8Nvf/hY9PT3IZDK4ePFiLOWQkJAyj4JxBVfyQEGaMU5Ov4S0NhM60hBCd6IM8xhrRETIKAcB3QyQhG49tgMl3dlfbXovyDzGjTEYMo+CMQYAGDdyMGQeUhoQQoOuZZHSMgCAlDYLWa0JacxEWsxAWmYBAGlkoMsUUlKHkFpRNFMuIrDXrLEKHTjaJJA9Ekpd00aZnAww4wEDeRgwzPtE3txXGUVi72u/1kLo0EUKAjp0kUYK5n3qIg0daegyBR1paNCcqM2On4Lu34mGfPGeGxkJz2MnYrIfi6Bjwl8W57UrE/c4+/liH//+3nPKks974iZfrOf9352Qzt7u/7qrsZE/zvGPKFK3+68NKDGRMzouaPRN0JpHxZPC2TGSud07Gsk+RkoD/jWMgifA857fX65KJ7Pzl7ecicZMrson66vHpHZEUUvMPDG5XA7r1q3Dhg0b4i4KERFRxYw6/aNiiWmJefLJJwEAu3fvjrcgREREVahfnMQO0X6JqcRMGbIAwxhzmpkNK07Kj49C1zJmlCSKG7jM/YtHP9j7CmjQtDQAd8SNeh47tpLSQMEYQ8HIoWBcgVEYBQAYMh9aZE3LIqU3I51qQka/CiltJgAgrc1CSmTNqEUzIxdNutcU0EKb/u1Yyz+RmFnG4uZ953UIaIpW4yH7PgxjHAU5DkPmzc+NnHWfOUiZhzRy5rnUiEUIABqESEPTstCEFafpM5x4Tdey0EQaujC/9XWkrcdp82vgifR0aFJzPldfF/sfAOc1c7ebo6Qg3a+lGzm5EVU1imIWhMdDYe/YpAjeHhQv+c8TNlrI/w7RHbFU8ERL6jbAiol8EVFQLOQpf2gUUjwKyD+Znbmfb1SUEknaz/vXUPJ+j3pHMnnKHjACqFzEVN0ftvrETZ59q4iWqprUDvBMbOeOSgra1hjqtewAFZvWlZixsTGMjY05j4eHh2MsDREREdVTrJWYzZs345lnnim5zz//+U8sWbJkQufftm2bE0PVi4QE5DgAA4XCOAqG1UFUpCGE1R1UaUFR35WZnxe/MzT31z2tMubn9nmUzoVy3GyJkGMVv+syjDHkjDHk8h/istUqAwC6NgMpfSbS+gxoIu1pobA7Gys3bpXEO8eG+o7UfierdoZ0jglZfdd7X+p+49a2Met+K7hXKa3XahyGcdnZnLMaqYTQIEQWujYTmtXpWdcy0EQKmmbeuybS7r5WZ2vN+nrYHa3tTthOB2y19cbZ7rbimMe4+9vnsPlbv4puK+Qds39F58B9qsjRy3UuNXzvxj0ddku1uCj7B7XcAcUdcL3XKf0uNux7o3gF6IC5ZHyd7YPmhKnk+zdoiv7g+WWqb40p93Wp/8iX4te7kvllUPdyTB9cdiA6sVZiNm3ahPXr15fcp729fcLn37JlCzZu3Og8Hh4exvXXXz/h8xEREVWLQ6yjE2slprW1Fa2trZGdP5vNIpvNRnZ+IiKi0jjZXZQS0yemv78fFy5cQH9/PwqFAnp6egAAixcvRlNT06SXx4xODAi7w60YQ/iIdQOwpusvxZ5fxO6gWnQO1F6jt6Ml8zIaNG2mE6+Y0YoZp+giZcUvwZ2U7f8NpVxO51xjPKCpXdnPcy8F93l1jo4KXq9qmWW87ImaBASESEFoGbNDsB2nWfev2a+DGhsJqwOvlnKWoTDP5cZPmkiHzv2jdiC2zwfA6Tysxkth/NPwO9tDopcomrM9UZG/02rI3C1Bnb7Vqf39z5nnrqxTZDWxS9iK1JXMCWNfy39MUSdh53rB861UMreMqZp4Jyoh1wtd/kD92bX24VIDFIHEVGKeeOIJvPzyy87jT3/60wCAw4cP44477oipVERERKWxT0x0EjPZ3e7duyGlLPpgBYaIiKYyu2Wu1g8qlpiWmKnKaTa1RsZMlXNVdD1poFAYhWFctkZXZaFbo3aEJ0YJruv6m8bNH7RxJzJyny9AynErLlLuLYLIqFr2MhIoeOfZcUYjWa8DoCtRkzlyzI7b1O12pOSP4zRrHhp1tBPgHQWmRk8qLei9hjJaLPze4vmlFzbSyD/lv3//oDlX/MdWV44Sr03Ac2GrUgctLVBLlBR8n+HRnP885k5T4w9a+M/v1CgfTX+sxBAREUWIrSjRYSWGiIgoUqzERIWVGLKav8cgkIO0Ju8zY5TgCfz8xwLeyfzU0Ubmc4UpER1VwxlFpSznYDivgWaOJHNiJf8EeanQqEnT0t44yYqt7OfNbe7IpcAoqQq1LBpXybWF0Eq+y6w0NvJPNuceU35Cv2qVjpkCRgKFxkyl4qHg6xXvGxQjhUdHwT9DU/APZMBIpCT9/NcbW2Kik5iOvUREREQqtsQQERFFqH6d7Bu3NSsMKzHkcEbqABByHFKMWSN01HWc3MnZAteEsUcgycK0az5Wm/sl4Pw+EbhifaI7MZMQKajrYZmxkhsxeeMkzbP6uX8Vc3+UJ5QVtQPLOcG1hsIiw7DrCaGV/Z0aNgme/7niFaYrm/Au6hFY5VaeLrWKdfmYp0SUVHQd30rQIRPH1fNnzpl8cwKm289+rRgnRYeVGCIioshIBM26TPXBPjFERESUSGyJoUBmJCStETrepmUpApqZrebtRmxGdicpHHdiJoGcZw0sQ+iAMyopfOI8/0gwddSSu610nBRazgrXIAo6f1DUFDZ6KThudBWvjRS8NpH/+aBjJktYbBUcIwFBa52VG8UUfN3gGGkyfs4a8Wc5KoyTosNKDBERUaRYiYkKKzFERERRYktMZFiJoYp4mpZDRkaQy47j3Fhh3PO8YcdzyogmNW4C4JsAT41ugkctVVW+gF+qoaOT1HirKNoq/bjSawfFLoHPVbKuUE0qfU3LR1yl1kgKHMHkTJ6n/nxNfoxElCSsxBAREUWIlc/osBJDFIOgzsC1KDunR1Bn7FD+eWmUYytqESoxr4yldEfHkDlhIm+FCVOqdabE9UPnelGO87Vq8o/ddDW146QPPvgAP/jBD/DHP/4Rg4ODaGtrw9e+9jU8/vjjyGQyzn5///vf0dXVhe7ubrS2tuKRRx7Bd7/73RhLzkoMERFRQzt58iQMw8DOnTuxePFiHD9+HA899BBGR0fx7LPPAgCGh4dx9913Y9WqVfjxj3+M3t5ePPjgg5gzZw6++c1vxlZ2VmKIiIiiNMX7Ea5ZswZr1qxxHre3t+O9997Djh07nErMK6+8glwuh5/97GfIZDK48cYb0dPTg+eee46VGCKqTdkYoqpfov4YJOwBEVWinjFhLpfD8PCwZ1s2m0U2m63bNQBgaGgIc+fOdR6/9dZb+MIXvuCJl1avXo1nnnkG//nPf3D11VfX9fqV4oy9REREEZg3b571WT0qMeY59uzZg5aWFs/Htm3b6nB+V19fH1544QV861vfcrYNDg5iwYIFnv3sx4ODg3W9fjVYiSEiIorAtddeC0CgPh17DQACP/zhDzE0NOT52LJlS+ARmzdvhhCi5MfJkyc9x5w+fRpr1qzBunXr8NBDD9Wh3NFinERERBSR8+fPobW1FWYlZKLtBgYAiQsXLlQVHW3atAnr168vuU97e7vz+cDAAO68807cdttt+MlPfuLZb+HChTh79qxnm/144cKFFZUnCqzEEBERRWT+/PkwKy9mSwrKTYdQxJ40U6u630lra6tVgSrv9OnTuPPOO7F8+XLs2rULmuatcK1cuRKPP/448vk80uk0AODgwYPo6OiIrT8MwDiJiIgoUv/97yXrs4n0jTGPuXLlv3Urj9/p06dxxx13YNGiRXj22Wdx/vx5DA4Oevq6fOUrX0Emk8E3vvENnDhxAq+++iqef/55bNy4MbJyVYItMURERBGaOXMmXn75ZXR2dqK61hizFWbv3r11H32kOnjwIPr6+tDX14frrrvOWwJrZGNLSwsOHDiArq4uLF++HPPnz8cTTzwR6/BqABBSTvEB7HU0PDyMlpYWmDOKVtukR0REySUBFDA0NITZs2dP+tUNw4Cu6zADkGrW6DJQKBSK4h0y8VUhIiKKmKZpOHDgAOxOuuWZrTCHDx9mBaYEtsQQEVEDiLclxuauIRa8xpjLv+I5BWH1joiIaJK8+24PzApVqfYD8/kTJ45PSpmSjC0xRETUAKZGSwxQSWsMW2EqxZYYIiKiSXTqVD/CW2PM7WfODExuoRKKlRgiIqJJZA5jFjBbXNSKjLS2iVhnwU0SVmKIiIgm2dDQReszfyUGGBkZ9u9OIViJISIimmSzZ8/Giy++CHfItTmkeufOnWhqaoq3cAnCjr1ERNQApk7HXls+n0cmk4HbnmAgn88jleJk+pViSwwREVEM0uk0fvnLX8Kemfc3v/kNKzBVaqiWmKGhIcyZMwdm3Y0tMUREjcOMay5evGi1yE8NUkprRl4BwyhACP5tqkZDVflGRkaszzj2noioEY2MjEypSowQAg3UllB3DdUSYxgGBgYG0NzcXPfa7vDwMK6//nqcOnVqyuStteI9JcN0vCdget4X7yk+UkqMjIygra2NaxFNIw3VEqNpWtEy4/U2e/bsKf2DPBG8p2SYjvcETM/74j3FYyq1wFB9sDpKREREicRKDBERESUSKzF1ks1msXXrVmSz2biLUje8p2SYjvcETM/74j0R1VdDdewlIiKi6YMtMURERJRIrMQQERFRIrESQ0RERInESkwEnnrqKdx2222YNWuWtcxB8rz00kv46Ec/ihkzZuDWW2/FX//617iLVJOjR4/i3nvvRVtbG4QQ+NWvfhV3kWq2bds2fPazn0VzczOuueYarF27Fu+9917cxarJjh07sHTpUmfOkZUrV+J3v/td3MWqq6effhpCCDz22GNxF6Um3//+9yGE8HwsWbIk7mJRg2ElJgK5XA7r1q3Dhg0b4i7KhLz66qvYuHEjtm7dinfeeQfLli3D6tWrce7cubiLNmGjo6NYtmwZXnrppbiLUjdvvPEGurq68Pbbb+PgwYPI5/O4++67MTo6GnfRJuy6667D008/jWPHjuFvf/sbvvjFL+K+++7DiRMn4i5aXXR3d2Pnzp1YunRp3EWpixtvvBFnzpxxPv785z/HXSRqNJIis2vXLtnS0hJ3Maq2YsUK2dXV5TwuFAqyra1Nbtu2LcZS1Q8AuX///riLUXfnzp2TAOQbb7wRd1Hq6uqrr5Y//elP4y5GzUZGRuTHP/5xefDgQXn77bfLRx99NO4i1WTr1q1y2bJlcReDGhxbYsgjl8vh2LFjWLVqlbNN0zSsWrUKb731Vowlo3KGhoYAAHPnzo25JPVRKBSwb98+jI6OYuXKlXEXp2ZdXV340pe+5PnZSrp//etfaGtrQ3t7O7761a+iv78/7iJRg2motZOovA8//BCFQgELFizwbF+wYAFOnjwZU6moHMMw8Nhjj+Fzn/scbrrppriLU5Pe3l6sXLkSV65cQVNTE/bv349PfvKTcRerJvv27cM777yD7u7uuItSN7feeit2796Njo4OnDlzBk8++SQ+//nP4/jx42hubo67eNQg2BJToc2bNxd1YvN/8I88xaWrqwvHjx/Hvn374i5KzTo6OtDT04O//OUv2LBhAzo7O/GPf/wj7mJN2KlTp/Doo4/ilVdewYwZM+IuTt3cc889WLduHZYuXYrVq1fj9ddfx8WLF/Hzn/887qJRA2FLTIU2bdqE9evXl9ynvb19cgoTofnz50PXdZw9e9az/ezZs1i4cGFMpaJSHn74Ybz22ms4evRo5Ku0T4ZMJoPFixcDAJYvX47u7m48//zz2LlzZ8wlm5hjx47h3Llz+MxnPuNsKxQKOHr0KF588UWMjY1B1/UYS1gfc+bMwSc+8Qn09fXFXRRqIKzEVKi1tRWtra1xFyNymUwGy5cvx6FDh7B27VoAZlRx6NAhPPzww/EWjjyklHjkkUewf/9+HDlyBB/72MfiLlIkDMPA2NhY3MWYsLvuugu9vb2ebQ888ACWLFmC733ve9OiAgMAly5dwvvvv4+vf/3rcReFGggrMRHo7+/HhQsX0N/fj0KhgJ6eHgDA4sWL0dTUFG/hKrBx40Z0dnbilltuwYoVK7B9+3aMjo7igQceiLtoE3bp0iXPO8R///vf6Onpwdy5c7Fo0aIYSzZxXV1d2Lt3L37961+jubkZg4ODAICWlhbMnDkz5tJNzJYtW3DPPfdg0aJFGBkZwd69e3HkyBH8/ve/j7toE9bc3FzUT+mqq67CvHnzEt1/6dvf/jbuvfde3HDDDRgYGMDWrVuh6zq+/OUvx100aiRxD4+ajjo7OyWAoo/Dhw/HXbSKvfDCC3LRokUyk8nIFStWyLfffjvuItXk8OHDgV+Tzs7OuIs2YUH3A0Du2rUr7qJN2IMPPihvuOEGmclkZGtrq7zrrrvkgQMH4i5W3U2HIdb333+/vPbaa2Umk5Ef+chH5P333y/7+vriLhY1GK5iTURERInE0UlERESUSKzEEBERUSKxEkNERESJxEoMERERJRIrMURERJRIrMQQERFRIrESQ0RERInESgwRERElEisxRERElEisxBAREVEisRJDREREicRKDNE0dv78eSxcuBA/+tGPnG1vvvkmMpkMDh06FGPJiIhqxwUgiaa5119/HWvXrsWbb76Jjo4O3Hzzzbjvvvvw3HPPxV00IqKasBJD1AC6urrwhz/8Abfccgt6e3vR3d2NbDYbd7GIiGrCSgxRA7h8+TJuuukmnDp1CseOHcOnPvWpuItERFQz9okhagDvv/8+BgYGYBgGPvjgg7iLQ0RUF2yJIZrmcrkcVqxYgZtvvhkdHR3Yvn07ent7cc0118RdNCKimrASQzTNfec738EvfvELvPvuu2hqasLtt9+OlpYWvPbaa3EXjYioJoyTiKaxI0eOYPv27dizZw9mz54NTdOwZ88e/OlPf8KOHTviLh4RUU3YEkNERESJxJYYIiIiSiRWYoiIiCiRWIkhIiKiRGIlhoiIiBKJlRgiIiJKJFZiiIiIKJFYiSEiIqJEYiWGiIiIEomVGCIiIkokVmKIiIgokViJISIiokRiJYaIiIgS6f8BDvep6kQ8gr0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sim_data_euler.plot_field(\n", " field_monitor_name=\"field\",\n", " field_name=\"E\",\n", " val=\"abs\",\n", " scale=\"dB\",\n", " vmin=-20,\n", " vmax=30,\n", ")\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "1900f052", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "010fa1a61ab54be1a5c8e801020d805b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "163f6edbc3294fd48df3b953fa8f2009": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_68408dcb966045d69019b848b627e829", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 1.35e-06) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 1.35e-06) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "295d1721812f4cf1bad502b80e1b7061": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "29fdec7e38cf4a36aa3add805c123030": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_3876b2c6a3b34430a188ed088b5a1d8c", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%4.1/4.1 MB10.4 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m4.1/4.1 MB\u001b[0m • \u001b[31m10.4 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "3876b2c6a3b34430a188ed088b5a1d8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "42a9a18cef954af5afc7133a9da97ce0": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_295d1721812f4cf1bad502b80e1b7061", "msg_id": "", "outputs": [ { "data": { "text/html": "
% done (field decay = 1.00e+00) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00\n
\n", "text/plain": "% done (field decay = 1.00e+00) \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "62a5905b05d546158d8f8afd758a0f6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "68408dcb966045d69019b848b627e829": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f4a7fe2acf24bebbef62bc43e659a1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9476d01bb363466fbf204bb5aee0b5a7": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_62a5905b05d546158d8f8afd758a0f6a", "msg_id": "", "outputs": [ { "data": { "text/html": "
 monitor_data.hdf5 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%4.1/4.1 MB7.4 MB/s0:00:00\n
\n", "text/plain": "\u001b[1;32m↓\u001b[0m \u001b[1;34mmonitor_data.hdf5\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m4.1/4.1 MB\u001b[0m • \u001b[31m7.4 MB/s\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "a1b10067bfce4b7484e2fb7a58a3b044": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aa944e969e7f4e218b8c2809a0065103": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_cd834ae11a794bbeb8ee8621443e2253", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Starting 'circular_bend'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mStarting 'circular_bend'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "b281aadfac4a4d6fbfc4d621330b03aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b44f0525b1b24204915cd8443e91e65d": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_f68dda040ad241a7b91eba17ce2e63c3", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%18.4/18.4 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m18.4/18.4 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "bcb87cc8284c44e8803a0a3edcfd6119": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_6f4a7fe2acf24bebbef62bc43e659a1a", "msg_id": "", "outputs": [ { "data": { "text/html": "
 simulation.json ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.0%14.3/14.3 kB?0:00:00\n
\n", "text/plain": "\u001b[1;31m↑\u001b[0m \u001b[1;34msimulation.json\u001b[0m \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100.0%\u001b[0m • \u001b[32m14.3/14.3 kB\u001b[0m • \u001b[31m?\u001b[0m • \u001b[36m0:00:00\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "c62744ff19334e1c94c7dc9eb907436a": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_a1b10067bfce4b7484e2fb7a58a3b044", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Finishing 'circular_bend'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mFinishing 'circular_bend'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "c86ae6a5310b4400aa3fff630b521c80": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b281aadfac4a4d6fbfc4d621330b03aa", "msg_id": "", "outputs": [ { "data": { "text/html": "
🏃  Finishing 'circular_bend'...\n
\n", "text/plain": "\u001b[32m🏃 \u001b[0m \u001b[1;32mFinishing 'circular_bend'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "cd834ae11a794bbeb8ee8621443e2253": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d06046673245468f889c47196ed9eb0e": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_010fa1a61ab54be1a5c8e801020d805b", "msg_id": "", "outputs": [ { "data": { "text/html": "
🚶  Starting 'circular_bend'...\n
\n", "text/plain": "\u001b[32m🚶 \u001b[0m \u001b[1;32mStarting 'circular_bend'...\u001b[0m\n" }, "metadata": {}, "output_type": "display_data" } ] } }, "f68dda040ad241a7b91eba17ce2e63c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }